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Abstract

Covid-19 has had a significant impact on daily life since the initial outbreak of the
global pandemic in late 2019. Countries have been affected to varying degrees,
depending on government actions and country characteristics such as infrastructure
and demographics. Using Norway and Germany as a case study, this thesis aims
to determine which factors influence the risk of infection in each country, using
Bayesian modelling and a non-Bayesian machine learning approach. Specifically, the
relationship between infection rates and demographic and infrastructural character-
istics in a municipality at a fixed point in time is investigated and the effectiveness
of a Bayesian model in this context is compared with a machine learning algorithm.
In addition, temporal modelling is used to assess the usefulness of government
interventions, the impact of changes in mobility behaviour and the prevalence of
different strains of Covid-19 in relation to infection numbers. The results show that
a spatial model is more useful than a machine learning model in this context. For
Germany, it is found that the logarithmic trade tax in a municipality, the share of the
vote for the right-wing AfD party and the population density have a positive influence
on the infection figures. For Norway, the number of immigrants in a municipality,
the number of unemployed immigrants in a municipality and population density are
found to have a positive association with infection rates, while the proportion of
women in a municipality is negatively associated with infection rates. The temporal
models identify higher workplace mobility as a factor significantly influencing the
risk of infection in Germany and Norway.

Keywords: Spatial modelling, Bayesian modelling, Disease mapping, Machine
learning

i





Acknowledgement

First of all, I would like to express my sincere thanks and gratitude to my supervisor
Sigrunn Holbek Sørbye. I am very grateful for all the time and effort you put into
this thesis to steer it in the right direction, especially when it came to the structure
of this thesis. I think I’m about 70% happy with it now, although .... kidding.

Next, I would like to thank LMU Munich and the University of Tromsø for en-
abling me to go on a student exchange here in Tromsø, an experience I thoroughly
enjoyed.

To my good friend Alain, thank you for introducing me to several new cultures
over the past few years, especially Indian culture of course (Sitar et al., 2019).

Last but not least, thanks to 50 Cent for all the coffee calls over the last year
or so. Here’s your thanks. Now it has christed itself out, you big donkey.

iii





Contents

Symbols 1

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Corona Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Aim and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Related Work and Contribution . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Disease Mapping, Spatial Analysis and Spatio-Temporal Analysis 10

1.5.2 Other Factors Influencing the Pandemic . . . . . . . . . . . . 11

1.5.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Introduction to Bayesian Inference 17

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Matrices and Vectors . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 General Notation and Abbreviations . . . . . . . . . . . . . . 19

2.2 Basic Concepts of Bayesian Theory . . . . . . . . . . . . . . . . . . . 20

2.2.1 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Calculation of Summary Statistics . . . . . . . . . . . . . . . . 21

2.3 Prior Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Conjugate Priors . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Penalized Complexity Priors . . . . . . . . . . . . . . . . . . . 23

2.4 Markov-Chain-Monte-Carlo-Methods . . . . . . . . . . . . . . . . . . 26

2.4.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . 28

2.5 Gaussian Markov Random Fields . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Conditional Independence . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Notation and Basic Properties . . . . . . . . . . . . . . . . . . 31

v



2.5.4 Definition of GMRFs . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.5 Markov Properties of GMRFs . . . . . . . . . . . . . . . . . . 33

2.5.6 Conditional Properties of GMRFs . . . . . . . . . . . . . . . . 34

2.5.7 Specification Through Full Conditionals . . . . . . . . . . . . 36

2.5.8 Lattices and Tori . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Latent Gaussian Models and INLA . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Applications for Latent Gaussian Models . . . . . . . . . . . . 38

2.6.2 Integrated Nested Laplace Approximation . . . . . . . . . . . 40

2.7 Bayesian Spatial Models . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Besag Spatial Models . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.2 The Besag-York-Mollié Model . . . . . . . . . . . . . . . . . . 44

2.7.3 The Leroux Model . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.4 The BYM2 Model . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Prior Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Analysis of Geospatial Health Data 49

3.1 Geographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Vector Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Raster Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Coordinate Reference Systems . . . . . . . . . . . . . . . . . . 53

3.2 Modeling and Visualizing Health Data . . . . . . . . . . . . . . . . . 55

3.2.1 Areal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Short Introduction to Machine Learning 63

4.1 Common Machine Learning Algorithms . . . . . . . . . . . . . . . . . 63

4.1.1 K-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3 Classification and Regression Trees . . . . . . . . . . . . . . . 65

4.1.4 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.5 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Machine Learning Methodology . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Tuning of Machine Learning Models . . . . . . . . . . . . . . 69

4.2.2 Interpretation of Machine Learning Models . . . . . . . . . . 71

5 Dataset Collection 77

5.1 Covid-19 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Covid-19 Data for Norway . . . . . . . . . . . . . . . . . . . . 78

5.1.2 Covid-19 Data for Germany . . . . . . . . . . . . . . . . . . . 78

5.2 Vaccination Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Demographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



5.3.1 Demographic Data for Norway . . . . . . . . . . . . . . . . . 80

5.3.2 Demographic Data for Germany . . . . . . . . . . . . . . . . . 80

5.4 Shapefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Shapefiles for Norway . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 Shapefiles for Germany . . . . . . . . . . . . . . . . . . . . . 82

5.5 OpenStreetMap Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Government Response and Mobility Data . . . . . . . . . . . . . . . . 84

5.7 Covid-19 Variants Data . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Data Wrangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8.1 Data Wrangling for Norway . . . . . . . . . . . . . . . . . . . 86

5.8.2 Data Wrangling for Germany . . . . . . . . . . . . . . . . . . 89

5.8.3 Data Wrangling for the Temporal Models . . . . . . . . . . . . 91

6 Data Analysis 93

6.1 Standardised Incidence Ratio (SIR) . . . . . . . . . . . . . . . . . . . 94

6.1.1 SIR for Germany . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 SIR for Norway . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Data Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Choice of Likelihood . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Models without a Spatial Component . . . . . . . . . . . . . . . . . . 102

6.3.1 Models without a Spatial Component for Germany . . . . . . 103

6.3.2 Models without a Spatial Component for Norway . . . . . . . 104

6.4 Spatial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Spatial Models for Germany . . . . . . . . . . . . . . . . . . . 105

6.4.2 Spatial Models for Norway . . . . . . . . . . . . . . . . . . . . 107

6.5 Choice of Hyperpriors . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Non-Parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6.1 Non-Parametric models for Germany . . . . . . . . . . . . . . 116

6.6.2 Non-Parametric models for Norway . . . . . . . . . . . . . . . 121

6.7 Temporal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7.1 Choice of Likelihood . . . . . . . . . . . . . . . . . . . . . . . 126

6.7.2 Temporal models for Germany . . . . . . . . . . . . . . . . . 130

6.7.3 Temporal models for Norway . . . . . . . . . . . . . . . . . . 134

7 Further Analysis using R-Shiny 139

8 Discussion 145

8.1 Discussion of the (Non)-Temporal Models . . . . . . . . . . . . . . . 145

8.1.1 Discussion of the (Non)-Temporal Models for Norway . . . . . 145

8.1.2 Discussion of the (Non)-Temporal Models for Germany . . . . 149

vii



8.1.3 Comparison Between the Spatial Models and the Predictive
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2 Discussion of the Temporal Models . . . . . . . . . . . . . . . . . . . 154

9 Conclusion 157

10 Appendix 159
10.1 Probability Distributions and the Exponential Family . . . . . . . . . 159

10.1.1 The Exponential Family . . . . . . . . . . . . . . . . . . . . . 159
10.1.2 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . 160
10.1.3 The Multivariate Normal Distribution . . . . . . . . . . . . . . 160
10.1.4 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . 161
10.1.5 The Negative Binomial Distribution . . . . . . . . . . . . . . . 162

10.2 Symmetric Positive Definite Matrices . . . . . . . . . . . . . . . . . . 163
10.3 Example: PC Prior for the Precision . . . . . . . . . . . . . . . . . . . 165
10.4 Goodness-of-Fit indicators . . . . . . . . . . . . . . . . . . . . . . . . 166

10.4.1 The Akaike Information Criterion . . . . . . . . . . . . . . . . 166
10.4.2 The Deviance Information Criterion . . . . . . . . . . . . . . . 166
10.4.3 The Watanabe-Akaike Information Criterion . . . . . . . . . . 167
10.4.4 The Conditional Predictive Ordinate . . . . . . . . . . . . . . 168
10.4.5 The Mean Absolute Error . . . . . . . . . . . . . . . . . . . . 168

10.5 The Variance Inflation Factor . . . . . . . . . . . . . . . . . . . . . . 169
10.6 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.6.1 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.6.2 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.7 Distribution Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.7.1 Distribution Fits for Germany . . . . . . . . . . . . . . . . . . 171
10.7.2 Distribution Fits for Norway . . . . . . . . . . . . . . . . . . . 172

10.8 Choice of Hyperpriors for Germany . . . . . . . . . . . . . . . . . . . 176
10.9 OpenStreetMap Key-Value Pairs . . . . . . . . . . . . . . . . . . . . . 178
10.10Software Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 183

viii



List of Figures

1.1 The original map of cholera cases in southern London, created by John
Snow in 1854. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An undirected labelled graph with 3 nodes, V = {1, 2, 3} and E =
{{1, 2} {2, 3}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 The pairwise Markov property; the black nodes are conditionally inde-
pendent given the light grey nodes. . . . . . . . . . . . . . . . . . . . . 34

2.3 The local Markov property; the black nodes and white nodes are condi-
tionally independent given the dark grey nodes. . . . . . . . . . . . . . 34

2.4 The global Markov property; the dark grey and light grey nodes are
globally independent given the black nodes. . . . . . . . . . . . . . . . 34

2.5 The cantons of Switzerland, an example of an irregular lattice. . . . . . 37

3.1 A geographic CRS with an origin at 0° longitude and latitude. The red
X denotes the location of Trondheim. . . . . . . . . . . . . . . . . . . . 51

3.2 The most commonly used simple feature types. . . . . . . . . . . . . . 51

3.3 An example of continuous and categorical raster data . . . . . . . . . . 52

3.4 The number of shared borders of cantons in Switzerland . . . . . . . . 56

4.1 A single-layer neural network. . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 A simple example of a decision tree . . . . . . . . . . . . . . . . . . . . 66

4.3 An example of 10-fold cross validation . . . . . . . . . . . . . . . . . . 70

6.1 The SIR for Germany based on the data of May 2 2021 . . . . . . . . . 94

6.2 The SIR for Norway based on the data of May 2 2021 . . . . . . . . . . 95

6.3 The log10 SIR for Norway based on the data of May 2 2021 . . . . . . 96

6.4 The Cullen and Frey graph for Germany . . . . . . . . . . . . . . . . . 98

6.5 The Cullen and Frey graph for Norway . . . . . . . . . . . . . . . . . . 98

6.6 A negative binomial fit to the number of cases in German municipalities 99

6.7 A negative binomial fit to the number of cases in Norwegian municipalities100

6.8 Histogram for the number of cases in German municipalities with a
normal and a negative binomial distribution overlayed. . . . . . . . . . 101

ix



6.9 Histogram for the number of cases in Norwegian municipalities with a
normal and a negative binomial distribution overlayed. . . . . . . . . . 101

6.10 The posterior mean and credibility intervals of the coefficients . . . . . 106

6.11 The posterior mean and credibility intervals of the coefficients . . . . . 108

6.12 Values of the DIC and the WAIC when changing the value for σ0. The
black line highlights the values for σ0 = 1. . . . . . . . . . . . . . . . . 110

6.13 Value of the MAE when changing the value for σ0. The black line
highlights the values for σ0 = 1. . . . . . . . . . . . . . . . . . . . . . . 111

6.14 Comparison of the credibility intervals of a BYM2 model for different
values of σ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.15 Comparison of the credibility intervals of a BYM2 model for different
values of σ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.16 Spatial field for a proper Besag model and a Leroux model. . . . . . . . 114

6.17 Spatial fields for a BYM2 model. . . . . . . . . . . . . . . . . . . . . . . 114

6.18 Spatial fields for the structured component of a BYM2 model when
changing the value for σ0. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.19 Spatial fields for the structured component of a BYM2 model when
changing the value for σ0. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.20 The variable importance plots for the random forest. . . . . . . . . . . 118

6.21 The partial dependence plots for the logarithmic trade tax and the
number of clinics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.22 The partial dependence plots for the share of the vote the AfD and the
Greens get. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.23 The individual conditional expectation for the logarithmic trade tax
and the number of clinics. . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.24 The individual conditional expectation for the share of the vote the AfD
and the Greens get. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.25 Shapley values for the cities of Munich and Hannover. . . . . . . . . . 121

6.26 The variable importance plots for the random forest. . . . . . . . . . . 123

6.27 The partial dependence plots for the number of places of worship and
the number of offices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.28 The individual conditional expectation for the logarithmic trade tax
and the number of clinics. . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.29 Shapley values for the municipalities of Tromsø and Nordre Follo. . . . 125

6.30 The Cullen and Frey graph for Germany . . . . . . . . . . . . . . . . . 126

6.31 The Cullen and Frey graph for Norway . . . . . . . . . . . . . . . . . . 127

6.32 A negative binomial fit to the number of cases in German municipalities128

6.33 A normal fit to the number of cases in German municipalities . . . . . 128

x



6.34 Histogram for the number of cases in German municipalities with a
normal and a negative binomial distribution overlayed. . . . . . . . . . 129

6.35 The predicted number of infections in Germany according to the tem-
poral model. The vertical line indicates where the test data begins. . . 131

6.36 The predicted number of infections in Germany according to the tem-
poral model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.37 The 7-day incidence of the actual number of infections and the predicted
number of infections. The vertical line indicates where the test data
begins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.38 The posterior temporal trend for the number of infections. . . . . . . . 133

6.39 The predicted number of infections in Norway according to the temporal
model. The vertical line indicates where the test data begins. . . . . . . 136

6.40 The predicted number of infections in Norway according to the temporal
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.41 The 7-day incidence of the actual number of infections and the predicted
number of infections. The vertical line indicates where the test data
begins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.42 The posterior temporal trend for the number of infections. . . . . . . . 137

7.1 A hexagon map of all bakeries in Germany. . . . . . . . . . . . . . . . . 140

7.2 A heat map of all bakeries in Germany. . . . . . . . . . . . . . . . . . . 141

7.3 A choropleth map of all bakeries in Germany. . . . . . . . . . . . . . . 141

7.4 The seven-day incidence in Munich compared to Germany. . . . . . . . 142

7.5 Predicted numbers in Sweden using an ar1 model with a test size of 28.144

8.1 Relative risk of contracting Covid-19 in Norway. . . . . . . . . . . . . . 148

8.2 Posterior mean of the municipality-specific relative risks ζ = exp (ξ)
compared with the whole of Norway (left) and posterior probability
P (ζi > 1|yyy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3 Relative risk of contracting Covid-19 in Germany. . . . . . . . . . . . . 151

8.4 Posterior mean of the municipality-specific relative risks ζ = exp (ξ)
compared with the whole of Germany (left) and posterior probability
P (ζi > 1|yyy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.1 A normal fit to the number of cases in German municipalities . . . . . 171

10.2 A Poisson fit to the number of cases in German municipalities . . . . . 171

10.3 A Poisson fit to the number of cases in German municipalities . . . . . 172

10.4 A normal fit to the number of cases in Norwegian municipalities . . . . 172

10.5 A Poisson fit to the number of cases in Norwegian municipalities . . . . 173

10.6 A negative binomial fit to the number of cases in Norwegian municipalities173

xi



10.7 A normal fit to the number of cases in Norwegian municipalities . . . . 174
10.8 A Poisson fit to the number of cases in Norwegian municipalities . . . . 174
10.9 Histogram for the number of cases in Norwegian municipalities with a

normal and a negative binomial distribution overlayed. . . . . . . . . . 175
10.10 Values of the DIC and the WAIC when changing the value for σ0. The

black line highlights the values for σ0 = 1. . . . . . . . . . . . . . . . . 176
10.11 Values of the MAE when changing the value for σ0. The black line

highlights the values for σ0 = 1. . . . . . . . . . . . . . . . . . . . . . . 176
10.12 Spatial field for a Besag model and a Leroux model. . . . . . . . . . . . 177
10.13 Spatial fields for a BYM2 model. . . . . . . . . . . . . . . . . . . . . . . 177

xii



List of Tables

5.1 An excerpt from the Covid-19 data for Norway. Does not contain all
variables. The number of infections are the cumulative number of
infections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 An excerpt from the Covid-19 data for Germany. Does not contain all
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 An excerpt from the long version of the Norwegian Covid-19 data. Does
not contain all variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 The variables contained in the final dataset. . . . . . . . . . . . . . . . 88

5.5 The variables contained in the final dataset. . . . . . . . . . . . . . . . 90

5.6 The variables contained in the final dataset. . . . . . . . . . . . . . . . 92

6.1 The AIC for different distributions for Germany and Norway . . . . . . 100

6.2 The German municipalities with the most infections as of 2 May 2021. 102

6.3 The Norwegian municipalities with the most infections as of 2 May 2021. 102

6.4 The performance measures for the model without a spatial component. 103

6.5 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 The performance measures for the model without a spatial component. 104

6.7 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Results of the Moran test for Germany and Norway. . . . . . . . . . . 105

6.9 The performance measures for the best performing model of each type. 106

6.10 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.11 The performance measures for the best performing model of each type. 108

6.12 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.13 The MAE for the BYM2 model and the non-parametric models. . . . . 117

6.14 The MAE for the BYM2 model and the non-parametric models. . . . . 122

6.15 The AIC for different distributions for Germany and Norway . . . . . . 129

6.16 The performance measures for different types of temporal models for
Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xiii



6.17 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.18 The performance measures for different types of temporal models for
Norway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.19 The fixed effects for the model. Values are rounded. A ∗ denotes a
significant effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1 The performance measures for different types of temporal models for
Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.1 A list of all the key-value pairs used to query OpenStreetMap, except
the ones used for residential buildings . . . . . . . . . . . . . . . . . . 178

10.2 A list of all the key-value pairs used to query OpenStreetMap for resi-
dential buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.3 A list of all the key-value pairs that were combined to create variables 180

xiv



Symbols

π(·) Density of its arguments
σ Standard deviation
Var Variance
Cov Covariance
Prec Precision
Corr Correlation
E Expected value
P Probability∫

Integral of its arguments∑
Sum of its arguments∏
Product of its arguments

exp Exponential function
log Logarithmic function
∂ The derivative
∝ Proportional to
R Real numbers
N Natural numbers
N0 Natural numbers including 0
III Identity matrix

1





Introduction 1
1.1 Background

Controlling or even trying to prevent an infectious disease is a challenging task,
and therefore it is crucial to find ways to combat this type of disease through new
and creative ways. The number of infections can vary greatly between different
countries or regions, and it is therefore of great interest for local governments or
health institutes to find the underlying factors for these differences. This may lead
to the identification of previously unrecognized environmental factors that could
be the cause of the different risk of disease in different areas. One of the earliest
examples of this type of analysis was carried out in relation to a cholera outbreak in
south London in 1854 by John Snow. By creating the map shown in Figure 1.1, he
was able to show that cholera cases occurred mainly around a water pump in Broad
Street. These findings were crucial to understanding that cholera spread through
contaminated water supplies, and thus led to the modernization of water supply and
sanitation systems in London and the rest of the world (Snow, 1857).

Fig. 1.1: The original map of cholera cases in southern London, created by John Snow in
1854.
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The location itself (that is, a set of geographic coordinates) is generally unlikely
to influence the risk of a certain disease; as there is no reason why one set of
coordinates would inherently be at higher risk than another. Instead, the geographic
location is a proxy measure, for differences in the attributes of the areas. These dif-
ferences may relate to physical geography (e.g. temperature, sunlight, precipitation),
environmental factors (e.g. air pollution, water quality) or population attributes
(e.g. age, income, migration background). The identification of disparities in disease
risk across a geographic region can lead to further investigation of the underlying
reasons for the differences, which can lead to health breakthroughs such as those
noted by Snow. Furthermore, by identifying areas of high risk, health authorities can
focus additional resources on these areas in an attempt to influence the behaviours
of the population that contribute to an increased risk of disease.
Most approaches to disease mapping are based on dividing the geographic region
into spatial units, with disease risks estimated for each of these units. The reason
for this is that individual-level data would violate patient confidentiality and gov-
ernments are more interested in risk levels for the entire population. Each spatial
unit has different demographics, so comparisons between spatial units are generally
based on the standardized incidence ratio (SIR), defined as the number of observed
cases in a given area divided by the number of cases expected for that area based
on its population demographics. Methodology for estimating disease risk can rely
on conditional autoregressive (CAR) models (Besag et al., 1991), which assume
the existence of spatial autocorrelation between neighbouring areas, based on the
notion that nearby areas are more likely to have more in common than areas that
are further apart. This is due to the fact that adjacent areas are more likely to
have similar socio-economic characteristics in terms of deprivation and population
behaviour. It is assumed by these models that this level of spatial autocorrelation is
constant across the spatial region.

4 Chapter 1 Introduction



1.2 Corona Virus

Viral diseases continue to pose a serious public health threat. Several viral epidemics
have occurred in the last 20 years, including the Severe Acute Respiratory Syndrome
(SARS) pandemic in 2002/3, H1N1 influenza in 2009, and more recently the Middle
East Respiratory Syndrome Coronavirus (MERS-CoV), which was first detected in
Saudi Arabia in 2012.
Cascella et al. provide a short summary of the key events of the outbreak as well
as the characteristics of the disease, which is summed up in the remainder of this
Section.
In late 2019, the first few cases of lower respiratory infections were detected in
Wuhan, China. In February 2020, this viral disease was officially named "Covid-19",
an acronym for "Coronavirus Disease 2019".
Due to the rapid spread of the virus, a Public Health Emergency of International
Concern was declared at the end of January 2020, with 18 countries reporting cases
and four countries reporting human-to-human transmission.
At the end of February 2020, the World Health Organization (WHO) raised the risk
of a Covid-19 epidemic to "very high" before declaring it a pandemic on 11 March.
At that time, more than 118,000 cases in 114 countries and 4000 deaths had already
been registered.
The first cases of the disease were linked to direct exposure at the Huanan Seafood
Wholesale Market in Wuhan, with animal-to-human transmission suspected as the
main mechanism. After subsequent cases could not be linked to this mechanism,
human-to-human transmission was presumed to be the main transmission mecha-
nism. Furthermore, symptomatic individuals are thought to be the most common
source of Covid-19 spread. However, asymptomatic individuals can transmit the
virus, therefore isolation is the best way to contain this epidemic.
Similar to other respiratory diseases, e.g. influenza, transmission is thought to occur
through respiratory droplets (particles > 5− 10µm in diameter) when coughing and
sneezing. In closed rooms, transmission by aerosol is possible.
Based on the data from the first cases in Wuhan, the incubation period is generally
between 3 and 7 days, with a median of 5.1 days. According to the data, the number
of infections doubled about every seven days and the basic reproductive number
R is 2.2, which means that on average each infected individual infects another 2.2
individuals.
According to a report by the Chinese Centre for Disease Control, which studied
72,314 cases, the overall mortality rate of confirmed cases was 2.3%, with most of
the fatal cases affecting people over 70 years of age.
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Furthermore, the clinical manifestations of the disease can be divided into three
groups according to their severity:

• Mild disease: non-pneumonia and mild pneumonia; this occurred in 81% of
cases.

• Severe disease: dyspnea, respiratory rate ≥ 30 min, blood oxygen level ≤ 93%;
this occurred in 14% of cases.

• Critical disease: respiratory failure, septic shock and/or multiple organ dys-
function or failure; this occurred in 5% of cases.

Subsequent reports indicate that the disease is asymptomatic or with very mild
symptoms in 70% of patients, while the remaining 30% develop a respiratory syn-
drome with high fever, cough and even severe respiratory failure, which may require
admission to the intensive care unit.
Most countries use some kind of clinical and epidemiological information to deter-
mine who should be tested. A molecular test, for example a PCR test, can be used to
detect the disease.
The WHO recommends the collection of samples from both the upper and lower
respiratory tract. In the laboratory, the genetic material extracted from the saliva or
mucus sample is amplified by reverse polymerase chain reaction (RT-PCR), which
synthesizes a double-stranded DNA molecule from an RNA form. Once the genetic
material is sufficient, the parts of the genetic code of the CoV that are conserved are
searched for. The probes used are based on the original gene sequence published by
the Shanghai Public Health Clinical Center & School of Public Health, Fudan Univer-
sity, Shanghai, China on Virological.org and subsequent confirmatory evaluation by
other laboratories Cascella et al. (2021).
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1.3 Motivation

Covid-19 has had a significant impact on the lives of almost everyone on Earth.
Whether people had to work from home, children suddenly had online classes or
people just stayed at home more, everyone was affected. Everyone had to adjust to
this new reality where suddenly you could not meet for a coffee or go to the cinema
together because those establishments were either closed or people had no desire
to risk contracting Covid-19. And that, of course, says nothing about the impact it
had on the lives of people who became infected with Covid-19, those who have had
relatives who became infected and the more than 3 million people who have died as
a result of the disease. The point is that everyone was affected by the impact of the
pandemic, and still is, albeit at different levels.
Over time, different countries introduced different strategies to combat Covid-19,
such as hard lockdowns where people were only allowed to leave the house if they
had a legitimate reason to do so, for example to go to work or to buy groceries,
while other countries did not introduce any lockdown measures. Other measures
included wearing face masks in public places or limiting how many people can meet
in public and private spaces. But even when the same measures were implemented
in one country, there were big differences between the proportion of infected people
in different parts of the country.
Finally, attitudes towards these measures have become a matter of political identity
in various countries, as political parties from different spectrums have different views
on how this pandemic should be handled, what measures should be implemented,
or whether this pandemic even exists or if it is just much ado about nothing. This
has led to the formation of new political movements that regularly protest against
the measures taken by the government and demand a return to pre-pandemic condi-
tions.
Understanding the reason why the number of infections varies in different parts of
the country can be crucial in helping local governments decide which measures to
implement to limit the risk of infection and contribute to the common goal of ending
the pandemic as soon as possible.
Identifying areas where people are at higher risk of becoming infected can help
governments decide on vaccination strategies, as it may make more sense to vac-
cinate people in high-risk areas first. By limiting the number of infections in these
areas, the likelihood of the virus spreading from one of these areas to one or more
neighbouring areas decreases, which in turn slows the spread of Covid-19.
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1.4 Aim and Objective

The main goal of this work is to analyse what factors drive Covid-19 infection
numbers and thus increase the risk of people becoming infected and getting sick
from the virus. To identify these factors, it is possible to either look at current
infection numbers across different areas to try to find patterns in the data, or to
look at infection numbers across a spectrum of time and see if the likelihood of
becoming infected changes when new factors, such as vaccination, are introduced
or factors, such as government policies, change. Typically, Bayesian spatial models
are used for disease mapping, where the neighbourhood structure between the
areas of interest plays a crucial role. However, it is possible to neglect this structure
and use a non-Bayesian approach to extract key factors. It is not possible to say
that one class of models is superior to the other, as this depends mainly on the
given data. Nevertheless, one of the aims of this work is to analyse infection counts
from a non-temporal point of view and to compare the usefulness of a Bayesian
spatial model with that of a non-Bayesian machine learning model. The other main
objective of this work is to model the relationship between different features and
infection numbers over a period of time using a temporal Bayesian model to see if
any pattern emerges or identify which key factors have led to increased or decreased
numbers of infections.
To answer these questions, a basic concept of Bayesian theory and Bayesian spatial
models is developed and an introduction to geospatial data and the analysis of this
particular type of data is given. In addition, a brief introduction to common machine
learning methods is given.
For the analysis, different types of data need to be collected from different sources.
For non-temporal modelling, these data include:

• Data related to the number of infections in a given municipality.

• Data related to the number of vaccinations in a given municipality.

• Demographic data related to a specific municipality.

• Data related to spatial points of interest in a given municipality.

• Shapefiles for the geographic areas of interest.

For the temporal models, the following data is needed:

• Data related to the number of infections in a given country

• Data related to the number of vaccinations in a given country
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• Demographic data related to a given country

• Mobility trends in a given country

• Data keeping track of government measures in a given country

• Data on the relative frequency of different strains of Covid-19 in a given
country.

In the analysis, these data are collected for two countries, Germany and Norway.
These two countries are not equally affected by the pandemic and the population is
distributed differently in the two countries, which makes for an interesting compari-
son of what factors influence the infection numbers and what kind of models work
well in each country.
In order to achieve the main objectives of this thesis, the following important goals
can be listed:

1. Build a basic concept of Bayesian theory, the analysis of geospatial health data
as well as non-Bayesian machine learning models.

