
Cognition and Behavior

Transcranial Direct Current Stimulation above the
Medial Prefrontal Cortex Facilitates Decision-
Making following Periods of Low Outcome
Controllability
Gábor Csifcsák, Jorunn Bjørkøy, Sarjo Kuyateh, Haakon Reithe, and Matthias Mittner

https://doi.org/10.1523/ENEURO.0041-21.2021

Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway

Visual Abstract

Recent studies suggest that choice behavior in reinforcement learning tasks is shaped by the level of outcome
controllability. In particular, Pavlovian bias (PB) seems to be enhanced under low levels of control, manifesting
in approach tendencies toward rewards and response inhibition when facing potential losses. The medial pre-
frontal cortex (mPFC) has been implicated both in evaluating outcome controllability and in the recruitment of
cognitive control (CC) to suppress maladaptive PB during reinforcement learning. The current study tested
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whether high-definition transcranial direct current stimulation (HD-tDCS) above the mPFC of healthy humans
can influence PB, and counteract the previously documented, deleterious behavioral effects of low outcome
controllability on decision-making. In a preregistered, between-group, double-blind study (N=103 adults, both
sexes), we tested the interaction between controllability and HD-tDCS on parameters of choice behavior in a
Go/NoGo task. Relative to sham stimulation, HD-tDCS resulted in more robust performance improvement fol-
lowing reduced control, an effect that was more pronounced in appetitive trials. In addition, we found evidence
for weaker PB when HD-tDCS was administered during low controllability over outcomes. Computational
modeling revealed that parameter estimates of learning rate and choice randomness were modulated by con-
trollability, HD-tDCS and their interaction. Overall, these results highlight the potential of our HD-tDCS protocol
for interfering with choice arbitration under low levels of control, resulting in more adaptive behavior.

Key words: decision-making; learned helplessness; medial prefrontal cortex; Pavlovian bias; reinforcement learn-
ing; tDCS

Introduction
Value-based decision-making is essential for guiding

actions toward influencing external events in our favor.
Recently, it has been suggested that deliberation strat-
egies can be adjusted to the perceived level of controll-
ability of the environment (Dorfman and Gershman, 2019;
Ly et al., 2019). When uncertainty around action out-
comes is increased, a commonly used heuristic is to
rely more heavily on a Pavlovian bias (PB), manifesting
in tendencies for approaching reward-predictive cues,
and motor inhibition when facing potential punishment
(Rangel et al., 2008; Dayan and Berridge, 2014). A pos-
sible explanation for this phenomenon is that the instru-
mental system relies on more effortful calculation of

stimulus-action/action-outcome associations that does
not pay off when outcomes are independent of actions.
Conversely, Pavlovian stimulus-outcome learning may
provide more precise predictions about upcoming
events in the absence of response-feedback contin-
gency, which in turn can optimize behavior more cost
effectively (Dayan et al., 2006; Rangel et al., 2008;
Dorfman and Gershman, 2019).
In extreme cases, the absence of control over aversive

events can induce learned helplessness (LH), character-
ized by anxiety, motor passivity, and impaired decision-
making (Pryce et al., 2011; Maier and Seligman, 2016).
Once established, LH can also hinder problem solving in
new situations with regained control, leading to persistent
maladaptive coping. Intriguingly, inaction that is elicited by
negative outcomes is a Pavlovian-type response (Rangel
et al., 2008; Dayan and Berridge, 2014), raising the possi-
bility that LH is an excessive manifestation of PB in deci-
sion-making (Maier and Seligman, 2016). However, the
behavioral effects of LH-induction might as well be be-
cause of passivity elicited by motor inhibition. To our
knowledge, whether low outcome controllability influences
Pavlovian response tendencies or whether it facilitates in-
action in general, has not been investigated directly in
animals.
On the neural level, perceived controllability has been

associated with the medial prefrontal cortex (mPFC;
Diener et al., 2010; Kerr et al., 2012; Maier and Seligman,
2016; Ly et al., 2019), which regulates activity in subcorti-
cal structures as a function of outcome controllability
(Amat et al., 2005; Kerr et al., 2012; Maier and Seligman,
2016). In the case of LH, low perceived controllability of
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Significance Statement

Our decisions are shaped by how much control we have over the situation. Under extreme circumstances,
low controllability of choice outcomes can lead to learned helplessness (LH) and impaired coping. Since the
medial prefrontal cortex (mPFC) was implicated in LH, we tested whether high-definition transcranial direct
current stimulation (HD-tDCS) of this region counteracts the deleterious effects of low controllability of re-
wards and losses in healthy humans. We found stronger improvement in response accuracy when low con-
trollability was combined with HD-tDCS. Moreover, several latent parameters of choice behavior were
influenced by HD-tDCS and/or controllability. These results highlight the potential of our HD-tDCS protocol
for interfering with choice arbitration in environments with reduced controllability, resulting in more adaptive
behavior.
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negative events can lead to weaker top-down suppres-
sion from mPFC toward the dorsal raphe nucleus and the
amygdala, both of which have been implicated in defen-
sive behavior and pathologic responses to threat (Amat et
al., 2005; Maier and Watkins, 2005; Kerr et al., 2012;
Maier and Seligman, 2016; LeDoux and Daw, 2018).
The mPFC also seems to be crucial for mediating the

balance between Pavlovian and instrumental responses.
This is apparent under Pavlovian conflict, when Pavlovian
and instrumental systems promote opposing action poli-
cies. For instance, avoiding an appetitive stimulus or
approaching large losses can be difficult, since goal-di-
rected aims are in conflict with Pavlovian response ten-
dencies (Guitart-Masip et al., 2012; Hershberger, 1986;
Huys et al., 2012). In these situations, cognitive control
(CC) linked to the dorsal anterior cingulate cortex
(dACC) was proposed as a mechanism for suppressing
maladaptive PB, and consequently, to optimize behav-
ior (Cavanagh et al., 2013; Cavanagh and Frank, 2014;
Swart et al., 2018). A recent study provided a more di-
rect link between PB, controllability and dACC activity,

by showing that intermittent absence of control over re-
wards and losses during reinforcement learning en-
hanced PB, and interfered with the neurophysiological
correlate of CC, arising from dACC (Csifcsák et al.,
2020). The authors concluded that manipulation of con-
trollability levels can influence the magnitude of CC
over PB in action selection.
The aims of the current study were twofold. First, using

