
PHYSICAL REVIEW E 101, 043210 (2020)

Weakly nonlinear ion sound waves in gravitational systems
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Ion sound waves are studied in a plasma subject to gravitational field giving rise to vertically inhomogeneous
steady-state plasma conditions. Such systems are interesting by exhibiting a wave growth that is a result of energy
flux conservation for pulses propagating in an inhomogeneous system. The increase of the amplitude of a pulse as
it propagates along the density gradient in the direction of decreasing density gives rise to an enhanced interaction
between waves and plasma particles that can be modeled by a modified Korteweg–de Vries equation. Analytical
results are compared with numerical particle-in-cell simulations of the problem. Our code assumes isothermally
Boltzmann distributed electrons resulting in a nonlinear Poisson equation. The ion component is treated as a
collection of individual particles interacting through collective electric fields. Deviations from quasineutrality
are allowed for.

DOI: 10.1103/PhysRevE.101.043210

I. STEADY STATE

We consider a hot plasma in a gravitational field in the
vertical z direction, with the gravitational acceleration g point-
ing in the downwards direction. Steady-state solutions with
uz = 0 are readily obtained for the case where we have a
balance between the gravitational effect and particles’ thermal
pressure. We introduce φ(z) for the spatially varying time-
independent electrostatic potential, −e for the electron charge,
and M for a reference ion mass. In terms of these we have
for our case φ = −zMg/e and the steady-state vertical electric
field is constant, E = ẑMg/e in the positive z direction so that
the constant gravitational force is balanced by the ambipolar
electric field induced by the charge separation caused by the
finite electron pressure. This is incidentally an interesting re-
sult: With a constant electric field we have here the right-hand
side of Poisson’s equation ∇ · E = e(ni − ne)/ε0 to vanish
identically, so that the steady-state solution is quasineutral,
ne = ni, even though no assumption of quasineutrality was
made explicitly. For the plasma density we find

n(z) = n0 exp
(−zg

/
C2

s

)
, (1)

with Cs ≡ √
Te/M being the ion sound speed, here for cold

ions and warm electrons. We can introduce a vertical scale
length Lg ≡ C2

s /g. Temperatures are in energy units, i.e.,
without Boltzmann’s constant.

More generally both ions and electrons will contribute. The
classical and simplest of these equilibrium solutions [1,2] are
found for isothermal conditions Te = Ti ≡ T , with the plasma
density varying as n = n0 exp(− 1

2 z(m + M )g/T ). In this case
the constant gravitational acceleration we have n(m + M )g to
balance the plasma pressure 2T dn/dz. The effect of gravity
on the electrons is negligible, but they respond to the collec-
tive electric fields. For steady-state solutions we can assume
both electrons and ions to be in an isothermal Boltzmann

equilibrium, possibly with different temperatures, i.e.,

ne = n0e exp (eφ/Te),

and

ni = n0i exp

(−eφ − Mgz

Ti

)
.

We can impose neutrality at the position where φ = 0, taken
to be z = 0, to give n0e = n0i ≡ n0. To determine the elec-
trostatic potential we can then insert into Poisson’s equation
∇2φ = e(ne − ni )/ε0 to give eφ = −MgzTe/(Ti + Te), E =
g(M/e)Te/(Ti + Te) = const. and ne = n0 exp(−zMg/(Ti +
Te)), ni = n0 exp(−zMg/(Te + Ti )), i.e., ni = ne also for Ti �=
0. The present results contain the Rosseland-Pannekoek
isothermal equilibrium [1,2] as a special limit. In principle,
the results are correct for any intensity of the gravitational
field.

The steady-state solution outlined here assumes one ion
species only. If we insert another singly charged lighter ion
species the gravitational force is smaller on this, while the
force from the vertical electric field is the same. This lighter
species will consequently be accelerated in the vertical direc-
tion to give the “polar wind” [3]. Conceptually, the spatial
separation between the free electrons and the heavier grav-
itationally bound ions results in an ambipolar electric field,
which continuously accelerates light ions upward in the polar
ionosphere [4]. In the present study we will discuss another
form of acceleration found in collisionless gravitational plas-
mas and restrict the analysis to one ion species. A magnetic
field can be present and is then assumed to be vertical, as, for
instance, near the magnetic poles of Earth and planets with
dipolar magnetic field such as Jupiter or Saturn.

The present study assumes collisionless plasmas. Inclusion
of collisions with a neutral component [5] in the model is pos-
sible, but is not considered here. Inhomogenous temperature
along magnetic field lines is relevant in naturally occurring
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FIG. 1. Linear dispersion relation for ion waves propagating in
a homogeneous magnetized plasma with �ci > �pi. There are two
branches: a low frequency branch ω < �pi relevant here, and a
high frequency wave component ω ≈ �ci. We have �ci = 2 �pi, and
Te = 10 Ti.

plasmas, and in cases where, for instance, the ion tempera-
ture decreases for increasing altitude we can expect unstable
conditions somewhat equivalent to interchange modes [6].
In a neutral atmosphere the equivalent would be a complex
Brunt-Väisälä frequency [7]. Temperature variations along
magnetic field lines will require sources and sinks due to
the high thermal conductivity of collisionless plasmas. These
conditions are not included in the present study, where we
address the basic concepts of charged particle acceleration
by weakly nonlinear electrostatic plasma pulses. The analysis
in this work refers to plasmas in gravitational fields in part
because it is mathematically the most attractive. The basic
results and ideas being developed will, however, have a wider
range of applications [8–10].

II. LINEAR WAVE PROPAGATION

This section summarizes the properties of linear wave
propagation. A strictly one-dimensional model has limited
relevance for realistic applications. The presence of a mag-
netic field need not be sufficient to justify such a model, in
particular also because application of the results will gen-
erally imply that the perturbations also have a component
perpendicular to the magnetic field. As a reference case we
include a summary for low frequency waves propagating in a
homogeneous magnetized plasma.

A. Homogeneous magnetized plasma conditions

For homogeneous magnetized plasma conditions the linear
dispersion relation ω = ω(k) can be found in the literature
[11]. Two limiting cases can be recognized: �ci > �pi and
�ci < �pi in terms of ion cyclotron and ion plasma frequen-
cies. There is a significant difference between these two cases,
which is best appreciated by comparing their linear dispersion
relations [11]. A previous study [12,13] discussed weakly
nonlinear ion waves for the case where �ci < �pi. The other
limit with �ci > �pi will be relevant for the present analysis.
The linear dispersion relation and the variation of the group
velocity vectors for this latter case is shown in Figs. 1 and 2.

FIG. 2. The variation (direction and magnitude) of the group
velocity vectors for the low frequency branch from Fig. 1.

We find that the group velocity vectors are nearly parallel
to B for the low frequency branch. A localized perturbation
will therefore propagate along magnetic field lines with small
dispersion in the direction ⊥ B for this wave type. The wave
forms analyzed in the following belong to the low frequency
branch. A spatially one-dimensional study is justified by
considering conditions where a waveguide mode excited in a
magnetic flux tube with enhanced electron temperatures Te �
Ti compared to the surrounding plasma similar to a previous
study [13].