2. Collect all the data needed for the analysis.

2.1 Collect data related to Covid-19 from the National Institutes of Health.

2.2 Collect demographic data and shapefiles from other official sources.

2.3 Collect infrastructure data by querying OpenStreetMap.

2.4 Collect data for mobility trends and government measures from Our
World in Data (OWID).

2.5 Collect data on the frequency of Covid-19 strains from the open-source
project CoVariants.

3. Merge all data from different sources to create clean datasets for the analysis.

4. Develop and compare different types of Bayesian spatial models.

5. Train non-Bayesian machine learning models and compare them to the Bayesian
models.

6. Develop and compare different types of Bayesian temporal models.

7. Critically evaluate the models and extract factors that significantly influence
the risk of infection.
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1.5 Related Work and Contribution

Since the start of the pandemic in 2019, numerous scientific papers have been written
on Covid-19, covering a wide range of topics within medicine, social sciences and
statistics. Some papers have been written on the relationship between geographic
regions and Covid-19. Incorporating a spatial dimension into the research process
can help to better understand different phenomena and make them potentially
mappable. The papers considered here can be divided into two categories. The first
group consists of disease mapping, spatial analysis and spatio-temporal analysis and
refers to studies that analyse the spatial and spatio-temporal patterns of Covid-19.
The other group contains research that focuses on other factors that influence the
dynamics of the Covid-19 pandemic, but may include spatial and spatio-temporal
analysis.

1.5.1 Disease Mapping, Spatial Analysis and Spatio-Temporal
Analysis

Guan et al. (2020), study cases in mainland China up to 25 February 2020 to deter-
mine the defining clinical features and severity of the disease. Among others, they
find that Covid-19 spread rapidly through the country and that the severity of the
disease varied. Furthermore, they find that the most common symptoms experienced
by patients are cough and fever. They report a median incubation period of 4 days.
Z.-L. Chen et al. (2020) analyse how people who emigrated from Wuhan contributed
to the early stages of the pandemic in China at the beginning of 2020. They find a
strong correlation between the number of confirmed cases of Covid-19 in a given
province and emigration from Wuhan. They find that the lockdown of several cities
in Hubei province and the implementation of nationwide control measures were
effective in preventing the exponential growth of the number of cases.
Similar to this study, Gross et al. (2020) compare the infection rate in different cities
in China and provinces in Italy during the early phases of the pandemic and conclude
that the spread of the disease is defined by a two-stage process. The first stage,
the authors say, is defined by a constant rate of infection due to a lack of means
to detect infected individuals before symptoms appear. In the second stage, they
observe an approximately exponential decline due to quarantine. While they find
differences between China and Italy, most notably that it took longer for outbreaks
of the disease to be controlled in the Italian provinces, they find similar behaviour in
terms of infection rate.
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Y. Chen et al. (2021) analyse the spatio-temporal distribution characteristics and
influencing factors of the virus in mainland China using statistical methods, corre-
lation analyses and geographic information system (GIS) mapping. They conclude
that the outbreak in non-Hubei provinces can be divided into five phases. The initial
outbreak phase, the peak phase where the highest number of new infections is
observed, the containment phase where the number of new infections decreases,
the rebound phase and a final phase where the number of new infections flattens
out. They observe that cities with large population flows from Wuhan were more
affected by Covid-19.
Saha et al. (2020) provide an overview of how GIS, e.g. mapping dashboards and
applications, can be used to monitor the pandemic and related activities. They
conclude that the pandemic requires massive data generation and GIS to enable
rapid response and analysis to help prevent and guide decisions and movements.
Gianquintieri et al. (2020) use geo-referenced calls to the emergency number rel-
evant to respiratory problems and subsequent emergency medical service inter-
ventions to derive an unbiased representation of Covid-19 diffusion. This study is
conducted for the Lombardy region of Italy, which was particularly hard hit by the
pandemic in early 2020. The authors report a strong correlation between Covid-19-
related deaths at the provincial level and emergency calls and age- and sex-weighted
ambulance dispatches.
Lastly, Petrov et al. (2020) examine the spatio-temporal dynamics of the pandemic
in the Arctic up to July 2020. They find that the number of infections and morbidity
are highly variable, but generally below national levels. They classify the Arctic
regions into four groups: Iceland, the Faroe Islands, northern Norway and northern
Finland, which are characterized by increased early infection rates but containment
of the pandemic through quarantine and other measures; Northern Sweden and
Alaska, where the first wave of infection persisted despite weak (Sweden) or variable
(Alaska) quarantine measures; northern Russia, where a late start led to a steep rise
in infections, deaths and several outbreaks; and northern Canada and Greenland
where there was no significant spread of the pandemic.

1.5.2 Other Factors Influencing the Pandemic

Xiong et al. (2020) carry out a correlation analysis for the number of cases in the
Hubei province between 30 January 2020 and 18 February 2020. They find a
significant correlation between population, regional GDP, retail sales of consumer
goods and the number of confirmed cases of Covid-19 in Hubei province, among
others.
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Ahmadi et al. (2020) analyse the influence of climatic factors on the spread of Covid-
19 in Iran and find that areas with low wind speed, humidity and solar radiation
support the survival of the virus. The same study finds a direct correlation between
population density and movement within provinces. Mehmood et al. (2021) analyse
the relationship between air pollution, climate, socioeconomic factors and infection
rates in Pakistan. They report a significant positive correlation between particulate
matter (PM2.5), an air pollutant, and the number of infections. In contrast to Ahmadi
et al., the correlation between the factors humidity and wind speed and the number
of infections is positive in some regions and negative in others. They find a small
negative relationship between population density and Covid-19 cases, suggesting
that areas with higher population density reported proportionally fewer cases.
Pedrosa (2020) analyses the relationship between the number of cases in the US
and weather, demographic variables and the infection timeline. He finds that only
population density and a time series variable, defined as the number of days between
the first and the 100th case, showed statistical significance, while the climate in the
USA has no influence on infection numbers.
As the United States is one of the countries most affected by the pandemic, many
studies have attempted to determine what factors are driving up the number of
infections in the country. Mollalo et al. (2020) analyse the spatial variability of
Covid-19 in the United States up to the 9 April 2020. Out of 35 environmental,
socio-economic, topographical and demographic variables, the four variables found
to be most significant were: income inequality, median household income, the
proportion of black females and the proportion of nurse practitioners at the county
level.
Maiti et al. (2021) analyse infection counts up to 13 May 2020 in the USA. They
observe a higher risk of Covid-19 clusters in metropolitan areas compared to rural
counties, counties near central airports, more populous counties and counties with
the highest proportion of racial and ethnic minorities.
Y. Wang et al. (2021) analyse the numbers up to 29 January 2021 in the US and find
that factors of ethnicity, crime and income have positive correlations with the num-
ber of Covid-19 cases and explain most of the variance in the modelling estimate.
Allcott et al. (2020) examine partisan differences in Americans’ responses to the
Covid-19 pandemic, specifically how Republicans and Democrats socially distance
themselves and make other efforts to reduce transmission of the disease. They model
not the risk of being infected, but how a person’s political beliefs affect their beliefs
about the Covid-19 pandemic. They find significant individual-level differences
between Republicans and Democrats in self-reported social distancing, beliefs about
their personal risk of being infected, and beliefs about the future severity of the
pandemic. According to the study, Democrats find it significantly more important to
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stay inside to prevent the spread of the virus than to go outside to help the economy,
compared to Republicans.
Bermudi et al. (2021) model mortality in the country using latent Gaussian-Bayesian
spatial models and find significant relationships between Covid-19 mortality and
socioeconomic conditions, as higher socioeconomic levels, as measured by a socioe-
conomic index, are shown to lead to a lower risk of mortality due to Covid-19. In
addition, they show that men and older persons had the highest risk of mortality due
to Covid-19. Castro et al. (2021), on the other hand, could not find a single narrative
that explains the spread of the virus across the states of Brazil, but rather find that
layers of complex scenarios intertwine, resulting in a different and simultaneous
Covid-19 epidemic across Brazil.
The situation in India is analysed in a paper by Nandy et al. (2021) and the authors
find that higher investment in health and education reduces the likelihood of the
spread of Covid-19. In addition, a higher cure rate is found in states with sustained
investment in health and education, with mortality rates lower in states that invest
more in education.
Sannigrahi et al. (2020) find a significant correlation between selected demographic
and socio-economic components, including total population, poverty and income,
and the number of deaths from Covid-19 in Europe, without controlling for other
factors such as environmental variables, socio-ecological status or climate extremes.
Studies have been conducted analysing the impact of interdiction measures on the
spread of Covid-19. Kasilingam et al. (2020) attempt to predict early containment of
Covid-19 using machine learning models based on infrastructural and environmental
variables, as well as government-implemented policies and infection-related inde-
pendent variables for 42 countries. Using logistic regression, a significant positive
association is found between healthcare infrastructure and lockdown policies and
signs of early containment. Orea and Álvarez (2020) find a significant positive rela-
tionship between interdiction in Spain and its usefulness in preventing the spread
of Covid-19 between different provinces in Spain. Furthermore, the same type of
relationship is found for the spread of Covid-19 within the same province.

1.5.3 Contribution

The information contained in all the papers mentioned earlier shows just how many
factors may or may not be associated with the way that Covid-19 spreads in different
countries. Finding a perfect model that explains why numbers are higher in one
geographical region than in another is utopian, as there are still too many unknowns
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even more than a year into the pandemic. Achieving a scientific breakthrough is
therefore beyond the scope of this work, the aim is rather to consider a wide range of
factors, including infrastructural factors, demographic and socio-economic variables,
when discussing the reason for different infection figures within a country and
between two different countries. The countries selected for this work, Norway and
Germany, are not equally affected by Covid-19, so looking for factors that influence
infection numbers in both countries may be indicative of a variable that is driving
infection numbers up or down, independent of the country. Of particular interest to
this thesis is the link between the political views of people within a municipality and
the infection rates in the municipality. Since Germany has been experiencing a lot
of anti-hygiene demonstrations and a lot of criticism comes from the right side of
the political spectrum, the decision was made to take a close look at whether there
is a correlation between the share of votes that certain political parties receive in a
given area and the number of infections in that area.
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1.6 Thesis Outline

The structure of the thesis is as follows. First, an introduction to Bayesian inference
is given in Chapter 2. This part includes basic concepts of Bayesian theory, e.g. Bayes’
theorem, which are essential for the methodology used in this thesis. Furthermore,
different types of priors are introduced, as they form an integral part in Bayesian
modelling. In addition, Markov-chain-Monte-Carlo-methods (MCMC methods),
latent Gaussian models and Integrated Nested Laplace Approximation are introduced,
the latter of which can overcome the shortcomings of MCMC methods and form
the basis for Bayesian spatial models. The last part of this chapter includes the
introduction of goodness-of-fit indicators used to evaluate model performance and
addresses some problems of Bayesian spatial models.
In Chapter 3 a brief introduction to the analysis of geospatial health data is given.
First, different types of geospatial data, namely vector data and raster data, are
introduced before discussing different methodologies used in modelling this type of
data. These methodologies include the standardized incidence ratio (SIR) and the
estimation of disease risk in spatial areas.
A short introduction to machine learning is given in Chapter 4. Several commonly
used machine learning algorithms are introduced in Section 4.1 before providing
a short review of machine learning methodology and introducing a recent field in
machine learning, interpretable machine learning, in Section 4.2.
Chapter 5 gives a brief overview of the different types of data collected in this thesis
and how the different data sources were combined into a coherent dataset. Chapter 6
focuses on the analysis of this data. First the SIR for the countries is examined,
followed by the modelling of the relationship between variables of interest and
the infection numbers in Norway and Germany. First, a Bayesian approach to this
problem is shown, consisting of models that do not take the neighbourhood structure
in the respective countries into account and models that do take such a structure into
account. Section 6.5 analyses how these models change, when the prior distribution
that is used in the modelling process is changed. Next, non-Bayesian models that are
built using the methodology introduced in Section 4.1 are discussed and compared to
the Bayesian models. Finally, Bayesian temporal models are evaluated in Section 6.7.
As part of this thesis, a dashboard that gives an overview over the used data and
allows the modelling of spatial and temporal relationship was developed. A summary
of the functionality of this dashboard is find in Chapter 7. The relevant findings
of the models calculated during the analysis are discussed in Chapter 8 before the
research is wrapped up in Chapter 9, summing up the most important insights of
this thesis.
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Introduction to Bayesian
Inference

2
Bayesian inference is a branch of statistics that uses the Bayesian concept of prob-
ability and Bayes’ theorem to investigate questions of stochastics. Characteristic
for Bayesian statistics is the consistent use of probability distributions or marginal
distributions, whose form conveys the accuracy of the procedures or reliability of the
data and the procedure. The Bayesian concept of probability does not presuppose
infinitely repeatable random experiments, so that Bayesian methods can be used
even with small data sets. A small amount of data leads to a broad probability distri-
bution, which is not strongly localized. In the Bayesian approach, the parameters
of interest are treated as random variables that are governed by their parameters,
for instance the mean and standard deviation, and distributions. Bayesian inference
is an essential technique in mathematical statistics and the polar opposite of the
frequentist approach, in which a hypothesis is tested without being assigned a proba-
bility. In the Bayesian approach a prior distribution π (θθθ) is introduced as part of the
model. This distribution is intended to express a state of knowledge or ignorance
about the parameters θθθ prior to obtaining the data. Using the prior distribution, the
likelihood function π (yyy|θθθ), and the observed data yyy, most of the time it is possible to
calculate the probability distribution π (θθθ|yyy) of θθθ given the data yyy. This distribution
is called the posterior distribution of θθθ and is used to make inferences about the
parameters (Box and Tiao, 2011:p. 6).
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2.1 Preliminaries

This work follows strict notation rules to easily represent different elements such
as matrices or graphs and contains frequently used abbreviations. These and some
other basic concepts used in this work are introduced below. The notation follows
the one used by Rue and Held (2005).

2.1.1 Matrices and Vectors

Vectors and matrices are indicated by bold notation, such as xxx and AAA. The transpose
ofAAA is denoted byAAAT . The element in the ith row and jth column ofAAA is referenced
by Aij . This notation is used for vectors and xi denotes the ith element of a vector.
The vector (xi, xi+1, ..., xj)T is abbreviated to xxxi:j . If the columns AAA1,AAA2, ...,AAAm of
a n ×m matrix AAA are stacked on top of each other, this is denoted by vec (AAA) =(
AAAT1 ,AAA

T
2 , ...,AAA

T
m

)
. Deleting rows and/or columns from AAA creates a submatrix. If a

submatrix of a n× n matrix AAA can be obtained by removing rows and columns of
the same index, it is called a principal submatrix. If this matrix can be obtained by
deleting the last n− r rows and columns, it is called a leading principal submatrix of
AAA.
A diagonal n× n matrix AAA is denoted by diag (AAA) and has the following structure:

diag (AAA) =


A11

. . .

Ann

 .
The identity matrix is denoted by III.
If Aij = 0 for i < j or Aij = 0 where i > j, then AAA is called upper triangu-
lar and lower triangular respectively. The bandwidth of a matrix AAA is defined
as max {|i− j| : Aij 6= 0}. The lower bandwidth is given by max{|i − j| : Aij 6=
0 and i > j}. |AAA| denotes the determinant of a n × n matrix AAA and is equal to the
product of the eigenvalues of AAA. The rank of AAA, referenced by rank (AAA), is the
number of linearly independent rows or columns of AAA. The sum of the diagonal
elements is called trace of AAA, trace (AAA) =

∑
iAii.

Finally, ’�’ denotes the element-wise multiplication of two matrices of size n×m,
’�’ denotes the element-wise division and raising each element of a matrix AAA to a
scalar power uses the symbol ’?’ (Rue and Held, 2005:pp. 14–15).
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2.1.2 General Notation and Abbreviations

For C ∈ I = {1, ..., n} let yyyC = {yi : i ∈ C}. −C denotes the set I − C such that
yyy−C = {yi : i /∈ C}. For two sets A and B, A \B = {i : i ∈ A and i /∈ B}.
π (·) denotes the density of its arguments, for example π (yyy) for the density of yyy and
π (yyyA|yyy−A) for the conditional density of yyyA, given yyy−A. ’∼’ is used when a variable
is ’distributed’ according to the law l (Rue and Held, 2005:p. 16).
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2.2 Basic Concepts of Bayesian Theory

To understand Bayesian theory, it is helpful to first introduce a few basic concepts,
first and foremost Bayes’ theorem, which is introduced in Section 2.2.1, one of the
most famous concepts in all of statistics. Other notions that are integral to the rest
of this thesis are the concept of conditional independence, undirected graphs and
the computation of summary statistics, the latter of which is an essential part of the
analysis section of this thesis.

2.2.1 Bayes’ Theorem

At the heart of Bayesian inference is Bayes’ theorem, which describes the probability
of an event given prior knowledge of factors that might influence the event.
Let yyyT = (y1, ..., yn) be a vector of n observations whose probability distribution
π (yyy|θθθ) depends on the values of k parameters θθθT = (θ1, ..., θk). Let π (θθθ) be the
probability distribution of θθθθθθθθθ. Then

π (yyy|θθθ)π (θθθ) = π (yyy,θθθ) = π (θθθ|yyy)π (yyy) . (2.1)

Given the observed data yyy, the conditional distribution of θθθ is

π (θθθ|yyy) = π (yyy|θθθ)π (θθθ)
π (yyy) . (2.2)

This last statement is known as Bayes’ theorem (Bayes, 1763). The prior distribution
π (θθθ) contains knowledge about θθθ without knowledge of the data. π (θθθ|yyy) contains
what is known about θθθ given knowledge of the data and is the posterior distribution
of θθθ given yyy.
If π (yyy|θθθ) is considered as a function of θθθ instead of yyy, it is called the likelihood
function of θθθ given yyy and can be written as l (θθθ|yyy). Thus, Bayes’ theorem can be
written as

π (θθθ|yyy) ∝ l (θθθ|yyy)π (θθθ) . (2.3)

It is evident that the posterior distribution of θθθ given the data yyy is proportional to
the product of the distribution of θθθ prior to observing the data and the likelihood
function of θθθ given yyy. Therefore,

posterior distribution ∝ likelihood× prior distribution.
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The data yyy modifies the prior knowledge of θθθ through the likelihood function, and
thus can be regarded as a representation of the information about θθθ derived from
the data (Box and Tiao, 2011).

2.2.2 Calculation of Summary Statistics

As the posterior mean and the credibility intervals of coefficient are of interest,
calculation of these is performed later on. This allows a better interpretation of the
results.
To receive the posterior mean of the unknown parameter set θθθ, the following
estimator is used, ∫

θθθπ (θθθ|xxx) dθθθ (2.4)

(Jaynes, 2003).
If necessary, e.g. if the target variable follows a (negative) binomial distribution,
the values of xxx must be transformed to its original scale, as in these instances the
log-likelihood is modelled. Therefore, in these cases, the expected value would have
to be exponentiated to allow a clear interpretation.
In practice, to obtain the credibility interval of a variable, the marginal values are
first transformed to their original scale, if necessary, and the 2.5% quantile and the
97.5% quantiles are calculated.
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2.3 Prior Selection

A key question in Bayesian analysis is the effect of the prior on the posterior, and
how that effect can be measured. Do posterior distributions derived with different
priors become similar as more and more data is collected? It has been formally
proven that under certain regularity conditions, the impact of the prior decreases
with increasing sample size (Ghaderinezhad and Ley, 2019). From a practical point
of view, it is more important to know what happens when the sample size n is finite.
In this section, conjugate priors and penalized complexity priors are introduced.

2.3.1 Conjugate Priors

One property of exponential families is that they have conjugate priors (Diaconis
and Ylvisaker, 1979), which is an important property in Bayesian statistics. If the
posterior distribution π (θθθ|yyy) and the prior distribution π (θθθ) belong to the same
probability distribution family, the prior and posterior distributions are called conju-
gate distributions. Furthermore, the prior for the likelihood function π (yyy|θθθ) is called
the conjugate prior. These priors were first discussed and formalized by Raiffa and
Schlaifer (1961).
The construction of a conjugate prior is done by factorizing the likelihood function
into two parts. One part must be independent of the parameter(s) of interest but
can be dependent on the data, while the other factor is a function that depends
on the parameter(s) of interest and is dependent on the data only through the
sufficient statistics. The family of conjugate priors is by definition proportional to the
second factor. The posterior distribution resulting from the conjugate prior is itself
a member of the same family as the conjugate prior (Raiffa and Schlaifer, 1961).
In cases where the prior and posterior distributions are part of the same family, the
prior is said to be closed under sampling. Furthermore, since the data are only
incorporated into the posterior distribution through the sufficient statistics, there
exist relatively simple formulas for updating the prior into the posterior.
For an example of the construction of a conjugated prior, see Fink (1997).
A drawback of conjugated priors is that the a priori known information about θθθ
may be insufficient for determining both parameters or may be inconsistent with
the structure imposed by conjugacy (C. P. Robert et al., 2010). Moreover, these
priors can be too restrictive and not every belief about the prior can be described
(Irwin, 2005).
Thus, although conjugate priors are easy to handle both mathematically and com-
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putationally (Irwin, 2005), they are not often used in practice because of these
drawbacks.

2.3.2 Penalized Complexity Priors

One issue when selecting the prior distribution of a particular parameter is that
it is not always intuitive when it comes to understanding and interpreting this
distribution, something that is essential to ensure that it behaves as intended by the
user. This problem can be addressed by using penalized complexity priors, which is
a methodology that penalizes the complexity of model components in relation to
deviation from simple base model formulations.
PC priors provide a systematic and unified approach to calculating prior distributions
for parameters of model components by using an inherited nested structure. This
structure contains two models, the base model and a flexible version of the model.
The first of the two is generally characterized by a fixed value of the relevant pa-
rameter, while the second version is considered a function of the random parameter.
By penalizing the deviation from the flexible model to the fixed base model, the PC
prior is calculated (Sørbye and Rue, 2017).

2.3.2.1 The Principles Behind PC Priors

Four main principles should be followed to calculate priors consistently and to
understand their properties.

Support to Occam’s Razor

Let π (x|ξ) denote the density of a model component x and ξ the parameter to which
a prior distribution is to be assigned. The base model is characterized by a density
π (x|ξ = ξ0), where ξ0 is a fixed value. The prior for ξ should be such that proper
shrinkage is given to ξ0. The simplicity of the model is therefore prioritized over the
complexity of the model, preventing overfitting (Sørbye and Rue, 2017).
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Penalisation of Model Complexity

Let f1 = π (x|ξ) and f0 (x|ξ = ξ0) denote the flexible model and the base model
respectively. The complexity of f1 compared to f0 is characterized using the Kullback-
Leibler divergence (Kullback and Leibler, 1951) to calculate a measure of complexity
between the two models,

KLD (f1||f2) =
∫
f1 (x) log

(
f1 (x)
f0 (x)

)
dx. (2.5)

This can be used to measure the information that is lost when f1 is approximated
by the simpler model f0. For multinormal densities with zero mean, the calculation
simplifies to

KLD (f1||f0) = 1
2

(
trace

(
ΣΣΣ−1

0 ΣΣΣ1
)
− n− log

( |ΣΣΣ1|
|ΣΣΣ0|

))
, (2.6)

where fi ∼ N (0,ΣΣΣi) , i = 0, 1, while n represents the dimension. For easier interpre-
tation, the Kullback-Leibler divergence is transformed into a unidirectional distance
measure

d (ξ) = d (f1||f0) =
√

2KLD (f1||f0) (2.7)

which can be interpreted as a measure of distance from f1 to f0 (Sørbye and
Rue, 2017).

Constant Rate Penalisation

The derivation of the PC prior can be based on a system of constant rate penalization,
given by

πd (d (ξ) + δ)
πd (d (ξ)) = rδ, d (ξ) , δ ≥ 0. (2.8)

r ∈ (0, 1) represents the constant decay rate and thus implies that the relative change
in the prior distribution for d (ξ) is independent of the actual distance. Therefore,
d (ξ) is exponentially distributed with density π (d (ξ)) = λ exp (−λd (ξ)) and rate
λ = − ln (r). By a standard variable change transformation, the corresponding PC
prior for ξ is given (Sørbye and Rue, 2017).
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User-Defined Scaling

Since λ characterizes the shrinkage properties of the prior, it is important that
the rate can be chosen in an intuitive and interpretable way. One possibility is to
determine λ by including a probability statement of tail events, for example

P (Q (ξ) > U) = α, (2.9)

where U represents an assumed upper bound for an interpretable transformation
Q (ξ) and α denotes a small probability (Sørbye and Rue, 2017).
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2.4 Markov-Chain-Monte-Carlo-Methods

The main problem with the posterior distribution of a parameter is how to find it
effectively. Since an analytical calculation is not possible, sampling from the posterior
distribution can be an effective way to find this distribution. The traditional way to
do this is to use Markov-Chain-Monte-Carlo methods, also known as MCMC methods.
They are a set of algorithms that enable sampling from probability distributions
based on the construction of Markov chains. After a sufficient number of iterations,
the stationary distribution of a Markov chain can be taken as the desired distribution,
with the quality of this distribution improving as the number of iterations increases.
Most of the time, the construction of such a chain is relatively simple; the challenge is
to determine how many steps are needed before convergence towards the stationary
distribution is achieved. MCMC methods are mostly used to compute numerical
approximations of multidimensional integrals, for instance in Bayesian statistics or
computational biology. The two main concepts used in MCMC methods are Monte
Carlo integration and the aforementioned Markov chains, hence the name Markov
Chain Monte Carlo.

2.4.1 Monte Carlo Integration

Monte Carlo integration is a technique that uses the generation of random numbers
for numerical computation of definite integrals and is especially useful for higher-
dimensional integrals. The problem the method addresses is the computation of the
integral

Ef [h (X)] =
∫
χ
h(x)f(x)dx. (2.10)

The integral can be approximated by using a sample (X1, ..., Xm) generated from f

and calculating the arithmetic mean

hm = 1
m

m∑
j=1

h (xj) . (2.11)

According to the Strong Law of Large Numbers, hm is likely to converge to Ef [h (X)].
When the expectation of h2 under f is finite, the convergence speed of hm can be
assessed. The variance too can be estimated from the sample (X1, ..., Xn) through

vm = 1
m2

m∑
j=1

[
h (xj)− hm

]2
. (2.12)
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For m large,
hm − Ef [h (X)]

√
vm

(2.13)

is approximately distributed as a N (0, 1) variable. This can be used for constructing
a convergence test and to calculate confidence bounds for the approximation of
Ef [h (X)] (C. Robert and Casella, 2013:pp. 83–84). The term Monte Carlo was first
used by Metropolis and Ulam (1949) to describe a method dealing with problems
related to "integro-differential equations that occur in various branches of the natural
sciences".

2.4.2 Markov Chains

Markov chains are stochastic processes that aim to provide the probability of the
occurrence of future events. A Markov chain is defined by the fact that even if only
a limited history is known, predictions about future developments can be made just
as reliably as if the entire history of a process were known. Thus, the probability of
moving from the current state to any state depends only on the current state of the
chain. These probabilities are defined by a transition kernel, which is a function K
on X × B (X ), such that

i. ∀x ∈ X ,K (x, ·) is a probability measure

ii. ∀A ∈ B (X ) ,K (·, A) is measurable.

In the discrete case, the transition kernel is a matrix KKK with elements

Pxy = P (Xn = y|Xn−1 = x) , x, y ∈ X .

If X is continuous, the kernel denotes the conditional density K
(
x, xT

)
of the

transition K (x, ·),
P (X ∈ A|x) =

∫
A
K
(
x, xT

)
dxT .

Given a transition kernel K, a sequence X0, X1, ..., Xt of random variables is a
Markov chain (Xn), if, for any t, the conditional distribution of Xt given the previous
states is the same as the distribution of Xt given the last state, xt−1,

P (Xt+1 ∈ A|x0, x1, x2, ..., xt) = P (Xt+1 ∈ A|xt)

=
∫
A
K (xt, dx) . (2.14)

These chains were first introduced by Markov (1906).
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2.4.3 The Metropolis-Hastings Algorithm

Having established the basics of Markov chains, one of the best known MCMC
algorithms, the Metropolis-Hastings algorithm, is introduced next. The algorithm
is based on the Metropolis algorithm, which was developed to simulate the states
of a system according to the Boltzmann distribution, with the newest state always
depending on the previous state (Metropolis, Rosenbluth, et al., 1953).
The Metropolis-Hastings algorithm is a procedure for drawing random samples
from a probability distribution from which direct sampling is difficult if a function
proportional to the target density f is known. This function q (yyy|xxx) is called the
proposal density and must be easy to simulate from in order for the Metropolis-
Hastings algorithm to be implementable. Moreover, it must be either explicitly
present or symmetric, meaning q (xxx|yyy) = q (yyy|xxx).
The Metropolis-Hastings algorithm of a target density f and proposal density q
produces a Markov chain

(
X(t)

)
by the following transition.