a new controllability manipulation, we wished to extend
knowledge on the effect of low outcome controllability on
PB and response accuracy during reinforcement learning
(Dorfman and Gershman, 2019; Csifcsák et al., 2020). We
hypothesized that, relative to a control condition, low
controllability of outcomes would result in stronger PB
and worse performance on Pavlovian-conflict trials. We
anticipated that these effects, if sufficiently strong, would
outlast the period of controllability manipulation, and
manifest in a transfer to the subsequent block, where con-
trol over rewards and losses is restored.
Our second aim was to test whether high-definition

transcranial direct current stimulation (HD-tDCS) above

Figure 1. Overview of our study design (A), the spatial distribution and magnitude of the normal components of HD-tDCS-induced
electric fields, representing currents either entering or leaving the cerebral cortex (depicted with positive and negative values, re-
spectively), averaged across 18 head models of healthy adults (B), trial structure (C), and card types with feedback values (D).
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the mPFC reverses the behavioral consequences of low
controllability (Fig. 1A). Whereas conventional tDCS mon-
tages use large electrodes that are placed further apart
from each other, HD-tDCS consists of several, closely ar-
ranged small electrodes that provide more focal stimula-
tion (Datta et al., 2009). We selected a “4� 1” HD-tDCS
protocol that provides, according to simulation studies
(Csifcsák et al., 2018), relatively circumscribed and pre-
dominantly excitatory stimulation in the mPFC, potentially
even reaching the dACC (Fig. 1B).
To investigate the interaction between controllability and

HD-tDCS, we adopted a double-blind, between-group de-
sign following a preregistered protocol (https://osf.io/h45ju).
Concerning our hypothesis about the effect of HD-tDCS, we
predicted that, relative to the sham protocol, stimulation of
the mPFC/dACCwould enhance CC, resulting in weaker PB
and improved response accuracy both during and following
HD-tDCS. In this respect, we postulated that HD-tDCS
would counteract the deleterious effects of low outcome
controllability on task performance.

Materials and Methods
Participants
Human subjects were recruited via public advertise-

ments in Tromsø, Norway. Based on our a priori power
analysis [repeated-measures (rm)ANOVA, Cohen’s f=0.2
for the within-between factor interaction for block �
group, 1-b = 0.9, a = 0.05, minimum required sample
size = 96], 104 healthy adults from both sexes signed the
informed consent and were randomized to one of four
groups differing in the level of outcome controllability
(high vs low control) and HD-tDCS (stimulated vs
sham). Data from one participant was discarded be-
cause of technical errors, yielding 103 participants
(HighControl-Stimulated: N = 26, HighControl-Sham:
N = 26, LowControl-Stimulated: N = 27, LowControl-
Sham: N = 24; 64 females). We had to deviate from our
prespecified exclusion criteria (i.e., excluding partici-
pants not producing at least one Go and one NoGo re-
sponse to all four card types in both blocks) because an
impractically high number of participants (N = 50, evenly
distributed across groups) had to be excluded from fur-
ther analysis using this criterion. This change was made
before any formal data analysis took place and should
therefore not compromise our preregistered analyses.
A possible explanation for the high number of subjects
not producing both response options to all cards in
each block may be that 14 participants showed exces-
sive PB (predominantly in block 1), whereas another 19
individuals could very successfully suppress their PB
(mainly in block 2), leading to ceiling/floor effects in
terms of response accuracy for some cards. However,
we note that all participants in the final sample pro-
duced at least one Go and one NoGo response in both
blocks. The groups did not differ in age (M = 23.3 years,
SD = 2.7, F(3,99) = 0.61, p = 0.606) or sex (H(3) = 2.08,
p = 0.555). Participants received gift cards worth ;22.5
USD. The study protocol complied with the Declaration
of Helsinki and was approved by the Institutional Ethics

Committee. All data and study materials are available at
https://osf.io/d6eqk/.

Study design
First, a local anesthetic cream containing lidocaine/pri-

locaine (“EMLA”) was distributed at electrode locations to
ensure proper blinding. Next, we collected data on mood
in the past month (PANAS-Past) and at the moment
(PANAS-Present-Before; Watson et al., 1988), personality
attributes of motivated behavior (BIS/BAS; Carver and
White, 1994) and predisposition to develop hopelessness
(BHS; Beck et al., 1974). Participants read task instruc-
tions (framed as a card game), performed a short practice
session, and completed a quiz to ensure they understood
all important aspects of the game. Quiz items with wrong
answers were re-visited and discussed. Subsequently,
we placed the electrode cap with electrodes and a small
amount of conductive gel on the head of participants, and
made sure that impedances were below 10 kV.
The task consisted of two task blocks with a response-

feedback contingency of 70/30%, except for block 1 in
participants in the LowControl groups. Real or sham HD-
tDCS was also delivered during block 1, using a prespeci-
fied double-blinded protocol. After each block, partici-
pants rated their perceived levels of success and control
using two visual analog scales (data missing for one par-
ticipant). At the end of the session, participants had to
guess whether they received real or sham stimulation,
which was followed by assessing momentary mood
scores (PANAS-Present-After) and a working memory
task (OSPAN; Turner and Engle, 1989).

Task and controllability manipulation
We used the modified version of the orthogonalized Go/

NoGo task that was designed to investigate the neural
correlates of PB during instrumental learning (Cavanagh
et al., 2013; Guitart-Masip et al., 2012). Participants had
to collect points by learning whether to respond (Go:
“pick up”) or not (NoGo: “leave on the table”) to each
card. They were informed that there would be “winning”
and “losing” cards, and that Win cards would either pro-
vide a reward (10 points) or zero outcome, whereas Avoid
cards could result in a loss (�10 points) or the absence
thereof. Participants were also aware that favorable ver-
sus unfavorable outcomes were determined by correct
versus incorrect responses, albeit in a probabilistic manner,
with occasional “misleading outcomes.” Outcomes were
penalized by a “Go-cost” (�1 point) if they were preceded
by a Go response. Therefore, following an active response,
win, no win/no loss and loss outcomes were modified to 9,
�1, and �11 points, respectively. The Go-cost was framed
as the cost/effort of exploring by action, mimicking real-life
situations (Teodorescu and Erev, 2014). The task consisted
of two experimental blocks consisting of 160 trials each
(four cards� 40 repetitions).
For running the task, we used a desktop computer with