B. Inhomogenous plasma conditions with gravity

Propagation of waves in a gravitational field in a hori-
zontally striated environment has an equivalent in the neutral
atmosphere [14,15] where a vertical density gradient is found,
and the problem has similarities with the one considered in
the present study. Here we use the linearized ion continuity
equation and momentum equations first for cold ions for
illustration. Introduce the potential as φ = φ + φ̃ and n =
n(z) + ñ to separate the fluctuating parts from the steady-state
equilibrium values. With the present assumptions, the velocity
uz has fluctuating components only so ∼ is omitted here. As-
sume also Boltzmann distributed electrons, ne = ne(z) + ñe =
n0 exp(eφ/Te) = n0 exp(e(φ + φ̃)/Te), and quasineutrality,
ne ≈ ni ≡ n. The reference density n0 is found where the
potential φ vanishes at steady state and corresponds to
ne(z = 0). Linearizing the electron equation we have ñe =
n0(eφ̃/Te) exp(eφ/Te) ≡ n(z)eφ̃/Te giving the linear ion con-
tinuity equation in the form,

e

Te

∂φ̃

∂t
= −∂uz

∂z
+ uz

Lg
, (2)

and the linear ion momentum equation for cold ions becomes

∂uz

∂t
= − e

M

∂φ̃

∂z
. (3)
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Eliminating φ̃ we find for a plane wave solution
exp(−i(ωt − kzz)) a complex dispersion relation in the form,

ω2 − igkz − C2
s k2

z = 0, (4)

where g is the gravitational acceleration, here taken constant.
If we assume an initial perturbation with real k we find a
complex frequency,

ω = ±
√

igkz + C2
s k2

z .

The interesting feature is that plane waves propagating in
the positive z direction appear to be unstable, while waves
propagating in the opposite direction are damped. As stated,
this refers to a plane wave excited initially. It is here even more
interesting to have a wave excited at a boundary say at z = 0
with a real frequency ω, and investigate its spatial variation.
For this problem we have from (4) the result,

kz = − 1

2C2
s

(
ig ±

√
4C2

s ω2 − g2
)
. (5)

The spatial variation of, for instance, the fluctuating linear ion
fluid velocity will be given by exp ( − i(ωt − kzz)), or

uz(z, t ) = U0 exp

(
1

2
zg

/
C2

s

)
× exp

(
± i

z

2C2
s

√
4C2

s ω2 − g2

)
exp(−iωt ), (6)

showing that the wave increases in amplitude as it propagates
upwards in the vertical direction for z > 0. For downwards
direction of propagation, z < 0 we find a wave damping. Note
the cutoff at ωc = 1

2 g/Cs. For real ω and complex k we have
no wave propagation for ω < ωc.

The system is not unstable in a strict sense since there is
no free energy to drive an instability. A physical argument for
the observed wave growth can be given by considering the
lowest order contribution to the kinetic wave energy density
1
2 nMu2

z . The wave energy density flux is then to the same
accuracy 1

2 nMu2
zCs with a constant Cs for the given conditions.

Since n → 0 for z → ∞ we must at the same time have
u2

z → ∞ to keep the flux constant. The time averaged wave
energy density flux is for ω � ωc given as 1

2 nM|uz|2Cs ≈
1
2 n0MCsU 2

0 = constant since the z variation from n cancels
the z variation from |uz|2, as expected. The analysis of the
potential energy associated with the wave can be analyzed in
the same manner. The argument cannot readily be applied to
the initial value problem: If we in that case take a plane wave
at t = 0, the initial wave energy density will be inhomoge-
neously distributed.

III. CONSEQUENCES OF FINITE ION TEMPERATURES
AND DEVIATIONS FROM QUASINEUTRALITY

A. Finite ion temperatures

A finite ion temperature changes the isothermal steady-
state solution to Ti ln n(z) = −eφ(z) − Mgz for the ions so
that

n(z) = n0 exp

(
−z

Mg

Te + Ti

)
, (7)

and eφ(z) = −zMgTe/(Te + Ti ), giving a modified expression
for the steady-state vertical length scale Lg = (Te + Ti )/(Mg)
accounting for a finite ion temperature Ti.

The basic equations are as follows. Introducing η ≡ ñi/n,
the linearized ion continuity equation is

∂η

∂t
+ uz

d ln n

dz
+ ∂uz

∂z
= 0,

where d ln n/dz = −1/Lg.
With pi = pi(z) + p̃i, φ = φ(z) + φ̃, n = n(z) + ñ, etc.,

we can write the ion momentum equation as

M
Duz

Dt
= − 1

n(z) + ñ

∂ (pi(z) + p̃i )

∂z

− e
∂ (φ(z) + φ̃)

∂z
− Mg. (8)

Ignoring products of small terms we find

M
∂uz

∂t
= − 1

n(z)

(
1 − ñ

n(z)

)
∂ (pi(z) + p̃i )

∂z

− e
∂ (φ(z) + φ̃)

∂z
− Mg

= − 1

n(z)

∂ pi(z)

∂z
+ ñ

n2(z)

∂ pi(z)

∂z

− 1

n(z)

∂ p̃i

∂z
− e

∂ (φ(z) + φ̃)

∂z
− Mg

= ñ

n2(z)

∂ pi(z)

∂z
− 1

n(z)

∂ p̃i

∂z
− e

∂φ̃

∂z
.

We used

− 1

n(z)

∂ pi(z)

∂z
− e

∂φ(z)

∂z
− Mg = 0, (9)

due to the assumed isothermal steady-state condition. We took
the ion dynamics to be adiabatic with γ = CP/CV being the
ratio of specific heats. It is readily demonstrated that (9) is
consistent with the assumed isothermal condition for the ion
component in steady state, giving pi(z) = n(z)Ti.

The electron component is also here assumed to be a
Boltzmann distribution at all times with constant temperature
Te, i.e., ne = n0 exp(eφ/Te). We linearize this expression as

ne ≡ n + ñe = n0 exp

(
eφ + eφ̃

Te

)

≈ n0 exp

(
eφ

Te

)(
1 + eφ̃

Te

)
. (10)

This result gives ñe = (eφ/Te)n0 exp(eφ/Te), or eφ/Te = ηe.
We use n = n0(p/p0)1/γ where p = nTi to obtain a dy-

namic equation for the ion temperature. This inserted into the
equation of ion continuity gives after some simple manipula-
tions the ion pressure equation,(

∂

∂t
+ uz

∂

∂z

)
p = −γ p

∂

∂z
uz, (11)
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where the consequences of compressibility appear explicitly
by the right-hand side. The spatial derivative terms on the left
side account for the convection of pressure perturbations.

Linearizing the ion pressure equation we have

∂ p̃i

∂t
+ uz

d pi

dz
= −γ pi

∂

∂z
uz.

Introducing the normalized quantity ζ ≡ p̃i/pi we find

∂ζ

∂t
+ uz

d ln pi

dz
= −γ

∂

∂z
uz.

We use
∂ p̃i

∂z
≡ ∂ζ pi

∂z
= pi

∂ζ

∂z
+ ζ

d pi

dz
,

and with pi = nTi find by the linearized ion momentum
equation,

M
∂uz

∂t
= (η − ζ )Ti

d ln n(z)

dz
− Ti

∂ζ

∂z
− e

∂

∂z
φ̃.