Algorithm 1 The Metropolis-Hastings Algorithm

Given f (xxx) and q (yyy|xxx)
1: Initialization: Choose arbitrary xt as the first sample
2: for each iteration t do
3: Generate Yt ∼ q (yyy|xt)
4: Take

Xt+1 =
{
Yt with probability P (xt, Yt)
xt with probability 1− P (xt, Yt)

where

P (x, y) = min
{
f (yyy)
f (xxx)

q (xxx|yyy)
q (yyy|xxx) , 1

}
. (2.15)

P (x, y) is the Metropolis-Hastings acceptance probability.
The algorithm always accepts values yt that lead to an increase in the ratio f (yt) /q (yt|xt)
compared to the previous value f (xt) /q (xt|yt). In the symmetric case, the accep-
tance probability simplifies to

P (x, y) = min
{
f (yyy)
f (xxx) , 1

}
(Hastings, 1970).
If the Markov chain starts with a value x0 > 0, then f (xt) > 0 ∀t ∈ N since the
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values of y such that f (yt) = 0 are all rejected by the algorithm. As the number of
iterations t increases, the distribution of saved states x0, ..., xt converges towards
the target density f(xxx) (C. Robert and Casella, 2013:pp. 270–275).
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2.5 Gaussian Markov Random Fields

Gaussian Markov Random Field (GMRF) models are probabilistic graphical mod-
els used in the analysis of longitudinal data, survival data and spatial statistics,
among others. They are modelled with a conditional independence structure rep-
resented by undirected graphs, two concepts introduced at the beginning of this
chapter. They allow for approximate Bayesian inference while remaining efficient in
computation.

2.5.1 Conditional Independence

In probability theory, two random variables x and y are independent given a third
variable z if and only if the occurrence of x and y in their conditional probability
distribution given z are independent events. To calculate the conditional density of
xxxA, given xxx−A, the following statement is repeatedly used,

π (xxxA|xxx−A) = π (xxxA,xxx−A)
π (xxx−A) ∝ π (xxx) . (2.16)

It follows that x and y are independent precisely when π (x, y) = π (x)π (y), which
is expressed by x ⊥ y. x and y are conditionally independent for a given z if and
only if π (x, y|z) = π (x|z)π (y|z) (Dawid, 1979). The conditional independence can
be easily validated with the help of the following factorization criterion,

x ⊥ y|z ⇐⇒ π (x, y, z) = f (x, z) g (y, z) , (2.17)

for some functions f and g, and for all z with π (z) > 0 (Rue and Held, 2005:pp. 16–
17).

2.5.2 Undirected Graphs

Undirected graphs are used to represent the conditional independence structure
in a Gaussian Markov random field. An undirected graph G is defined as a tuple
G = (V, E), where V contains all nodes in the graph and E is the set of edges {i, j},
with i, j ∈ V and i 6= j. For {i, j} ∈ E there exists an undirected edge from node i to
node j in the other case such an edge does not exist. If {i, j} ∈ E ∀i, j ∈ V with i 6= j

a graph is fully connected. Most often V = {1, 2, ..., n} is assumed, which is referred
to as labelled. A simple example of an undirected graph is shown in Figure 2.1.

30 Chapter 2 Introduction to Bayesian Inference



2

1 3

Fig. 2.1: An undirected labelled graph with 3 nodes, V = {1, 2, 3} and E = {{1, 2} {2, 3}}.

The neighbours of node i are defined as all nodes in G with an edge to node i,

ne (i) = {j ∈ V : {i, j} ∈ E} .

This definition can be extended to a set A ⊂ V, where the neighbours of A are
defined as

ne (A) =
⋃
i∈A

ne (i) \A.

A path from i1 to im is defined as a sequence of certain nodes in V, i1, i2, ..., im, for
which (ij , ij+1) ∈ E for j = 1, ...,m− 1. Two nodes i /∈ C and j /∈ C are separated
by a subset C ⊂ V, if every path from i to j contains at least one node from C.
Two disjoint sets A ⊂ V /∈ C and B ⊂ V /∈ C are separated by C, if all i ∈ A and
j ∈ B are separated by C, that is, it is not possible to "wander" on the graph from
somewhere in A and end somewhere in B without crossing C.
If i and j are neighbours in G, this can be expressed by i G∼ j or i ∼ j for the case
where the graph is implicit. It follows that i ∼ j ⇐⇒ j ∼ i.
Let A be a subset of V. A subgraph GA is a graph restricted to A, i.e., the graph
obtained after removing all nodes that do not belong to A and all edges where at
least one node does not belong to A. GA =

{
VA, EA

}
, where VA = A and

EA = {{i, j} ∈ A and {i, j} ∈ A×A} .

Let G be the graph in Figure 2.1 and A = {2, 3}, then VA = {2, 3} and EA = {{2, 3}}
(Rue and Held, 2005:pp. 17–18).

2.5.3 Notation and Basic Properties

For structured additive regression models, the distribution of the response variable
yi is assumed to be a member of the exponential family, with the mean µi linked
to a structured additive predictor ηi by a link function g (·) such that g (µi) = ηi.
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Following Stone (1985), the predictor ηi takes into account the effect of multiple
covariates in an additive way,

ηi = α+
nf∑
j=1

f (j) (uji) +
nβ∑
k=1

βkzki + εi, i = 1, ..., n. (2.18)

The
{
f (j) (·)

}
s are unknown functions of the covariates u, while the {βk}s represent

the linear effect of the covariates z and the εis are unstructured terms. Latent
Gaussian models assign a Gaussian prior to α,

{
f (j) (·)

}
and {εi}. In the following xxx

shall denote the vector of all latent Gaussian variables ({ηi}, α,
{
f (j)

}
and {βk})

and θθθ the vector of hyperparameters.
The conditional density π (xxx|θ1) is Gaussian with an assumed zero mean and preci-
sion matrix QQQ (θ1). The Gaussian density N (µ,ΣΣΣ) with mean µ and covariance ΣΣΣ at
configuration xxx is denoted by N (xxx;µ,ΣΣΣ). For simplicity, {ηi} is included instead of
{εi}.
The distribution for the nd observational variables y = {yi : i ∈ I} is denoted by
π (yyy|xxx, θ2) and is assumed conditionally independent given xxx and θ2. Let θθθ =(
θT1 , θ

T
2

)T
with dim (θθθ) = m. Following Martino et al. (2009), for non-singularQQQ (θθθ)

the posterior is given by

π (xxx,θθθ|yyy) ∝ π (θθθ)π (xxx|θθθ)
∏
i∈I

π (yi|xi, θθθ)

∝ π (θθθ) |QQQ (θθθ)|1/2 exp
[
−1

2x
xxTQQQ (θθθ)xxx+

∑
i∈I

log {π (yi|xi, θθθ)}
]
. (2.19)

2.5.4 Definition of GMRFs

Let xxx = (x1, ..., xn)T be normally distributed with mean µµµ and covariance matrix
ΣΣΣ. Let G = (V, E), where V = {1, ..., } and E be such that there is no edge between
nodes i and j exactly when xi ⊥ xj |xxxij . Then xxx is a Gaussian Markov random field
(GMRF) with respect to G.
Since µµµ does not affect the pairwise conditional independence properties of xxx, this
information is ’hidden’ in ΣΣΣ. Hence,

xi ⊥ xj |xij ⇐⇒ Qij = 0.

Therefore, the non-zero pattern of QQQ determines G, i.e. whether xi and xj are
conditionally independent, and can be derived from QQQ. If QQQ is a fully dense matrix,
G is fully connected, implying that any normal distribution with SPD covariance
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matrix is a GMRF and vice versa.
The elements of QQQ are used for conditional interpretations. For any GMRF with
respect to G = (V, E) with mean µµµ and precision matrix QQQ > 0,

E [xi|xxx−i] = µi −
1
Qii

∑
j:j∼i

Qij (xj − µj) , (2.20)

Prec (xi|xxx−i) = Qii and (2.21)

Corr (xi, xj |xxxij) = − Qij√
QiiQjj

, i 6= j (2.22)

(Rue and Held, 2005:p. 21).
On the main diagonal of QQQ are the conditional precisions of xi given xxx−i are placed,
while the other elements, when scaled appropriately, provide information about
the conditional correlation between xi and xj given xxxij . Since Var (xi) = Σii

and Corr (xi, xj) = Σij/
√

ΣiiΣjj , the information about the marginal variance of
xi and the marginal correlation between xi and xj is given by ΣΣΣ. The marginal
interpretation provided by the correlation matrix is intuitive and informative, as the
scope of the interpretation is reduced from a n-dimensional distribution to a one- or
two-dimensional distribution. QQQ is difficult to interpret marginally because either
xxx−i or xxxij would have to be integrated out of the joint distribution parameterized
with respect to QQQ. QQQ−1 = ΣΣΣ by definition, and in general Σii depends on each
element in QQQ and vice versa (Rue and Held, 2005:pp. 20–23).

2.5.5 Markov Properties of GMRFs

One property of GMRFs is that more information regarding conditional independence
can be extracted from G. The following three properties are equivalent.
The pairwise Markov property:

xi ⊥ xj |xxxij if {i, j} /∈ E and i 6= j.

The local Markov property:

xi ⊥ xxx−{i,ne(i)}|xxxne(i) ∀i ∈ V.

The global Markov property:
xxxA ⊥ xxxB|xxxC

for all disjoint sets A, B and C where A and B are non-empty and separated by C.
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Illustrations for these properties are shown in Figure 2.2, Figure 2.3 and Figure 2.4.
These illustrations are taken from Rue and Held (Rue and Held, 2005:pp. 23–24).

Fig. 2.2: The pairwise Markov property; the black nodes are conditionally independent
given the light grey nodes.

Fig. 2.3: The local Markov property; the black nodes and white nodes are conditionally
independent given the dark grey nodes.

Fig. 2.4: The global Markov property; the dark grey and light grey nodes are globally
independent given the black nodes.

2.5.6 Conditional Properties of GMRFs

An essential result of GMRFs is the conditional distribution for a subset xxxa given
xxx−A. Here the canonical parameterization proves useful, since by definition it can
be easily updated by successive conditioning.
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By splitting the indices into the non-empty sets A and B, of which the latter is equal
to -A,

xxx =
(
xxxA

xxxB

)
. (2.23)

The mean and the precision are divided accordingly,

µµµ =
(
µµµA

µµµB

)
, and QQQ =

(
QQQAA QQQAB

QQQBA QQQBB

)
. (2.24)

The conditional distribution of xxxA|xxxB is a GMRF with respect to the subgraph GA

with mean µµµA|B and precision matrix QQQA|B > 0, where

µµµA|B = µµµA −QQQ−1
AAQQQAB (xxxB −µµµB) (2.25)

and
QQQA|B = QQQAA.

Thus, the explicit knowledge ofQQQA|B is available throughQQQAA, i.e. no calculation is
required to obtain the conditional precision matrix. Moreover, the conditional mean
depends only on the values of µµµ and QQQ in A ∪ ne (A), since Qij = 0∀j 6 inne (i).
For successive conditioning, the canonical parameterization for GMRF is useful.
A GMRF xxx with respect to G and canonical parameters bbb andQQQ > 0 has the density

π (xxx) ∝ exp
(
−11

2x
xxTQQQxxx+ bbbTxxx

)
.

The precision matrix isQQQ and the mean is µµµ = QQQ−1bbb. The canonical parameterization
is written as

xxx ∼ NC (bbb,QQQ) .

Furthermore,
N
(
µµµ,QQQ−1

)
⇐⇒ NC (QµQµQµ,QQQ) .

If the indices are partitioned into two non-empty sets A and B and xxx, bbb and QQQ are
partitioned as in (2.23) and (2.24), then

xxxA|xxxB ∼ NC (bbbA −QQQABxxxB,QQQAA) . (2.26)

Let yyy|xxx ∼ N
(
xxx,PPP−1) and xxx ∼ NC (bbb,QQQ), then

xxx|yyy ∼ NC (bbb+PyPyPy,QQQ+PPP ) . (2.27)
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This allows the calculation of conditional densities with multiple sources of condi-
tioning, e.g. conditioning on observed data and a subset of variables. Therefore, the
canonical parameterization can be repeatedly updated without explicitly calculating
the mean until it is needed. The computation of the mean requires the solution
ofQµQµQµ = bbb, but only matrix-vector products are needed for updating the canonical
parameterization (Rue and Held, 2005:pp. 25–27).

2.5.7 Specification Through Full Conditionals

Alternatively, a GMRF can be specified by the full conditionals {π (xi|xxx−i)} in place
of µµµ and QQQ. Suppose the full conditionals are given as normals with

E [xi|xxx−i] = µi −
∑
j:j∼i

βij (xj − µj) and (2.28)

Prec (xi|xxx−i) = κi > 0 (2.29)

for i = 1, ..., n, for µµµ, κκκ and some {ηij , i 6= j}. Evidently, ∼ is implicitly defined by
the non-zero terms of {βij}. For there to exist a joint density π (xxx) leading to these
full conditional distributions, these full conditionals must be consistent. Since ∼
is symmetric, it follows that if βij 6= 0, then βji 6= 0. If the entries of the precision
matrix are chosen such that

Qii = κi, and Qij = κiβij

and QQQ must be symmetrical, i.e.,

κiβij = κjβji,

then xxx is a GMRF with respect to a labelled graph G = (V, E) with mean µµµ and
precision matrix QQQ = (Qij) (Rue and Held, 2005:p. 27).

2.5.8 Lattices and Tori

Innn denotes a (regular) lattice (or grid) of size nnn = (n1, n2) (in the two-dimensional
case). yyy can take values on Innn and yi,j denotes the value of yyy at location ij, for
i = 1, ..., n1 and j = 1, ..., n2. For easier reading this is shortened to yij . On an
infinite lattice I∞∞∞, ij are numbered as i = 0,±1,±2, ..., and j = 0,±1,±2, ....
A lattice with cyclic or toroidal boundary conditions is referred to as torus and is
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denoted by I∞∞∞. The dimension is nnn = (n1, n2) (in the two-dimensional case) and all
indices are modulus nnn and run from 0 to n1 − 1 or n2 − 1. If a GMRF yyy is defined on
Innn, the toroidal boundary conditions imply that y−2,n2 is equal to yn1−2,0 since −2
mod n1 is equal to n1 − 2 and n2 mod n2 is equal to 0.
An irregular lattice refers to a spatial configuration of regions i = 1, ..., n where
the regions (mostly) have common boundaries, for instance the states of a nation
(Rue and Held, 2005:pp. 15–16). An example of an irregular lattice is shown in
Figure 2.5.

Fig. 2.5: The cantons of Switzerland, an example of an irregular lattice.
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2.6 Latent Gaussian Models and INLA

In recent years, a growing amount of georeferenced data has become available,
leading to an increased need for appropriate statistical modelling to handle large
and complex datasets. The usual approach to inference in this field involves the
previously introduced Markov chain Monte Carlo methods. Due to several factors,
these methods may perform poorly when applied to such models. One issue is the
high dependence from θθθ and xxx on each other, especially for large n. This problem
requires, at least in part, a joint update of θθθ and xxx. There are several proposals to
solve these shortcomings, but MCMC sampling continues to show poor computa-
tional speed (Martino et al., 2009:p. 322).
Bayesian hierarchical models have proven to be effective in capturing complex
stochastic structures in spatial processes. A large proportion of these models are
based on latent Gaussian models, a subclass of structured additive regression models.
The methodology used for these models includes Integrated Nested Laplace Approx-
imations (INLA), which is a method used to approximate the posterior marginals
of a latent Gaussian field and hyperparameters θθθ. The hyperparameters θθθ can be,
for example, the variance in the Gaussian likelihood or the shape parameter in
the likelihood of the gamma distribution. In the case of latent fields, they can be,
for instance, dispersion parameters or spatial correlation parameters. Most latent
Gaussian models satisfy two basic properties:

1. The latent field xxx is of large dimension, n ≈ 102 − 105. Therefore, the latent
field is a Gaussian Markov random field with sparse precision matrix QQQ (θθθ).

2. The number of hyperparameters, m, is small, m ≤ 6.

In most cases, both properties are required to produce fast inference, and thus these
are assumed to be true for the remainder of this work (Martino et al., 2009).

2.6.1 Applications for Latent Gaussian Models

Latent Gaussian models can be employed in a vast range of different domains, in
fact most structured Bayesian models are of this particular form. Some of these
domains are presented next.

38 Chapter 2 Introduction to Bayesian Inference



2.6.1.1 Regression Models

Bayesian generalized linear models correspond to the linear relationship ηi =
α+

∑nβ
k=1 βkzki (Dey et al., 2000). Either the linear relationship of the covariates can

be relaxed through the f (·) terms (Fahrmeir and Tutz, 2013), random effects can be
introduced through them or both. Smooth covariate effects are frequently modelled
using penalized spline models (Lang and Brezger, 2004) or random walk models
(Fahrmeir and Tutz, 2013), continuous indexed spline models (Rue and Held, 2005)
or Gaussian processes (Chu et al., 2005). The incorporation of random effects
allows for the consideration of overdispersion caused by unobserved heterogeneity
or correlation in longitudinal data and can be introduced by defining f (ui) = fi and
{f1} to be independent, zero mean and Gaussian (Fahrmeir and Lang, 2001).

2.6.1.2 Dynamic Models

Temporal dependence can be introduced by using i in (2.18) as temporal index t and
defining f (·) and uuu such that f (ut) = ft. Both a discrete-time and a continuous-time
autoregressive model can be modelled by {ft}. Furthermore, a seasonal effect or
the latent process of a structured time series model can be modelled (Kitagawa and
Gersch, 1996). Alternatively, a smooth temporal function in the same sense as for
regression models can be represented by {ft}.

2.6.1.3 Spatial and Spatio-Temporal Models

Similar to the previous type of model, spatial dependence can be modelled by a
spatial covariate uuu such that f (us) = fs, where s denotes the spatial location or
region s. The stochastic model for fs is constructed to promote spatial smooth
realizations of some sort. Popular models of this type include the Besag-York-Mollié
(Besag et al., 1991) model with extensions for regional data, continuous indexed
Gaussian models (Banerjee et al., 2014) and texture models (Marroquin et al., 2001).
The dependence between spatial and temporal covariates can be achieved either by
using a spatio-temporal covariate (s, t) or a corresponding spatio-temporal Gaussian
field (Kammann and Wand, 2003).
Often the final model consists of a sum of several components, e.g. a spatial
component, random effects and both linear and smooth effects of some covariates.
In order to separate the effects of the different components in (2.18), sometimes
linear or sum-to-zero constraints can be imposed (Martino et al., 2009:pp. 319–
321).
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2.6.2 Integrated Nested Laplace Approximation

An alternative to MCMC methods that is both less computationally intensive and
suitable for performing approximate Bayesian inference in latent Gaussian models
is Integrated Nested Laplace Approximation (INLA). The basis of INLA is the use of
a combination of analytical approximations and numerical algorithms for sparse
matrices to approximate the posterior distribution using closed-form expressions.
This speeds up inference and circumvents problems of sample convergence and
mixing, making it suitable for fitting large data sets or exploring other models
(Martino et al., 2009).
INLA can be used for all models of the following form,

yi|xxx,θθθ ∼ π (yi|xi, θθθ) , i = 1, ..., n,

xxx|θθθ ∼ N
(
µ (θθθ) ,QQQ (θθθ)−1

)
,

θθθ ∼ π (θθθ) .

As introduced in subsection 2.5.3, yyy are the observed data, xxx is a Gaussian field, θθθ
represents the hyperparameters, while µ (θθθ) andQQQ (θθθ) denote the mean and precision
matrix respectively. To ensure fast inference, the dimension of the hyperparameter
vector θθθ should be small, since the approximations are computed by numerical
integration over the hyperparameter space.
In most cases, the observations yi are assumed to belong to the exponential family
with mean µi = g−1 (ηi). As shown in equation (2.18), ηi accounts for the effects of
several covariates in an additive way, which makes it suitable for a wide range of
models, including spatial and spatio-temporal models, since

{
f (j)

}
can take different

forms.
Let xxx be a GMRF, and let θθθ be the vector of hyperparameters, which are not required
to be Gaussian. INLA calculates accurate and fast approximations for the posterior
marginals of the components of the latent Gaussian variables

π (xi|yyy) , i = 1, ..., n,

as well as the posterior marginals for the hyperparameters of the latent Gaussian
model

π (θj |yyy) , j = 1, ...,dim (θθθ) .

For each element xi of xxx the posterior marginals are given by

π (xi|yyy) =
∫
π (xi|θθθ,yyy)π (θθθ|yyy) dθθθ, (2.30)
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and the posterior marginal for the hyperparameters can be expressed by

π (θj |yyy) =
∫
π (θθθ|yyy) dθθθ−j . (2.31)

π (xi|yyy) is approximated by combining analytical approximations to the full condi-
tionals π (xi|θθθ,yyy) and π (θθθ|yyy) and numerical integration routines to integrate out θθθ.
Similarly, π (θj |yyy) is approximated by approximating π (θθθ|yyy) and integrating out θθθ−j .
In particular, the posterior density of θθθ is obtained through Gaussian approximation
for the posterior of the latent field, π̃G (xxx|θθθ,yyy), evaluated at the posterior mode,
x∗ (θθθ) = arg maxxxx πG (xxx|θθθ,yyy),

π̃ (θθθ|yyy) ∝ π (xxx,θθθ,yyy)
π̃G (xxx|θθθ,yyy)

∣∣∣∣
xxx=x∗(θθθ)

. (2.32)

Next, the following nested approximations are constructed,

π̃ (xi|yyy) =
∫
π̃ (xi|θθθ,yyy) π̃ (θθθ|yyy) dθθθ, π̃ (θj |yyy) =

∫
π̃ (θθθ|yyy) dθθθ−j . (2.33)

Finally, these approximations are numerically integrated with respect to θθθ

π̃ (xi|yyy) =
∑
k

π̃ (xi|θk, yyy) π̃ (θk|yyy)×∆k, (2.34)

π̃ (θj |yyy) =
∑
l

π̃ (θ∗l |yyy)×∆∗l , (2.35)

with ∆k and ∆∗l representing the area weights corresponding to θk and θ∗l .
To obtain the approximations for the posterior marginals for the xi’s conditioned
on selected values of θk and π̃ (xi|θk, yyy), a Gaussian, Laplace or simplified Laplace
approximation can be used. Using a Gaussian approximation derived from π̃G (xxx|θθθ,yyy)
is the simplest and fastest solution, but in some situations it produces errors in the
location and is unable to capture skewness behaviour. Therefore, the Laplace
approximation is favoured over the Gaussian approximation, although it is relatively
expensive. The simplified Laplace approximation is associated with lower costs
and addresses inaccuracies of the Gaussian approximation in terms of location and
skewness in a satisfactory manner (Martino et al., 2009; Simpson et al., 2017).
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2.7 Bayesian Spatial Models

Bayesian spatial models are often used in the field of disease mapping. Bayesian
hierarchical models improve estimates of log risk by providing information about
neighbouring regions in the spatially structured component as well as regional
variation in the unstructured component (Blangiardo and Cameletti, 2015). One
of the most well-known spatial models is Besags’ spatial model, which is presented
in Section 2.7.1. Several models have been developed based on the Besag model,
including the Besag-York-Mollié (BYM) model, introduced in Section 2.7.2, the
Leroux model, introduced in Section 2.7.3, and more recently the BYM2 model,
introduced in Section 2.7.4.
In general, it can be assumed that areas in proximity to each other have a more
frequent burden of disease than areas that are further away from each other. By
setting up a neighbourhood structure, this "proximity" can be defined. It is assumed
that i and j are neighbours if they share a common boundary, denoted i ∼ j. The
set of neighbours of the region i is denoted by δi and its size is given by nδi .

2.7.1 Besag Spatial Models

2.7.1.1 Besags’ Improper Spatial Model

A commonly used approach to modelling spatial correlation is the Besag model, also
known as an intrinsic or improper GMRF model. The conditional distribution for a
random vector xxx = (x1, ..., xn)T is given by

xi|xxx−i, τx ∼ N

 1
nδi

∑
j∈δi

xj ,
1

nδiτx

 , (2.36)

with τx as a precision parameter. The mean of the effects over all neighbours is given
by the mean of xi, while the precision is proportional to the number of neighbours.
The joint distribution for xxx is given by

π (xxx|τx) ∝ exp

−τx2 ∑
i∼j

(xi − xj)2

 ∝ exp
(
−τx2 x

xxTQQQxxx

)
. (2.37)
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The precision matrix QQQ is given by

Qij =


nδi i = j,

−1 i ∼ j,

0 else.

(2.38)

QQQ is a singular matrix, i.e. it has a non-empty null space VVV , hence the model is called
intrinsic or Besags’ improper spatial model.
The Besag model for spatial effects has one hyperparameter, the precision τx, which
is represented as

θ1 = log τx. (2.39)

The prior is defined on θ1. This model implies that the conditional expected value
of xi is equivalent to the mean of the random effects at the neighbouring locations
(Besag, 1974; Riebler et al., 2016).

2.7.1.2 Besags’ Proper Spatial Model

Since the joint distribution of the intrinsic Besag model is improper due to the singu-
lar precision matrix, this impropriety can be overcome by redefining the precision
matrix as follows,

Qij =

τx (nδi + d) i = j,

−τ else.
(2.40)

d > 0 is an additional term added to the diagonal to control the "properness". The
conditional distribution for the proper version of the Besag model is given by

xi|xxx−i, τx, d ∼ N

 1
d+ nδi

∑
i∼j

xj
1

τx (d+ nδi)

 . (2.41)

The proper version of the Besag model for spatial effects has two hyperparameters,
the precision τx, which is represented as

θ1 = log τx (2.42)

and the diagonal parameter d, which is represented as

θ2 = log d. (2.43)

The priors are defined on θ1 and θ2, respectively (Besag, 1974; Riebler et al., 2016).
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2.7.2 The Besag-York-Mollié Model

The Besag-York-Mollié (BYM) model is a lognormal Poisson model that is a combina-
tion of an improper Besag model u and an ordinary random effect component v for
non-spatial heterogeneity. It combines the regional spatial effect xxx into the sum of
an unstructured and a structured spatial component, so that xxx = vvv + uuu.
vvv ∼ N

(
0, τ−1

v III
)

accounts for pure overdispersion, while uuu ∼ N
(
000, τ−1

u QQQ−
)

is the
Besag model.
By using a spatial and a non-spatial error term, the overdispersion that is not mod-
elled by the Poisson variables is taken into account. Thus, if the observed variance is
not fully explained by the spatial structure of the data, the error terms explain the
rest of the variance.
The resulting covariance matrix of xxx is given by

Var (xxx|τu, τv) = τ−1
v III + τ−1

u QQQ−, (2.44)

where QQQ− denotes the generalized inverse of QQQ.
The hyperparameters of the model are the precision τu of the Besag model u and
the precision τv of the iid model v. They are represented as

θθθ = (θ1, θ2) = (log τv, log τu) (2.45)

and the prior is defined on θθθ (Besag et al., 1991; Riebler et al., 2016).

2.7.3 The Leroux Model

One problem with the BYM model is that the structured and unstructured com-
ponents are not identifiable because they cannot be considered independently.
Moreover, τv and τu do not represent variability at the same level, which makes the
choice of hyperpriors difficult. The Leroux model is formulated in such a way that
the compromise between the two variations is made more explicit. It is assumed
that xxx follows a normal distribution with zero mean and covariance matrix

Var (xxx|τx, φ) = τ−1
x ((1− φ)III + φQQQ)−1 , (2.46)

with φ ∈ [0, 1] as mixing parameter. For φ = 0 the model reduces to pure overdis-
persion and for φ = 1 to the Besag model. The conditional expected value of xi
for all other random effects is the weighted mean of the unstructured model with
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zero mean and the mean of the Besag model, while the conditional variance is the
weighted mean of τ−1

x and (τx · nδi)
−1 (Leroux et al., 2000; Riebler et al., 2016).