Windows XP Professional operating system, Intel (R) Core
(TM)2 Duo CPU, 2.33GHz, 1.96 GB RAM, and a 19-inch
Sony Trinitron CRT monitor with 1024� 768 resolution
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and 100Hz refresh rate. Stimuli were presented and re-
sponses were collected using PsychoPy 1.83.04 (Peirce,
2007). Trials started with a central fixation sign, followed
by a custom-made card, the response screen, a short
delay and the outcome (Fig. 1C). Participants were asked
to respond only when the question mark appeared on the
screen, which always occurred 1 s after cue onset. Thus,
the current task design did not enable assessing reaction
times. In each block, four new cards were shown (Go-to-
Win, NoGo-to-Avoid, Go-to-Avoid, NoGo-to-Win), de-
pending on their valence (reward vs loss) and action
requirement (Go vs NoGo; Fig. 1D). Given that the
Pavlovian system promotes approach toward rewards
and inhibits response tendencies for losses, Go-to-Win
and NoGo-to-Avoid cards were Pavlovian-congruent,
whereas Go-to-Avoid and NoGo-to-Win cards were asso-
ciated with Pavlovian conflict.
We aimed to induce helplessness by manipulating ac-

tion-outcome contingency in the LowControl groups.
Unbeknownst to the participants, each LowControl individ-
ual was paired with a HighControl participant. HighControl
versus LowControl pairs were created by counterbalancing
HD-tDCS conditions. For each HighControl participant, we
recorded the outcomes from block 1 for the four card
types separately, but removing the effect of the Go-cost
when appropriate. These outcomes were shown in a ran-
dom order, but in a card-specific manner to the corre-
sponding paired subject in the LowControl group. That is,
outcomes for a HighControl participant’s Go-to-Win card
were presented to the matched participant from the
LowControl group for the card that was also labeled as
Go-to-Win. Our manipulation ensured that controllability
over rewards and losses was absent in this block (except
for the Go-cost), while matching reward/loss frequency
between groups. Importantly, manipulated outcomes
were penalized by a Go-cost based on LowControl par-
ticipants’ own responses, leading to a possible discrep-
ancy in reward/loss magnitude between HighControl
and LowControl groups. For instance, a Go-associated
reward (nine points) for a HighControl participant could
be modified to 10 points if the same outcome was pre-
sented following a LowControl participant’s NoGo re-
sponse (or vice versa). By keeping the Go-cost during
controllability manipulation we aimed for promoting be-
havioral passivity and limiting active exploration, which are
key features of helplessness (Maier and Seligman, 1976;
Teodorescu and Erev, 2014). However, it is important to
note that the Go-cost provided some level of outcome con-
trollability in block 1 to the LowControl groups, by reducing
each outcome on active responding.

HD-tDCS
Brain stimulation was delivered with a Starstim device,

using neoprene headcaps, conductive gel (SignaGel) and Ag/
AgCl electrodes with a diameter of 12 mm (Neuroelectrics).
Electrodes were placed at scalp positions Fpz, Fz, Cz,
F3, and F4, with Fz serving as anode (2mA) and the
surrounding four electrodes as returns (0.5 mA each).
The choice of the electrode montage was based on our
simulations of HD-tDCS-induced electric fields, using

18 realistic head models of healthy adults, down-
loaded from a freely available database (https://osf.io/
exbd5/; Boayue et al., 2018). Simulations were per-
formed with the freely available SimNIBS software
(Thielscher et al., 2015). We chose to evaluate the spa-
tial distribution and magnitude of the normal compo-
nent of electric fields, since it represents currents
either entering or leaving the pial surface of the cortex,
associated with predominantly excitatory or inhibitory
effects (Rahman et al., 2013). Our montage yielded fa-
cilitatory currents in the superior-lateral and medial
surfaces of the PFC in both hemispheres, possibly
even reaching the dACC (Fig. 1B).
Real stimulation consisted of 30-s ramp-up, 15min

stimulation and 30-s ramp-down, whereas the sham
session only contained two 30-s ramp-up/ramp-down
periods at the beginning and end of a 16min period,
with no stimulation in-between. Neither the experiment-
ers, nor the participants were aware of group assign-
ment (double-blind protocols), and the percentage of
participants guessing that they received real stimulation was
comparable across groups, indicating proper blinding
(HighControl-Stimulated: 34.6%, HighControl-Sham: 50.0%,
LowControl-Stimulated: 55.5%, LowControl-Sham: 60.8%;
H(3) =3.84, p=0.279).

Preregistered analysis
Our primary focus was the change in PB across experi-

mental blocks and groups. Therefore, we calculated the
Pavlovian performance index (PPI) as the mean of two
measures, reward-based invigoration (the number of Go
responses on win trials/total number of Go) and punish-
ment-based suppression (the number of NoGo responses
on avoid trials/total number of NoGo). These indices rep-
resent the likelihood to initiate actions toward rewards
and inhibit responses when facing potential loss, respec-
tively (Cavanagh et al., 2013). We also calculated re-
sponse accuracy as the ratio of correct responses for
each block and card type.
PPI and accuracy were entered into rmANOVAwith group

as between-subject and block as within-subject factors,
and additional within-subject factors of card congruency
and valence for accuracy. Main effects and interactions
were interpreted as significant at p, 0.05. Estimates of ef-
fect size (hp

2) are also reported. Furthermore, Cumming es-
timation plots were used to illustrate effect sizes for pairwise
comparison of conditions, whenever appropriate (Ho et al.,
2019). We note, however, that Cumming estimation plots
were not included in our preregistered analysis pipeline,
and we used them to verify and/or extend results from
rmANOVA. We chose estimation statistics because they
provide robust estimates about the underlying effect sizes
with resampling-based confidence intervals (CIs). Thus, this
approach avoids pitfalls of dichotomous significance testing
by focusing on the magnitude of effects, while also account-
ing for the precision of the estimation method using bias-
corrected and accelerated bootstrapping (Ho et al., 2019).

Computational modeling
To gain a more nuanced view on the effects of our inter-

ventions on latent processes of reinforcement learning
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and decision-making, we also implemented a computa-
tional model to our behavioral data. Previous studies
on Pavlovian-instrumental interactions have success-
fully applied such models to extract various para-
meters of choice behavior, and showed that this
approach unravels hidden associations that cannot be
captured by more conventional data analysis (Guitart-
Masip et al., 2012; Cavanagh et al., 2013; Swart et al.,
2018; Csifcsák et al., 2020). For computational model-
ing, we used a Precision 7920 Rack computer, Debian
GNU/Linux 9.9 operating system, 2� Intel Gold 6152,
2.1 GHz, 22 cores, and 512 GB RAM. Our primary in-
terest was to look for potential group differences in the
temporal evolution of the PB parameter p , but we also
extracted parameters representing randomness of
choice (temperature; b ), learning rate (a) and the gen-
eral tendency to initiate actions (Go-bias; bgo). This ap-
proach was very similar to those used in previous
studies (Cavanagh et al., 2013; Swart et al., 2018;
Csifcsák et al., 2020), with the exception that our
model did not incorporate single-trial EEG data. All
four parameters capture choice behavior from a differ-
ent perspective. Changes in the Pavlovian parameter
(p ) were expected to corroborate findings on PPI, with
higher values in LowControl participants receiving sham
stimulation, but a reduction during/following HD-tDCS.
With respect to randomness of choice (b ), learning rate (a),
and Go-bias (bgo), our analysis was more exploratory, aim-
ing at providing supportive evidence to a study (Csifcsák et
al., 2020) reporting increased values for all three parame-
ters during manipulated outcome controllability.
Action choices (Go vs NoGo) for subject i in trial t of block

j for stimulus st weremodelled with the Bernoulli-experiment
with probabilities PðGoÞ and PðNoGoÞ ¼ 1� pðGoÞ as