B. Dispersion: Poisson’s equation

With Boltzmann distributed electrons, Poisson’s equation
has the nonlinear form,

∂2φ

∂z2
= e

ε0
(ne − ni ) = e

ε0
(n exp(eφ/Te) − ni ). (12)

With the present approximations, this equation is the only one
where Te appears. Linearizing (12) we find

∂2φ̃

∂z2
= e

ε0

(
n0 exp

(
eφ(z)

Te

)
eφ̃

Te
− ñi

)

= e

ε0

(
n(z)

eφ̃

Te
− ñi

)
,

∂2eφ̃/Te

∂z2
= e2n(z)

ε0Te

(
eφ̃

Te
− η

)
. (13)

The latter form contains the Debye length explicitly on the
right-hand side. For the present problem we have λDe =√

ε0Te/(e2n(z)). As z → ∞ we have λDe(z) → ∞ and (13)
shows that the assumption of quasineutrality will necessarily
break down above some altitude at the arrival of any pulse
characterized by some given length scale, even though the
initial condition near z = 0 is quasineutral.

The complete set of linear equation for the normalized
quantities η = ñi/n and ζ = p̃i/pi is

∂η

∂t
− uz

Lg
+ ∂uz

∂z
= 0, (14)

∂uz

∂t
= −(η − ζ )

u2
Ti

Lg
− u2

Ti

∂ζ

∂z

− e

M

∂φ

∂z
, (15)

∂ζ

∂t
− uz

Lg
= −γ

∂uz

∂z
, (16)

∂2φ

∂z2
= en

ε0

(
eφ

Te
− η

)
. (17)

We have γ = 5/3 for adiabatic ion dynamics. Alternatively,
γ = 1 for isothermal dynamics and we have ζ = η there. Tak-
ing a plane test wave exp ( − i(ωt − kz)) we find a dispersion
relation in the form,

ω =
√

k
√

kLg + i√
iLg

(
k2λ2

De + 1
)√

Cs
2 + γ uTi

2
(
k2λ2

De + 1
)
. (18)

The result is local in the sense that we take e2n/ε0Te constant
[5].

Assume the ratio of the Debye length and the vertical
length scale λDe/Lg ∼ ε2, where ε is a small dimensionless
expansion parameter. We now expand the dispersion rela-
tion in powers of ε. To lowest order we get the nondisper-
sive sound relation ω ≈ kCs, where the sound speed Cs =√

(Te + γ Ti )/M ≈ √
Te/M when Te � Ti as in our case. To

the next order in ε we find the additional term,

(Te/M )
(
1 + ik3λ2

DeLg
) + γ u2

Ti

2LgCs
= Cs

2Lg
+ i

k3

2
Csλ

2
De, (19)

see also Fig. 1. We will use Cs ≈ √
Te/M in the follow-

ing analysis. The linear differential equation for one of the
plasma variables, say uz(z, t ), is obtained by the replacements
ω → i∂/∂t and k → −i∂/∂z.

IV. THE KORTEWEG–DE VRIES EQUATION

By a standard reductive perturbation analysis we can obtain
a modified Korteweg–de Vries (KdV) equation. Details of the
method can be found in a monograph [17], and in particular
also in the special issue on “Reductive Perturbation Method
for Nonlinear Wave Propagation,” Supplement of the Progress
in Theoretical Physics (1974), Vol. 55, published by the
Research Institute for Fundamental Physics and the Physical
Society of Japan. In the present analysis we retain the lowest
order correction in the dispersion relation originating from
Poisson equation, i.e., deviations from quasineutrality. We
assume that the ratio of the electron Debye length and the
vertical length scale λDe/Lg ∼ ε2 is of the same order as the
fluid steepening nonlinearity in the expansion parameter. To
lowest order in the small expansion parameter we therefore
recover the linear nondispersive sound waves propagating in
homogeneous plasmas. To next order we here have dispersion,
nonlinearity, and the effects of the large-scale density gradient
entering at the same level. We find a modified KdV equation
in the form,

∂uz

∂t
+ (Cs + uz )

∂uz

∂z
+ 1

2
Csλ

2
De

∂3uz

∂z3
= g

2Cs
uz. (20)

To lowest order (20) reproduces (4) in the limit of large kz,
i.e., for structures that are narrow in comparison with Lg.
The coefficient to the dispersion term, ∂3uz/∂z3, contains the
Debye length which varies slowly with z due to the vertical
density gradient. As long as a pulse moves a distance smaller
than Lg we can let λDe be constant and let the nonlinear
pulse parameter variations be controlled predominantly by the
varying amplitude. The term on the right-hand side of (20)
gives rise to a growth of the velocity perturbation associated
with a soliton or any other initial condition. The equation is
here expressed for the space time varying velocity uz, but to
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FIG. 3. Numerical solution of the modified KdV equation (20) in
the normalized form ∂t u + 6u∂xu + ∂xxxu = γ u are shown in (a) with
the initial pulse shape being a soliton like (22) with amplitude A0 =
0.1 and taking γ = 0.025. The pulse is “speeding up” and becomes
narrower as its amplitude increases due to the growth term on the
right-hand side of (20). Note the formation of a “plateau” trailing
the soliton. There is an analytical basis also for this result [11,16].
The figure refers to a frame of reference moving with the ion sound
velocity. (b) A contour representation of (a).

lowest order we can use the relation eφ/Te ≈ uz/Cs to estab-
lish an equation for the electrostatic potential φ. Often the
KdV equation is written in the frame moving with the sound
velocity. Illustrative numerical solutions of (20) in this frame
are shown in Fig. 3. This solution refers to the idealized case
with the initial condition being an exact soliton solution which
is usually considered in a perturbation analysis. In the absence
of a density gradient it will propagate without deformation
through the system. Note the formation of a plateau trailing
the soliton for the inhomogeneous KdV equation. Ultimately
also this plateau will breakup into a new small amplitude
soliton as seen for large times in Fig. 3.

The KdV equation is an approximation to the set of
dynamic equations, and the perturbation term on the right-
hand side of (20) also represents an approximation to the
full modification induced by the plasma density gradient. We
cannot expect an exact energy conservation by (20).

The interest in these growing pulse solutions is due to
the possibility for soliton interactions with plasma particles,
in particular acceleration of particles by a first-order Fermi
acceleration [18]. If applied to ionospheric conditions, such
types of wave particle interactions can contribute also to polar
wind accelerations.

As well known, a KdV-type equation describes unidirec-
tional propagation of pulses. We can formulate a slightly more
general Boussinesq equation as shown in Appendix A. This
equation can have interest in its own right, but will not be
used here.

V. SUMMARY FOR THE HOMOGENEOUS KdV EQUATION

For later use we first summarize some relevant results for
KdV solitons. The homogeneous KdV equation in the general
form,

∂

∂t
u + βu

∂

∂z
u + α

∂3

∂z3
u = 0 , (21)

has soliton solutions

u = A sech2((z − Ust )
√

A β/12α), (22)

where the soliton velocity scales linearly with amplitude
as Us = Aβ/3. The soliton width � = √

12α/Aβ scales in-
versely with the square root of the soliton amplitude. Large
amplitude solitons are fast and narrow. By the inverse scatter-
ing transform [19,20] it can be demonstrated that any compact
initial perturbation will in time develop into one or more
solitons followed by a low level of oscillations well described
by the linearized version of the KdV equation.