2.7.4 The BYM2 Model

One problem that all the aforementioned models have is the lack of scaling of the
spatially structured component. Scaling facilitates the assignment of hyperpriors
and ensures that the interpretation of hyperpriors remains the same across different
areas.
Another problem is that the marginal standard deviations of the commonly used
IGMRF priors can vary greatly, a fact that should be taken into account by assigning
hyperpriors to the precision parameters of these models.
Since the Besag model penalizes a local deviation from its null space, the hyperprior
controls this local deviation and thus affects the smoothness of the estimated spatial
effects. If the estimate of the field is too smooth, the precision is large and the spatial
variation may be blurred. On the other hand, if the precision is too small, the model
could overfit due to the large local variability.
The marginal variances τ−1

x [QQQ−]ii depend on the structure of the graph, which is
reflected in the structure matrix QQQ. A generalized variance can be calculated as the
geometric mean of the marginal variance as follows

σ2
GV (uuu) = exp

(
1
n

n∑
i=1

log
( 1
τx

[
QQQ−

]
ii

))
= 1
τx

exp
(

1
n

n∑
i=1

log
([
QQQ−

]
ii

))
. (2.47)

In order to unify the interpretation of a chosen prior for τx and make it transferable
across domains, the structured effect must be scaled such that σ2

GV (xxx) = τ−1
x . This

implies that τx denotes the accuracy of the (marginal) deviation from a constant
level, independent of the underlying graph.
A modification of the BYM model that addresses this scaling problem is the BYM2
model. It uses a scaled structured component uuu∗, where QQQ∗ denotes the precision
matrix of the Besag model, scaled with the marginal variance σ2

GV as a factor. The
random effect is given by

xxx = 1
τx

(√
1− φvvv +

√
φuuu∗

)
, (2.48)

with covariance matrix

Var (xxx|τx, φ) = 1
τx

(
(1− φ)III + φQQQ−∗

)
. (2.49)

2.7 Bayesian Spatial Models 45



Equation 2.48 emphasizes the trade-off between pure overdispersion and spatially
structured correlation, where 0 ≤ φ ≤ 1 measures the fraction of the marginal
variance explained by the structured effect. For φ = 0 the model reduces to pure
overdispersion, while for φ = 1 it becomes a Besag model (Sørbye and Rue, 2017;
Riebler et al., 2016).
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2.8 Prior Sensitivity

One problem that plagues Bayesian spatial models is that they cannot be directly
compared due to their different parameterizations and the fact that the precision
in these models is interpreted differently. Since neither a Besag model nor a BYM
model nor a Leroux model is scaled, the precision parameter is not representative
of the marginal precision but is confounded with the mixing parameter. Therefore,
the effect of a prior assigned to the precision parameter is dependent on the graph
structure of the application. Thus, a given prior is not transferable between different
applications if the underlying graph changes. Furthermore, the goal of the BYM2
model is not to optimize goodness-of-fit indicators, but to provide a meaningful
model formulation where all parameters have a clear meaning. By mapping the
precision parameter to the marginal standard deviation, the model parameters are
flexible and the assignment of meaningful hyperpriors is made easier (Riebler et
al., 2016).
Additionally, the goodness-of-fit indicators introduced in Section 10.4 have their
own problems. The DIC, for example, produces unreasonable results if the posterior
distribution is not well summarized by its mean, while the WAIC is based on a data
partition that would create difficulties for structured models, such as for spatial or
network data (Gelman et al., 2014).
Finally, the choice of the prior affects the value of these criteria and depending on
the values chosen for the PC priors used in this work, overfitting of the models may
occur, which is reflected in these criteria, but more on this later.
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Analysis of Geospatial Health
Data

3
Healthcare data provides information for detecting public health problems and
reacting adequately when they occur. With this information, prevention and control
of a multitude of health conditions including infectious diseases, non-communicable
diseases, injuries and health-related behaviours can be achieved. To analyse and
interpret health data, the process involves a wide variety of system designs, ana-
lytical methods, modes of presentation and interpretive uses (Teutsch, Churchill,
et al., 2000). Descriptive methods generally form the basis of routine reporting
of surveillance data. Rather than focusing on observed patterns in the data, these
may attempt to compare the relative occurrence of health outcomes in different
subgroups. More specific hypotheses can be explored using inferential methods. The
aim of these methods is to draw statistical inferences about patterns or outcomes of
health.
There is increasing availability of geo-referenced health data, population data and
satellite images of environmental factors that influence levels of disease activity. The
development of geographic information systems (GIS) and address geocoding soft-
ware has facilitated the conduct of studies on spatial and spatio-temporal variations
in disease.
A broad range of spatial and spatio-temporal methods exist for disease surveillance,
including methods for disease mapping, clustering and geographic correlation stud-
ies. These methods can be used to identify areas of high risk, risk factors, evaluate
spatial variations in temporal trends, measure excess disease risk near a suspected
source and detect outbreaks at an early stage.
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3.1 Geographic Data

In spatial statistics, two fundamental types of geographic data exist, namely vector
data and raster data. In the vector data model, the world is represented by points,
lines and polygons with discrete, well-defined boundaries, which tends to result
in high accuracy. Raster data, on the other hand, divides the surface into cells of
uniform size, and raster datasets are used as the basis for background images in web
mapping.
Determining which data type to use depends on the domain of the application. Vector
data dominates in the social sciences because human settlements typically have
discrete boundaries, while raster data are commonly used in many environmental
sciences because they are based on remote sensing data. Naturally, there is some
overlap and both types can be used together or one form can be converted into the
other (Lovelace et al., 2019).

3.1.1 Vector Data

The geographic vector data model is based on points located within a coordinate
reference system (CRS), in which points either represent self-standing features or
form more complex geometric shapes, i.e. lines and polygons. Using this system,
Trondheim can be represented by the coordinates (10.4, 63.4), meaning 10.4 degrees
east of the prime meridian and 63.4 degrees north of the equator. It could also be
written as (1157722.70, 9199010.75), which is the position of Trondheim using the
Web Mercator projection, the de facto standard for web mapping applications. More
is said about CRS later, but for now it is sufficient to know that it is possible to
display coordinates in various ways. An example of a CRS is shown in Figure 3.1.

3.1.1.1 Different Types of Vector Data

As mentioned earlier, there are different types of vector data. There are 17 different
geometry types in the standard simple features, but there are seven core types that
can be used in most analysis software. These types are visualized in Figure 3.2.
Simple Features was developed by the Open Geospatial Consortium and is an open,
standardized, hierarchical data model that represents a wide range of geometry
types. The use of this data model ensures that scientific work can be transferred
to other institutions, e.g. when importing from and exporting to spatial databases
(Lovelace et al., 2019).
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Fig. 3.1: A geographic CRS with an origin at 0° longitude and latitude. The red X denotes
the location of Trondheim.

Fig. 3.2: The most commonly used simple feature types.
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3.1.2 Raster Data

The geographic raster data model consists in most cases of a raster header and a
matrix representing uniformly distributed cells/pixels. The raster header defines
the CRS, the origin (starting point) and the extent. Since the number of columns
and rows and the resolution of the cell size are stored in the extent, starting from
the origin, it is easy to access and change each cell by its ID or by specifying the
row and column number. In this type of representation, the coordinates of the four
vertices of each cell are not explicitly stored, instead only the origin is stored. This
speeds up data processing and makes it more efficient, but each raster layer can only
contain a single value, which can be either numeric or categorical. Typically, raster
maps are used to represent continuous features such as elevation or temperature,
but categorical variables such as soil or land cover can be represented as well, as
shown in Figure 3.3 (Lovelace et al., 2019).

Continuous data

Elevation (m)

1,001 to 1,500
1,501 to 2,000
2,001 to 2,500
2,501 to 3,000

Categorical data

Land cover

Water
Developed
Barren
Forest
Shrubland
Herbaceous
Cultivated
Wetlands

Fig. 3.3: An example of continuous and categorical raster data
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3.1.3 Coordinate Reference Systems

A common denominator of vector and raster data are that both use the coordinate
reference system (CRS), which defines how spatial elements relate to the surface of
the Earth. The CRS can be either geographic or projected.

3.1.3.1 Geographic Coordinate Systems

Geographic coordinate systems use two values, longitude and latitude, to identify
any location on Earth. Longitude is defined as the east-west location at an angular
distance from the prime meridian plane, while latitude is the angular distance north
or south of the equator. Consequently, distances in geographic CRS are not measured
in metres.
The Earth’s surface is typically represented in geographical coordinate systems by
a spherical or ellipsoidal surface. The former assumes that the Earth is a perfect
sphere of a certain radius, which has the advantage of being a simplistic model, but
is associated with inaccuracies owing to the fact that the Earth is not a sphere. Ellip-
soidal models are defined by the equatorial radius and the polar radius, providing a
better model since the equatorial radius is approximately 11.5 km longer than the
polar radius.
The datum is a broader component of CRS that contains information about which
ellipsoid to use and the exact relationship between Cartesian coordinates and the
location on the Earth’s surface. The notation proj4string is used to store these
additional details. It allows for local variations of the Earth’s surface, such as large
mountain ranges, to be taken into account in local CRS. Datum can again be divided
into two categories, local and geocentric, the difference being that in the local da-
tum the ellipsoidal surface is shifted to match the surface at a particular location,
whereas in the geocentric datum the centre of gravity of the Earth is the centre and
the accuracy of the projections is not optimized for any particular location (Lovelace
et al., 2019).

3.1.3.2 Projected Coordinate Systems

Projected CRS are based on Cartesian coordinates on an implicitly flat surface and
have an origin, x and y axes, and a linear unit of measurement, metres for instance.
They are based on geographic CRS and rely on map projections to convert between
the three-dimensional surface of the Earth and the east/north values (x and y) in a
projected CRS.
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This transition always entails some distortion, skewing some properties of the Earth’s
surface, such as area, direction, distance and shape. Generally, the name of a
projection is based on a property it preserves, e.g. equal area projection preserves
area, equidistant projection preserves distance and conformal projection preserves
local shape.
Again, subgroups exist in projection coordinate systems, conic, cylindrical and planar
projections. In a conic projection, the Earth’s surface is projected onto a cone along
one or two tangent lines. Along these lines the distortions are minimized and
increase with the distance to the lines. The projection is therefore best suited for
maps of mid-latitude areas. Cylindrical projections map the surface onto a cylinder.
These types of projections can be created by touching the surface of the Earth along
one or two tangent lines. They are often used to map the entire Earth. A planar
projection projects data onto a flat surface that touches the globe at a point or
along a tangent line, and is typically used in mapping polar projections (Lovelace
et al., 2019).
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3.2 Modeling and Visualizing Health Data

After collecting and cleaning all the data needed to analyse a research question, the
next step is the analysis itself. This analysis may involve visualizing the data at hand,
for example by visualizing the neighbourhood structure of spatial areas or simply by
plotting the locations of all points of interest on a base map. When deciding whether
to model spatial dependence, Moran’s I (Moran, 1950) can be used to construct
a test for spatial correlation between different spatial entities. The standardized
incidence ratio (SIR) is a method used to examine the incidence in a small area,
such as a municipality. These two methods are presented in Section 3.2.1.2 and
Section 3.2.1.3. If there is a spatial correlation, it is useful to model this spatial
effect using models for risk assessment in spatial areas. The way this is done is
introduced in Section 3.2.1.4. If data are available over a longer period of time and
some variables change their values over time or a temporal trend is present, it may
be useful to model the spatial and temporal effect by using spatio-temporal models,
which are introduced in Section 3.2.1.5.

3.2.1 Areal Data

Areal or lattice data are the result of segmenting a fixed domain into a finite number
of sub-regions where results are aggregated, e.g. the number of infections with
a specific disease in districts or the number of overweight people in provinces.
Often the aim of disease risk models is to assess the risk within the same areas
for which data are available. This can be done with a simple measure such as
the standardized incidence ratio (SIR) or by using a Bayesian hierarchical model,
which allows information to be drawn from neighbouring areas and incorporates
covariates, thereby smoothing and reducing extreme values.

3.2.1.1 Spatial Neighbourhood Matrices

Spatial or proximity matrices are useful for exploratory analysis of area data. Let
wij denote the (i, j) element of a spatial neighbourhood matrix WWW . wij connects
the two areas in some spatial way. The neighbourhood structure over the complete
study region is defined by WWW , and the elements of the matrix can be considered as
weights.
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The closer j is to i, the more weight is associated with it. The simplest neighbourhood
definition is given by the binary matrix

wij =

1 if regions i and j share a border

0 else.
(3.1)

In Figure 3.4, the number of shared borders of each canton in Switzerland are
mapped.

6
2
2

4

1

11

3

1

4

4

4

6
4

5
4

7

2

7

4

3

3

8

4

5

6

4

Number of neighbours

2

4

6

8

10

Fig. 3.4: The number of shared borders of cantons in Switzerland

3.2.1.2 Moran’s I

Moran’s I is a measure of spatial autocorrelation developed by Patrick Moran. Spatial
autocorrelation is characterized by a correlation in a signal between close locations
in space. Spatial autocorrelation is inherently more complex than one-dimensional
autocorrelation due to the fact that spatial correlation is multidimensional (i.e. 2 or
3 spatial dimensions) and multi-directional. The formula for Moran’s I is given by

I = n∑n
i=1

∑n
j=1wij

∑n
i=1

∑n
j=1wij (xi − x) (xj − x)∑n

i=1 (xi − x)2 , (3.2)

with n denoting the number of spatial units indexed by i and j, x the parameter of
interest and www a spatial neighbourhood matrix.
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Using Moran’s I, a test for spatial autocorrelation can be constructed with the
following hypotheses:

H0 : No spatial autocorrelation vs. H1 : Spatial autocorrelation. (3.3)

Under H0 the expected value is given by

E [I] = −1
n− 1 . (3.4)

As n approaches infinity, the expected value therefore approaches 0. The significance
of Moran’s I can be assessed using the p-value and a z-score. The z-score statistic for
Moran’s I is calculated as follows:

z = I − E [I]√
Var (I)

. (3.5)

If the returned p value is statistically significant, the null hypothesis can be rejected
(Moran, 1950).

3.2.1.3 Standardised Incidence Ratio

A basic measure of disease risk is the standardized incidence ratio, which yields an
estimate in each of the areas that form a partition of the study region. It is defined
as the ratio of observed counts to expected counts

SIRi = Yi
Ei
. (3.6)

Ei represents the sum of the expected number of cases of a given area i that behave
according to the way the standard population behaves. It is calculated using indirect
standardization as

Ei =
m∑
j=1

r
(s)
j n

(i)
j , (3.7)

with r(s)
j the rate in stratum j in the standard population and n(i)

j the population in
stratum j of area i. If the stratum information is unavailable, the expected counts
can be calculated as follows

Ei = r(s)n(i),

where r(s) denotes the rate in the standard population and n(i) is the population
of area i. If the standardized incidence rate is greater than 1, area i has a higher
risk than expected from the standard population, while for SIRi = 1 the risk is the
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same and for SIRi < 1 it is lower than expected. The ratio is called the standardized
mortality ratio when applied to mortality data (Rioux et al., 2006).

3.2.1.4 Spatial Small Area Disease Risk Estimation

While SIRs may prove useful in some situations, in areas with low population sizes
or rare diseases, expected counts may be low, making SIRs insufficiently reliable for
reporting. It is therefore preferable to assess disease risk using models that allow
information to be borrowed from neighbouring areas and incorporate information
from covariates, thus smoothing or shrinking extreme values due to small sample
sizes (Gelfand et al., 2010).
The observed counts Yi in area i are typically modelled with a Poisson distribution
with mean Eiθi, where Ei is the expected counts and θi denotes the relative risk in
area i. The logarithm of the relative risk is expressed as the total of the intercept
and the random effects. θi quantifies whether area i has a higher (θi > 1) or lower
(θi < 1) risk than the average risk in the standard population. If the risk of an area i
is half the average risk, θi = 0.5. The general model for spatial data is formulated as
follows:

Yi ∼ Po (Eiθi) , i = 1, ..., n, (3.8)

log (θi) = α+ ui + vi. (3.9)

The overall risk in the region of study is represented by α, ui is a random effect
specific to each area to model the spatial dependence between relative risks, and
vi is an unstructured exchangeable component that models uncorrelated noise,
vi ∼ N

(
0, σ2

v

)
. Covariates are often included to measure risk factors and other

random effects to deal with different sources of variability. For example,

log (θi) = dddiβββ + ui + vi,

with dddi = (1, di1, ..., dip) a vector of the intercept and p covariates correspond-
ing to the area i and βββ = (β0, ..., βp)T the vector of coefficients. An increase in
dj (j = 1, ..., p) by one unit, leads to an increase in the relative risk by a factor of
exp (βj), provided that all other covariates remain constant (Moraga, 2019).
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3.2.1.5 Spatio-Temporal Small Area Disease Risk Estimation

When disease counts are monitored over time, spatio-temporal models are useful as
they take into account not only the spatial structure but temporal correlations and
spatio-temporal interactions (Martínez-Beneito et al., 2008). Let Yij be the counts
observed in area i and at time j, θij be the relative risk, Eij be the expected number
of cases in area i and at time j, then

Yij ∼ Po (Eijθij) , i = 1, ..., I, j = 1, ..., J. (3.10)

log (θij) is written as the sum of several components, including spatial and temporal
structures, to consider that neighbouring areas and successive times may have
similar risk. Spatio-temporal interactions can be included to account for the fact that
temporal trends may differ from area to area but may be more alike in neighbouring
areas.
Bernardinelli et al. (1995), for example, propose a spatio-temporal model with
parametric time trends that expresses the logarithm of relative risks as

log (θij) = α+ ui + vi + (β + δi)× tj . (3.11)

The intercept is denoted by α, ui + vi is a random area effect, β represents a
global linear trend effect and δi is an interaction between space and time which is
the difference between β and the area-specific trend. For modelling ui and δi, a
conditional autoregressive distribution is used and vi is iid. This specification allows
each of the areas to have its individual time trend, where the spatial intercept is
given by α + ui + vi and the slope by β + δi. δi is referred to as the differential
trend of the i-th area and represents the amount by which the time trend of area
i deviates from the overall time trend β. If δi 6= 0, area i has a time trend with a
slope that is either steeper or less steep than the overall time trend β. For more
information on spatio-temporal modelling with conditional autoregressive priors,
see Lee et al. (2018).
For models that do not demand linearity of the time trend, non-parametric models
such as the one proposed by Knorr-Held (2000) can be used. This specific model
incorporates spatial effects, temporal random effects and an interaction between
space and time as follows:

log (θij) = α+ ui + vi + γj + φj + δij . (3.12)
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The intercept is again denoted by α, ui + vi is a spatial random effect defined as
before, i.e. ui follows a CAR distribution and vi is i.i.d.. γj+φj represents a temporal
random effect and γj follows either a first order random walk in time (RW1)

γj |γj−1 ∼ N
(
γj−1, σ

2
γ

)
, (3.13)

or second order random walk in time (RW2)

γj |γj−1, γj−2 ∼ N
(
2γj−1 − γj−2, σ

2
γ

)
. (3.14)

The unstructured temporal effect is given by φj
i.i.d.∼ N

(
0, σ2

φ

)
. The interaction

between space and time, δij , can be specified in a number of ways by combining the
structure of the random effects that interact. The interactions proposed by Knorr-
Held (2000) are those between the effects (ui, γj), (ui, φj), (vi, γj) and (vi, φj).
Using the last of these interactions leads to the assumption that there is no spatial or
temporal structure on δij . Thus, the interaction term can be modelled as
δij ∼ N

(
0, σ2

δ

)
(Moraga, 2019).

3.2.1.6 Issues With Areal Data

The analysis of spatially aggregated data is subject to the "misaligned data problem"
(MIDP), which arises when the data to be analysed is at a different scale from that
at which it was collected (Banerjee et al., 2014). This may be solely due to the fact
that the aim is to obtain the spatial distribution of a variable at a new spatial level of
aggregation, e.g. if predictions are to be made at the county level with data that was
originally collected at the postcode level. Another objective may be to try to find an
association between variables available at different spatial scales, e.g. determining
whether the risk of an unfavourable outcome provided at the country level correlates
with exposure to an environmental pollutant measured at different stations, taking
into account the population at risk and other demographic information available at
the postcode level.
The Modifiable Area Unit Problem (MAUP) (Openshaw, 1984) describes a problem
where the inference may differ when the same underlying data are grouped at a
new spatial level of aggregation. It consists of two interrelated effects, the first of
which is the scale/aggregation effect. It relates to the different conclusions obtained
when the same data are grouped into larger and larger areas. The other effect
is the grouping/zoning effect, which accounts for the variability in results due to
alternative formations of the areas, resulting in differences in area shape given the
same or similar scales.
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Ecological studies are defined by their reliance on aggregated data (Robinson, 2009)
and the inherent potential for ecological fallacies. This phenomenon occurs when
estimated associations obtained from the analysis of variables measured at the
aggregate level lead to conclusions that differ from analyses based on the same
variables measured at the individual level. This can be considered a special case of
MAUP and the resulting so-called ecological bias is composed of two effects similar
to the aggregation and zoning effects in MAUP. Namely, the aggregation bias caused
by the aggregation of individuals and the specification bias due to the different
distribution of confounding variables that results from the aggregation (Gotway and
Young, 2002; Moraga, 2019).
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Short Introduction to Machine
Learning

4
Machine learning is a generic term for the "artificial" generation of knowledge from
experience: an artificial system learns from examples and can generalize these after
the learning phase is complete. To do this, machine learning algorithms build a
statistical model based on training data. This means that the examples are not simply
learned by heart, but patterns and regularities are recognized in the learning data.
In this way, the system can also assess unknown data or fail to learn unknown data.
This chapter gives a short overview of some commonly used algorithms in machine
learning and show how these can be optimized using hyperparameter tuning. A
relatively new area of machine learning, interpretable machine learning, and some
of the methods used in this area are introduced in the final parts of the chapter.

4.1 Common Machine Learning Algorithms

In the following sections, the algorithms that are used to fit the non-parametric
models in Section 6.6 are introduced.

4.1.1 K-Nearest Neighbours

The k-nearest neighbour algorithm (knn) is a non-parametric method in which class
assignment is performed considering the k nearest neighbours.
In the simplest case, the classification of an object x ∈ Rn is done by majority vote.
The k nearest already classified objects of x participate in this voting. To determine
which neighbour is closest, many distance measures can be used. Among the most
common is the Euclidean distance, following Danielsson (1980) defined as

d (x, y) = ||x− y|| =

√√√√ n∑
i=1

(xi − yi)2. (4.1)
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Another commonly used distance metric is the Manhattan distance, following
Krause (1986) defined as the distance d between two points x and y as the sum of
the absolute difference of the individual coordinates or features,

d (x, y) =
n∑
i=1
|xi − yi| . (4.2)

x is assigned to the class that occurs most frequently among the k neighbours. To
avoid ties between two classes, an odd value can be chosen for k. If the value of k is
small, there is a risk that noise in the training data can lead to worse classification
results, while a value that is too large risks including points with a large distance to
x in the decision.
The algorithm can be used for regression problems to estimate continuous variables.
While in knn classification the output is the class membership, in knn regression the
output is the average value of the k nearest neighbours (Altman, 1992)

4.1.2 Neural Networks

Artificial neural networks, usually referred to simply as neural networks, are com-
puter systems vaguely inspired by the biological neural networks that make up the
brains of living creatures. Neural networks, however, are more about an abstrac-
tion (modelling) of information processing, less about replicating biological neural
networks and neurons, which is more the subject of computational neuroscience.
Motivated by biology, modelling is now so good that many tasks are performed much
better than by humans.
In artificial neural networks, topology refers to the structure of the network. This
generally means how many artificial neurons are located on how many layers and
how they are connected to each other. Artificial neurons can be connected in many
ways to form an artificial neural network. In many models, neurons are arranged in
layers; a network with only one trainable neuron layer is called a single-layer net-
work. Using a graph, the neurons can be represented as nodes and their connections
as edges. The inputs are occasionally represented as nodes. The backmost layer of
the network, whose neuron outputs are usually the only ones visible outside the
network, is called the output layer. Layers before this are referred to as the hidden
layer. Figure 4.1 shows the architecture of a single-layer neural network.
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Fig. 4.1: A single-layer neural network.

While neural networks are mainly known for their use in deep learning and mod-
elling complex problems such as image recognition, they can be easily adapted
for regression problems. In supervised learning, the neural network is given an
input pattern and the output produced by the neural network in its current state is
compared with the value it is supposed to output. By taking a look at the residuals,
it is possible to infer the changes to be made to the network configuration (Brian D
Ripley, 2007).

4.1.3 Classification and Regression Trees

Classification and regression trees (CART) is an approach to classification or regres-
sion problems. A significant feature of the CART algorithm is that only binary trees
can be generated, which means that there are always exactly two branches at each
node. The central element of this algorithm is therefore finding an optimal binary
separation. In the CART algorithm, attribute selection is controlled by maximizing
the information content. CARTs are characterized by optimally separating the data
in terms of classification. This is achieved with a threshold value that is searched for
each attribute. The information content of an attribute is considered high if a classi-
fication can be made with a high hit rate by evaluating the attribute characteristics
resulting from the division via the threshold values. For the decision trees fit by the
CART algorithm, the following applies: The higher the information content of an
attribute in relation to the target variable, the higher up in the tree this attribute is
found. Figure 4.2 shows an example of a decision tree.
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Carbohydrates > 20

Brunost Fett > 25

Gulost Gräddost

yes no

no yes

Fig. 4.2: A simple example of a decision tree

In regression analysis, trees are built by a collection of rules based on the available
features of the dataset:

• Rules based on the values of the variables are selected to obtain the best split
to distinguish the observations based on the dependent variable.

• Once a rule is selected and a node is split into two parts, the same process is
applied to each "child" node (i.e. it is a recursive process).

• Splitting stops when the algorithm determines that no further gain can be
made or when some preset stop rules are met. (Alternatively, the data is split
as much as possible and the tree is pruned later).

Each branch of the tree culminates in a terminal node. Each observation falls into
exactly one terminal node, and each terminal node defined by a unique set of rules
(Breiman et al., 1984).

4.1.4 Gradient Boosting

CART are considered weak learners, meaning that their predictive performance is
only slightly better than chance. Boosting is a method that can be used to convert
weak learners into strong learners. Gradient boosting in particular uses CART as
a weak learner. Here, each new tree is an adaptation to a modified version of the
original tree. After the first tree is grown, the error residuals, defined as the difference
between the target value and the predicted target value, are calculated. A new tree
is fitted using the error residuals as the target variable while still using the same
input variables. The predicted residuals are added to the previous predictions.
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This procedure is repeated for the remaining residuals until the loss reaches an
acceptable level or no longer improves on an external validation set.
Trees are added one at a time and existing trees in the model are not changed. After
calculating the loss, a tree must be added that reduces the loss (i.e. follows the
gradient). The mathematical version of the algorithm can be seen in Algorithm 2.

Algorithm 2 The Gradient Boosting Algorithm

Given a training set {(xi, yi)}ni=1, a differentiable loss function L (y, F (x)) and
the number of iterations M ,

1: Initialization: Fit a model with a constant value γ:

F0 (x) = arg min
γ

n∑
i=1

L (yi, γ) .

2: for each iteration m = 1 to M do
3: Compute pseudo-residuals:

rim = −
[
∂L (yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, for i = 1, ..., n.

4: Fit a weak learner hm(x) to the pseudo-residuals, using {(xi, rim)}ni=1 as the
training set

5: Compute the multiplier γm by solving the following optimization problem:

γm = arg min
γ

n∑
i=1

L (yi, Fm−1 (xi) + γhm (xi)) .

6: Update the model:

Fm (x) = Fm−1(x) + γmhm(x).

7: Output: FM (x)

Gradient boosting of CART produces robust and interpretable models for both regres-
sion and classification that achieve high predictive accuracy (Friedman, 2001).

4.1.5 Random Forests

A Random Forest is a classification and regression procedure consisting of several
uncorrelated decision trees. All decision trees are grown under a certain type of
randomization during the learning process. For a classification, each tree in that
forest is allowed to make a decision and the class with the most votes decides the
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final classification. Random forests can be used for regression. Random forest uses
bagging, a meta-algorithm that can be used to improve the stability and accuracy of
machine learning algorithms, for instance CART.
Using B samples of size n, B models Fi(x), i = 1, ..., B are fitted. For each x, B
predictions mi(x), i = 1, ...B exist then. The predicted value is given by

mB(x) = 1
B

B∑
i=1

(mi(x)) . (4.3)

This method, as well as random forest, were both developed by Leo Breiman
(Breiman, 1996). Random forests differ in only one way from this general scheme:
they use a modified tree learning algorithm that selects, at each candidate split in
the learning process, a random subset of the features. This process is sometimes
called "feature bagging". The reason for doing this is the correlation of the trees
in an ordinary bootstrap sample: if one or a few features are strong predictors for
the response variable (target output), these features are selected in many of the B
trees, causing them to become correlated. A general overview of the random forest
is given in Algorithm 3

Algorithm 3 The Random Forest Algorithm

Given a training set {(xi, yi)}ni=1, the number of trees B and the number of
variables m that should be tried at each split

1: Draw B bootstrap-samples of {(xi, yi)}ni=1
2: From theM features of the training data, m�M features are randomly selected

at each node in the tree to be considered as criteria for the cut (split).
3: Each tree is fully grown and not pruned back

To classify an input, it is evaluated in each tree. The class that is chosen most often
is the output of the random forest. In the case of regression, the average prediction
is used (Breiman, 2001)
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4.2 Machine Learning Methodology

After introducing some common machine learning algorithms, this section shows
how these algorithms can be optimized to achieve the best possible performance
with respect to a given performance measure. Even though machine learning models
are often referred to as "black boxes", there are methods to make these models more
interpretable. These are presented in this section as well.

4.2.1 Tuning of Machine Learning Models

In the field of machine learning, hyperparameter optimization, also known as
hyperparameter tuning, refers to the search for optimal hyperparameters. A hyper-
parameter is a parameter that is used to control the training algorithm and whose
value, unlike other parameters, must be set before the actual training of the model.
There exists a variety of methods when it comes to the algorithms used to explore
the hyperparameter space, from simple methods like a grid search to Bayesian
optimization or more advanced methods like iterated F-racing.