PðGojst;j;iÞ ¼
exp WtðGojst;j;iÞ=b j;i

� �
exp WtðGojst;j;iÞ=b j;i

� �
1 exp WtðNoGojst;j;iÞ=b j;i

� � ; (1)

where Wt is response weight (Go vs NoGo) of the stimu-
lus, and temperature parameter b j;i determines how bi-
ased the decisions are in favor of the higher-weighted
option. For a given stimulus/action valueQt,

Wtðajst;j;iÞ ¼ QtðGojst;j;iÞ1bj;i 1p j;iVðst;j;iÞ if a ¼ Go
QtðNoGojst;j;iÞ if a ¼ NoGo

;

�

(2)

where parameter bj;i codes for a general Go-bias, and
p j;i is our crucial PB parameter that scales learnt stim-
ulus value Vðst;j;iÞ in a way that it favors action/inaction
for win/avoid cards. The value of stimulus st;j;i is cumu-
lated as

Vðst;j;iÞ ¼ Vt�1ðst;j;iÞ1aj;i rt;i;j � Vt�1ðst;j;iÞÞ
� �

; (3)

where aj;i is the learning rate and rt;j;i is the reward (feed-
back). The final bit of the model is a standard Q-learning
mechanism where stimulus/action pairs receive a value
Qtðajst;j;iÞ that are updated to the standard rule

Qtðajst;j;iÞ ¼ Qt�1ðajst;j;iÞ1aj;i rt;j;i �Qt�1ðajst;j;iÞÞ
� �

: (4)

We model the data from all subject and sessions in the
framework of hierarchical Bayesian modeling. We refer
the reader to Gelman et al. (2003) for in-depth coverage
of the advantages of this approach. All models where
implemented using Hamiltonian Monte Carlo algorithms
(Hoffman and Gelman, 2014) implemented in Stan
(Carpenter et al., 2017). We used six parallel chains with
warm-up period of 1000 samples each such that 6000
samples were drawn from the converged chains.
Traceplots for all variables were manually screened for
convergence. In addition, we calculated the Gelman–
Rubin diagnostic (Gelman and Rubin, 1992) to ensure
that all R̂� 1:05.
The dependency of each model parameter on block,

controllability manipulation, HD-tDCS, and their interac-
tions were included at the group-level in the hierarchical
model directly. Posterior densities for the estimated coef-
ficients were calculated and regarded as relevant if their
95% highest density interval (HDI) excluded zero. When
reporting regression coefficients, we report posterior
mean b, 95% HDI and the evidence ratio (ER) in favor of a
positive (ER1) or a negative effect (ER–). ER can be inter-
preted as an odds ratio, calculated as the ratio of two
probabilities: the probability of the effect being positive,
P(b. 0), divided by the inverse probability of the effect
being zero or negative, 1-P(b. 0), for ER1 or its inverse
for ER–. For example, the statement b=0.09 [0.01, 0.18],
ER1 = 27.0 indicates that it is 27 times as likely that the ef-
fect is positive than that it is zero or negative. In this analy-
sis, P values represent posterior probabilities that values
are either below or above zero, and are not to be confused
with frequentist p values.

Code accessibility
The code/software described in the paper is freely avail-

able online at https://osf.io/d6eqk/.

Results
Preregistered analysis
Statistical analysis of questionnaire data and working

memory performance collected at baseline are presented
in Table 1. Experimental groups did not differ in their past
mood (PANAS-Past), hopelessness (BHS), personality

Table 1: Statistical results for the comparison of ques-
tionnaire data and cognitive tests between the four
experimental groups

Baseline measures
Group effect

F df p hp
2

PANAS-Pa-Pos 0.43 3,99 0.731 0.013
PANAS-Pa-Neg 0.17 3,99 0.916 0.005
BIS/BAS 0.49 3,99 0.691 0.015
BHS 0.46 3,99 0.710 0.014
OSPAN 0.14 3,96 0.933 0.004

BIS/BAS: behavioral inhibition/approach system; BHS: Beck hopelessness
scale; OSPAN: operation span task; PANAS-Pa-Neg: negative past mood
scores on the positive and negative affect schedule; PANAS-Pa-Pos: positive
past mood scores on the positive and negative affect schedule.
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traits (BIS/BAS), or working memory capacity (OSPAN).
Statistical results concerning repeated measurements of
momentary mood ratings (PANAS-Present) revealed re-
duced scores by the end of the session, but no group dif-
ferences were found (Table 2). Subjective ratings of
perceived success increased by block 2, but scores were
statistically comparable across groups (Table 2; Fig. 2A).
As for perceived outcome controllability, no main effects
or interactions were found (Table 2; Fig. 2B).
With respect to our PB measure, PPI, a significant re-

duction in block 2 confirmed that participants gradually
learned to suppress their PB (block: F(1,99) = 3.99, p =
0.048, hp

2 = 0.039). However, PPI was not influenced
by group membership, despite showing lower values in
the crucial LowControl-Stimulated group (group: F(3,99) =
2.11, p=0.104, hp