For the present analysis it is implicitly assumed that the
soliton is local in the sense that its width is smaller than
the characteristic length scale, i.e., � � Lg. The parameters
here are α = 1

2Csλ
2
De and β = 1 by (20). As an estimate

we have the velocity amplitude related to the density per-
turbation as A ≈ Csδn/n0. The requirement � � Lg then

imposes the restriction
√

6λ2
Den0/δn � 2T/Mg or δn/n0 �

3
2λ2

DeM2g2/T 2, which can be reduced to the simpler expres-
sion δn/n0 � 3

2 (λDe/Lg)2. This requirement has to be im-
posed on the excitation of the soliton and the results are valid
as long as the inequality is fulfilled, where n0 then refers to
the plasma density at the soliton position.

An infinite number of conservation laws are associated
with the homogeneous KdV equation. A few examples are
[21]

I1 ≡
∫ ∞

−∞
u(z, t )dz, (23)

I2 ≡
∫ ∞

−∞

1

2
u2(z, t )dz, (24)

etc., where I2 in particular is often associated with the en-
ergy of a perturbation. We note here that this interpretation
assumes homogeneous media. For the soliton solution (22) we
find I1 = 4

√
3Aα/β and I2 = 4A

√
Aα/(3β ). With an average

position being
∫ ∞
−∞ zu(z, t )dz we find a pulse velocity to be∫ ∞

−∞ z∂u(z, t )/∂tdz. For a soliton solution we readily find the
velocity to be Us as given before. The conservation laws (23)
and (24) are valuable for a subsequent perturbation analysis.
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VI. SOLITON PERTURBATION ANALYSIS

Korteweg–de Vries equations with perturbations have been
studied in detail [16,22–26]. We follow the simplest analysis
based on conservation laws [22]. Retaining the perturbation
term on the right-hand side of (20) the conservation laws
become

dI1

dt
= g

2Cs
I1, (25)

dI2

dt
= g

Cs
I2, (26)

with solutions I1(t ) = I1(0) exp( 1
2 tg/Cs) and I2(t ) =

I2(0) exp(tg/Cs). Taking the initial perturbation to
have a soliton shape we have I1(0) = 4

√
3A0α/β and

I2(0) = 4A0
√

A0α/(3β ).
Starting the problem with a soliton solution we assume

that it at all times relaxes to retain its soliton shape: For slow
variations this assumption is justified by the inverse scattering
transform. Since the soliton is a one-parameter solution to the
KdV-equation, we can at all times quantify its characteris-
tics by its amplitude. Velocity and width follows from this
amplitude. A small nonsoliton part, uns as seen developing
at late times in Fig. 3, is necessary to accommodate the
difference between the entire solution uz(z, t ) and the time
evolving soliton part us. Since the nonsoliton part has a small
amplitude it has a small velocity in the frame of reference
moving with Cs and it will be a “tail” following the soliton:
We assume that the overlap between these two components
of uz(z, t ) is negligible implying us(z, t )uns(z, t ) ≈ 0. The
plateau starts at z ≈ 0 in the moving frame and ends at the
soliton position in the moving frame 〈z(t )〉 = ∫ t

0 Us(τ )dτ in
terms of the soliton velocity Us(t ) = A(t )β/3. We let the
plateau be characterized by a spatially averaged amplitude
ξ (t ), so that I1(t ) ≈ 〈z(t )〉ξ (t ) + 4

√
3A(t )α/β and I2(t ) ≈

〈z(t )〉ξ 2(t ) + 4A(t )
√

A(t )α/(3β ). We will later need I2(t ) to
be expressed in terms of the local soliton amplitude A(t ).

Together with the first two conservation laws we have two
equations for the two unknowns, A(t ) and ξ (t ), since the time
varying soliton velocity and thereby 〈z(t )〉 are determined
through the soliton amplitude A(t ). Assuming ξ to represent
a small correction, we ignore terms containing ξ 2. From the
expression for I2(t ) we then have

A(t ) ≈ A(0) exp

(
t

2g

3Cs

)
. (27)

This exponential growth is consistent with the numerical
results in Fig. 3. As the length of the plateau increases, it can
itself break up into solitons. As a consequence a local density
and thereby also a local potential minimum develops behind
the soliton which can subsequently participate in the kinetic
particle interactions.

The soliton position in the moving frame is found by

〈z(t )〉 ≈
∫ t

0
U (τ )dτ = A(0)β

3

∫ t

0
exp

(
τ

2g

3Cs

)
dτ

= A(0)Csβ

2g

(
exp

(
t

2g

3Cs

)
− 1

)
,

where we for the present case have β = 1. To transform to the
fixed frame we have to add tCs.

Using the results for I2(t ) we can obtain an approximate
expression for an equivalent of the kinetic energy of the
system as

Ek ≈ Mn0 exp

(
− tg

Cs

)
I2(t ) = constant, (28)

at any time t , recalling that this expression is meaningful only
in the rest frame. The integration in I2 entering (28) implicitly
assumes � � Lg, i.e., the soliton is local. We approximated
the soliton position as z ≈ tCs in n(z) = n0 exp (−zg/C2

s ). For
large times we find Ek → constant to the lowest approxima-
tion. The contribution of the electrons to the total energy can
be determined the same way.

Given A = A(t ) we can determine the average amplitude
of the nonsoliton part ξ (t ) by the expression for I1(t ). After
some algebra we find

ξ (t ) = 8g
√

3α

Csβ
√

A(0)β

exp
( tg

2Cs

) − exp
( tg

3Cs

)
exp

( t2g
3Cs

) − 1
,

lim
t→∞ ξ (t ) = 8g

√
3α

Csβ
√

A(0)β
exp

(
− tg

6Cs

)
.

At large times the soliton amplitude is exponentially large and
so is its velocity unless the growth is arrested. Asymptotically,
the nonsoliton tail is stretched out to have a small amplitude.
A large initial amplitude A(0) has the same effect.

The derivation of the KdV equation is accurate only to sec-
ond order in the expansion parameter. For unstable conditions,
the equation and its soliton solution will eventually become
inaccurate when the higher order terms become important.
For plasma solitons the growth will, however, eventually be
arrested by the interaction of the solitary pulse with plasma
particles, in our case the ion component.

For the entire energy budget we have in principle to include
both the soliton and the nonsoliton parts. For interaction with
particles, we need to be concerned only with the soliton part
since it has the dominant amplitude.

