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Abstract. Modern smart systems are highly dynamic and allow for
dynamic and ad-hoc collaboration not only among devices, but also among
humans and organizations. Such a collaboration can introduce uncertainty
to a system, as behavior of humans cannot be directly controlled and
the system has to deal with unforeseen changes. Security and trust play
a crucial role in these systems, especially in domains like Industry 4.0
and similar. In this paper we aim at providing situational patterns for
tackling uncertainty in trust – in particular in access control. To do so,
we provide a classification of uncertainty of access control in Industry 4.0
systems and illustrate this on a series of representative examples. Based
on this classification and examples, we derive situational patterns per
type of uncertainty. These situational patterns will serve as adaptation
strategies in cases when, due to uncertainty, an unanticipated situation is
encountered in the system. We base the approach on our previous work
of autonomic component ensembles and security ensembles.
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1 Introduction

Smart systems (such as smart manufacturing in Industry 4.0, smart traffic, smart
buildings, etc.) are becoming more and more ubiquitous. With this advent and
their direct influence on human lives, also the problem of their security and trust
in them is becoming highly relevant.

As the smart systems strive towards being more intelligent and being able
to cope with various situations, they are becoming highly dynamic and rely on
dynamic and ad-hoc collaboration not only among devices constituting a single
system, but also among systems, humans and organizations. Such a collaboration
typically introduces uncertainty in the system, due to faults in system components,
unexpected behavior of humans, and not fully understood behavior of other
systems and the environment. This all means that a smart system increasingly
needs to deal with unforeseen situations and changes.
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This uncertainty has a significant impact on the security and overall trust.
While the security and trust are normally modeled in rather a strict (and often
static) manner, the introduction of uncertainty demands loosening the strict
boundaries of security and requires a system to inventively self-adapt to meet
new and not fully foreseen situations.

In this paper, we take a first step towards such self-adaptation of security to
not fully foreseen situations. We scope our work to access control in Industry 4.0
settings (as here we can derive experience from our completed project Trust4.0 and
our ongoing project FluidTrust). To create a frame for such self-adaptation, we
provide a classification of uncertainty of access control in Industry 4.0 systems and
illustrate this on a series of representative examples. Based on this classification
and examples, we derive situational patterns per type of uncertainty. These
situational patterns will serve as adaptation strategies in cases when, due to
uncertainty, an unanticipated situation is encountered in the system. We base the
approach on our previous work of autonomic ensembles and security ensembles [4].

The structure of the paper is as follows. Section 2 analyzes state of the art
and related work and then presents a classification of uncertainty. In Section 3,
we discuss and analyze the representative examples of uncertainty and then,
based on the classification and analysis of the examples, Section 4 defines the
adaptation patterns. Section 5 overviews the adaptation framework where the
patterns are employed and Section 6 concludes the paper.

2 Classification of uncertainty in security and trust

In this section, we first discuss existing related approaches and then, based
on them, we build a classification of uncertainty regarding access control. The
classification will serve as a foundation of run-time analyses.

2.1 State of the art in access control and uncertainty

As confirmed in [33], security is a critical attribute in dynamic and adaptive
systems (among whose Industry 4.0 systems belong). The need for dynamicity
and self-adaption in these systems stems from the constantly changing context in
which the system operates. The survey in [29] discusses context-based middlewares
targeting systems like Internet of Things (which are a special type of dynamic
and adaptive systems). Security and privacy is dealt only by three middlewares
out of eleven. As access control is one of most important aspects of security and
confidentiality, RBAC and similar approaches are discussed below.

Access Control is one of established means to enable security and trust.
The classical access control systems are DAC [40] and MAC [17] but they are
applicable to the simplest solutions only. More advance is Role-based access
control (RBAC) [1], which employs groups to gather access rights for similar
users. Through this abstraction, the rules are more comprehensible. However,
the strict static relationship from groups to rules does not fit dynamic situations
and there is no horizontal composition supported between multiple organization.