2 = 0.060; block � group: F(3,99) =0.14,
p=0.937, hp

2 = 0.004; Fig. 3A). Paired data from all individ-
uals along with the effect size estimates (bootstrapped
95% CIs) for changes in PPI from block 1 to block 2 are
shown in Extended Data Figure 3-1, indicating comparable
Block-effects across the four groups. Crucially, Cumming
estimation plots for the effect size (Cohen’s d) obtained for
the comparison of PPI values from the three groups receiving
experimental interventions (HighControl-Stimulated,
LowControl-Sham, LowControl-Stimulated) against a
shared control (HighControl-Sham) showed reduced
PPI only in the LowControl-Stimulated group in block
1, quantified by a medium mean effect size (mean =
�0.63, 95% CI = [�1.13, �0.01]; Fig. 3B). A similar

trend was observed in block 2, although the 95% CI
did not exclude zero (�0.52 [�1.09, 0.05]; Fig. 3C).
Finally, we assessed whether the two sub-measures
of PPI, reward-based invigoration and punishment-
based suppression were similarly influenced by our in-
terventions. This analysis yielded largely similar results
to PPI (estimates for Cohen’s d for the LowControl-
Stimulated vs HighControl-Sham comparison: reward-
based invigoration in block 1: �0.59 [�1.1, �0.06],
block 2: �0.48 [�1.02, 0.08], punishment-based sup-
pression in block 1: �0.62 [�1.12, �0.09], block 2:
�0.55 [�1.1, 0.05]). For all other comparisons, mean
effect size estimates were substantially weaker (be-
tween �0.27 and �0.04), and 95% CIs always included
zero. Overall, these findings provide some evidence
for the efficacy of HD-tDCS in reducing PB when
mPFC stimulation occurs simultaneously with the ab-
sence of control over rewards and losses.
Analysis of response accuracy revealed significant

main effects for congruency (F(1,99) = 16.60, p, 0.001,
hp

2 = 0.144), block (F(1,99) = 5.72, p=0.019, hp
2 = 0.055),

and group (F(3,99)=4.52, p=0.005, hp
2 = 0.120). Importantly,

the significant block � group interaction (F(3,99) =9.60,
p, 0.001, hp

2 = 0.225) was because of significantly improved
responding from block 1 to block 2 in the LowControl-
Stimulated group only (pBonferroni , 0.001; pBonferroni . 0.068
for other groups; Fig. 4A), with only this group showing in-
creased mean response accuracies by block 2 for all four
card types (Extended Data Fig. 4-1). As a result of low

Table 2: Statistical results for the comparison of questionnaire data and subjective ratings between the four experimental
groups and the repeated measurements

Group effect Block effect Block � group interaction
F df p hp

2 F df p hp
2 F df p hp

2

PANAS-Pr-Pos 0.37 3,98 0.820 0.009 23.99 1,98 ,0.001 0.197 1.75 3,98 0.162 0.05
PANAS-Pr-Neg 0.61 3,98 0.611 0.018 10.99 1,98 0.001 0.101 1.33 3,98 0.267 0.04
Success rating 0.12 3,98 0.949 0.004 12.27 1,98 ,0.001 0.111 2.39 3,98 0.073 0.07
Control rating 0.81 3,98 0.488 0.024 0.80 1,98 0.373 0.008 0.81 3,98 0.492 0.024

PANAS-Pr-Neg: negative momentary mood scores on the positive and negative affect schedule; PANAS-Pr-Pos: positive momentary mood scores on the posi-
tive and negative affect schedule. Significant (p , 0.05) effects are highlighted with bold.

Figure 2. Ratings (means and SEs) of perceived success (A) and outcome controllability (B) following each block.
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controllability, both LowControl groups produced significantly
worse response accuracies in block 1 relative to HighControl
groups (pBonferroni, 0.023 for all comparisons; Fig. 4A).
When comparing changes in response accuracy be-

tween blocks using Cumming estimation plots, we found
effect size estimates with the 95% CI excluding zero
for both LowControl groups (HighControl-Sham: �0.27
[�0.75, 0.09], HighControl-Stimulated: �0.16 [�0.42,
0.06], LowControl-Sham: 0.55 [0.14, 0.94], LowControl-
Stimulated: 1.17 [0.73, 1.61]; Extended Data Fig. 4-2). To
verify that this effect was larger in the LowControl-
Stimulated than in the LowControl-Sham group, we
calculated block 2 minus block 1 difference scores, and
estimated effect sizes for the stimulated versus sham
HD-tDCS comparison, separately in the HighControl
and LowControl conditions (Fig. 4B). This analysis
revealed negligible effect for HD-tDCS in the HighControl
groups (0.15 [�0.39, 0.65]), but a medium mean effect size
in the LowControl-Stimulated versus LowControl-Sham
comparison (0.63 [0.10, 1.06]), confirming results from
rmANOVA (Fig. 4A). This effect was robust against removing
one participant from the LowControl-Stimulated group, who
was the only one in the whole sample producing accuracy
scores of both,0.3 and.0.7 in the two blocks, resulting in
an extremely large difference score (Cohen’s d for the com-
parison of LowControl groups after exclusion: 0.56 [0.003,
1.06]).
The preregistered rmANOVA also indicated a significant

congruency � valence � group interaction (F(3,99) = 3.49,
p=0.019, hp

2 = 0.096; Fig. 4C). Here, all groups re-
sponded more accurately to Pavlovian-congruent cards
in the loss domain (NoGo-to-Avoid . Go-to-Avoid;
pBonferroni , 0.003), an effect that was consistent across

both blocks (Extended Data Fig. 4-3). For rewarding
cards, however, no clear effect of congruency was found
(pBonferroni . 0.099), except for the LowControl-Stimulated
group, where performance was surprisingly worse for
Pavlovian-congruent Go-to-Win versus conflicting NoGo-to-
Win cards (pBonferroni = 0.008). Consequently, accuracy was
comparable between groups for all Avoid cards as well as in
conflicting NoGo-to-Win trials (pBonferroni . 0.074), but for
Pavlovian-congruent Go-to-Win cards, the LowControl-
Stimulated group’s performance was worse than that of
HighControl-Stimulated (pBonferroni = 0.009) and HighControl-
Sham participants (pBonferroni = 0.002). The paradoxical
effect of improved responding to Pavlovian-conflict
Win cards in LowControl participants was most pro-
nounced in LowControl-Stimulated participants in
both blocks (Extended Data Fig. 4-3). While in block 2,
this was because of improved responding to conflict
NoGo-to-Win cards, in block 1, the effect was driven
by reduced accuracy for congruent Go-to-Win cards.
Given that controllability manipulation in the first block
invalidates the concept of Pavlovian congruency (out of the
two Win and two Avoid cards, one is arbitrarily labeled as Go
and one as NoGo, but these attributes cannot be learned in
the absence of action-outcome contingency), the number of
Go responses must necessarily be similar for congruent ver-
sus conflict cards in this block. To verify this, we also calcu-
lated the percentage of Go responses for each card type and
block. Indeed, the main effect of Congruency was not sig-
nificant for block 1 in LowControl groups either for Win
or Avoid cards (F,1.43, p. 0.237), while it was signifi-
cant for HighControl groups in block 1 and all four
groups in block 2, in both the gain and loss domains (all
F. 12.75, p,0.001; Extended Data Fig. 4-4).