VII. INTERACTION BETWEEN ION ACOUSTIC
SOLITONS AND IONS

The foregoing analysis emphasizes fluid models. The prob-
lem of plasma wave propagation in gravitational field in
a horizontally striated plasma environment has previously
[27,28] been studied by linear kinetic models, including ef-
fects of Landau damping. The time interval with linear Landau
damping is, however, of minor relevance for the problem
when the nonlinear soliton evolution is considered. To see
this we introduce a few relevant time scales: (i) a linear pulse
time scale τL = �/Cs, which corresponds to the linear sound
dispersion relation; (ii) we have a nonlinear soliton time scale
τS which accounts for the time it takes a soliton to move its
own width due to the nonlinear velocity correction [25,29],
i.e., the motion in the frame moving with the sound speed
Cs, giving τS = �/Us where τS � τL. In classifying the in-
teraction between particles and wave pulses we have a time of
linear or resonant interaction τR = �/

√
2e�/M ∼ τS where
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� is the peak value of the electrostatic potential for the soliton.
The velocity interval for resonant wave-particle interaction
is [Cs + Us − √

2e�/M;Cs + Us + √
2e�/M] specifying the

role of the soliton amplitude. The linear Landau damping
is associated with transiting particles [30] while we here
consider reflected particles.

We thus distinguish two parameter ranges: (i) times t <

τR where linear Landau damping dominates and soliton dy-
namics is of minor importance; (ii) times t > τR ∼ τS where
soliton dynamics is important and the interaction between the
nonlinear sound pulse and particles is (in our case) dominated
by reflected ions.

To describe the propagation of weakly nonlinear sound
waves in a kinetic model, several authors [31–34] have pro-
posed a modified KdV-equation in the form,

∂

∂t
φ + βφ

∂

∂z
φ + α

∂3

∂z3
φ + s

π
P

∫ ∞

−∞

1

z − z′
∂φ

∂z′ dz′ = 0,

(29)

with P denoting the principal value of the integral and β, α,
and s being suitably defined constants. The nonlocal integral
term accounts for the linear Landau damping here and in a
number of related studies [35–37], and the equation is thus
valid for the time range (i) discussed before. In this time inter-
val the solitons properties had little time to be manifested in
any significant manner. The applicability of (29) is limited as
far as the nonlinear soliton dynamics are concerned, although
the equation as such has received attention in the past.

Many of the foregoing results had applications for general
KdV equations. The present problem concerns acceleration
of plasma particles by solitons propagating in gravitational
plasmas with a vertical density gradient. For this case we have
β = 1 in (21) while α = 1

2Csλ
2
De; see also (20). The simple

model used here assumes electrons to be an isothermally
Boltzmann distributed fluid at all time, with electron inertia
effects ignored. The only plasma particles we need to be
concerned with are the ions.

Given a soliton with velocity amplitude A(t ) we have
the corresponding peak potential amplitude to be �(t ) =
A(t )(Te/e)/Cs. The velocity interval for resonant ion inter-
action has then the form [Cs(1 + 1

3 e�(t )/Te) − UR;Cs(1 +
1
3 e�(t )/Te) + UR]. Particles slower than Cs(1 + 1

3 e�(t )/Te)
give up energy, while faster particles receive energy from
the moving soliton. For the ions overtaking the soliton there
would be a slight correction due to the plateau, but this will
be ignored here. We here introduced Cs(1 + 1

3 e�(t )/Te) for
the rest frame soliton velocity so that Us = 1

3 eCs�(t )/Te.
We find that τS/τR ∼ Cs/

√
2e�/M � 1. When the soliton

dynamics is important, the linear Landau damping is of minor
concern. The important soliton-particle interaction is caused
by reflected particles, which is a nonlinear effect.

The following discussion will be based on energy conser-
vation between a system consisting of a soliton and plasma
particles, noting that ion sound waves have an approximate
equipartition between ion and electron energy for long wave-
lengths [11]. The electric field energy is small in comparison.
To be specific we have the change in energy density caused by

a sound perturbation in the form,

�W = 1

2
Mn0ũ2 + 1

2
ε0(∇φ)2 + 1

2
n0κTe

(
eφ

κTe

)2

, (30)

to lowest order, where it was assumed that Ti ≈ 0.
In the following we will use the capital letter U denoting

the z component of one ion as distinguished from a fluid
velocity. The ion + electron energy of an ion acoustic soliton
in a gravitational field is

E ≈ 4

√
2

3

(
e�(t )

Te

)3/2

n0 exp

(
− t g

Cs

)
TeλDe; (31)

see also (28). With �(t ) ∼ exp (t2g/3Cs) [see (27)], we find
E ∼ constant in the absence of particle interactions or other
additional perturbations.

Upon interaction with a soliton moving at velocity Us,
an ion changes its initial velocity U by the amount 2Us.
The energy gain by such an interacting (i.e., resonant) ion
is 2MUs(Us − U ), assuming the interaction to be perfectly
elastic. A negative ion velocity (counterpropagating parti-
cles) gives net particle energy gain, positive ion velocities
(overtaking collisions) give particle energy loss. The flux of
these interacting ions is at some vertical position z given
as |u − Us| n(z) f0(u), where f0(u) is the normalized back-
ground ion velocity distribution function,

∫ ∞
−∞ f0(u)du = 1.

Consequently at a time where the soliton has arrived (approx-
imately) at a position z = Cst , we can write the energy gain
by resonant ions per unit time as

dEres

dt
= 2MUsn0 exp

(
− t g

Cs

)
×

∫ Umax

Umin

(Us − U ) |U − Us| f0(U )dU . (32)

The integration limits are (Umin;Umax) =
(Us − √

2e�(t )/M;Us + √
2e�(t )/M ).

We now equate this change in energy per time unit with
the negative time derivative of the change in soliton energy
obtained from (31). The foregoing arguments assume that the
soliton amplitude �(t ) changes only little during the transit
time of an ion.

The foregoing analysis refers to one soliton interacting
with particles. For larger soliton densities, solitons can interact
due to mutually reflected particles [38]. A statistical analysis
of such many-soliton cases has also been suggested [39].

We have found the energy gained or lost by ions acceler-
ated or decelerated by a soliton. By energy conservation we
know that this energy is lost or gained by the soliton. All
soliton parameters can be expressed by the maximum soliton
amplitude �(t ) for the KdV soliton discussed here. Since a
relation between the soliton parameter and the soliton energy
is known we can obtain an equation for �(t ). The rate of
change of soliton energy for varying �(t ) is

dE
dt

= 4

√
2

3

√
e�(t )

Te
n0 exp

(
− t g

Cs

)
TeλDe

×
(

e

Te

d�

dt
− g

Cs

(
e�(t )

Te

))
. (33)
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FIG. 4. Illustration of the normalized amplitude variation of an
ion acoustic soliton as described by (34) for three different initial
soliton amplitudes: �(0) = 0.1, 0.2, and 0.3. The figure uses nor-
malized units, with a logarithmic vertical axis and Cs ≡ √

Te/M.
We have here Te/Ti = 10 and a dimensionless “gravity parameter”
gλDe/C2

s = 0.01. Less interesting solutions with larger initial ampli-
tude, �(0) > 0.5 for the present parameters, damp out to reach the
same asymptotic level as shown in the figure for the other amplitudes.