Cross-Validation

Cross-validation is a procedure for evaluating the performance of an algorithm in
statistical learning. Using new datasets that were not used during the training phase,
the goodness of the prediction is examined. This is done by partitioning the known
dataset into subsets for training and testing the algorithm and the remaining data.
Each run of cross-validation involves randomly partitioning the original dataset into
a training set and a test set. The training data set is used to train a supervised
learning algorithm and the test data set is used to evaluate its performance. This
process is repeated several times and the mean cross-validation error is used as a
performance indicator. When training a model, it is important not to overfit it with
complex algorithms or underfit it with simple algorithms. The choice of training and
testing set is critical to reducing this risk. However, it is difficult to split the dataset
in a way that maximizes learning and the validity of the test results. This is where
cross-validation comes in. To find the best algorithm for the model, cross-validation
offers different techniques that split the data differently.
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A commonly used cross-validation procedure is k-fold cross-validation. In this
method, after splitting the original dataset into a training and a test dataset, the
training set is split into k subsets called folds. Cross-validation iterates through each
fold, using one of the k folds as the validation set at each iteration, while all the
remaining folds are used as the training set. This process is repeated until every fold
has been used as a validation set.
Cross-validation helps to select the best performing model by calculating the error
using the test set that is not used for training. The test set is used to calculate model
accuracy and show how it generalizes with future data (Fushiki, 2011). Figure 4.3
shows an example of 10-fold cross validation.

TRAINING SET TEST SET

divide into 10 folds of equal size

run experiments
using 10 different

partitionings

Fig. 4.3: An example of 10-fold cross validation

Grid and Random Search

The two most commonly used methods for hyperparameter tuning are grid search
and random search. Grid search performs an exhaustive search on a manually
defined subset of the learning algorithm’s hyperparameter space. A grid search
must be guided by a performance metric, typically computed by cross-validation on
training data or validation data that is not considered during training. For example,
for a knn algorithm, a grid search may try any value for k between 1 and 20 and
return the best value for k with respect to a performance measure. One of the major
disadvantages of grid search is that it suffers in terms of dimensionality when the
number of hyperparameters grows exponentially. With only four parameters, this
problem can become impractical as the number of evaluations required for this
strategy increases exponentially with each additional parameter due to the curse of
dimensionality.
In the random search, instead of exhaustively trying all combinations, a random
selection of values is made within the given hyperparameter space. Unlike grid
search, no discretization of the space is required. Random search can outperform
grid search in speed and performance, especially when only a few hyperparameters
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affect the quality of the learning algorithm. This is because grid search tries only a
few values for each parameter (but multiple times), while randomly selected values
are much better distributed in the search space (Bergstra and Bengio, 2012).

F-Race and Iterated F-Racing

F-Race is a racing algorithm that is used to select the best configuration of parame-
terized algorithms based on statistical approaches. The main idea is to iteratively
evaluate a given finite set of candidates on a stream of instances. After each iter-
ation, some candidate configurations that perform significantly worse than others
under the Friedman test with post-hoc analysis for pairs are eliminated and only
the remaining ones are evaluated for subsequent iterations. The Friedman test is
a statistical test for examining three or more paired samples for equality of the
location parameter.
As this process continues, this method focuses more and more on the most promising
candidate configurations. An essential part in F-Race is defining the set of candi-
date configurations of the first step. One way is iterated F-Race, which creates a
probability model for a candidate solution. A set of candidates is evaluated at each it-
eration to update the probability model and steer the next sample towards the better
candidate solutions until a termination criterion is met (Birattari et al., 2010).

4.2.2 Interpretation of Machine Learning Models

After creating a model, possibly tuning its hyperparameters and finally training it,
the logical next step would be to make predictions for unseen data. The accuracy of
the predictions can be evaluated using a performance measure such as the mean
absolute error. Beyond that, however, it is often quite difficult to interpret the
final model or get an idea of why it predicts a particular value given a set of input
variables. This is where interpretable machine learning (IML) comes in, as it aims to
shed more light into the black box that is most machine learning algorithms.

Feature Importance

The idea behind feature importance is simple. The importance of a feature is mea-
sured by calculating the increase in the model’s prediction error after permuting the
feature. The more the model error is increased by this permutation, the more impor-
tant a feature is, as this means that the model relies on the feature for prediction.
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If the model error does not change, a feature is unimportant because the model
ignored the feature for prediction. Algorithm 4 shows how the algorithm works in
practice.

Algorithm 4 The Permutation Feature Importance Algorithm

Given a trained model F , a feature matrixXXX, a target vector yyy and a loss function
L (yyy, F )

1: Estimate the original model error εorig = L (yyy, F (XXX))
2: for each feature j = 1, ..., p do
3: Generate permuted feature matrix XXXperm by permuting feature j in the data
XXX, thereby breaking the association between j and the outcome yyy.

4: Calculate the permutation error εperm = L
(
yyy, f

(
XXXperm

))
based on the pre-

dictions of the permuted data.
5: Calculate the permutation feature importance FIj = εperm

εorig
.

6: Sort the features by descending FI.

The advantages of feature importance include that it is easy to interpret, it is
comparable across different problems, it accounts for all interactions, and it does
not require retraining of the model. On the other hand, there is no clear guideline
whether it should be used for training or testing data, the true outcome must be
known, and the measurement may be biased if the features are correlated (Fisher
et al., 2018; Molnar, 2020).

Partial Dependence Plots

The partial dependence plot (PDP) shows the marginal effect that one or two features
have on the predicted outcome of a machine learning model. A partial dependence
plot can reveal whether the relationship between the dependent value and a feature
is linear, monotonic or more complex. When applied to a linear regression model,
for example, partial dependence plots show a linear relationship every time.
For regression, the partial dependence function is given by

f̂xxxS (xxxS) = ExxxC
[
f̂ (xxxS ,xxxC)

]
=
∫
f̂ (xxxS ,xxxC) dP (xxxC) . (4.4)

xxxS denotes the features for which the partial dependence function is to be plotted
and xxxC denotes the rest of the features used in the model f̂ . In general, the set S
contains only one or two features and these are the ones for which the effect on the
prediction is to be evaluated. The total feature space xxx is composed of the feature
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vectors xxxS and xxxC . By marginalizing the output of f̂ over the distribution of the
features in set C, the function shows the relationship between the features in S and
the predicted outcome. This process produces a function that depends only on the
features in S and includes interactions with other features.
f̂xxxS is estimated by averaging the training data,

f̂xxxS (xxx) = 1
n

n∑
i=1

f̂ (xxxS , xC,i) . (4.5)

For given value(s) of S, the function returns the average marginal effect on the
prediction. xC,i denotes the feature values from the dataset for the features not of
interest and n denotes the number of observations in the dataset. For a PDP, it is
assumed that the features in C and the features in S are not correlated. Violation of
this assumption leads to improbable or impossible data points for the PDP.
The advantages of PDPs include clear interpretation and intuitiveness of the method,
as the partial dependence function at a given feature value represents the average
prediction when all data points are forced to assume that feature value.
Disadvantages include the aforementioned assumption of independence and that a
maximum of two features can realistically be used, as more than three dimensions
are inconceivable to humans (Friedman, 2001; Molnar, 2020).

Individual Conditional Expectation

The PDP for the average impact of a feature is a global method as it does not focus
on specific instances but on a total average. The equivalent of a PDP for individual
instances of data is called an individual conditional expectation (ICE) plot. An
ICE plot visualizes the dependence of the prediction on a feature for each instance
separately, leading to one line per instance, compared to the one line in PDPs. Hence,
a PDP represents the average of the lines in an ICE plot. The values relating to
a line (and one instance) are calculated by keeping the rest of the features the
same, producing variants of that instance by replacing the value of the feature with
values from a grid, and making predictions using the model for these newly created
instances. This results in a set of points for an instance with the feature value from
the grid and the respective predictions.
Since a PDP only displays the average relationship between a feature and the
prediction, heterogeneous relationships arising from interactions can be hidden. If
the interactions between the features for which the PDP is calculated and the other
features are weak, this is not a problem. However, if these interactions are not weak,
an ICE plot provides deeper insight.
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Formally, for each instance in {(xS,i, xC,i)}Ni=1, f̂S,i is plotted against xS,i, where xC,i
remains fixed.
ICE curves are even more intuitive than a PDP, with each line representing the
predictions for an instance when the feature of interest is varied. In addition, they
can reveal heterogeneous relationships.
Drawbacks include the fact that only one display can be meaningfully plotted, as
plotting multiple lines would require drawing multiple overlapping surfaces that
would make it difficult to see anything in the plot. It is difficult to see the average
and there may be crowding in the plot if too many lines are drawn (Goldstein
et al., 2015; Molnar, 2020)

Shapley Values

A prediction can be explained with the assumption that each feature value of the
instance is a "player" in a game where the prediction is the payout. A fair distribution
of the "payout" among the individual features can be obtained using Shapley values -
a methodology from coalitional game theory. The Shapley value, is a method that
assigns payouts to players depending on how much they contributed to the total
payout. Players cooperate in a coalition and as a result receive a certain profit from
this coalition.
In machine learning, the "game" is a prediction task for a single observation of the
dataset. The difference between the actual prediction of this observation and the
average prediction of all instances is the "gain". Feature values of the observation
represent the "players" that cooperate to obtain the gain, i.e. to predict a certain
value. The Shapley value is thus the average marginal contribution of the value of a
feature across all possible coalitions.
The Shapley value is given by a value function of the players in S. For a single
feature value, the Shapley value is its contribution to the payoff, weighted and
summed over all possible feature value combinations,

φj (val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p− |S| − 1)!
p! (val (S ∪ {xj})− val(S)) . (4.6)

S denotes a subset of the features used in the model, xxx is the vector of feature
values of the instance to be explained and p stands for the number of features.
valx(S) denotes the prediction for the feature values in S marginalized over features
excluded from S,

valxxx(S) =
∫
f̂ (x1, ..., xp) dPxxx/∈S − EXXX

[
f̂(XXX)

]
. (4.7)
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In practice, multiple integrations are performed for each feature that is not included
in S.
The definition of a fair allocation can be viewed as an allocation that has four
properties: Efficiency, Symmetry, Dummy and Additivity. The only allocation method
that satisfies these four properties is the Shapley value.
Efficiency: The contributions of the individual features must add up to the difference
between the prediction for xxx and the average prediction,

p∑
j=1

φj = f̂(xxx)− EXXX
[
f̂(XXX)

]
.

Symmetry: Two characteristic values j and k should have the same contribution if
their contribution to all possible coalitions is the same. Consequently, if

val (S ∪ {xj}) = val (S ∪ {xk}) ∀S ⊆ {x1, ..., xp} \ {xj , xk},

then
φj = φk.

Dummy: If a feature j has no influence on the predicted value - regardless of which
coalition of feature values it is added to - it should have a Shapley value of 0. Thus
if

val (S ∪ {xj}) = val (S) ∀S ⊆ {x1, ..., xp},

then
φj = 0.

Additivity: For a game that has combined payouts val + val+, the corresponding
Shapley values are

φj + φ+
j .

Suppose a Random Forest has been trained, i.e. the prediction is an average of
many decision trees. The additivity property guarantees that for a feature value
the Shapley value can be calculated for each tree separately, averaged and thus the
Shapley value for the feature value for the Random Forest is obtained.
To calculate the exact Shapley value, all possible coalitions of feature values with
and without the j-th feature must be evaluated. The more features there are in a
dataset, the more problematic this calculation becomes, as the number of possible
coalitions increases exponentially. An approximation can be achieved by Monte
Carlo sampling,

φ̂j = 1
M

M∑
m=1

(
f̂
(
xxxm+j

)
− f̂

(
xxxm−j

))
, (4.8)
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where f̂
(
xxxm+j

)
denotes the prediction for xxx, but where a random number of feature

values are replaced by feature values from a randomly drawn data point zzz, except
for the respective value of feature j. xxxm−j is almost identical to xxxm+j , except that
the value xmj is also taken from the sample zzz. The calculation of the approximate
Shapley value for a single feature value is shown in Algorithm 5

Algorithm 5 The Estimation of Shapley values for a single feature value

Given the number of iterations M , instance of interest xxx, feature index j, data
matrix XXX and machine learning model f

1: for each feature m = 1, ...,M do
2: Draw a random instance z from XXX.
3: Choose random permutation o of the feature values.
4: Order xxx : xxxo = (x1, ..., xj , ..., xp).
5: Order zzz : zzzo = (z1, ..., zj , ..., zp).
6: Construct two new instances

a: With feature j : xxx+j = (x1, ..., xj−1, xj , zj+1, ..., zp).
b: Without feature j : xxx−j = (x1, ..., xj−1, zj , zj+1, ..., zp).

7: Compute the marginal contribution: φmj = f̂ (xxx+j)− f̂ (xxx−j)
8: Compute the Shapley value through averaging: φj (xxx) = 1

M

∑M
m=1 φ

m
j .

9: Output: The Shapley value for the value of the j-th feature.

This process must be repeated for each of the features to obtain each Shapley value.
One of the advantages of Shapley values is that the difference between the prediction
and the average prediction is evenly distributed among the feature values of the
instance, thus fulfilling the property of efficiency. The Shapley value allows for
contrastive explanations. Instead of comparing a prediction to the average prediction
of the entire dataset, it can be compared to a subset or even a single data point.
Among the disadvantages is that the calculation of Shapley values is computationally
intensive, as almost always only an approximation is possible. The Shapley value
can also be misinterpreted as the difference in predicted value after removing the
feature from model training (Shapley, 1997; Molnar, 2020).
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Dataset Collection 5
Having established the methodology that is used in this work, it is now time to
move on to the analytical part of this work, starting with the collection of data.
The construction of the dataset used to analyse a research question is an essential
task and frequently involves the merging of multiple data sources to create one
final dataset. In particular, the analysis of data on Covid-19 requires the pooling of
numerous data sources due to the sheer volume of data available on this disease.
The following chapter a brief overview of the data sources used, their pre-processing
and how they are combined is given. All the data that is used in this work is openly
available, either through government sources, GitHub or the use of R packages.
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5.1 Covid-19 Data

5.1.1 Covid-19 Data for Norway

The Covid-19 data for Norway comes from a dataset made available to the public via
a repository on the website GitHub.com, created by the user thohan88. The repos-
itory contains a daily updated dataset that is the result of combining several data
sources, which include the Norwegian Institute of Public Health and the Norwegian
Directorate of Health. According to the author of the repository, the project is "an
open-source effort to make data about the Covid-19 situation in Norway available to
the public in a timely and coherent manner" (Hansen, 2020).
A few sample data points from this dataset are displayed in Table 5.1.

Tab. 5.1: An excerpt from the Covid-19 data for Norway. Does not contain all variables.
The number of infections are the cumulative number of infections.

Id Municipality Population Inf. 2020-03-26 Inf. 2020-03-27

1103 Stavanger 143574 87 88
1507 Ålesund 66258 20 20
4601 Bergen 283929 231 248
5001 Trondheim 205163 113 136

5.1.2 Covid-19 Data for Germany

In Germany, the Robert Koch Institute publishes daily situation reports in which the
number of new cases is published at NUTS 3 level. These reports are available as
PDF files via the Institute’s website. They can be downloaded and grouped via the R
package covid19germany(Schmid et al., 2021), as is done for this work.
A few sample data points from this dataset are displayed in Table 5.2.

Tab. 5.2: An excerpt from the Covid-19 data for Germany. Does not contain all variables.

Municipality Date Cumulative number of infections Population

SK München 2020-01-29 1 1471508
SK München 2020-02-03 2 1471508
SK München 2020-02-11 3 1471508
LK Rosenheim 2020-02-29 1 260983
LK Rosenheim 2020-03-08 2 260983
LK Rosenheim 2020-03-10 6 260983
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5.2 Vaccination Data

At the end of 2020, the first countries began vaccinating against Covid-19. Vac-
cination leads to a milder course of the disease, but it is not yet known whether
vaccinated people can continue to transmit Covid-19, as of early May 2021. By
including the proportion of people vaccinated, an indication as to how much vacci-
nation helps prevent the spread of Covid-19 can potentially be given. These data
are available for Norway at the municipality level via the statistics database of the
Norwegian Institute of Public Health, FHI (Folkehelseinstituttet, 2020). For Germany,
these data are only available at the state level and are therefore not used.
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5.3 Demographic Data

As demographics tend to differ between different geographic units, the decision is
made to include demographic variables in the analysis of the research question to
see if the risk for infection may be higher when a certain characteristic is present in
the population.

5.3.1 Demographic Data for Norway

The demographic data that is collected for Norway comes from Statistisk Sentral-
byrå and is made available to the public through their online database, StatBank
(Sentralbyrå, 2016).
The first characteristic collected is the age of the population in a given municipality.
For each age, starting at 0 and ending at 105, the number of people of that age is
known.
Next, unemployment data are collected for a given municipality. For each municipal-
ity, the percentage of all people out of work is known, as well as the percentage of
all immigrants out of work.
Other data that is collected includes data related to the number of workers in a par-
ticular industry, as well as immigration data. Since there is discussion about whether
workers from certain industries, in this case the construction industry, contribute to
the spread of Covid-19, the decision is made to collect this type of data. For each
community, the number of workers across all industries is known, as well as the
number of workers in the construction industry. Workers, in this case, are individuals
employed in a given municipality who are between the ages of 20 and 66. It is
known how many people work full-time and how many people work part-time.
Finally, for immigration data, it is known how many immigrants live in a given
municipality and how many Norwegians are born to immigrant parents. These
figures are known in terms of the percentage of the population in 2020.

5.3.2 Demographic Data for Germany

The demographic data that is collected for Germany comes from the federal and state
statistical offices and is made available to the public through their online database,
Regionaldatenbank Deutschland (Bundes und der Länder, 2020).
The first characteristic that is collected is unemployment data at the NUTS 3 level.
For each municipality, the number of unemployed people as well as the number of
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unemployed foreigners is collected.
Next, data related to the European elections in 2019 are collected. In each munici-
pality, it is known how many people voted in total, how many people voted for the
six largest parties, and how many votes the remaining parties received combined.
Data is collected in relation to people seeking protection, welfare recipients and in
relation to asylum seeker benefits. It is known how many people seek protection
in Germany, how many receive social welfare and how many receive asylum seeker
benefits. Finally, trade tax, income tax, and payroll tax data are collected for each
municipality.
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5.4 Shapefiles

In addition to numeric variables, the dataset contains a geographic variable contain-
ing the geographic boundaries of a given municipality or city/district.

5.4.1 Shapefiles for Norway

The data for the Norwegian shapefiles comes from Geonorge (Geonorge, 2021)
and is downloaded from a GitHub repository, as the data there is in a cleaner state
(Smistad, 2020). In addition to the geographic shape, the dataset includes a variable
that contains the ID of each municipality.

5.4.2 Shapefiles for Germany

The data for the German shapefiles comes from Esri Germany (Deutschland, 2020).

82 Chapter 5 Dataset Collection



5.5 OpenStreetMap Data

OpenStreetMap (OSM) is a free project that collects, structures and stores freely
usable geodata in a database for use by anyone (Open Data). This data is available
under a free licence, the Open Database Licence. The core of the project is therefore
an openly accessible database of all contributed geoinformation (OpenStreetMap
contributors, 2017).
In R, the OpenStreetMap API can be queried using the R package osmdata (Padgham
et al., 2017). To download all locations of a given type in a given region, a shape
or bounding box must be specified along with a key and optionally a value. These
key-value pairs are used to specify the type of location, for example, the "amenity"
key is used for all facilities used by visitors and residents. If the "biergarten" value
is used together with the "amenity" key, the locations of all beer gardens in a given
geographic region is downloaded.
OpenStreetMap’s users have the option to map a location as either POINT, POLYGON,
MULTIPOLYGON, LINESTRING, or MULTILINESTRING. Conventionally, the first three
are used. Therefore, only sites mapped as one of these are used for this work. If a
location is mapped as either POLYGON or MULTIPOLYGON, the centroid of the location
is calculated.
A complete list of all key-value pairs used for this work can be found in Section 10.9
in the Appendix.
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5.6 Government Response and Mobility Data

Our World in Data (OWID) is an online publication that provides information on
the historical development of human living conditions. It looks at demographic,
developmental economic, geographical and cultural aspects, among others. Our
World in Data often takes a historical perspective and provides information on the
historical development of humanity’s living conditions.
OWID is structured according to problem areas. Each article discusses a global prob-
lem - from health problems, to hunger, poverty, war, education, to environmental
issues. Depending on the completeness of the entry, these present the historical
development of an aspect, the causes and consequences of this development, and
the quality of the underlying data. All topics are also presented graphically.
On their website, they provide statistics on governments’ policy responses to the coro-
navirus pandemic. These statistics come from the Oxford Coronavirus Government
Response Tracker (OxCGRT), which contains data from public sources collected by
a team of over a hundred Oxford University students and staff from around the
world. The tracker contains 17 indicators ranging from containment and closure
policies, e.g. school closures, to economic policies such as income support and health
system policies, e.g. testing regimes. 9 of these indicators are used to calculate a
Government Stringency Index, which scales from 0 to 100, with 100 denoting the
most stringent government policies (Hale et al., 2020; Ritchie et al., 2020).
Besides government responses, another type of data available through OWID, are
the mobility reports by Google. The mobility reports are designed to provide infor-
mation on what has changed as a result of the regulations to address the Corona
crisis. The reports present movement trends broken down by geographic regions and
place categories - for example, retail and recreation, grocery shops, parks, public
transport stations and stops, places of work and places of residence. To do this,
Google measures the number of visitors to these locations each day and compares
them to a pre-pandemic base day. A base day represents a normal value for that day
of the week, given as a median value over the five-week period from 3 January 2020
to 6 February 2020 (Google, 2020; Ritchie et al., 2020)
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5.7 Covid-19 Variants Data

The last data source is the open source project CoVariants. The project provides an
overview of SARS-CoV-2 variants and mutations of interest. It tracks for different
countries the proportion of the total number of sequences (not cases) over time that
fall into defined variant groups, such as the B.1.1.7. variant, better known as the
UK variant of Covid-19. In addition to the prevalence of the different variants, the
project also provides data on the common mutations between the different strains,
but this is not of interest in this work (Hodcroft, 2021).
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5.8 Data Wrangling

The final step before analysing the research question at hand is to combine all of
these data sources into one dataset. This section shows how this is achieved.

5.8.1 Data Wrangling for Norway

The initial step in creating the final dataset is to convert the data from a wide format,
as seen in Table 5.1, to a long format. This is done using the function melt() from
the R package reshape2 (Wickham, 2007). The long version of the dataset is shown
in Table 5.3.

Tab. 5.3: An excerpt from the long version of the Norwegian Covid-19 data. Does not
contain all variables.

Id Municipality Population Date Infections

1507 Ålesund 66258 2020-03-26 20
5001 Trondheim 205163 2020-03-26 113
1507 Ålesund 66258 2020-03-27 20
5001 Trondheim 205163 2020-03-27 136

Next, the demographic data for Norway is loaded and processed. Since the age data
contains the number of people of a certain age, the median age is calculated for
each region based on how many people of each age group live in each region.
The other demographic variables are left unchanged. To combine the demo-
graphic data with the Covid-19 data, the municipality IDs are extracted using
the str_extract() function from the stringr (Wickham, 2019) R package using
the regular expression [0-9]{4}. Next, all demographic datasets and the Covid-19
dataset are merged using the merge() function.
Using the st_intersects() function from the sf (Pebesma, 2018) R package, the
number of points of interest downloaded via OpenStreetMap is calculated for each
municipality. Since the shapefiles contain the ID for each community, these data are
merged with the data containing the demographic and Covid-19 data.
For each numeric variable, e.g. the number of schools or the number of employees,
this number is scaled.
If there are missing values in the covariates, these values are imputed using the
median of the respective variable.
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Next, the vaccination data for Norway is loaded. As the daily number of vaccinated
persons for each municipality is included in the data, these numbers only need to
be cumulated before being merged with the rest of the data based on municipality
name and date.
Finally, seven new variables are created:

1. Expected count, which is the expected number of cases in each municipality.

2. SIR, which is the standardized incidence ratio in each municipality.

3. An area ID, which is a unique ID given to each municipality.

4. Higher education, which counts the number of universities and colleges in a
given area.

5. Sex, which gives the proportion of females living in a given area.

6. Population density, i.e. the number of people per square kilometre in a given
area.

7. Urban density, i.e. the number of residential buildings per square kilometre in
a given area.

The final dataset contains the variables shown in Table 5.4.
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Tab. 5.4: The variables contained in the final dataset.

Variable Name Explanation Scale

Id The municipality ID None
Municipality The municipality name None
Population Population in a municipality None
Date The date of the data used None
Infections The number of infected people None
Median age The median age scaled

Total unemployment
The proportion of

scaled
unemployed people

Unemployed immigrants
The proportion of

scaled
unemployed immigrants

Full-time workers
The number of

scaled
full-time workers

Part-time workers
The number of

scaled
part-time workers

Full-time construction
The number of full-time

scaled
construction workers

Part-time construction
The number of part-time

scaled
construction workers

Total immigrants The proportion of immigrants scaled
Marketplace The number of marketplaces scaled
Entertainment The number of entertainment venues scaled
Sport The number of sports amenities scaled
Clinic The number of clinics scaled
Hairdresser The number of hairdresser scaled
Shops The number of shops scaled
Place of worship The number of places of worship scaled
Retail The number of retail stores scaled
Nursing home The number of nursing homes scaled
Restaurant The number of restaurants scaled
Aerodrome The number of aerodromes scaled
Office The number of offices scaled

Platform
The number of public

scaled
transport platforms

Kindergarten The number of kindergartens scaled
Schools The number of schools scaled
Bakeries The number of bakeries scaled
Residential The number of residential buildings None

Higher education
The number of colleges

scaled
and universities

Expected count The expected number of infections None
SIR The standardized incidence ratio None
Area Id A unique ID None
Area The area in km2 None
Population density People per km2 scaled
Urban density Residential buildings per km2 scaled
Sex The proportion of females scaled
Vaccinations The proportion of vaccinated scaled

88 Chapter 5 Dataset Collection



5.8.2 Data Wrangling for Germany

The data processing procedure for Germany is identical to that for Norway. First,
all demographic variables are loaded and left unchanged before being merged with
the Covid-19 data prior to calculating the spatial intersections between the points
of interest and the NUTS-3 areas. After merging all the data, the scaled numbers
are calculated for the numeric variables. For the variables containing the number of
people who voted for a particular political party, the relative percentage of votes the
party received is calculated. Again, missing values are imputed using the median.
Finally, the same seven new variables are created. The final dataset contains the
variables shown in Table 5.5.
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Tab. 5.5: The variables contained in the final dataset.

Variable Name Explanation Scale

Id The municipality ID None
Municipality The municipality name None
Population Population in a municipality None
Date The date of the data used None
Infections The number of infected people None
Logarithmic trade tax The trade tax in Euros scaled
Logarithmic income tax The income tax in Euros scaled
Logarithmic total income The income and payroll tax in Euros scaled

Asyl benefits
The number of people

scaled
receiving asylum seeker benefits

Welfare recipients The number of welfare recipients scaled
Unemployed people The number of unemployed people scaled
Unemployed foreigners The number of unemployed foreigners scaled
Protection seekers The number of protection seekers scaled
Die Union Percentage of vote for Union scaled
SPD Percentage of vote for SPD scaled
Greens Percentage of vote for the Greens scaled
FDP Percentage of vote for FDP scaled
The left Percentage of vote for the left scaled
AfD Percentage of vote for AfD scaled
Marketplace The number of marketplaces scaled
Entertainment The number of entertainment venues scaled
Sport The number of sports amenities scaled
Clinic The number of clinics scaled
Hairdresser The number of hairdresser scaled
Shops The number of shops scaled
Place of worship The number of places of worship scaled
Retail The number of retail stores scaled
Nursing home The number of nursing homes scaled
Restaurant The number of restaurants scaled
Aerodrome The number of aerodromes scaled
Office The number of offices scaled

Platform
The number of public

scaled
transport platforms

Kindergarten The number of kindergartens scaled
Schools The number of schools scaled
Bakeries The number of bakeries scaled
Residential The number of residential buildings None

Higher education
The number of colleges

scaled
and universities

Expected count The expected number of infections None
SIR The standardized incidence ratio None
Area Id A unique ID None
Area The area in km2 None
Population density People per km2 scaled
Urban density Residential buildings per km2 scaled
Sex The proportion of females scaled
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5.8.3 Data Wrangling for the Temporal Models

Obtaining data for the temporal models is simple. OWID provides a dataset that
includes case numbers for over 200 countries, along with vaccination numbers for
that country, among other variables. Next, all data related to government response
and mobility data are loaded. As these data are not available over the same time
period for each country, some assumptions are made to minimize missing data.
These assumptions are

• If vaccination data before the administration of the first vaccine dose in a
country are missing, no people were vaccinated at these points in time.

• If vaccination data are missing for time points after the last available data, the
vaccination rate has remained the same.

• If government policy data are missing before the first recorded government
response to a particular policy, then the policy is "No response".

• If government policy data are missing after the last tracked government re-
sponse to a particular policy, then the policy has remained the same since that
time.

• If mobility data is missing between points in time, then a constant decline /
slope is assumed for this data.