Figure 3. Changes in the magnitude of the PPI (means and SEs) across the two blocks and four experimental groups (A), and
Cumming estimation plots showing effect size estimates (Cohen’s d) for three comparisons against a shared control condi-
tion (HighControl-Sham group) for block 1 (B) and block 2 (C). Mean differences are presented as black dots, along with the
corresponding bootstrap sampling distributions (5000 samples) and the bias-corrected and accelerated 95% CIs (black
bars). Raw data and Cumming estimation plots related to changes from block 1 to block 2 for each group are presented in
Extended Data Figure 3-1.
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Finally, the significant congruency � valence � block
interaction for response accuracy (F(1,99) = 8.89, p=0.004,
hp

2 = 0.082) was because of improved performance from
block 1 to block 2 for NoGo cards only (NoGo-to-Avoid:
pBonferroni , 0.001, NoGo-to-Win: pBonferroni = 0.036, Go-
to-Avoid: pBonf = 0.074, Go-to-Win: pBonf = 0.055), albeit

this effect was independent of group (four-way interac-
tion: F(3,99) = 0.29, p=0.833, hp

2 = 0.009).

Computational modeling
Modeling in this study was not preregistered, and thus,

it should be regarded as exploratory. We extracted four

Figure 4. Response accuracy (means and SEs) in each block and experimental group (A). Data corresponding to accuracy for each
card type, block and group are presented in Extended Data Figure 4-1. Cumming estimation plots representing effect size estimates
(Cohen’s d) for the pairwise comparison of block-effects between groups receiving real versus sham HD-tDCS, calculated sepa-
rately for HighControl and LowControl groups are shown in B. Mean differences are presented as black dots, along with the
corresponding bootstrap sampling distributions (5000 samples) and the bias-corrected and accelerated 95% CIs (black
bars). Raw data and Cumming estimation plots related to changes from block 1 to block 2 for each group are presented in
Extended Data Figure 4-2. Changes in response accuracy (means and SEs) corresponding to the four groups and Pavlovian-
conflict versus Pavlovian-congruent cards are plotted separately for Avoid and Win cards (C). Extended Data Figure 4-3
shows the same interaction between card valence, Pavlovian congruency and group, plotted separately for the two blocks.
Extended Data Figure 4-4 shows the percentage of Go responses (PercGo) separately for each card, group and experimental
block.
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latent parameters of learning and decision-making: PB
(p ), learning rate (a), temperature (b ) and Go-bias (bgo).
Posterior distributions for the group-level distribution of

the Pavlovian parameter were in the positive range (p =
0.59, [0.20, 0.99]), confirming that learned stimulus va-
lence biased decisions in the expected manner (action/in-
action for positive/negative values, respectively). The
estimated 95% HDI for the Block coefficient on the PB
was negative (b = �0.08 [�0.15, �0.01], P(b, 0)=0.993,
ER– = 135.3), in line with results from rmANOVA that PB
was partially learnt away by block 2. Moreover, predomi-
nantly positive values for the block � control interaction
(0.14 [�0.01, 0.29], P(b.0)=0.974, ER1 = 33.3; Fig. 5A)
provided evidence for our hypothesis that controllability
interfered with reductions in PB throughout the task (i.e.,

changes in PB from block 1 to block 2 were weaker in
LowControl groups). Lastly, we found some support for
the interaction between controllability and HD-tDCS (i.e.,
weaker PB in the LowControl-Stimulated group; b =
�0.58 [�1.37, 0.17], P(b, 0)=0.927, ER– = 12.7).
Although the result indicated that posterior estimates for
the control � HD-tDCS interaction were 12.7-times more
likely to be in the negative range than being either positive
or zero (in line with Fig. 3B,C), the effect was not compel-
ling since the 95% HDI included zero.
Next, we looked at the learning rate parameter a resem-

bling the degree to which participants updated their stim-
ulus-action values on a trial-by-trial basis. Group-level
coefficients were in a similar range as observed in previ-
ous reports (a = 0.20, [0.09, 0.34]). Again, we found

Figure 5. Results from computational modeling. Posterior densities for estimates for the regression coefficients for PB (parameter
p ; A), learning rate (parameter a; B), temperature/randomness of choice (parameter b ; C), and Go-bias (parameter bgo; D).
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negative values for the Block coefficient, indicating re-
duced learning rates by block 2 (b = �0.40 [�0.52,
�0.28], P(b,0). 0.999, ER– = 1; Fig. 5B). This effect
was modulated by controllability and HD-tDCS in the op-
posite manner, with stronger reduction in LowControl par-
ticipants (block � control: b = �0.43 [�0.62, �0.24], P
(b,0). 0.999, ER– = 1), but weaker change following
real stimulation (block � HD-tDCS: b=1.03 [0.86, 1.20], P
(b.0). 0.999, ER1 = 1). While the main effect of HD-
tDCS was negative (b = �1.05 [�1.69, �0.43], P
(b,0)=0.999, ER– = 749.0), positive values for the con-
trol � HD-tDCS interaction coefficient implied that stimu-
lation of mPFC was less effective in reducing learning
rates when combined with low controllability (b=1.05
[0.17, 1.93], P(b. 0)=0.991, ER1 = 100).
Posterior distributions for the temperature parameter

(b = 2.71 [1.75, 3.99]) revealed a negative block-effect (b
= �0.58 [�0.71, �0.45], P(b,0). 0.999, ER– = 1; Fig.
5C), which can be interpreted as stronger reliance on
learned action weights during response selection in block
2. Similarly to parameter a, low controllability intensified
(block � control: b = �0.32 [�0.55, �0.11], P
(b,0)=0.998, ER– = 544.4), while HD-tDCS attenuated
this effect (block � HD-tDCS: b=0.71 [0.50, 0.91], P
(b.0). 0.999, ER1 = 1). Importantly, participants acted
less randomly in block 2 when low controllability was
combined with HD-tDCS (block � control � HD-tDCS:
b = �0.39 [�0.71, �0.10], P(b, 0)=0.994, ER– = 170.4).
We also found some support for a general reduction in b
values in both groups with HD-tDCS, although the 95%
HDI did not exclude zero (HD-tDCS: b = �0.48 [�1.07,
0.09], P(b, 0)=0.948, ER– = 18.2).
The fourth parameter, bgo, represented Go-bias, the

tendency to initiate actions regardless of learned stimulus
value. As expected, value estimates were mostly positive
(bgo= 0.30, [�0.40, 0.99]), although associated with high
uncertainty. The coefficient for block was negative (b =
�0.53 [�0.78, �0.30], P(b,0). 0.999, ER– =1; Fig. 5D),
indicating improved response accuracy from block 1 to
block 2 in NoGo trials (see also Extended Data Fig. 4-1).
We found strong evidence for the general reduction in
Go-bias in LowControl groups (control: b = �1.48 [�2.35,
�0.46], P(b, 0)=0.999, ER– = 665.7), mirroring motor
passivity in animal studies of LH (Maier and Seligman,
2016). Importantly, this effect was much stronger in block
1 (block � control: b=0.92 [0.61, 1.23], P(b. 0). 0.999,
ER1 = 1), pointing toward weak transfer from controll-
ability manipulation to block 2, where control over out-
comes was regained.