Equating (33) and (32) we note that an exponential factor
cancels, and obtain after some algebra,

d

dt

e�(t )

Te
= g

Cs

e�(t )

Te

+ 1

3

√
3

2

√
Te

e�(t )

MUs

TeλDe
G(Us, �(t )), (34)

with

G(Us, �(t )) =
∫ Us+

√
2e�(t )/M

Us

(u − Us)2 f0(u)du

+
∫ Us−

√
2e�(t )/M

Us

(u − Us)2 f0(u)du, (35)

recalling here that Us depends also on �(t ), in general.
For Maxwellian distributions, we can express G(Us, �(t ))
in terms of error functions. A numerical solution of (34)
is shown in Fig. 4 assuming a Maxwellian distribution for
f0(u). We find that a soliton with small initial amplitude has
its peak potential amplitude increasing to maintain energy
flux conservation for pulses propagating in an inhomogeneous
system in the direction of decreasing density. At some time its
amplitude is sufficiently large to have it interacting signifi-
cantly with the ions. The growth is then arrested, eventually
to reach a saturated level. The saturation level e�/Te ≈ 1/2
found in Fig. 4 corresponds to n(z) ≈ n0(z)/2. This value will,
however, be found at large z values where the ambient density
n0 is small, i.e., the initial perturbation at z = 0 will be small.
The results obtained by a local KdV equation will only serve
as estimates in this saturation limit.

The saturation level and the time evolution in general
depends on the electron-ion temperature ratio Te/Ti as well
as g/Cs. If Te/Ti is reduced, the ion sound speed becomes
closer to the ion thermal velocity and the soliton-particle
interaction becomes stronger giving a lower saturation level.
The asymptotic saturation level for the peak soliton potential
does not in general have any simple analytical expression.

For the net soliton energy we have E (t → ∞) → 0 when the
soliton-particle interaction is taken into account for a stable
plasma, e.g., a Maxwellian. The net kinetic energy gained
by the particles equals the initial soliton energy. The density
gradient acts as a “catalyst” mediating the energy transfer.

A. Analytical approximations

In order to obtain some quantitative results [29], we make
a series expansion of G(Us, �(t )) in (34), where we let the
soliton velocity be a constant Us ≈ Cs since the correction
varies only with �(t ) which was assumed to be small anyhow.
The series are lengthy, and are given in Appendix A. Using
these series, we can write the relation (34) to lowest order as

d

dt

e�(t )

Te
= g

Cs

e�(t )

Te
+

√
2

3

C3
s

λDe

(
e�(t )

Te

)3/2

f (1)
0 (Cs),

which can be integrated to give

e�(t )

Te
=

(
g

Cs

)2 e�(0)

Te

((
g

Cs
− ν

√
e�(0)

Te

)

× exp

(
− tg

2Cs

)
+ ν

√
e�(0)

Te

)−2

, (36)

where the damping constant is

ν = −
√

2

3

C3
s

λDe
f (1)
0 (Cs).

When f0(u) is a Maxwellian, for instance, we have f (1)
0 (Cs) <

0 giving ν > 0, and the soliton amplitude reaches an asymp-
totic saturation level

e�(∞)

Te
=

(
g

νCs

)2

≡
(

�pi

ν

λDi

Lg

)2

, (37)

in terms of a reference density giving λDi and �pi, inde-
pendent of the initial value �(0). A characteristic time to
reach an amplitude close to the saturation level is tK ≈
(νe�(0)/Te)−1√e�(∞)/Te and the corresponding propaga-
tion distance is approximately CstK . These values are approxi-
mate: In the case where �(0) is close to �(∞), the saturation
is nearly instantaneous. We will usually be interested in
conditions with �(0) < �(∞).

For a linearly unstable plasma where f (1)
0 (Cs) > 0, giving

ν < 0, we can find an “explosive” condition by (36) where
�(t ) can be diverging within a finite time τc given implicitly
by (

g

Cs
− ν

√
e�(0)

Te

)
exp

(
−τc g

2Cs

)
= −ν

√
e�(0)

Te
.

Such a “bump-on-tail” condition for the net ion velocity
distribution can, for instance, be realized by an accelerated
lighter ion component constituting the polar wind mentioned
before. We recall, though, that these particles will have a

043210-8



WEAKLY NONLINEAR ION SOUND WAVES IN … PHYSICAL REVIEW E 101, 043210 (2020)

steadily increasing vertical velocity and are thus not forming
a classical bump-on-tail distribution.

Unfortunately, the compact result (36) has limited appli-
cability [29]. This limitation can be illustrated by consid-
ering the next correction term in the series expansion in
G(Us, �(t )); see Appendix B. In this case we have

G(Us, �(t )) ≈ 2

(
e�(t )

M

)2

f (1)
0 (Us)

×
(

1 + 1

9

f (3)
0 (Us)

f (1)
0 (Us)

2e�(t )

M

)
. (38)

For an order of magnitude estimate we can use
a Maxwellian ion velocity distribution, f0(u) =
(2πσ )−1/2 exp(−u2/2σ ), with σ ≡ Ti/M � C2

s . For the
last correction term in the parenthesis to be small we require
(C2

s /σ )(eφ0/Ti ) � 5, which is only marginally realistic in
natural conditions (i.e., realistic sound speeds, velocity,
distributions, etc.), when we at the same time require that the
nonlinearities should be manifested in a reasonable time, i.e.,
that the soliton time should be moderate. It is most likely that
(34) has to be solved numerically for realistic and relevant
cases as in Fig. 4. We find that the saturation level e�(∞)/Te

found by (36) to be an overestimate, in general.

VIII. NUMERICAL SIMULATION RESULTS

Our hybrid code with kinetic ions and mass-less
isothermally Boltzmann distributed electrons assumes ne =
n0 exp (eφ/Te) from the outset, implying that Poisson’s equa-
tion becomes nonlinear in the present problem. This is a non-
standard element in the code. The ion component responds to
the collective electric fields and to an imposed constant verti-
cal gravitational field. The numerical simulation results allow
for deviations from quasineutrality since Poisson’s equation
is explicitly included. The initial conditions can be chosen to
have characteristic scale lengths much larger than λDe so that
quasineutrality can be assumed, but at later times we can find
smaller scales to develop and deviations from quasineutrality
can become important. In this limit (12) will be relevant,
and the expression is implemented in our particle-in-cell (PIC)
code. The electrostatic code is used here in 2R3V mode, or
2.5D, i.e., with two spatial dimensions while the velocities
resolve three velocity dimensions in order to account for the
particle motions in magnetic fields. The boundary conditions
in the direction ⊥ B are periodic, while the upper and lower
boundaries have Neumann conditions. Details of the code are
described elsewhere [13,40].