After imputing all missing values, the next step is to merge these data. This can be
done simply by using the unique combinations between the date and the country
variable. In the last step, instead of using the infection figures provided by OWID,
which mostly come from Johns Hopkins University, the infection figures that are
also used for the spatial models are used, as these come from official government
sources.
The final dataset contains the variables shown in Table 5.6.

5.8 Data Wrangling 91



Tab. 5.6: The variables contained in the final dataset.

Variable Name Explanation Scale

Country Code The iso2 code of a country None
Country The name of a country None
Population Population in a municipality None
Date The date of the data used None
Infections The number of infected people None
Mobility retail & recreation The change in mobility in retail & recreation scaled
Mobility grocery & The change in mobility in

scaled
pharmacies groceries & pharmacies
Mobility residential The change in mobility in residential areas scaled
Mobility transport stations The change in mobility at public transport areas scaled
Mobility parks The change in mobility in parks scaled
Mobility workplaces The change in mobility in workplaces scaled
Testing policy Policies implemented related to testing factor
Contact tracing Policies implemented related to contact tracing factor
Vaccination policy Policies implemented related to vaccination factor
Facial coverings policy Policies implemented related to facial coverings factor
Income support Policies implemented related to income support factor
Restrictions on Policies implemented related to

factor
internal movement the restriction on internal movement
International travel Policies implemented related to

factor
controls international travel controls
Public information Public information campaigns

factor
campaigns on Covid-19
Cancellation of Policies implemented related to

factor
public events the cancellation of public events

Restriction of gatherings
Policies implemented related to

factor
the restriction of gatherings

Closing of public transport
Policies implemented related to

factor
the closing of public transport

Closing of schools
Policies implemented related to

factor
the closing of schools

Closing of workplaces
Policies implemented related to

factor
the closing of workplaces

Stay home requirements
Policies implemented related to

factor
stay home requirements

Stringency index The government stringency index scaled
People vaccinated The proportion of people who have received scaled
per hundred at least 1 dose of a vaccine
People fully vaccinated

The proportion of fully vaccinated people scaled
per hundred

Variant 20E
The proportion of the total number of

scaled
sequences of the 20E variant

Variant 20L
The proportion of the total number of

scaled
sequences of the 20L variant

Other variants
The proportion of the total number of

scaled
sequences that are not tracked

Season The season of the date factor
Expected count The expected number of infections None
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Data Analysis 6
This chapter focuses on analysing the main research questions, i.e. finding factors
that significantly influence the risk of contracting Covid-19, from both temporal
and nontemporal perspectives. First, a look is taken at the standardized incidence
ratio in each country. Next, the relationship between the number of infections and
several factors of interest is analysed. For this analysis, an observational model
must be found that fits the number of infections reasonably well. One way to
select the likelihood is presented in Section 6.2.1. Thereafter, two different types
of models are investigated; models without a spatial component and models with
a spatial component. Section 6.3 contains the results of the models without a
spatial component and Section 6.4 contains the results of the models with the spatial
component. The prior sensitivity is analysed by evaluating how the performance of
the spatial models changes when changing the value for the standard deviation σ0 in
Equation 10.17. Non-parametric models fitted using the methodology described in
chapter 4 are shown and compared with the spatial models. Finally, a look is taken
at temporal models in Section 6.7.
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6.1 Standardised Incidence Ratio (SIR)

This section takes a brief look at the SIR for the countries of interest. Recall from
Equation 3.6, that the SIR is defined as the ratio of observed counts to expected
counts.

6.1.1 SIR for Germany

When looking at the SIR for Germany in Figure 6.1, it is noticeable that the actual
number of infections in the eastern parts of Germany, especially in Saxony, is
considerably higher than the expected number of infections. Furthermore, parts
of Bavaria have an increased SIR compared to the rest of Germany, excluding
Saxony. This could be due to the fact that the regions share a border with the Czech
Republic, a country that is substantially more affected by Covid-19 than Germany.
The northern parts of Germany show the lowest SIR which is possibly due to the
fact that this region is sparsely populated.

Fig. 6.1: The SIR for Germany based on the data of May 2 2021
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6.1.2 SIR for Norway

Looking at the standardized incidence ratio for Norway in Figure 6.2, a standardized
incidence ratio of less than 1 can be seen for most municipalities north of Trondheim.
In the southern parts of Norway there are several municipalities with a ratio above
1, for example the standardized incidence ratio around the capital Oslo is around
2. However, the two small municipalities, Hyllestad and Ulvik, have the highest
standardized incidence ratio in Norway. In Hyllestad, 95 out of 1328 people have
been infected with Covid-19 so far, and the corresponding figure in Ulvik is 134 out
of 1080 people so far.
The SIR in Hyllestad is around 3.4, following an outbreak in a shipyard in autumn
2020 (Korsvoll, 2020), while Ulvik has a ratio of around 5.7, following an outbreak
of the UK variant of Covid-19. According to the head of the municipality, Hans
Petter Thorbjørnsen, the infections are thought to have spread through children
(NTB, 2021).

Fig. 6.2: The SIR for Norway based on the data of May 2 2021

Because the high numbers from two small municipalities complicate the interpreta-
tion of Figure 6.2, Figure 6.3 shows the SIR on a log10 scale. On this scale, a value
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of 0 means that the risk of infection in a given municipality is neither lower nor
higher. Values below 0 mean that the risk of infection in a municipality is lower than
average, while values above 1 mean that the risk of infection in a municipality is
higher than average. It is now clearer that the standardized incidence ratio is below
1 in most parts of Norway, but that there is a higher risk in the region around Oslo.
No cases of Covid-19 are recorded in the grey regions.

Fig. 6.3: The log10 SIR for Norway based on the data of May 2 2021
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6.2 Data Modelling

After looking at the standardized incidence ratios for the countries of interest, the
next step is to take a closer look at the current figures for the respective countries.
Spatial models are used to try to extract the factors that cause some populations to
be at higher risk than populations in other geographical regions. Three different
types of models are used for each country:

1. Besags Proper Spatial Model

2. A Leroux Model

3. A BYM2 Model

All of these models are fitted using the INLA (Rue, Martino, et al., 2009) R package.
The measures introduced in Section 10.4, namely the DIC, the WAIC, the CPO and
the mean absolute error (MAE), are used to compare the models.
In addition to specifying what type of spatial model to use, if any, there is the option
of specifying a prior.
As can be seen in Section 2.3.2, a PC prior can be specified for the precision parameter
τ , which is what is done here.
For the parameters σ0 and α in Equation 10.18 the values 1 and 0.01 are chosen.
The models are compared using the mean absolute error. For this, 20% of the
observations are removed from the training set and used for testing instead. The
predicted number of infections for these municipalities is compared to the actual
numbers.

6.2.1 Choice of Likelihood

Before the models are fitted, however, the distribution that fits the number of cases
must first be found. One way to do this, is to use the function descdist() from
the fitdistrplus R package. The Cullen and Frey graph illustrates how "close" a
sample is to a theoretical distribution based on the kurtosis and the square of the
skewness, defined in Equation 10.30 and Equation 10.29. It can be used to get
a preliminary idea of which distributions fit the data, in this case the number of
infections, reasonably well.
The plots for Germany and Norway can be seen in Figure 6.4 and Figure 6.5. The
blue dot represents the data, the star a theoretical normal distribution, the dashed
line a theoretical Poisson distribution and the grey area a theoretical negative
binomial distribution. In both cases, the blue dot is relatively far from the star and
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lies in the region of a negative binomial distribution. For the Norwegian sample
shown in Figure 6.5, the sample is closer to a Poisson distribution than is the case
for the German sample in Figure 6.4.

Fig. 6.4: The Cullen and Frey graph for Germany

Fig. 6.5: The Cullen and Frey graph for Norway
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Next, a negative binomial distribution, a normal distribution, and a Poisson distri-
bution are fitted to the data using the maximum likelihood method. The negative
binomial fits for both countries can be seen in Figure 6.6 and Figure 6.7. The fits for
the normal and Poisson distribution for both countries, are shown in the Appendix
in Figure 10.1, Figure 10.2, Figure 10.4 and Figure 10.5.
The QQ-plot for Germany and Norway looks quite similar, as there appears to be a
linear relationship between the theoretical quantile and the sample quantiles, up to
a certain point where the sample quantiles have a higher value than the theoretical
quantiles, indicating that the distribution is right skewed. Since there are many
municipalities with relatively few cases and few municipalities with many cases,
this is to be expected. It can be seen that the empirical cumulative density function
closely follows the theoretical cumulative density function.

Fig. 6.6: A negative binomial fit to the number of cases in German municipalities
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Fig. 6.7: A negative binomial fit to the number of cases in Norwegian municipalities

Lastly, the AIC is calculated for fitting a normal distribution to the data, a Poisson
distribution to the data and a negative binomial distribution to the data. The values
can be seen in Table 6.1. Afterwards, the negative binomial distribution is chosen as
the distribution of the target variable in both cases.

Tab. 6.1: The AIC for different distributions for Germany and Norway

Country Distribution AIC

Germany Normal 8619
Germany Poisson 2699357
Germany Negative Binomial 8010
Norway Normal 6400
Norway Poisson 509139
Norway Negative Binomial 4293

The poor fit for the Poisson distribution can be explained by looking at the range of
the number of confirmed cases in a given municipality. For Germany, this number
ranges from 697 to 169021 (as of May 2, 2021), while for Norway, the number
ranges from 0 to 34654 (as of May 2, 2021). This results in a mean and standard
deviation for Germany of 8550 and 11204, respectively. For Norway, the values
for these metrics are 326 and 1930. This is problematic because, as shown in
Equation 10.12 and Equation 10.13, for a Poisson distribution the expected value
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and the variance should be equal.
Looking at a histogram for the confirmed number of cases and overlaying the
densities of a normal, Poisson and a negative binomial distribution helps to confirm
the choice of a negative binomial distribution as the distribution that the data most
closely resembles. Figure 6.8 and Figure 6.9 both show that a negative binomial
distribution fits the data better than a normal distribution. Due to the high values
for the AIC, the Poisson distribution is excluded from these graphics.

Fig. 6.8: Histogram for the number of cases in German municipalities with a normal and a
negative binomial distribution overlayed.

Fig. 6.9: Histogram for the number of cases in Norwegian municipalities with a normal and
a negative binomial distribution overlayed.

6.2 Data Modelling 101



6.3 Models without a Spatial Component

To establish a baseline, a look is first taken at models that do not include a spatial
effect. This way, it can be observed how the means and credibility intervals of the
covariates change when a spatial effect is added to a model and how the performance
of the model changes with respect to the goodness-of-fit indicators introduced in
Section 10.4.
Before fitting the models, using the VIF introduced in Section 10.5, predictors are
removed if their VIF is above 5. To do this, a GLM is first run on all variables,
followed by the calculation of VIF. Then the variable with the highest value is
removed before running the model again with all remaining variables. This process
is repeated until only variables with a VIF of less than 5 remain.
In sections 6.3.1 and 6.3.2 the results of these models are presented. Their goodness-
of-fit indicators as well as the coefficients together with their credibility intervals
calculated as in Section 2.2.2 are reported.
These models are based on data from 2 May 2021, when 3,428,487 people are
infected with Covid-19 in Germany, while 87,537 people are infected in Norway.
The five municipalities with the most infections in Germany are shown in Table 6.2
and in Table 6.3 for Norway.

Tab. 6.2: The German municipalities with the most infections as of 2 May 2021.

Municipality Population Number of infections

SK Berlin 3644826 169021
SK Hamburg 1841179 72595
SK Munich 1471508 68762
SK Cologne 1085664 48831
Region Hannover 1157624 45043

Tab. 6.3: The Norwegian municipalities with the most infections as of 2 May 2021.

Municipality Population Number of infections % first vaccine shot

Oslo 693494 34654 32.7%
Bergen 283929 6039 30.0%
Drammen 101386 4097 34.1%
Bærum 127731 3860 31.7%
Lillestrøm 85983 3819 30.2%
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6.3.1 Models without a Spatial Component for Germany

Table 6.4 contains the performance measures for the baseline model for Germany,
while Table 6.5 contains the posterior mean, the exponentiated posterior mean and
the credibility intervals of the coefficients. It can be seen that the intercept as well
as six of the coefficients are significant. The concept of significance is here defined
in terms of the credibility intervals not containing 1.

Tab. 6.4: The performance measures for the model without a spatial component.

DIC WAIC CPO MAEtrain MAEtest

5593 5596 -2814 1434 1284

Tab. 6.5: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -0.041 0.960 0.937 0.985 ∗

AfD 0.172 1.190 1.057 1.335 ∗

Population
0.164 1.178 1.127 1.232 ∗

density
Logarithmic

0.082 1.086 1.039 1.134 ∗
trade tax
Platform 0.037 1.038 0.988 1.089
Die Union 0.026 1.029 0.893 1.180
Higher

0.018 1.018 0.981 1.058
Education
Sex 0.017 1.018 0.986 1.050
Urban density 0.009 1.009 0.973 1.047
FDP 0.005 1.005 0.971 1.041
Place of

-0.010 0.991 0.951 1.031
worship
Clinic -0.011 0.990 0.942 1.041
Nursing

-0.013 0.987 0.958 1.018
home
Office -0.031 0.970 0.929 1.013
Marketplace -0.044 0.957 0.905 1.012
SPD -0.091 0.914 0.847 0.984 ∗

The left -0.119 0.888 0.822 0.958 ∗

Greens -0.156 0.857 0.753 0.970 ∗
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6.3.2 Models without a Spatial Component for Norway

Table 6.6 contains the performance measures for the baseline model for Germany,
while Table 6.7 contains the posterior mean, the exponentiated posterior mean and
the credibility intervals of the coefficients. It can be seen that the intercept as well
as four of the coefficients are significant.

Tab. 6.6: The performance measures for the model without a spatial component.

DIC WAIC CPO MAEtrain MAEtest

2859 2864 -703 229 92

Tab. 6.7: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -0.809 0.446 0.409 0.486 ∗

Total
0.237 1.270 1.112 1.446 ∗

immigrants
Unemployed

0.233 1.266 1.084 1.474 ∗
immigrants
Urban density 0.181 1.202 1.037 1.408 ∗

Vaccinations 0.055 1.058 0.947 1.179
Marketplace 0.043 1.045 0.954 1.155
Total

0.037 1.043 0.852 1.269
unemployment
Platform 0.035 1.038 0.903 1.196
Nursing

0.006 1.007 0.930 1.106
home
Higher

0.004 1.005 0.928 1.105
education
Median age -0.028 0.974 0.864 1.093
Place of_

-0.035 0.968 0.840 1.118
worship
Office -0.146 0.867 0.741 1.013
Sex -0.175 0.840 0.748 0.941 ∗
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6.4 Spatial Models

Looking at the SIR value for Germany in Figure 6.1 and the SIR value for Norway in
Figure 6.2 and Figure 6.3, it clearly looks like there is a correlation between the SIR
and the spatial units. For Germany, the SIR is higher in Eastern Germany than in the
rest of the country and in Norway the risk seems to be mainly concentrated around
the Oslo region.
To check whether there is spatial autocorrelation, Moran’s I, introduced in Sec-
tion 3.2.1.2, can be calculated and the Moran test can be used to tell whether there
is spatial autocorrelation. Under the null hypothesis of no spatial autocorrelation, a
p-value greater than 0.05 would be expected. The results of the test are presented in
Table 6.8. Looking at the p-value for both countries, it can be seen that the number
of infections in a municipality and the spatial units are correlated.

Tab. 6.8: Results of the Moran test for Germany and Norway.

Country Moran’s I E [I] p-Value

Germany 0.110 -0.003 < 0.01
Norway 0.110 -0.003 < 0.01

Therefore, after the models without spatial effect have been fitted and established
as baseline models, a spatial term is added to the models fitted in Section 6.3, in
order to model this spatial correlation.

6.4.1 Spatial Models for Germany

Looking at the performance of the spatial models and the model with the spatial
component shown in Table 6.9, it can be seen that the spatial models perform better
in terms of the DIC, WAIC and MAE, while they perform equally well or better in
terms of the CPO.
The best performance of all models, in terms of MAE, is observed for the proper
Besag model, just ahead of the BYM2 model.
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Tab. 6.9: The performance measures for the best performing model of each type.

Model DIC WAIC CPO MAEtrain MAEtest

No spatial 5593 5596 -2814 1434 1284
BYM2 4747 4806 -2781 103 1043
Leroux 4830 4843 -2966 88 1264
Proper Besag 4842 4897 -2784 143 1027

Figure 6.10 shows the differences between the coefficients in the model without
the spatial component and the BYM2 model. Excluding the intercept, only three
effects are significant in the BYM2 model compared to six in the model without the
spatial component. Moreover, the coefficients of the BYM2 model are closer to 1.
The reason for this is that allowing a rougher spatial field reduces the effect of the
covariates.

Fig. 6.10: The posterior mean and credibility intervals of the coefficients
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The values of the coefficients and credibility intervals are shown in Table 6.10.

Tab. 6.10: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -0.070 0.932 0.922 0.944 ∗

AfD 0.227 1.257 1.122 1.402 ∗

Population
0.103 1.109 1.065 1.154 ∗

density
Logarithmic

0.066 1.068 1.035 1.102 ∗
trade tax
Die Union 0.037 1.041 0.904 1.192
Platform 0.015 1.015 0.977 1.054
Marketplace 0.004 1.004 0.964 1.045
Urban density 0.003 1.003 0.974 1.032
SPD 0.001 1.002 0.915 1.095
Nursing

-0.002 0.998 0.977 1.020
Home
Clinic -0.006 0.994 0.959 1.031
Office -0.008 0.992 0.960 1.025
Place of

-0.011 0.989 0.959 1.021
Worship
Sex -0.014 0.987 0.960 1.014
Higher

-0.015 0.985 0.954 1.017
Education
FDP -0.030 0.971 0.933 1.009
The left -0.036 0.966 0.884 1.053
Greens -0.045 0.958 0.844 1.082

For the hyperparameters, a posterior mean of 19.75 is reported for the precision
and a posterior mean of 0.929 for φ. Hence, 92.9% of the marginal variance is
explained by the structured effect. Therefore, this model is far from reducing to
pure overdispersion and comes close to a proper Besag model, which is reflected in
the similar values of the goodness-of-fit indicators in Table 6.9.

6.4.2 Spatial Models for Norway

Comparing the performance of the models in Table 6.11, the spatial models again
showed better performance in terms of DIC and WAIC and this time significantly
better performance in terms of CPO. The best performance in terms of MAE is
observed for the Leroux model, but the MAE is quite close for all models.
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Tab. 6.11: The performance measures for the best performing model of each type.

Model DIC WAIC CPO MAEtrain MAEtest

No spatial 2859 2864 -703 229 92
BYM2 2825 2832 -3646 160 89
Leroux 2382 2373 -7949 10 81
Proper Besag 2854 2860 -1856 227 90

Looking at the differences between the coefficients and credibility intervals in
Figure 6.11, the picture is similar to Figure 6.10. This time, however, all significant
effects of the model without the spatial component are still significant. This again
shows that the spatial effect is weaker in Norway than in Germany, as no new
variables turn out to be significant, and no variables lose their significance when the
spatial term is added.

Fig. 6.11: The posterior mean and credibility intervals of the coefficients
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The values of the coefficients and credibility intervals are shown in Table 6.12.

Tab. 6.12: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -0.895 0.409 0.368 0.454 ∗

Total
0.203 1.228 1.075 1.397 ∗

immigrants
Unemployed

0.200 1.226 1.037 1.441 ∗
immigrants
Urban density 0.180 1.201 1.042 1.393 ∗

Vaccinations 0.055 1.058 0.942 1.182
Platform 0.049 1.053 0.912 1.213
Marketplace 0.045 1.047 0.956 1.153
Total

0.044 1.050 0.863 1.267
unemployment
Nursing

0.012 1.013 0.931 1.109
home
Higher

-0.003 0.998 0.915 1.097
education
Place of

-0.018 0.985 0.849 1.142
worship
Median age -0.082 0.923 0.816 1.041
Office -0.138 0.874 0.742 1.026
Sex -0.211 0.811 0.723 0.906 ∗

For the hyperparameters, a posterior mean of 7.668 is reported for the precision and
a posterior mean of 0.073 for φ. Hence, 7.3% of the marginal variance is explained
by the structured effect. Therefore, this model is close to pure overdispersion.
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6.5 Choice of Hyperpriors

As can be seen in Equation 10.17, there is flexibility when it comes to choosing the
values for the upper limit σ0 as well as the probability α. Therefore, an upper bound
for the standard deviation can be chosen as well as the weight placed on this "tail
event", describing how informative the resulting prior is.
Some of the issues that come with the choice of these hyperpriors are already
discussed in Section 2.8.
In the following, an assessment is made of how the performance of a proper Besag
model, a BYM2 model and a Leroux model changes when playing around with the
value for the standard deviation σ0. To create these plots, models are fitted with σ0

values of σ0σ0σ0 = (0.1, 0.11, 0.12, ..., 5).
In Figure 6.12 it can be seen that when choosing a higher value for σ0, the DIC and
WAIC is lower in the case of the proper Besag model and the BYM2 model. For the
Leroux model, on the other hand, the WAIC gets lower until about 2 before it rises
until around σ0 = 2.5 and then flattens out. It is a positive sign that this is not the
case with the BYM2 model, as it is designed to be robust and interpretable.
For the MAE in Figure 6.13, it can be seen that for all model types, a higher value
for σ0 leads to a lower MAE, however not by much.

Fig. 6.12: Values of the DIC and the WAIC when changing the value for σ0. The black line
highlights the values for σ0 = 1.
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Fig. 6.13: Value of the MAE when changing the value for σ0. The black line highlights the
values for σ0 = 1.

By allowing the precision to be greater, the variance is forced to be smaller. Hence,
choosing a lower value for the precision leads to lower values for the WAIC. While
this indicates a better fit to the training data, Figure 6.13 shows that the MAE
increases when a higher value for σ0 is chosen, as the models overfit on the training
data and therefore make worse predictions.
The corresponding figures for Germany are shown in Figure 10.10 and Figure 10.11
in the Appendix.
Figure 6.14 shows how the credibility intervals of the coefficients of a BYM2 model
change when the value for σ0 is increased. The values of the coefficients tend to
remain relatively similar most of the time, especially when the value of the coefficient
is close to 1. However, a few times, for example for the total number of immigrants
and the number of unemployed immigrants, the values differ.
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Fig. 6.14: Comparison of the credibility intervals of a BYM2 model for different values of
σ0.

Having credibility intervals and posterior means that are very similar to each other,
regardless of the value chosen for σ0, is a good sign as it means that the fitted model
is robust. That is, it means that the fixed covariates are important in their own right
because they provide different information than the spatial field, even if the spatial
field is allowed to be very smooth or coarse. This is exactly the case for Germany,
which can be seen in Figure 6.15.
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Fig. 6.15: Comparison of the credibility intervals of a BYM2 model for different values of σ0

Figure 6.16 and Figure 6.17 underline the problem of the spatial models not being
comparable with each other. Figure 6.16 already shows huge differences in the
spatial field of the proper Besag model and the Leroux model, with the spatial field
of the proper Besag model looking smoother than the spatial field of the Leroux
model. This is a sign that the Leroux model is quickly overfitting to the data. In the
left part of Figure 6.17 the values of Equation 2.48 are plotted, while in the right
part the values of u∗ are plotted.
For the spatial field of the unstructured random effect, the values of the posterior
mean are similar to the values of the proper Besag model. For the structured
component, however, the absolute values are somewhat higher. Nevertheless, in
both cases the values are far from the values for the Leroux model.
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Fig. 6.16: Spatial field for a proper Besag model and a Leroux model.

Fig. 6.17: Spatial fields for a BYM2 model.

The corresponding figures for Germany are shown in Figure 10.12 and Figure 10.13
in the Appendix.
Finally, looking at the spatial field of the structured component when changing the
value for σ0, as seen in Figure 6.18, it can be seen that for a small value like σ0 = 0.1,
the values of the posterior mean are mostly around 0, while for a higher value these
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values get slightly higher. The reason for this is simply that higher values for σ0

make the spatial field fit the data more closely, making it less smooth.

Fig. 6.18: Spatial fields for the structured component of a BYM2 model when changing the
value for σ0.

Looking at Figure 6.19, there are hardly any differences in the spatial fields for
σ0 = 0, 1 and σ0 = 2, which again shows how robust the model is for Germany.

Fig. 6.19: Spatial fields for the structured component of a BYM2 model when changing the
value for σ0.
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6.6 Non-Parametric models

Another way to determine whether fitting a Bayesian spatial model is the right
approach for this research question is to compare the fitted models with a completely
different class of models, namely non-parametric models fitted using machine
learning methods. The algorithms used in this chapter do not assume any kind of
prior distributions or assumptions about the likelihood of the data.
The approach used to fit these models is described in detail below.

1. Define the five base learners, which are:

– A regression tree

– A k-nearest neighbours (knn) algorithm

– A neural net

– A random forest

– An eXtreme Gradient Boosting (xGBoost) algorithm

2. Tune each algorithm using iterated F-Racing.

3. Train each model using the parameters determined during the tuning process.

4. Make predictions on the data.

The remainder of this chapter presents the results of the models fitted for Norway and
Germany and provides some insights into how different factors influence infection
rates.

6.6.1 Non-Parametric models for Germany

A look at Table 6.13 shows that the random forest had the lowest MAE of all the
non-parametric models for both the training and test data, but still underperforms
compared to the BYM2 model from Section 6.4.1. In the remainder of this section,
the random forest model is evaluated in more detail to gain an understanding of
which variables influence infection rates according to the model.
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Tab. 6.13: The MAE for the BYM2 model and the non-parametric models.

Model MAEtrain MAEtest

BYM2 103 1043
Regression tree 2759 3249
K-nearest neighbours 1510 2430
Neural net 3942 4133
Random forest 1109 1895
eXtreme Gradient Boosting 1941 3036

Looking at the feature importance of the variables in Figure 6.20, it can be seen
that log trade tax is the most important feature, followed by the number of clinics,
platforms and marketplaces in a municipality. The next most important charac-
teristic is the number of places of worship, but there is quite a large difference
between the importance of this characteristic and the importance of the number of
marketplaces. The graph shows the confidence interval for each feature and in this
case each confidence interval is narrow, suggesting that these are robust estimates
of importance. Comparing the most important features of the random forest with
the coefficients of the BYM2 model in Table 6.10, the logarithmic trade tax appears
to be the only feature that is important in both types of models, as it is a significant
coefficient in the BYM2 model and the most important feature in the random forest
model. The number of clinics, platforms and marketplaces are not significant in the
BYM2 model, while the share of the vote for the AfD and population density are
significant in the BYM2 model, but are only the 7th and 9th most important features
in the random forest, respectively.
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Fig. 6.20: The variable importance plots for the random forest.

To get a better idea of how the features influence the predicted outcome, the partial
dependence plots for the two most important features are shown in Figure 6.21,
while Figure 6.22 shows how the two most important parties, the AfD and the
Greens, influence the predicted outcome. For the logarithmic trade tax, a slow
increase up until 0.5 can be seen before a steeper incline sets in, which eventually
turns into a linear slope. For the number of clinic, it starts with a steep slope before
changing to a less steep linear relationship and eventually flattening out. In general,
however, the higher either value is, the higher the predicted outcome. Looking at
the plots for the political parties, it can be seen that the higher the share of the vote
for the AfD, the higher the predicted number of infections, while a higher share of
the vote for the Greens leads to a lower predicted number of infections. The same
relationship is observed in the BYM2 model, as can be seen in Table 6.10, but the
effect for the Greens is not significant in this case.
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Fig. 6.21: The partial dependence plots for the logarithmic trade tax and the number of
clinics.

Fig. 6.22: The partial dependence plots for the share of the vote the AfD and the Greens
get.

To check whether there are any interactions that could distort the relationship
between the features shown in Figure 6.21 and Figure 6.22, the ICE plots of these
variables in Figure 6.23 and Figure 6.24 can be looked at. All curves seem to follow
the same course, so there are no obvious interactions. This means that the PDP
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already represents a good summary of the relationships between the displayed
features and the predicted number of infections.

Fig. 6.23: The individual conditional expectation for the logarithmic trade tax and the
number of clinics.

Fig. 6.24: The individual conditional expectation for the share of the vote the AfD and the
Greens get.
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Lastly, looking at the Shapley values for the region of Hannover in Figure 6.25,
the prediction is nearly 50,000 above the average prediction. The number of
marketplaces in the region increases the prediction the most, followed by the
logarithmic trade tax and the number of offices in the region. For the city of Munich
it is the same three features, however this time the logarithmic trade tax increases
the prediction the most, followed by the number of offices and the number of
marketplaces. For Munich, the actual prediction is around 33,000 above the average
prediction.

Fig. 6.25: Shapley values for the cities of Munich and Hannover.

6.6.2 Non-Parametric models for Norway

Looking at the performance of the different algorithms in Table 6.14, again, the
random forest model had the lowest MAE of all the non-parametric models for
the training and test data, but performs worse than the BYM2 model from Sec-
tion 6.4.2. Therefore, the random forest model is evaluated in more detail to gain
an understanding of which variables influence the infection rates according to the
model.
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Tab. 6.14: The MAE for the BYM2 model and the non-parametric models.