Thus, the Organisational Based Access Control (OrBAC) has been introduced
and recently enhanced by support of horizontal composition [9]. However, it does
not support the inclusion of confidentiality analysis and uncertainty. Another
well-known access control system is Attribute Based Access Control (ABAC) [25],
where access is managed over attributes, which need to be satisfied for accessing
data. In [7], an approach based on ABAC is described, which targets also
dynamic situations, nevertheless only unexpected and uncommon user behavior
(that might represent an attack) is considered. In [39], an approach targeting
access policies generation for dynamically established coalitions is described,
nevertheless, the coalitions are meant only as groups of people with the same goal
but by themselves are not dynamically described. In [42], an approach for security
and access control in health care IoT systems is described, but from the point of
dealing with uncertainty, it supports only emergency like situations, for which it
offers a “break-glass key” approach, i.e., there is a predefined set of persons that
know the particular “break-glass key” and in the case of unexpected emergency
situation, they have to be contacted. In [36], an adaptive access control approach
based on answer set programming targeting context-based systems is shown, but
uses predefined access control policies with predefined exceptions.

In summary, there are approaches targeting dynamic access control but only
for anticipated changes (i.e., no uncertainty) and with rigid and predefined access
rules. However, the increase in dynamicity leads to not anticipated changes, which
results in uncertainty. Thus, it is important to take a look to at the uncertainty
research area and try to combine it with access control approaches.

An important step to quantify the uncertainty is to realize its source. Depend-
ing on the classifications presented on [31], the uncertainty exists on different
levels of the system, which are in modeling phase, adaptation functions, goal,
environmental and resource uncertainty. Regarding the uncertainty in adaption,
the authors in [19] define an uncertainty taxonomy, classify the uncertainty types
and match them to MAPE-K stages. These requires to investigate the source
of uncertainty and involve the uncertainty handling in the current techniques
for performing self-adaptation [27], which are based on using parameters that
change the behavior, changing the structure (i.e., reconfiguration), or changing
the context. For instance, some frameworks [37,8] investigate the context that in-
troduces uncertainty in behavior. In [30], the authors present a context taxonomy
in addition to a 3-layer framework to design context-aware systems. The authors
in [32] aim at reducing the impact of uncertainty in quality evaluation. This is
done by defining uncertainty taxonomy and study their sources. The study shows
that multiple uncertainties could impact model-based quality evaluation. In [34],
the study aims at defining taxonomy of uncertainty types, template for their
sources, occurrence, and their effect on requirement, design and runtime levels.

Regarding uncertainty in requirements engineering, the classical RELAX [41]
approach captures weakening requirements according to environmental conditions
(i.e., uncertainty) in runtime. Even though combing RELAX with SysMLKaos [2]
allows the developer to consider non-functional requirements, it does not consider



the development of the system nor provides mechanisms to fulfill the conditional
requirements.

In self-adaptive systems, many works are handling different kinds of uncer-
tainty using probabilities and learning. For instance, the Stich language [14] is
used in Rainbow framework [16] that employs MAPE-K model. It introduces
tactics and strategies as basic concepts for supporting dynamicity. It allows
the developer to describe the likelihood of evaluating the condition of strategy
selection to true. Using formal approach, [38] presents stochastic multi-mode
systems (SMMS) that approximate the action of a moving vehicle, so it satisfies
almost-sure reachability, which is the movement within a certain safety corridor.
As for uncontrollable entities, [6] introduced a proactive adaptation to capture
possible dangerous situations using prediction over historical data (i.e., fire predic-
tion). For unforeseen situations, NiFti project [26] uses human-robot cooperation
to achieve the goal in rescue missions. More specifically, the robots can alter a
predefined plan to utilize the resources, and depending on robot updates on a 3D
map the rescue can change the path for robots to avoid obstacles. Even though
the previous work considered controllable/uncontrollable entities, they do not
consider evaluating the risk/loss tradeoff.

Systems of the Industry 4.0 domain can be seen as a special case of Smart
Cyber-Physical Systems (sCPS) [11], which also exhibit a high level of uncertainty.
This has been already partially studied, e.g., in the scopes of the ASCENS and
Quanticol projects [28,35]. Also, we partially addressed statistical modeling of
human behavior in sCPS [10] and adaptation via meta-adaptation strategies [21]
however a complete approach for sCPS is yet missing.

In summary, there are classifications and approaches for uncertainty. How-
ever, so far to our knowledge no combination of access control approaches and
uncertainty exists.