Most studies of KdV solitons are based on models in
strictly one spatial dimension. To make the numerical anal-
ysis somewhat more physically relevant we consider a two-
dimensional magnetized system. A generalization to a fully
three-dimensional system will in our case not bring any new
features to the problem. The basic plasma parameters are
chosen to be consistent with the assumptions of the model,
i.e., �ci > �pi. Assuming an enhanced electron temperature
in a central magnetic flux tube we can also here derive a
KdV equation for a lowest order radial eigenmode. Such
a “channel” with high electron temperatures is physically

realistic and is often found in, for instance, laboratory plas-
mas [41], discharge plasmas and laser produced plasmas
[42,43], ionospheric heating experiments [44,45], as well as
in linearly unstable ionospheric plasma conditions [46]. One
consequence of such a temperature channel is to provide a
natural localization of the pulses in the direction perpendicular
to B; otherwise the scale size in that direction would be given
by the initial conditions. A temperature gradient ⊥ B can in
principle give rise to unstable electrostatic waves propagating
in the direction perpendicular to both B and ∇⊥Te [47]. In a
collisionless plasma these waves usually have a small growth
rate and they have no relevance here. They will not be gen-
erated in the spatially two-dimensional numerical simulations
where these waves would have to propagate in the direction
perpendicular to the simulation plane. The present analysis
is mathematically also related to studies of weakly nonlinear
electrostatic Trivelpiece-Gould modes in a magnetized plasma
waveguide [37,48]. Details of the analytical model in terms
of eigenmodes as used also here are given elsewhere [13].
The basic analysis gives an equation for “simple waves” [49],
which is subsequently generalized by introducing dispersion
and the effect of gravity to give a modified Korteweg–de Vries
equation.

Numerical simulations of gravitational systems are de-
manding by requiring an excessive number of simulation
particles. This is so because of the large densities accumu-
lating at lower altitudes, while only relatively few particles
are left at the higher altitudes where the nonlinear features
are manifested. The present simulations use 23×106 particles
(approximately 103 particles per λ2

Di in terms of the reference
length scale λDi), where this number fluctuates slightly over
time due to particle loss and injection at the lower boundary.
This number of macroparticles is as for all PIC simulations not
sufficient for realistic or even semirealistic plasma conditions,
but the results can be used for a qualitative comparison with
analytical results. The simulations have λDi � Lg but the ratio
of the two length scales is much smaller than the ratio found
in nature. The reference length scale λDi is found by using the
average density in the simulation domain as mentioned before.

Results from numerical simulations are shown in Figs. 5–
10. The figures show the simulation domain of 95×250 λ2

Di.
In order to improve the signal-to-noise ratio in Fig. 5, we
averaged four results from simulations with different seeding
of the random number generators distributing the simulation
particles in the 2R3V phase space. In Fig. 5 we show two
results without gravity. One case has a temperature ratio of
Te/Ti = 10, and a second reference case has a ratio of Te/Ti =
15. In the first case we observe the ion Landau damping,
which is strongly reduced in the second case due to the
larger ion sound speed Cs = √

(Te + γ Ti )/M. The solitons
are shown at the same times, and the difference in their
basic velocity is noticeable. The nonlinear velocity correction
is small in comparison. The case including a gravitational
acceleration is shown in Fig. 6.

The peak value of the soliton amplitude variations are
shown in Fig. 7. We note in particular that this variation is
exponential only for a restricted initial time interval, even for
the case without gravitational forces, G = 0.

For the gravitational case, G �= 0, we find an amplitude
increase as predicted by the simple model. Eventually the
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FIG. 5. Spatial variations of propagating solitons taken at se-
lected time steps for the reference case with no gravitational field,
G = 0. We have Te/Ti = 10 in the top panel (a) and Te/Ti = 15 in
the bottom panel (b), respectively. The damping is due to ion Landau
damping, which is strongly reduced by the increased temperature ra-
tio in the second case. The externally imposed excitation amplitudes
are 0.25 and 0.1 for the two cases. The first narrow pulse on the
figure is a part of the initial excitation. The difference in propagation
velocity is due to the change in the sound speed.

soliton amplitude reaches a level where it interacts strongly
with the particles and find an amplitude saturation for large
times. We note the formation of a “forerunner” or precursor
in front of the soliton for increasing times; see Fig. 6, for
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0.2

0.3

(z
)

FIG. 6. Spatial variations of propagating solitons taken at se-
lected time steps τ = 2, 14, 26, 38, and 50 �−1

pi , with G = 0.5 in
normalized units. We have Te/Ti = 15. Comparing with Fig. 5 we
note an initially increasing amplitude due the growth induced by the
plasma density gradient in the gravitational field. The first narrow
pulse at τ = 2 �−1

pi on the figure is also here a part of the initial
excitation.
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FIG. 7. Time evolution of the peak value of the soliton potential
amplitude A in computational units, together with error estimates
obtained from fitting the electric potential φ(z) at times τi of the
simulation to the three-parameter (A, z0 ≡ Ust, �) KdV-soliton func-
tion given in (22). Note that the scale is logarithmic on the vertical
axis. For the largest value of the gravitational acceleration G = 0.5,
in computational units, we have an initial time interval with a near
exponential growth (seen as linear in the logarithmic scale). The
ultimate saturation is due to ions reflected by the large amplitude
sound pulse. Also shown is the time evolution for G = 0.25 and
G = 0. We have Te = 15 Ti for all cases.

instance. This is caused by the ions reflected and energized
by the propagating soliton.

The soliton velocity as given in Fig. 8 is nearly constant,
corresponding to the ion sound speed for the given conditions.
Some “spikes” for the case with G = 0 are due to inaccuracies
in the numerical fitting procedures. The nonlinear velocity
correction is small.

The variation of the soliton width is shown in Fig. 9.
For the case with G = 0 we find that the amplitude-width
scaling predicted by the KdV equation is qualitatively correct.
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FIG. 8. Time evolution of the soliton velocity shown in units
of ion thermal velocity together with error estimates. The velocity
and error estimates are obtained by evaluating z′

0 = dz0/dτ using
a central finite difference of the discrete positions z0i of the soliton
maximum. The positions z0i are obtained from the parametric fit of
the electric potential φ(z) at times τi of the simulation described in
Fig. 7.
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FIG. 9. Time evolution of the soliton width �, measured in units
of the reference ion Debye length, together with error estimates,
obtained from the parametric fit of the electric potential φ(z) at times
τi of the simulation described in Fig. 7.

When G �= 0 we do not find this agreement. Most likely
this disagreement is caused by the uncertainty in defining a
proper soliton width when we have a precursor in the form of
particles (in our case ions) reflected by the soliton.

The full configuration and phase space information is given
in Fig. 10 for a late time τ = 50 �pi in the evolution. The bulk
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FIG. 10. (Upper panel) Color coded variation of the soliton in
configuration space with linear scale of the electric potential φ.
(Middle panel) Phase space variation of the same structure with a
logarithmic color scale, averaged over the central “channel” located
between the white horizontal lines shown in the upper panel. (Lower
panel) Corresponding potential variation along the z axis, also aver-
aged over the central part of the plasma column. All panels are for
the time of simulation, τ = 50 �−1

pi . The gravitational acceleration
points towards the negative direction of the z axis while the magnetic
field towards the positive direction.

plasma density increases when moving from large z towards
z = 0 consistent with a balance between the gravitational
and plasma pressure forces as discussed in obtaining (7), for
instance.

In front of the soliton we note the population of reflected
ions: Visually, it appears similar to the “snow plow” effect
found in front of shocks propagating in, for instance, coaxial
plasma accelerators [50,51]. The solitary pulse is excited in
the central part of the plasma (between the two white lines in
the top figure). The boundary conditions for the electric field
makes the pulse spread in the y direction across magnetic field
lines into the surrounding plasma where Te = Ti.