Model MAEtrain MAEtest

BYM2 160 89
Regression tree 399 279
K-nearest neighbours 184 148
Neural net 392 297
Random forest 161 134
eXtreme Gradient Boosting 251 196

Looking at the feature importance of the variables in Figure 6.26, the most important
feature is the number of places of worship in a municipality, followed by the number
of offices, the number of public transport platforms, the number of higher education
buildings and the urban density. After that, the difference in feature importance
clearly increases between urban density and the total number of immigrants. Again,
all confidence intervals in the plot are narrow, indicating robustness.
Comparing the important features with the fixed effects of the BYM2 model in
Table 6.12, urban density appears to be the only feature that is relevant in both
models, being the fifth most important feature in the random forest and a significant
effect in the BYM2 model. The four most important features in Figure 6.26 are
all non-significant in the BYM2 model, while the other three significant effects
in the BYM2 model, the total number of immigrants, the number of unemployed
immigrants and the proportion of females are the 11th and 8th and 12th most
important features in the random forest model, respectively.

122 Chapter 6 Data Analysis



Fig. 6.26: The variable importance plots for the random forest.

Figure 6.27 shows how the predicted number of infections changes as the number
of places of worship and offices in a community increases. For places of worship, a
slow increase is seen until 3, followed by a steep increase that continues until 7 and
ends in a plateau. For the number of offices, the graph shows a slow increase until
about 2.5, followed by a steep increase until about 6 before ending on a plateau.
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Fig. 6.27: The partial dependence plots for the number of places of worship and the number
of offices.

The curves display in the ICE plot in Figure 6.27 all follow the same course, so
there are no obvious interactions. Therefore, again, the PDP already represents a
good summary of the relationships between the displayed features and the predicted
number of infections.

Fig. 6.28: The individual conditional expectation for the logarithmic trade tax and the
number of clinics.
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Finally, looking at the Shapley values for Tromsø municipality in Figure 6.29, the
prediction is about 1,100 above the average prediction. The feature that increases
the prediction the most is the number of nursing homes in the municipality, while
the number of marketplaces is the feature that decreases the prediction the most. For
Nordre Follo, the prediction is about 1,000 above the average prediction, with the
number of public transport platforms and urban density being the two features that
increase the prediction the most, while the number of offices and higher educational
buildings are the feature that decrease the prediction the most.

Fig. 6.29: Shapley values for the municipalities of Tromsø and Nordre Follo.
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6.7 Temporal models

Since the previous sections have focused only on a fixed point in time, this section
will address the research question from a temporal perspective. The first step for this
is again to find a likelihood that describes the data reasonably well. After identifying
such a likelihood, Section 6.7.2 and Section 6.7.3 present the results of temporal
modelling of Covid-19 infection numbers in Germany and Norway, respectively.

6.7.1 Choice of Likelihood

As with the non-temporal models fitted in Section 6.3 and Section 6.4, a probability
distribution must first be found that describes the daily number of infections in each
country. Returning to the Cullen and Frey graph, Figure 6.30 and Figure 6.31 show
that the observations do not actually follow a normal, negative binomial or Poisson
distribution.

Fig. 6.30: The Cullen and Frey graph for Germany
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Fig. 6.31: The Cullen and Frey graph for Norway

After fitting all three distributions to the data using the maximum likelihood method,
QQ-plots and the empirical and theoretical cumulative density function can be used
to help decide which likelihood to choose. The QQ-plots in Figure 6.32 and Fig-
ure 6.33 clearly show that there is no linear relationship between the theoretical
quantiles and the sample quantiles for both distributions, while the empirical CDF
roughly follows the theoretical CDF in both cases. The plots for the Poisson distribu-
tion as well as all plots for the Norwegian municipalities are in Section 10.7.1.2 and
Section 10.7.2.1 in the Appendix.
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Fig. 6.32: A negative binomial fit to the number of cases in German municipalities

Fig. 6.33: A normal fit to the number of cases in German municipalities

Looking at the AIC for all the distribution fits shown in Table 6.15, the negative
binomial distribution again seems to be the best fit for the data. For Germany the
mean and standard deviation are 7274 and 8429 respectively, while for Norway these
moments are 256 and 266. This again explains the poor fit of the Poisson distribution,
since an equal mean and variance are assumed for the Poisson distribution.
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Tab. 6.15: The AIC for different distributions for Germany and Norway

Country Distribution AIC

Germany Normal 10461
Germany Poisson 4762604
Germany Negative Binomial 9462
Norway Normal 6600
Norway Poisson 131469
Norway Negative Binomial 6076

Overlaying the number of infections with a negative binomial distribution and
a normal distribution using the estimated parameters, as shown in Figure 6.34,
reinforces the assumption of the negative binomial distribution, which is used as the
assumed likelihood of the data for the models fitted in this chapter. The graph for
Norway can be seen in Figure 10.9.

Fig. 6.34: Histogram for the number of cases in German municipalities with a normal and
a negative binomial distribution overlayed.
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6.7.2 Temporal models for Germany

For Germany, 502 data points are available, starting on 7 January 2020 and ending
on 22 May 2021. Of these 502 data points, the first 482 are used for model training,
while the last 20 are used for the analysis. Due to the temporal effect, a random split
would not make sense as this may lead to a look-ahead bias as the model would
use information that is not yet known or available during the analysed period. After
removing variables using the VIF method already used for the non-temporal models,
the trained model uses the following variables:

• Measures taken in relation to contact tracing.

• Measures taken in relation to restrictions on internal movement.

• Measures taken in relation to the use of face masks.

• Measures taken in relation to the requirement to remain at home.

• The mobility at workplaces.

• The season of the year.

• The relative frequency of variant 20E, the most prevalent in Western Europe
in the summer of 2020

• The relative frequency of variant 20L, also known as B.1.1.7

• The relative frequency of the other strains, that are not tracked

– The relative frequencies of the variant variables do not add up to 1
because the CoVariants tracks numerous variants and combines all un-
tracked variants into one group. This group is predominant in each
country at the beginning of the pandemic.

A second-order random walk is chosen for the temporal effect. The performance
measures of this model and the temporal baseline models are shown in Table 6.16.
While the AR(1) process has by far the lowest MAE in training, it has the second-
highest MAE in testing. The temporal model, besides the AR(1), has the lowest MAE
during training and the overall lowest MAE during testing, indicating that the model
fits the data best.
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Tab. 6.16: The performance measures for different types of temporal models for Germany.

Model DIC WAIC CPO MAEtrain MAEtest

Only date as covariate 8815 8816 -4408 4915 27450
Random walk of second order 7522 7519 -3760 2009 6180
AR(1) process 5950 5924 -3877 18 7524
Temporal model 7524 7521 -3777 1931 5821

Looking at the predicted number of infections from the temporal model in Fig-
ure 6.35, it can be seen that the predictions for the training data follow roughly the
same path as the actual numbers, as three waves can be clearly seen. For the test
data depicted more clearly in Figure 6.36, the predicted number of cases shows a
very slow increase, and it can be seen that the "weekend effect", which means that
fewer infections are reported on the weekend, has not been captured. Furthermore,
the more recent a data point is in the test set, the greater the uncertainty associated
with the prediction.

Fig. 6.35: The predicted number of infections in Germany according to the temporal model.
The vertical line indicates where the test data begins.
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Fig. 6.36: The predicted number of infections in Germany according to the temporal model.

Another way to look at the predictions is to compare the 7-day incidence of the actual
number of infections and the predicted number of infections, as daily variations
such as the "weekend effect" should be smoothed out. Figure 6.37 shows that the
predicted 7-day incidence again follows the actual data very well, even a little for the
test data. However, this is because for the first few days of test data, the incidence
depends on the predicted number of infections for a few days of training data. Once
it is only test data, the 7-day decline slowly stops before a steep slope starts, in
contrast to the actual 7-day incidence, which is still falling.
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Fig. 6.37: The 7-day incidence of the actual number of infections and the predicted number
of infections. The vertical line indicates where the test data begins.

Looking at the posterior temporal trend for Germany in Figure 6.38, the first two
waves are clearly visible, with the second wave having two peaks, the first in early
November 2020 and the second in mid-December 2020. The peak of the first and
third waves is in late March 2020 and mid-April 2021, respectively. After the third
peak, a steep increase sets in, as with the 7-day incidence in Figure 6.37, which is
clearly not the case when looking at the actual data.

Fig. 6.38: The posterior temporal trend for the number of infections.
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The covariates of the model are presented in Table 6.17. Apart from the intercept,
the only significant effect is the mobility at workplaces.

Tab. 6.17: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -1.592 0.228 0.079 0.518 ∗

Variant 20L 0.658 2.117 0.836 4.476
Variant 20E 0.320 1.407 0.926 2.059
Restrictions internal

0.235 1.298 0.813 1.970movement
Movement restricted
Workplace mobility 0.168 1.186 1.029 1.359 ∗

Season winter 0.112 1.161 0.653 1.918
Season spring 0.034 1.082 0.574 1.858
Stay home

0.022 1.044 0.687 1.517requirements
Recommended
Facial coverings

0.018 1.070 0.551 1.884
Recommended
Facial coverings

-0.008 1.109 0.398 2.506Required in some
public spaces
Stay home

-0.014 1.009 0.650 1.492requirements
Required (exc. essent.)
Restrictions internal

-0.021 1.004 0.632 1.522movement
Recommended
Contact tracing

-0.047 0.976 0.630 1.454
Limited tracing
Other variants -0.134 0.920 0.470 1.622
Season summer -0.341 0.739 0.412 1.216
Contact tracing

-2.095 0.228 0.010 1.035
No tracing

6.7.3 Temporal models for Norway

For Norway, 473 data points are available, starting on 5 February 2020 and ending
on 22 May 2021. Of these 473 data points, the first 453 are used for model training,
while the last 20 are used for the analysis. After the removal of some variables, the
following features remained:
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• Measures taken in relation to restrictions on internal movement.

• Measures taken in relation to the requirement to remain at home.

• The mobility at workplaces.

• The mobility at groceries and pharmacies.

• The season of the year.

• The relative frequency of variant 20E, the most prevalent in Western Europe
in the summer of 2020

• The relative frequency of variant 20L, also known as B.1.1.7

• The relative frequency of the other strains, that are not tracked

– The relative frequencies of the variant variables do not add up to 1
because the CoVariants tracks numerous variants and combines all un-
tracked variants into one group. This group is predominant in each
country at the beginning of the pandemic.

Again, a second-order random walk is chosen for the temporal effect. The per-
formance measures of this model and the temporal baseline models are shown in
Table 6.18. The lowest MAE during training is again observed for the AR(1) process,
followed by the temporal model and the second-order random walk. The temporal
model shows the best performance in terms of MAE for the test set, followed by the
second-order random walk and the AR(1) process.

Tab. 6.18: The performance measures for different types of temporal models for Norway.

Model DIC WAIC CPO MAEtrain MAEtest

Only date as covariate 5567 5568 -2784 130 446
Random walk of second order 4603 4603 -2387 55 119
AR(1) process 4602 4599 -2315 38 110
Temporal model 4613 4613 -2432 53 100

For the predicted number of infections shown in Figure 6.39, 4 peaks are seen for
the training data, just like for the actual data. The rest of the predicted infection
numbers follow the actual infection numbers very closely, which is not too surprising
given the low MAE shown in Table 6.18. For the test data shown in Figure 6.40, it is
very similar to the graph for Germany in Figure 6.36, as the "weekend effect" is not
captured, a slow increase in the predicted infection numbers can be seen, as well as
an increasing uncertainty in the predictions.
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Fig. 6.39: The predicted number of infections in Norway according to the temporal model.
The vertical line indicates where the test data begins.

Fig. 6.40: The predicted number of infections in Norway according to the temporal model.

Comparing the 7-day incidence of the predicted data and the actual data in Fig-
ure 6.41, the incidences of the training data and the actual data follow the same
pattern. However, the predicted 7-day incidence for the test data initially falls before
rising, while the actual 7-day incidence initially rises and then falls before rising
again. Although still not ideal, the predicted incidence for Norway looks slightly
better than that for Germany, which can be seen in Figure 6.37.
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Fig. 6.41: The 7-day incidence of the actual number of infections and the predicted number
of infections. The vertical line indicates where the test data begins.

The posterior temporal trend for Norway in Figure 6.42 clearly shows all three
waves, including the double peak of the second wave. It can be seen that the third
wave is clearly the worst in terms of infection numbers. On the other hand, however,
the first and second waves appear to be equally bad in this graphic, while in reality
the second wave in Norway was worse than the first. Just as with Germany in
Figure 6.38, a steep increase sets in after the third wave.

Fig. 6.42: The posterior temporal trend for the number of infections.
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The covariates of the model are presented in Table 6.19. Apart from the intercept,
the only significant effect is the mobility at workplaces.

Tab. 6.19: The fixed effects for the model. Values are rounded. A ∗ denotes a significant
effect.

Variable meanp exp(meanp) exp(q0025p) exp(q0975p) sig.

(Intercept) -0.926 0.408 0.249 0.631 ∗

Workplace mobility 0.179 1.201 1.011 1.417 ∗

Season winter 0.109 1.159 0.645 1.924
Other variants 0.056 1.073 0.760 1.482
Variant 20E 0.041 1.043 0.942 1.149
Restrictions internal

0.012 1.063 0.545 1.854movement
Recommended
Stay home

-0.058 1.033 0.413 2.163requirements
Recommended
Mobility grocery

-0.081 0.923 0.831
1.022and pharmacy

Variant 20L -0.086 0.963 0.499 1.684
Season spring -0.089 0.962 0.489 1.706
season summer -0.178 0.886 0.436 1.624
Restrictions internal

-0.209 0.842 0.477 1.384movement
Movement restricted
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Further Analysis using
R-Shiny

7
R-Shiny is a framework that enables the creation of web applications and dash-
boards to visualize data interactively, to make statistics accessible to people without
programming skills or a mathematical background, or to enable further analysis on
research questions, to name just a few use cases. Dashboards have also been used by
governments during the pandemic to effectively communicate infection data related
to Covid-19. One example is the Robert Koch Institute’s Covid-19 Dashboard, which
displays daily infection figures for each municipality in Germany that can be grouped
by age group and gender. It displays key figures such as the 7-day incidence and
contains a choropleth map, among other features. The dashboard can be accessed
at

https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4

A similar dashboard is available for Norway and specifically for the municipality of
Oslo:

https://experience.arcgis.com/experience/742a281a0fa74ab79147a76e6b52833b

As part of this thesis, a dashboard was developed using the R-Shiny framework, with
the intention to give the reader a bit more insight into the data. The dashboard
comes with four main features:

1. The Data Explorer

2. The SIR for Norway and Germany

3. Spatial Modelling

4. Temporal Modelling
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The Data Explorer

The main idea behind the data explorer is to display the data used to create all
the models fitted in this work. The data can be visualized for Norway, Germany
or Europe. Each tab contains a map and several drop-down menus where the user
has different choices. For Norway and Germany, in addition to the variable to be
displayed on the map, there is also the option to choose between three map types,
hexagon maps, heat maps and choropleth maps. Hexagon maps can be seen as a
mixture of a heat map and a histogram. Each bar represents the number of times a
feature is present within a certain radius. The higher a bar is, the more often the
feature is present. Figure 7.1 shows the number of bakeries within a radius of 2.5
km. It is clear that most bakeries are found in Berlin and Munich.

Fig. 7.1: A hexagon map of all bakeries in Germany.
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The same information can also be conveyed using a heat map, as shown in Fig-
ure 7.2.

Fig. 7.2: A heat map of all bakeries in Germany.

Through a choropleth map the number of bakeries in each municipality can be
visualized, as seen in Figure 7.3.

Fig. 7.3: A choropleth map of all bakeries in Germany.
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The app also displays a histogram of the variable selected by the user. Finally, the
user has the option to compare a municipality with the rest of the country in terms of
indicators of Covid-19 severity. These indicators are the daily number of infections,
the total number of infections and the seven-day incidence. This can be used to
create charts like the one in Figure 7.4.

Fig. 7.4: The seven-day incidence in Munich compared to Germany.

For Europe, the user can view the features used in the fitting of the temporal models.
The map can show mobility in different European countries, government measures
and general key figures. The user can select a date to see, for example, which
measurements were taken at Christmas 2020. Only a choropleth map is available
here. Again, the user can view indicators of Covid-19 severity, this time comparing a
country with the rest of Europe.

The SIR for Norway and Germany

This is self-explanatory. The user can display the standardized incidence ratio either
in Norway or in Germany.
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Spatial Modelling

Here the user can fit his own BYM2 model, either for Norway or for Germany.
Different variables can be selected to be added to the model, as well as values for σ0

and α, which are used for the PC prior. After pressing the button to fit the model,
which takes a few seconds, the map is updated and the user can now choose to
display the relative risk, the posterior mean of the random effects, the exceedance
probability or the spatial field. Two tables are also displayed. One containing all
relevant performance measures and one containing all significant effects. Each time
the user fits a new model, new rows are added to the table. Via the ID column, the
user can keep track of his models and see how the performance of a model changes
or which effects turn out to be significant in which model.

Temporal Modelling

This is the same as spatial modelling, but this time the user has the option to specify
the type of temporal term to use, the country to use for modelling and the test size.
The user can choose between five types of temporal terms:

1. An iid term

2. A random walk of length 1

3. A random walk of length 2

4. An autoregressive process of order 1

5. An Ornstein–Uhlenbeck process

33 countries can be selected for modelling and any number can be set for the test
size. After the models have been fitted, two graphs are displayed. One for the
predicted infection numbers in a country and one for the posterior temporal trend in
that country. The graph for the predicted numbers includes a confidence interval for
these predictions as well as the actual infection numbers in the country, an example
of which can be seen in Figure 7.5.
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Fig. 7.5: Predicted numbers in Sweden using an ar1 model with a test size of 28.

The same tables used in the Spatial Modelling tab are also used here and contain
the same functionality.
The dashboard can be accessed via the following link:

https://dashboard.f-hahn.de/
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Discussion 8
After fitting models, the next step is to critically examine and evaluate the results.
The evaluation of the spatial models follows a simple scheme. First, a brief look is
taken at the models without the spatial component, before the spatial models are
reviewed and compared with the non-spatial models. Next, it is examined which
factors significantly influence the risk of infection and why these factors might have
an impact. For this, the coefficient of the BYM2 model are analysed. Finally, a look at
area-specific risk is taken to see which regions in a given country are most at risk.

8.1 Discussion of the (Non)-Temporal Models

8.1.1 Discussion of the (Non)-Temporal Models for Norway

The non-spatial model for Norway identifies five significant effects:

• The number of unemployed immigrants

• The total number of immigrants

• The urban density

• The proportion of females

Moreover, the intercept is significant.
Comparing the spatial models with the non-spatial models using Table 6.11, it can be
seen that the BYM2, proper Besag and the non-spatial model perform almost equally
well in terms of the DIC and WAIC, while the Leroux model performs best in terms
of these two metrics. In terms of CPO, all spatial models perform better than the
non-spatial model, with the Leroux model again performing best. However, the MAE
shows that the non-spatial model has the best predictive performance, ahead of the
proper Besag model, the BYM2 model and the Leroux model. This shows that the
Leroux model overfits the training data more than the other models, a characteristic
that can be seen in Figure 6.12. The fact that the non-spatial model performs better
than the spatial models is an indication that the spatial effect in Norway is not strong
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and that a different class of models may be better suited to identify critical factors
affecting infection rates. Table 6.12 shows that adding the spatial effect did not
suddenly cause any variables to become significant, while all variables, including
the intercept, that are significant in the non-spatial model remain significant. Never-
theless, significant effects are found and have to be discussed.
The exponentiated intercept implies a risk rate of -59.1% across Norway,which
means that the risk of contracting Covid-19 in Norway is 40.9%. Factors related to
immigration play a crucial role in the relative risk of getting infected with Covid-
19. A one standard deviation increase in the number of unemployed immigrants
leads to a 22.6% increase in risk and a one standard deviation increase in the total
number of immigrants leads to a 22.8% increase in risk. Unfortunately, there are
no studies analysing the relationship between unemployed immigrants and the risk
of contracting Covid-19, as studies mostly focus on the relationship between unem-
ployment in general and the risk of disease. Unemployment, however, turns out to
be non-significant in the BYM2 model. Looking at older studies, Elkeles and Seifert
(1996) conducted a longitudinal study that looked at the unemployment status
and health of labour migrants in Germany. They found that immigrants are often
employed in jobs with higher health risks and stress and therefore had poorer health
(Elkeles and Seifert, 1996). Sia et al. (2019) analysed the association between
immigration status and unemployment and men’s and women’s health using data
from the Canadian Health Measures Survey. The study provided evidence of bio-
logical associations between unemployment and the likelihood of common chronic
diseases, inflammation and possible malnutrition, with unemployed immigrants, and
particularly unemployed immigrant women, being more prone to chronic diseases
(Sia et al., 2019). Thus, there is precedent for an association between unemployment
and immigrants and a higher risk of disease, however, further research would need
to be conducted to analyse the association between unemployed immigrants and
the risk of Covid-19 infection.
The last factor that influences the relative risk is urban density, where an increase of 1
standard deviation leads to an increase in the relative risk of 20.1%. The relationship
between a higher number of residential buildings in a given area and the number of
infections is probably due to the fact that with an increasing number of residential
buildings comes an increasing number of inhabitants. A look at the Bravais-Pearson
correlation coefficient confirms this assumption with ρ = 0.7070. Furthermore, the
correlation between urban density and population density is 0.8037. This is conve-
nient since studies analysing the relationship between urban density and Covid-19
usually define urban density as the number of inhabitants per square kilometre.
Because of the positive relationship between urban density and population density,
urban density acts as a proxy for population density in these models, so the relation-
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ship between higher population density and higher case numbers should account for
the higher infection rates in areas with higher urban density. According to Jamshidi
et al. (2020) and Whittle & Diaz-Artiles (2020), higher urban/population density
and higher infection numbers are due to a decrease in proximity between people and
an increase in the likelihood of interpersonal contact (Jamshidi et al., 2020; Whittle
and Diaz-Artiles, 2020). Sigler et al. (2020) found that dense urban environments
provide more opportunities for the virus to spread, but that higher density had a
stronger effect earlier and decreased in strength and importance over time (Sigler
et al., 2020).
A higher risk among immigrants in Norway is found in a study by Indseth et al.
(2020). The reasons given are barriers to adequate information due to low health
literacy in certain groups and misconceptions about Covid-19 or test criteria, as well
as other socio-economic and environmental factors (Indseth et al., 2020). Therefore,
the results of the BYM2 model are consistent with this study.
Looking at the factors that reduce the risk of infection for Covid-19, a 1 standard
deviation increase in the proportion of women leads to an 18.9% reduction in the
risk of infection. This result is not consistent with current research. Many studies
have investigated the relationship between gender and Covid-19 and most come
to the same conclusion. While the risk of infection is the same in men and women,
men tend to experience a higher severity and mortality rate for Covid-19 compared
to women (Mukherjee and Pahan, 2021; Gausman and Langer, 2020; Spagnolo
et al., 2020; Kopel et al., 2020).
A look at the relative risk of infection in Figure 8.1 shows that the relative risk is
below 1 in most of Norway, which is not too surprising considering that Norway has
managed the pandemic quite well so far. The two municipalities with the highest
relative risk are Iveland and Ålesund. However, a look at the posterior probability
in Figure 8.2 shows that the posterior probability of the risk being greater than 1
is around 0.5 for Ålesund (0.503) and less than 0.75 for Iveland (0.640). Looking
at the log posterior mean of the random effects, there is an increased risk in the
regions around Oslo and in large parts of southern and central Norway, while the
risk tends to be lower in the northern parts of the country.

8.1 Discussion of the (Non)-Temporal Models 147



Fig. 8.1: Relative risk of contracting Covid-19 in Norway.

Fig. 8.2: Posterior mean of the municipality-specific relative risks ζ = exp (ξ) compared
with the whole of Norway (left) and posterior probability P (ζi > 1|yyy)
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8.1.2 Discussion of the (Non)-Temporal Models for Germany

In the non-spatial model for Germany, six coefficients are significant, in addition to
the intercept:

• The percentage of the vote for the right-wing populist AfD

• The population density

• The logarithmic trade tax

• The percentage of the vote for the SPD

• The percentage of the vote for the left-wing party "Die Linke"

• The percentage of the vote for the Green party

A look at Table 6.9 shows that the spatial models outperform the non-spatial model
in terms of the DIC and the WAIC, while all models perform about equally well in
terms of the CPO. The predictive performance is best for the BYM2 model, just ahead
of the proper Besag model, as indicated by the lowest values for the MAE. When
adding the spatial term for the BYM2 model, several variables lose their significance,
namely the percentage of the vote for the SPD, "Die Linke" and the Greens, while
the intercept, the percentage of the vote for the AfD, population density and the
logarithmic trade tax remain significant.
The exponentiated intercept implies a risk rate of -6.8% across Germany, which
means that the risk of contracting Covid-19 in Germany is 93.2%. The greatest
influence on the relative risk is determined to be the percentage of the vote for
the far-right AfD. An increase in this variable by 1 standard deviation leads to an
increase in the relative risk by 25.7%. The AfD openly criticizes the measures taken
by the government in Germany to prevent the spread of Covid-19, which leads
to a large proportion of the party’s voters not taking the measures seriously and
refusing to keep a safe distance or wear a mask in public spaces. Several studies
have taken a look at the response of right-wing parties to the pandemic and how
people who vote for these types of parties have reacted. Wondreys and Mudde
(2020) point out that these parties were quick to warn about the virus, but once
cases spiked, they criticized the measures taken to contain the spread of the virus.
They noted that right-wing parties often rejected the measures proposed by the
leading parties because they themselves are part of the opposition (Wondreys and
Mudde, 2020), as is the case with the AfD in Germany. Vieten (2020) shows how
the far-right mobilizes people for anti-hygiene or anti-lockdown protests and how
this is used to normalize the global far-right (Vieten, 2020). Eberl et al. (2020)
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analysed data from the Austrian Corona Panel Project to test whether populism
attitudes and belief in conspiracy theories related to Covid-19 are correlated. Using
structural equation modelling, they show that populism indirectly influences Covid-
19 conspiracy beliefs through trust in political and scientific institutions. They find
that populist attitudes have a negative correlation with trust in the government and
the parliament. Furthermore, they find that higher populist attitudes are negatively
correlated with trust in science, a factor that reduces belief in Covid-19 conspiracy
theories (Eberl et al., 2020). Finally, Farias and Pilati (2020) conducted a study in
Brazil to predict social distancing violation intention and past non-compliance during
the Covid-19 pandemic, controlling for the effects of interolerence of insecurity and
socio-demographic variables. Their results included that individuals who support
right-wing parties are more likely to violate social distancing measures (Farias and
Pilati, 2020).
An increase in population density by 1 standard deviation leads to a risk increase
of 10.9%. Reasons why a higher population density correlates positively with the
number of infections are discussed in Section 8.1.1.
The last significant effect is the logarithmic trade tax with an increase of 1 standard
deviation leading to a 6.8% increase in risk. There are no studies that specifically
analyse the relationship between the trade tax and the risk of infection, but some
studies have analysed infection rates in different spatial areas while controlling for
factors such as income. In general, a negative relationship is found between areas
with higher income and infection rates, meaning that areas with higher income had
fewer cases of Covid-19. Cordes and Castro (2020) found that postcode areas in
New York City with a low proportion of positive tests had higher incomes and tested
less compared to lower income areas. They found that people in lower income areas
are more likely to be without health insurance (Cordes and Castro, 2020). Coven
and Gupta (2020) found that New York City residents who come from wealthier
neighbourhoods are more likely to flee the city, and that people who live in low-
income neighbourhoods are more likely to have frontline occupations and visit retail
shops more often, increasing their exposure to Covid-19 (Coven and A. Gupta, 2020).
The situation seems to be the same in Europe, as Baena et al. (2020) found that
districts in Barcelona with a lower average income had a higher Covid-19 incidence.
They found that the incidence in the district with the lowest income is 2.5 times
higher than in the district with the highest income (Baena-Dıez et al., 2020). Again,
the results of the BYM2 model are not consistent with current research.
The relative risk of infection shown in Figure 8.3 is highest in Eastern Germany,
more specifically in the federal state of Saxony. Saxony has established itself as the
political stronghold of the AfD in recent years, which has even led to the ruling party,
the Union, moving further to the right on the political spectrum. In addition to
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Saxony, the traditionally highly conservative Bavaria and the populous Ruhr region
have a relative risk of over 1. Figure 8.4 shows that for most of these regions the
posterior mean of the random effects is over 1, mostly with a posterior probability
of at least 0.75.

Fig. 8.3: Relative risk of contracting Covid-19 in Germany.