Discussion
With respect to our first study aim, we expected to ob-

serve enhanced PB during and following low outcome
controllability under sham stimulation. We postulated that
such a result would (1) support earlier findings of similar
nature (Dorfman and Gershman, 2019; Csifcsák et al.,
2020); and (2) pinpoint our controllability manipulation
protocol as a potent experimental intervention for induc-
ing decision-making strategies resembling LH in healthy
adults. However, we could only find partial support for

this hypothesis: while preregistered analyses revealed
comparable PPI values for the HighControl-Sham and
LowControl-Sham groups, the PB parameter from the
computational model was modulated in the expected di-
rection (i.e., controllability manipulation attenuated the re-
duction of PB from block 1 to block 2). The discrepancy
between results from the model-free PPI analysis and the
model-derived Pavlovian parameter was also reported by
another study (Csifcsák et al., 2020), indicating that the
two measures differ in their sensitivities to changes in PB
under low controllability. While PPI is an aggregated mea-
sure that simply reflects the propensity of initiating Go
responses exclusively in appetitive trials and withholding ac-
tions specifically when facing aversive cues, the Pavlovian
parameter takes into account the dynamic learning process,
i.e., how card values are learnt from trial-to-trial, and the de-
gree to which this valence-specific knowledge contributes
to subsequent choices. Therefore, our study supports the
view that the model-derived Pavlovian parameter is a more
sensitive measure to manipulations of controllability in this
experimental setting.
Low outcome controllability was also associated with

stronger NoGo tendencies, indicated by a clearly reduced
Go-bias parameter. Therefore, our findings do not resolve
the controversy about whether experimental conditions
resembling LH-induction influence Pavlovian response
tendencies or lead to general behavioral passivity, since
both mechanisms were implicated in the current study.
Notably, weaker Go-bias during our controllability manip-
ulation could also be because of the presence of the Go-
cost in our task, since refraining from actions was the
optimal strategy for LowControl participants in block 1 to
maximize their earnings. Altogether, we cannot state that
our protocol for manipulating outcome controllability is
potent in inducing decision-making patterns resembling
LH. This conclusion is also supported by the absence of a
transfer effect regarding response accuracy from block 1
to block 2 (i.e., comparable values for HighControl vs
LowControl groups in the final block), and by the similar
levels of perceived controllability across groups.
Our controllability manipulation schedule was not opti-

mal for several reasons. First, by keeping the Go-cost,
participants could exert some level of control over out-
comes, and it also led to imperfect matching in reward/
loss magnitude between HighControl and LowControl
groups. Second, reduced control over rewards and losses
increased uncertainty around action consequences, and
thus, controllability was confounded with predictability
(Ligneul, 2021). In this regard, neither our protocol, nor
those previously described in the literature (Dorfman and
Gershman, 2019; Csifcsák et al., 2020), including the
seminal animal studies (Maier and Seligman, 1976), offer
a “clean method” of controllability manipulations, with ap-
propriately accounting for changes in outcome predict-
ability. However, a new experimental setting has been
introduced recently, that enables manipulations of con-
trollability without confounding it with uncertainty (Ligneul
et al., 2020). The authors show that an information-theo-
retic measure, transfer entropy, can efficiently capture en-
vironmental controllability, being dynamically inferred by
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the agent during the task. Future work could test whether
other controllability manipulation schedules (similar to the
one described by Ligneul et al., 2020) are more effective
in inducing LH-like choice behavior in healthy adults.
The second aim of our study was to investigate how

HD-tDCS above the mPFC influenced task performance
under controllable versus largely uncontrollable re-
sponse-outcome relationships. Our most striking result is
that following low controllability, improvement in re-
sponse accuracy was stronger in participants receiving
HD-tDCS relative to those undergoing sham stimulation.
This implies that stimulation above the mPFC/dACC led
to more efficient adjustments in decision-making strat-
egies following low controllability, when control over re-
wards and losses was regained. Although our simulations
indicate that HD-tDCS-induced electric fields might have
reached the dACC, these modeling results have not been
validated by intracranial recordings, and therefore, they
should be interpreted with caution. Nevertheless, the
mPFC (and dACC in particular) has been associated with
conditions of low controllability in the context of LH
(Bauer et al., 2003; Diener et al., 2010), but also with
tracking changes in environmental volatility (Behrens et
al., 2007) and the implementation of CC during various
cognitive tasks (Shenhav et al., 2013; Cavanagh and
Frank, 2014). Interestingly, a recent study found evidence
for trial-by-trial correspondence between frontal midline
theta power (an electrophysiological correlate of dACC
activity, associated with the implementation of CC), and
subjectively inferred controllability in a very similar Go/
NoGo task (Gershman et al., 2021). Moreover, anodal
tDCS above the rostromedial PFC enhanced gathering in-
formation about one’s sense of being in control in a social
context (Ligneul et al., 2016). Based on these findings, a
possible mechanism for the observed effect in our study
is that HD-tDCS improved the precision of controllability
estimations rather than affecting PB per se. Following that
interpretation, the LowControl-Stimulated group could
more effectively adjust decision-making strategies to en-
vironmental constraints in both blocks. This is apparent
in their lower number of Go responses for Win cards in
the first block, a behavior that has been associated with
reduced exploration tendencies (Teodorescu and Erev,
2014). Withholding Go tendencies was adaptive in
this context, since active responses reduced the magni-
tude of outcomes by the Go-cost, without directly influ-
encing reward/loss frequency. Conversely, in block 2,
the LowControl-Stimulated group adjusted their choices
in Pavlovian-conflict trials only, a response pattern that
has been associated with increased cognitive effort
(Cavanagh et al., 2013; Swart et al., 2018). Thus, we con-
clude that HD-tDCS above the mPFC facilitated
LowControl participants’ task performance in an adapt-
ive way, possibly via improving their assessment of envi-
ronmental controllability.
The interaction between controllability and HD-tDCS

was most striking in Win trials, resulting in better accuracy
for conflicting NoGo-to-Win versus congruent Go-to-Win
cards in the LowControl-Stimulated group. Moreover, this
group was the only one to show improved responding to