The localized density depletion forming behind the soliton
gives a potential well that can trap particles to form a phase
space vortex there. In Fig. 10 we find the formation of
such a phase space vortex behind the solitary form. These
vortexlike structures have been found in controlled laboratory
experiments first in electron phase space [52] and then also in
ion phase space [53]; see also a summary [40]. In their basic
form, phase space vortices are spatially one-dimensional [54],
but can be found in a three-dimensional form in magnetized
plasmas [55]. These structures are also influenced by the
inhomogeneous plasma conditions [56–58] but they do not
contribute to the particle acceleration. The phase space vor-
tices are purely kinetic phenomena and usually propagating
with moderate velocities, in our case near the ion thermal
velocity while the soliton propagates slightly faster than the
ion sound speed. The distance between vortex and soliton will
consequently be steadily increasing once the vortex is fully
developed.

A number of observations can be made on the basis of the
simulation results. Some basic features predicted by the KdV
equation are thus recovered, i.e., we find a growth of pulse
amplitude as it propagates in the direction opposite to the
gravity direction. Fine details like the amplitude-width soliton
relation are, however, not recovered. The soliton amplitude-
width relation is qualitatively satisfied only for the case where
we set gravitational acceleration G = 0. For this particular
case, the soliton deformation is small, and it is easier to make a
soliton fit to the simulation curve. When we have a significant
amount of reflected particles and at the same time formation
of a trailing phase space vortex, it becomes difficult to find a
proper identification of the width of a pulse and a local soliton
property can no longer be demonstrated.

IX. CONCLUSION

In the present study we analyzed weakly nonlinear ion
acoustic sound pulses propagating in a gravitational plasma
with an isothermal equilibrium. For this inhomogeneous sys-
tem we can solve the linearized wave propagation problem
in a fluid model analytically and find an amplitude increase
of waves and pulses propagating in the antigravity direction.
This is not a true instability [59] and has its origin in conser-
vation of the flux of wave energy density in a medium with
varying density. The potential of the wave has an increasing
amplitude at increasing altitudes and becomes effective in
reflecting particles. Ultimately, all wave energy is transformed
to kinetic particle energy. The gravitational field thus serves
as a “catalyst” in the transformation. We believe this to be
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a new observation. The system is energy conserving and we
cannot gain particle energy exceeding what was present in the
electrostatic pulse at z = 0. Significant particle acceleration
is found only in cases where we have large net energy in the
injected pulses. If the ideas outline in the present study are
applied to the polar ionosphere with vertical or nearly vertical
magnetic field lines, we anticipate that relevant conditions are
found for unstable E- or F-region conditions due to a two
stream instability, for instance [60]. Significant perturbations
can also be excited externally by, for instance, ionospheric
heating experiments.

To give the problem an analytical basis we derived an
approximate model in terms of a modified Korteweg–de Vries
equation. We studied the propagation and deformation of
soliton solutions for this equation. Some basic features of the
numerical results are explained by the model equation also
concerning the energy exchange between solitons and plasma
ions. For the entire energy budget we have to include both the
soliton and the nonsoliton parts, such as plateau and tail. For
interaction with particles, we need to be concerned only with
the soliton part since it has the dominant amplitude.

The numerical results show that some basic features of the
KdV equation are supported, but illustrates also its shortcom-
ings. As a test we first considered a limit where effects of
gravity were ignored and found propagation of a moderate
amplitude soliton shaped structure with a small damping. In
this limit, the predictions from the KdV equation were in
acceptable agreement with observations. We then increased
the gravitational acceleration term and found the damping to
be counterbalanced at G = 0.25 resulting in a slow growth,
and then for G = 0.5 we find an initially exponential growth
that saturates for large times in qualitative agreement with the
analytical predictions but the detailed agreement was missing,
in particular concerning the amplitude-width relation found
for KdV solitons. It should be noted, however, that for prac-
tical reasons the parameters of the numerical simulations are
rather extreme compared to those assumed in the analytical
studies.

It is an essential element in the analysis that the linear
energy propagation speed (here the ion sound speed) is con-
stant for all vertical positions, independent of density. For a
number of other wave types, also this speed is varying and
the energy density flux then becomes a competition between
several parameters. Phenomena and results similar to those
studied here can be found for other inhomogeneous plasma
conditions realizable in laboratory plasmas [6,8–10,47], pre-
sheaths, for instance [30]. We note though that plasma sheaths
near solid surfaces require models without assumptions of
quasineutrality [30]. Such problems require a separate anal-
ysis. Conditions where a vertical current flow is forced from
z = 0 in the direction opposed to gravity are singular [61], and
require also a separate analysis.
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APPENDIX A: BOUSSINESQ TYPE EQUATIONS

The KdV equation is explicitly derived for waves or pulses
propagating in one direction, as evidenced by the operator
∂/∂t + Cs∂/∂z in the lowest order approximation. It is possi-
ble to obtain an equation which can account for bi-directional
propagation, here given in dimensionless form [21],

∂2

∂t2
u − ∂2

∂z2
u − ∂4

∂z4
u − ∂2

∂z2
u2 = 0. (A1)

The two first terms correspond to the classical sound equation
as might be expected. The third term represents a dispersion,
where we note that a term like ∂4u/∂t2∂z2 might as well
have been argued. The last term represents the nonlinearity.
The equation does not have any significant advantage over
the KdV equation, however, at least not as long soliton dy-
namics is an issue. The point is that two counterpropagating
pulse overlap for only a small time, and do not manage to
interact significantly. In case of overtaking interactions, the
interaction time is much longer, and the interaction becomes
significant. This limit is, however, well described by the KdV
equation.

We can formulate a nonlinear equation that includes the
Boussinesq equation for homogeneous conditions and at the
same time accounts for the linear dispersion relation (4)
obtained for the gravitational inhomogeneous system. This
modified equation has the form,

∂2

∂t2
u − ∂2

∂z2
u − ∂4

∂z4
u − ∂2

∂z2
u2 = −g

∂

∂z
u, (A2)

where g is here a dimensionless measure of the gravitational
acceleration. Equation (A2) can be reduced to our modified
KdV equation, but on the expense of higher spatial and
temporal derivatives, it has a wider range of applicability.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE SERIES
EXPANSION OF G(Us, �(t ))

The lengthy series expansion [29] of G(Us, �(t )) used in
Sec. VII A is given here

G(Us, �(t )) = 2

(
e�(t )

M

)2

f (1)
0 (Cs)

(
1 + 4

∞∑
n=3

(2n − 1)(2n − 2)

(2n)!

f (2n−3)
0 (Us)

f (1)
0 (Us)

(
2e�(t )

M

)n−2
)

,

or

G(Us, �(t )) = 2

(
e�(t )

Te

)2

C4
s f (1)

0 (Cs)

(
1 + 4

∞∑
n=3

(2n − 1)(2n − 2)

(2n)!

f (2n−3)
0 (Us)

f (1)
0 (Us)

(
2e�(t )

Te

)n−2

C2n−2
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,

043210-12



WEAKLY NONLINEAR ION SOUND WAVES IN … PHYSICAL REVIEW E 101, 043210 (2020)

where f (m)
0 denotes the mth derivative of f0(u). These series

are subsequently used to rewrite relation (34). The lowest
order approximation leads to an expression that can be inte-
grated analytically.
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