Fig. 8.4: Posterior mean of the municipality-specific relative risks ζ = exp (ξ) compared
with the whole of Germany (left) and posterior probability P (ζi > 1|yyy)
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8.1.3 Comparison Between the Spatial Models and the Predictive
Models

Looking at the predictive models again and comparing them to the spatial models,
both Table 6.13 and Table 6.14 show that the predictive models perform significantly
worse than the spatial models. For Germany, the test MAE of the random forest is
about 80% higher than that of the BYM2 model, while in Norway it is about 50%
higher. This could indicate that the spatial effect in Norway is not as strong as in
Germany, mainly due to the fact that most of the cases in Norway are located in Oslo
and the surrounding municipalities. However, the smaller relative difference could
be due to the fact that the infection numbers in Norway are significantly lower than
in Germany, which naturally leads to a smaller mean absolute error. Nevertheless,
the comparison between the two model classes is interesting, as different features
turn out to be important for both countries, compared to the BYM2 model for each
country. For Germany, it is the number of clinics, the number of public transport
platforms and the number of marketplaces, while for Norway it is the number of
places of worship, the number of offices, the number of public transport platforms
and the number of colleges and universities. For Germany, the logarithmic business
tax is the only feature that is important in both models, while for Norway, urban
density is the only feature that is important in the BYM2 model and the random
forest.
Most interesting here, however, is that in both countries the number of public trans-
port platforms is an important factor in explaining infection rates in a municipality.
The association between the risk of Covid-19 infection and public transport is well
studied. Hu et al. (2021) conducted a study in which they analysed the risk of
transmission of the disease on high-speed trains in China. To do this, they used
data from around 2300 patients and 72,000 close contacts who had a travel time
between 0 and 8 hours from 19 December 2019 to 6 March 2020. They analysed the
spatial and temporal distribution of Covid-19 transmission among train passengers
to identify associations between infection, spatial distance and travel time. They
found a high risk of transmission among train passengers, which showed significant
differences depending on travel time and seat position. They suggest reducing the
risk of transmission by increasing seat pitch, reducing passenger density and using
hygiene equipment (M. Hu et al., 2021). Musselwhite (2020) compares Covid-19
with other infectious diseases that may have similar properties, noting that other
types of human coronavirus, e.g. SARS coronavirus or MERS coronavirus, can
survive on inanimate surfaces such as metal, glass or plastic for up to nine days and
similar surface stability has been observed for SARS-CoV-2. In addition, a link has
already been observed between acute respiratory infection (ARI) in winter and the
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use of buses or trams in the five days before the onset of symptoms. Finally, the
greatest risk for infectious diseases on public transport is proximity between people
in an enclosed environment. If people do not close their mouths when coughing
and sneezing, public transport can become a significant source of microorganisms
(Musselwhite et al., 2020).
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8.2 Discussion of the Temporal Models

The temporal models for Germany and Norway do not perform as well as hoped.
One of the problems for the models is that no distribution is found that fits the data
reasonably well. In the end, a negative binomial distribution is used because it seems
to fit slightly better than a normal distribution. Especially the QQ-plots in Figure 6.32
and Figure 10.6 illustrate this problem. The models themselves do not show an
unreasonably high value for the MAE of the test data, but this is mainly due to the
fact that the test set is kept relatively small with only 20 observations. Table 8.1
shows what happens when the test size for the temporal models for Germany is
increased. The MAE in training remains surprisingly low, but the test MAE increases
exponentially as the test size increases.

Tab. 8.1: The performance measures for different types of temporal models for Germany.

Model Test size MAEtrain MAEtest

Only date as covariate 20 4915 27450
Random walk of second order 20 2009 6180
AR(1) process 20 18 7524
Temporal model 20 1931 5821
Only date as covariate 40 4782 22559
Random walk of second order 40 1832 2090247
AR(1) process 40 7 26561
Temporal model 40 1764 10457609
Only date as covariate 60 4597 22525
Random walk of second order 60 1656 5.81e+12
AR(1) process 60 8 99471
Temporal model 60 1584 5.09e+16

The same effect can be observed for Norway. Even with the small test size, which
leads to a low mean absolute error of the test, the quality of the prediction in
Germany is not as high, since according to the prognosis the number of infections
increases, while in reality the number of infections in Germany decreases. This
is illustrated by the comparison between the predicted 7-day incidence and the
actual 7-day incidence in Figure 6.37, which shows an increase in the predicted
7-day incidence, while in reality the incidence decreases rapidly. For Norway, the
comparison between incidences is slightly better, as at least for the last days of the
test set, the predicted incidence and the actual incidence both increase as can be
seen in Figure 6.41.
Finally, despite trying a variety of models during this work, hardly any coefficient
turned out to be significant and interpretable, as often significant coefficients had
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values in the tens of thousands. In the models that are ultimately used in this work,
the only significant feature besides the intercept turned out to be workplace mobility,
with a one standard deviation increase in the mobility leading to a risk increase of
18.6% in Germany and 20.1% in Norway.
Studies on indoor infection risk are numerous and mostly point to the same thing,
namely that aerosols from infected people can effectively transmit the virus indoors.
Measures such as wearing face masks and ventilating rooms can reduce the risk of
infection, but the most effective measure is still not going to the workplace (Lelieveld
et al., 2020; Bedford et al., 2020; Hall et al., 2020).
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Conclusion 9
The aim of this work was to identify factors that have a significant influence on the
current Covid-19 infection figures in Germany and Norway. A Bayesian approach was
used that takes into account the spatial neighbourhood structure of the individual
countries. In addition, a non-parametric machine learning approach was chosen
with the aim of comparing these approaches to see which one proves more useful
for this type of analysis. Another goal was to determine factors influencing infec-
tion numbers over time, namely government actions in response to the pandemic,
changes in population mobility patterns, and the prevalence of different strains of
Covid-19.
Based on the analysis of the differences between the spatial Bayesian and the non-
Bayesian models for which no temporal effect is used, it can be concluded that
the use of the Bayesian model with inclusion of a spatial term showed superior
performance in terms of the mean absolute error, both in training and in testing.
This was observed for Germany and for Norway.
For Germany, the factors that have a significant impact on the prevalence of Covid-19
are population density, the percentage of votes for the right-wing party AfD and
the logarithmic trade tax. All three factors had a positive effect on the predicted
infection rates, with current research clearly supporting the link between population
density and infection rates, as well as the link between right-wing parties and the
tendency for people who support these parties to be at higher risk of infection due
to not following Covid-19 guidelines. On the other hand, recent research suggests
that people living in higher income or richer regions have a lower risk of infection,
while the opposite is suggested by the model fiited for Germany.
For Norway, these factors are urban density, the number of unemployed immigrants
in a municipality, the total number of immigrants in a municipality and the pro-
portion of women. The proportion of women is the only effect where a negative
influence on the predicted infection numbers is observed. However, this associ-
ation is not supported by current research which suggests that men and women
are equally likely to contract Covid-19. No research has yet been conducted to
analyse the association between unemployed immigrants and the risk of Covid-19,
which makes it difficult to evaluate this effect as there is no research to compare it
to. The association between immigrants in Norway and the risk of infection with
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Covid-19, as well as the association between the risk of infection and urban density,
is consistent with current research which suggests that immigrants in Norway have
a higher risk of infection and that higher density in urban areas leads to a higher
risk of infection.
Temporal modelling proved more difficult, with no distribution fitting the data
reasonably well for Germany or Norway. A small test size limited the interpretation
of the results. For both countries, the only significant effect on infection rates found
was mobility in workplaces with a higher workplace mobility leading to a higher risk
of infection. This is in line with current research.
Based on these conclusions, people living in areas with characteristics such as a
higher proportion of people voting for right-wing parties or a higher population or
urban density should be cautious in their daily lives and keep a safe distance from
other people to limit their risk of contracting Covid-19.
Further research is needed to determine the relationship between areas in Germany
that have a higher logarithmic trade tax and the risk of contracting Covid-19 in these
areas. Research can never take all factors into account. Therefore, the association
between these two variables could possibly be explained by a third variable. The
same applies to the association between the proportion of women in a Norwegian
municipality and the risk of contracting Covid-19.
Future research could analyse the spatio-temporal relationship between the risk of
infection and various factors such as government measures. In addition to nation-
wide government measures, there are local government measures, both in Germany
and Norway. Obtaining this data is a time-consuming task that would require man-
ual collection of this data from official local government sources, as currently no
comprehensive dataset exists for either country. Developing a spatio-temporal model
based on the demographic and infrastructural variables used for the spatial models
in this thesis, as well as the variables used for the temporal models, has the potential
to lead to new insights into which factors are driving up infection rates and which
measures are successful in preventing new infections.
In summary, this thesis has shown that a Bayesian approach that models the spatial
neighbourhood structure in a country is superior to an approach where no spatial
neighbourhood structure is modelled. Furthermore, several factors were found to
positively influence the risk of Covid-19 infection, both in Germany and Norway,
and are supported by current research.
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Appendix 10
10.1 Probability Distributions and the Exponential Family

10.1.1 The Exponential Family

In statistics and probability theory, the exponential family is a parametric set of
probability distributions of a specific form. The distribution of a random variable yyy
belongs to the exponential family if the discrete or continuous density with respect
to a σ-finite measure of yyy has the form

f(yyy|θθθ, λ) = exp
(
yyyTθθθ − b(θθθ)

λ
+ c(yyy, λ)

)
, (10.1)

with c(yyy, λ) ≥ 0. θθθ ∈ Θ ⊂ Rq is the natural or canonical parameter of the expo-
nential family, while λ > 0 is a dispersion or nuisance parameter (Holland and
Leinhardt, 1981). The natural parameter space Θ is the set of all θθθ satisfying

0 <
∫

exp
((
yyyTθθθ − b(θθθ)

)
/λ+ c(yyy, λ)

)
dyyy <∞ (10.2)

Moreover, b(θθθ) is a twice differentiable function and all moments of yyy exist. Specifi-
cally,

Eθθθ(yyy) = µ(θθθ) = ∂b(θθθ)
∂θθθ

(10.3)

Covθθθ(yyy) = ΣΣΣ(θθθ) =λ∂
2b(θθθ)
∂θθθ∂θθθT

. (10.4)

The covariance matrix ΣΣΣ(θθθ) is positive definite in Θ0, therefore µ : Θ0 →M = µ
(
Θ0)

is injective. By substituting the inverse function θθθ(µ) into ∂2b(θθθ)
∂θθθ∂θθθT

, the variance
function

v(µ) = ∂2b(θθθ(µ))
∂θθθ∂θθθT

(10.5)

is given and the covariance can be written as

Covθθθ(yyy) = λv(µ). (10.6)
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Important members of the exponential family are the normal, binomial, Poisson,
gamma and multivariate normal distribution (Fahrmeir and Tutz, 2013:p. 433).

10.1.2 The Normal Distribution

The normal distribution is an important type of continuous probability distribution
in stochastics. The special significance of the normal distribution is based, among
other things, on the central limit theorem, according to which distributions that
result from the additive combination of a large number of independent influences
are approximately normally distributed under weak conditions.
The density is given by

f (x|µ, σ) = 1
σ
√

2π
exp

(
−1

2

(
xxx− µ
σ

)2
)
. (10.7)

The first two moments of the distribution are given by

E [X] = µ (10.8)

Var [X] = σ2. (10.9)

The graph of this density function has a "bell-shaped form" and is symmetrical with
µ as the centre of symmetry (Fahrmeir, Heumann, et al., 2016:pp. 83–85).

10.1.3 The Multivariate Normal Distribution

The density of a normally distributed random variable yyy = (y1, ..., yn)T , n <∞ with
mean vector µµµ (n× 1) and SPD covariance matrix ΣΣΣ (n× n) is

π (yyy) = (2π)−n/2 |ΣΣΣ|−1/2 exp
(
−1

2 (yyy −µµµ)T ΣΣΣ−1 (yyy −µµµ)
)
, yyy ∈ Rn (10.10)

Here, µi = E [yi], Σij = Cov (yi, yj), Σii = Var (yi) > 0 and Corr (yi, yj) = Σij/ (ΣiiΣjj)1/2.
This is written as yyy ∼ N (µµµ,ΣΣΣ). For n = 1, µ = 0 and Σ11 = 1 the standard normal
distribution is obtained.
yyy is now split up into yyy =

(
yyyTAAA, yyy

T
BBB

)
and µµµ and ΣΣΣ are divided accordingly:

µµµ =
(
µµµAAA

µµµBBB

)
and ΣΣΣ =

(
ΣΣΣAAAAAA ΣΣΣABABAB
ΣΣΣBABABA ΣΣΣBBBBBB

)
.

Some basic properties of the multivariate normal distribution are the following.
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1. yyyAAA ∼ N (µµµAAA,ΣΣΣAAAAAA).

2. ΣΣΣABABAB = 000 precisely when yyyAAA and yyyBBB are independent.

3. The conditional distribution π (yyyAAA|yyyBBB) is N
(
µµµAAA|BBB,ΣΣΣAAA|BBB

)
, where

µµµAAA|BBB = µµµAAA + ΣΣΣABABABΣΣΣ−1
BBBBBB (yyyBBB −µµµBBB) and

ΣΣΣAAA|BBB = ΣΣΣAAAAAA −ΣΣΣABABABΣΣΣ−1
BBBBBBΣΣΣBABABA.

4. If yyy ∼ N (µµµ,ΣΣΣ) and yyy′ ∼ N (µ′µ′µ′,Σ′Σ′Σ′) are independent,

then yyy + y′y′y′ ∼ N (µµµ+µ′µ′µ′,ΣΣΣ + Σ′Σ′Σ′) (Rue and Held, 2005:pp. 19–20).

10.1.4 The Poisson Distribution

The Poisson distribution is a discrete probability distribution that can be used to
model the number of events that occur independently of each other at a constant
mean rate in a fixed time interval or spatial area.
The density is given by

f (k) = P (X = k) =


λk

k! exp (−λ) for x ∈ {0, 1, ...}

0 else
(10.11)

with λ representing the expected value of X.
The first two moments of the distribution are given by

E [X] = λ (10.12)

Var [X] = λ. (10.13)

For λ ≥ 10 the distribution becomes approximately symmetrical and can thus be
approximated by a normal distribution (Fahrmeir, Heumann, et al., 2016:p. 243).
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10.1.5 The Negative Binomial Distribution

The negative binomial distribution is a univariate probability distribution that be-
longs to the discrete probability distributions. It models the number of trials required
to achieve a given number of successes in a Bernoulli process.
The density is given by

f (k, r, p) = P (X = k) =
(
k + r − 1
r − 1

)
(1− p)k pr, (10.14)

with r the number of successes, k the number of failures, and p the probability of
success.
The first two moments of the distribution are given by

E [X] = pr

1− p (10.15)

Var [X] = pr

(1− p)2 . (10.16)

For large values of r, the negative binomial distribution can be approximated by a
normal distribution (Haldane, 1941).
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10.2 Symmetric Positive Definite Matrices

An n× n matrix AAA is positive definite exactly if

xxxTAAAxxx > 0, ∀xxx 6= 000.

If AAA is also symmetric, it is called a symmetric positive definite (SPD) matrix. Only
SPD matrices are considered and sometimes the notation ’AAA > 0’ is used for an SPD
matrix AAA.
An SPD matrix AAA has some of the following properties.

1. rank (AAA) = n.

2. |AAA| > 0.

3. Aii > 0.

4. AiiAjj −A2
ij > 0, for i 6= j.

5. Aii +Ajj − 2|Aij | > 0 for i 6= j.

6. maxAii > maxi 6=j |Aij |.

7. AAA−1 is SPD.

8. All principal submatrices of AAA are SPD.

IfAAA andBBB are SPD,AAA+BBB is SPD, but the reverse is generally not true. Additionally,
if ABABAB = BABABA, ABABAB is SPD.
The following conditions are all sufficient and necessary for a symmetric matrixAAA to
be SPD:

1. All eigenvalues λ1, ..., λn of AAA are strictly positive.

2. There exists such a matrix CCC that AAA = CCCCCCT . If CCC is lower triangular, it is
called the Cholesky triangle of AAA.

3. All leading principal submatrices have strictly positive determinants.

A sufficient, but not necessary condition for a (symmetrical) matrix to be SPD is the
criterion of diagonal dominance:

Aii −
∑
j:j 6=i
|Aij | > 0, ∀i.

10.2 Symmetric Positive Definite Matrices 163



A n× n matrix AAA is called a symmetric positive semidefinite (SPSD) matrix. An SPSD
matrix AAA is sometimes denoted ’AAA ≥ 0’ (Rue and Held, 2005:pp. 18–19).
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10.3 Example: PC Prior for the Precision

A PC prior can be used to adjust the smoothness of a spatial field in an intuitive
way by specifying such a prior for the precision τ . This makes it possible to adjust
the smoothness of the spatial field in an intuitive way. In this case, the penalized
complexity prior is defined by the upper limit σ0. Equation 2.9 therefore looks like
this,

P (σ > σ0) = α. (10.17)

The actual expression of the prior is given by

π (τ) = λ

2 τ
−3/2 exp

(
−λτ−1/2

)
, τ > 0 (10.18)

and is a type-2-Gumbel distribution.
The prior for τ corresponds to an exponential distribution with rate λ for the standard
deviation. λ quantifies the size of the penalty for deviation from the base model and
is increased with higher values for it. Here, λ = − log(α)

σ0
(Sørbye and Rue, 2017).
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10.4 Goodness-of-Fit indicators

The goodness of fit indicates "how well" an estimated model can explain a set of
observations. Measures of goodness of fit allow a statement to be made about
the discrepancy between the theoretical values of the random variables under
investigation, which are expected or predicted on the basis of the model, and the
values actually measured.
The goodness of fit of a model to available data can be assessed with the help of
statistical tests or suitable ratios.

10.4.1 The Akaike Information Criterion

The historically oldest criterion was proposed in 1973 by Hirotsugu Akaike (1927-
2009) as an information criterion and is known today as the Akaike information
criterion (AIC). The AIC is one of the most frequently used criteria for model selection
in the context of likelihood-based inference.
Let the population contain the distribution of a variable with unknown density
function p. The maximum likelihood estimation assumes a known distribution with
an unknown parameter θ, hence the density function can be written as q (θ). The
Kullback-Leibler divergence is used as a distance measure between p and q

(
θ̂
)

with

θ̂ the estimated parameter from the maximum likelihood estimation. The better the
maximum likelihood model, the small the Kullback-Leibler divergence D (P ||Q).
For a maximum likelihood model with a p-dimensional parameter vector θ̂θθ, the
Akaike information criterion is defined as

AIC = −2l
(
θ̂θθML

)
+ 2p, (10.19)

with l the log-likelihood function (Akaike, 1974).

10.4.2 The Deviance Information Criterion

In statistics, the deviance information criterion, or DIC for short, is a measure (crite-
rion) for the prediction error of a model. This measure is an information criterion
and belongs to the environment of the Bayesian method for model comparisons. The
smaller the deviance information criterion, the better the model fit. The deviance
information criterion can be regarded as the Bayesian equivalent of the Akaike
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information criterion.
The deviance is defined as

D (θθθ) = −2 log (l (yyy|θθθ)) + C, (10.20)

with yyy the data, θθθ the unknown parameters of the model and l the likelihood function.
C is a constant that cancels out in all calculations that compare different models
and therefore it does not need to be known (Nelder and Wedderburn, 1972).
The DIC is given by

DIC = D
(
θθθ
)

+ 2pD, (10.21)

with
pD = D (θθθ)−D

(
θθθ
)
, (10.22)

where θθθ is the expected value of θθθ (Spiegelhalter et al., 2014).

10.4.3 The Watanabe-Akaike Information Criterion

The Watanabe-Akaike information criterion (WAIC) is the generalized AIC onto
singular statistical models. The WAIC is given by

WAIC = −2LLPD + 2pWAIC, (10.23)

with the log pointwise predictive density (LLPD) given by

LLPD =
n∑
i=1

log
(∫

π (yi|θθθ)πpost (θθθ)
)
dθθθ. (10.24)

LLPD can be seen as the Bayesian analogue of l
(
θ̂θθML

)
in the calculation of the AIC.

The penalty term of the WAIC is fully Bayesian and given by

pWAIC =
n∑
i=1

Varpost (log (π (yi|θθθ))) , (10.25)

where the term represents the variance of the individual terms in the LLPD over all
data points (Watanabe and Opper, 2010; Yong, 2018).
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10.4.4 The Conditional Predictive Ordinate

The conditional predictive ordinate (CPO) is a Bayesian diagnostic that can be
used to detect surprising observations. It is often used in the context of univariate
sampling, the multivariate normal distribution and regression models.
The conditional predictive ordinate is given by

CPO = π (yi|yyy−i) (10.26)

with yyy the data, yyy−i the data without the i-th observation, and π (·|yyy−i) the predictive
distribution of a new observation at yyy−i. Low values of CPO are an indication that
yi is surprising given prior knowledge and the other observations (Pettit, 1990;
Cox, 1980).

10.4.5 The Mean Absolute Error

The mean absolute error (MAE) is a statistical quantity that can be used to determine
the accuracy of predictions. Let x̂i be the predicted value and xi the true value,
then

1
n

n∑
i=1
|x̂i − xi| (10.27)

(Willmott and Matsuura, 2005).
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10.5 The Variance Inflation Factor

The Variance Inflation Factor (VIF) is a measurement that can be used to avoid mul-
ticollinearity between covariates. The VIF quantifies the severity of multicollinearity
in a generalized linear model. It provides an index that measures the extent to which
the variance of an estimated regression coefficient is increased due to collinearity.
For p− 1 independent variables,

VIFi = 1
1−R2 , i = 1, ..., p− 1, (10.28)

with R2 the coefficient of determination. In most literature, a value of at least 5 is
suggested as too high and is therefore used as the threshold in this work (Craney
and Surles, 2002).
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10.6 Moments

10.6.1 Skewness

Skewness is a statistical indicator that describes the type and strength of the asymme-
try of a probability distribution. It shows whether and how strongly the distribution
is skewed to the right (right-skewed, left-skewed, negative skewness) or to the left
(left-skewed, right-skewed, positive skewness). Any non-symmetrical distribution is
called skewed.
The skewness of a random variable X is the third standardized moment, defined
as

Skew[X] = E
[(

X − µ
σ

)3
]

=
E
[
(X − µ)3

]
(
E
[
(X − µ)3/2

])2 = µ3
σ3 , (10.29)

with µ3 the third central moment and σ the standard deviation (Doane and Se-
ward, 2011; Wilkins, 1944).

10.6.2 Kurtosis

Kurtosis is a measure of the slope of a probability distribution of a random variable.
Distributions with low kurtosis scatter relatively evenly; for distributions with high
kurtosis, the scatter results more from extreme but rare events.
The kurtosis of a random variable X is the fourth standardized moment, defined
as

Kurt[X] = E
[(

X − µ
σ

)4
]

=
E
[
(X − µ)4

]
(
E
[
(X − µ)2

])2 = µ4
σ4 , (10.30)

with µ4 the fourth central moment and σ the standard deviation (DeCarlo, 1997;
Wilkins, 1944).
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10.7 Distribution Fits

10.7.1 Distribution Fits for Germany

10.7.1.1 Fits for the Non-Temporal Models

Fig. 10.1: A normal fit to the number of cases in German municipalities

Fig. 10.2: A Poisson fit to the number of cases in German municipalities
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10.7.1.2 Fits for the Temporal Models

Fig. 10.3: A Poisson fit to the number of cases in German municipalities

10.7.2 Distribution Fits for Norway

10.7.2.1 Fits for the Non-Temporal Models

Fig. 10.4: A normal fit to the number of cases in Norwegian municipalities
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Fig. 10.5: A Poisson fit to the number of cases in Norwegian municipalities

10.7.2.2 Fits for the Temporal Models

Fig. 10.6: A negative binomial fit to the number of cases in Norwegian municipalities
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Fig. 10.7: A normal fit to the number of cases in Norwegian municipalities

Fig. 10.8: A Poisson fit to the number of cases in Norwegian municipalities
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Fig. 10.9: Histogram for the number of cases in Norwegian municipalities with a normal
and a negative binomial distribution overlayed.
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10.8 Choice of Hyperpriors for Germany

Fig. 10.10: Values of the DIC and the WAIC when changing the value for σ0. The black line
highlights the values for σ0 = 1.

Fig. 10.11: Values of the MAE when changing the value for σ0. The black line highlights
the values for σ0 = 1.
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Fig. 10.12: Spatial field for a Besag model and a Leroux model.

Fig. 10.13: Spatial fields for a BYM2 model.
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10.9 OpenStreetMap Key-Value Pairs

Tab. 10.1: A list of all the key-value pairs used to query OpenStreetMap, except the ones
used for residential buildings

Key Value Description

amenity

cinema A place where films are shown

clinic
A medium-sized medical facility
or health centre.

college
Campus or buildings of an institute
of Further Education

dentist A dentist practice / surgery
doctors A doctor’s practice / surgery

hospital
A hospital providing in-patient
medical treatment

kindergarten For children too young for a regular school

marketplace
A marketplace where goods and services
are traded daily or weekly

nightclub A place to drink and dance
nursing_home A home for disabled or elderly persons
place_of_worship A church, mosque, or temple, etc.
restaurant A restaurant

school
School and grounds - primary, middle
and secondary schools

theatre A theatre or opera house

university
An university campus: an institute
of higher education

building
office An office building

retail
A building primarily used for selling goods
that are sold to the public

leisure
fitness_centre Fitness centre, health club or gym

sports_centre
Facility where sports take place within
an enclosed area

public_transport platform Public transport platforms

shop

bakery Shop focused on selling bread

chemist
Shop focused on selling articles of personal
hygiene, cosmetics, household products

convenience
A small local shop carrying a small subset
of the items you would find in a supermarket

hairdresser Here you can get your hair cut, coloured
supermarket A large store with groceries and other items
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Tab. 10.2: A list of all the key-value pairs used to query OpenStreetMap for residential
buildings

Key Value Description

building

apartments
A building arranged into individual dwellings,
often on separate floors

bungalow A single-storey detached small house
cabin A small, roughly built house
detached A free-standing residential building

dormitory
A shared building intended for college/
university students

farm A residential building on a farm

ger
A permanent or seasonal round yurt or
ger used as dwelling

hotel
A building designed with separate rooms
available for overnight accommodation

house A dwelling unit inhabited by a single household
houseboat A boat used primarily as a home
residential A building used primarily for residential purposes

semidetached_house
A residential house that shares a common wall
with another on one side

static caravan
A mobile home (semi)permanently left
on a single site

terrace A linear row of residential dwellings
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Combination of Key-Value Pairs

The following table shows which key-value pairs were combined, due to their
similarity.

Tab. 10.3: A list of all the key-value pairs that were combined to create variables

Key Value Variable

amenity
cinema

Entertainmentnightclub
theatre

amenity
clinic

Clinicdentist
doctors

amenity
college

Higher Education
university

leisure
fitness_centre

Sports
sports_centre

shop
chemist

Shopconvenience
supermarket
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10.10 Software Used

All the analysis that was carried out was done so using the 4.1 version of the
statistical software R (R Core Team, 2021). The following packages were used as
part of the analysis:

• covid19germany (Schmid et al., 2021)

• covidregionaldata (Abbott et al., 2020)

• data.table (Dowle and Srinivasan, 2021)

• dashboardthemes (Lilovski, 2020)

• dplyr (Wickham, François, et al., 2021)

• DT (Xie et al., 2021)

• eurostat (Lahti et al., 2017)

• fitdistrplus (Delignette-Muller and Dutang, 2015)

• furrr (Vaughan and Dancho, 2021)

• geosphere (Hijmans, 2019)

• ggplot2 (Wickham, 2016)

• here (Müller, 2020)

• highcharter (Kunst, 2020)

• iml (Molnar et al., 2018)

• INLA (Kourounis et al., 2018)

• ISOcodes (Buchta and Hornik, 2021)

• LaCroixColoR (Bjork, 2021)

• lwgeom (Pebesma, 2021)

• latex2exp (Meschiari, 2021)

• mapdeck (Cooley, 2020)

• MASS (Venables and B. D. Ripley, 2002)

• mlr (Casalicchio et al., 2017)
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• osmdata (Padgham et al., 2017)

• parallelMap (Bischl et al., 2020)

• patchwork (Pedersen, 2020)

• pbapply (Solymos and Zawadzki, 2020)

• qqplotr (Almeida et al., 2018)

• readr (Wickham and Hester, 2020)

• regclass (Petrie, 2020)

• reshape2 (Wickham, 2007)

• rlist (Ren, 2016)

• RSelenium (Harrison, 2020)

• sass (Cheng et al., 2021)

• sf (Pebesma, 2018)

• shiny (Chang, Cheng, et al., 2021)

• shinybusy (Meyer and Perrier, 2021)

• shinydashboard (Chang and Borges Ribeiro, 2018)

• shinyWidgets (Perrier et al., 2021)

• SpatialEpi (Kim and Wakefield, 2018)

• spdep (Bivand et al., 2013)

• stringr (Wickham, 2019)

• tibble (Müller and Wickham, 2021)

• units (Pebesma et al., 2016)

• waiter (Coene, 2021)

All of the code used in this work is available through the following GitHub reposi-
tory:

https://github.com/nicoFhahn/masterthesis
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