Go-to-Win cards from block 1 to block 2. These observa-
tions suggest that only LowControl-Stimulated partici-
pants could successfully suppress maladaptive PB in
conflicting NoGo-to-Win trials by the end of the task, with-
out overcompensating this strategy at the expense of
congruent Go-to-Win cards. Such a selective overcom-
pensation of NoGo response tendencies in Win trials (re-
sulting in a reversal of the congruency effect) was also
reported in another study, albeit only for participants with
higher levels of outcome controllability (Csifcsák et al.,
2020). A possible reason for this discrepancy is that
LowControl participants in the study by Csifcsák et al.
(2020) were initially exposed to a controllable version of
the task, whereas in the current task, they immediately
started the task with the manipulated block. Therefore,
we propose that prior exposure to controllable outcomes
plays a key role in how uncontrollable task-contexts
shape decision-making. It remains puzzling, however,
why we found stronger HD-tDCS effects for reward-pre-
dictive trials. While explanation for this phenomenon
awaits future investigation, it is noteworthy that a recent
neuroimaging study reported valence-action mappings
during the processing of preparatory cues in the ACC for
win (but not loss) trials, as well as increased ACC activity
during target stimulus presentation for both approach ver-
sus avoid and win versus loss stimuli (Hoofs et al., 2021).
Therefore, we speculate that this region is more sensitive
to evolutionary dominant action requirements in the appe-
titive domain.
Recent studies suggest that PB during reinforcement

learning is regulated by top-down CC mechanisms
(Cavanagh et al., 2013; Swart et al., 2018; Csifcsák et al.,
2020). An alternative explanation for the observed effect
concerning the interaction between HD-tDCS and con-
trollability is that, rather than influencing estimations of
one’s controllability over the environment, mPFC stimula-
tion directly facilitated the implementation of CC in
Pavlovian-conflict trials. Conflict-associated CC has been
successfully modulated via transcranial electric stimula-
tion above midline frontal areas in a Stroop task (To et al.,
2018), and in a similar orthogonalized Go/NoGo task (Turi
et al., 2020). Thus, it is feasible that the combined effect
of low controllability and HD-tDCS on response accuracy
in our study is related to enhanced CC and the conse-
quential suppression of PB. In line with this argument, we
found improved accuracies for both NoGo-to-Win and Go-
to-Avoid cards in block 2 for LowControl-Stimulated versus
LowControl-Sham participants. Moreover, Cumming estima-
tion plots provided some evidence for weaker PB in the
LowControl-Stimulated group, predominantly in block 1.
However, it should be noted that results from the preregis-
tered PPI analysis and the computational modeling approach
were not compelling, so this conclusion based on exploratory
analyses should be treated with caution.
One could argue that instead of reducing PB for Win

cards, HD-tDCS might have promoted NoGo tendencies
globally in LowControl-Stimulated participants. While the
model-derived Go-bias parameter is inconclusive for the
control � HD-tDCS interaction, our results from PPI and
accuracy analyses argue against this interpretation. First,
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a possible general facilitation of NoGo responding should
have influenced the two PB sub-measures (reward-based
invigoration and punishment-based suppression) in the
opposite direction, but this effect was not present in our
results. More specifically, the predisposition for NoGo re-
sponses in the LowControl-Stimulated group was not
present in Avoid trials (producing even more Go re-
sponses in Go-to-Avoid trials in block 2, compared with
LowControl-Sham participants) which points toward the
specificity of NoGo-enhancement to Win trials. In line with
the PB account, Ly and colleagues have reported reduced
“affective biasing” of instrumental responding following
cathodal tDCS above the frontopolar cortex (Ly et al.,
2016). In that study, approach primed by emotional stimuli
(roughly equivalent to our Go trials) was faster for appeti-
tive versus aversive cues during sham stimulation, but
this effect was reversed in the cathodal condition. Given
the diffuse cortical distribution of tDCS-induced electric
fields in that protocol (with the return electrode placed
above the occipital area), it is possible that the similar
finding of weaker PB following tDCS in the two studies
was mediated by excitability changes in overlapping corti-
cal areas.
The fact that HD-tDCS did not influence response accu-

racy in HighControl participants is a surprising finding, as
we expected that the HighControl-Stimulated group
would show more efficient CC and improved task per-
formance in Pavlovian-conflict trials. It is possible that our
controllability manipulation changed neural excitability in
target regions so that they became more susceptible to
HD-tDCS-induced electric fields. Indeed, behavioral con-
sequences of tDCS are sensitive to dynamic fluctuations
in neural activity during stimulation (“state dependency”;
Tremblay et al., 2014; Dubreuil-Vall et al., 2019), and a
recent study implementing a similar low controllability
protocol reported altered neurophysiological responses
arising from the mPFC/dACC in LowControl subjects
(Csifcsák et al., 2020). Based on these results, we specu-
late that HD-tDCS in our study was not potent enough to
influence task performance in participants with sufficient
levels of outcome controllability, whereas controllability
manipulation might have lowered the threshold for HD-
tDCS effects to develop.
Computational modeling revealed two additional latent

processes that were influenced by our interventions.
While earlier work reported stronger reliance on immedi-
ate feedback (i.e., increased learning rates) under reduced
outcome controllability (Csifcsák et al., 2020), we found
such an effect only when controllability was combined
with HD-tDCS. Similarly, there was no conclusive evi-
dence for increased exploration/randomness during
choice selection in the LowControl groups, which is in
contrast with previous findings (Csifcsák et al., 2020).
However, controllability and HD-tDCS exerted opposite
(intensifying and attenuating) effects on the reduction of
both parameters from block 1 to block 2. Although we
hesitate to provide an interpretation for these interactions
as they stem from an exploratory analysis, the results sug-
gest that evaluation of outcome controllability converges
with both the rate of feedback learning and randomness
of choice in the mPFC/dACC.

Our key finding is that HD-tDCS facilitated task perform-
ance in the LowControl group only, an effect that was stron-
ger in the appetitive domain, and possibly related to more
precise estimations of controllability and/or to enhanced CC
over Pavlovian response tendencies. Moreover, controllability
and HD-tDCS showed interactive effects in the gradual accu-
mulation of stimulus-action values and in the tendency to act
randomly rather than to rely on reinforcement history. Overall,
these results highlight the potential of our protocol for interfer-
ing with choice arbitration under low controllability of environ-
mental events, resulting in more adaptive behavior.
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