2.2 Classification of uncertainty in access control

We applied, adopted, and condensed the classification of uncertainty from Perez-
Palacin et al. [32] to better fit the needs of uncertainty in access control in
Industry 4.0 systems. The adapted classification consists of three dimensions:
Levels of uncertainty, Nature, and Source. The first two dimensions are taken
from [32]. The last one is added to better categorize software architecture.

Levels of uncertainty categorize uncertainty by the degree of awareness. There
are four levels. We removed the fifth from the original classification because it
is—in our eyes—not practically applicable. The first level is that no uncertainty
exists. In our case, this means that the system can decide without guessing what
the correct access rules are. The second level introduces uncertainty but the
system is aware of it and has appropriate measures to handle it. One solution
to handle this is fuzzy logic for access control like used in [13]. The third level
adds situations where the system is unaware of the existence of uncertainty. In
the field of security, a component of an access control system can fail and deny
access for everyone. In that case, the uncertainty is about the operability of the
access control system. One solution for this might be a continuous monitoring



approach similar to [23], which will trigger an adaptation process. This moves
the uncertainty to level two because the system becomes aware of the uncertainty.
The fourth and last level is that there exists no process to find out that the
system has uncertainties. In general, this should be avoided [32].

Nature distinguishes between epistemic and aleatory. We reuse this category
from [32] unchanged. Epistemic means that uncertainty exists because there is
not enough data available. In policy mining approaches such as the one in [15],
uncertainty might exist if the log data does not consist of every necessary case.
Aleatory describes a situation, which is too random to consider. For instance,
this might be the break-down of a security sensor because of vandalism.

Source describes where uncertainty for access control can be found in the
modeled system. We distinguish between system structure, system behavior, and
system environment. We used this three subcategories, since systems consist
of at least a structure, a behavior and an environment and in everyone of
these uncertainty can exist. However, this is not an exclusive categorization,
because scenarios could fall into multiple of these categories. System structure
is comparable to the model structure from [32]. The system structure describes
the design of the system. It consists of for example components, hardware
resources, the wiring of components via required and provided interfaces. The
system behavior describes the uncertainty in the actual behavior of the system.
This can be for example the uncertainty about the intended usage. In access
control the behavior is often regulated by access control rules. These rules
might introduce uncertainty, if they are incorrect. However, they might also help
to handle uncertainty. Therefore, we would count access control rules to the
system behavior. The last subcategory is the system environment. The system
environment describes the context in which a system is executed. This includes
also the input data for the system. For instance this might be that due to bad
sensor data, which is the input data the system cannot produce an accurate
result for the location of an user and therefore decides s/he is not in compound
and marks her/him as unauthorized.

3 Representative examples/use-cases

As a basis of representative examples, we are using a use-case [5] from our previous
project Trust4.03, which focused on dynamic security. The use-case is simple
however fully realistic as it has been developed together with and is based on
interviews with industrial experts in the project. Within the project we created
an approach for managing access control suitable for highly dynamic environment
of Industry 4.0. The approach is based on application of dynamic security rules.
Nevertheless, during the project we encountered several important situations,
where uncertainty prevented formulating or even foreseeing strict access control
rules. This requires a foundational change in the approach how the access control
rules can be designed, verified and enforced, such that the uncertainty can be
explicitly represented, tackled and reasoned about.

3http://trust40.ipd.kit.edu/home/
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In the light of the classification shown in Section 2.2, we compare these
categories against experiences of these situations we gathered together with our
industry partners. We examined how the different types of uncertainty in the
scenarios can be located within the given categories. We are focusing on the
second and third level of uncertainty (the first level represents no uncertainty
whereas in the fourth, uncertainty cannot be managed). As for nature, we handle
both epistemic and aleatory uncertainty – this is necessary because if in a
decentralized system an unexpected situation occurs, it is imperative to make
a reaction regardless whether the situation is completely random or just not
fully known. Importantly, we also assume that as the reaction typically has to
be immediate there is no scope to obtain unknown data which would normally
be one way to handle epistemic uncertainty. Similarly, we address the different
subcategories in the source section. We describe the application of the source
categorization with each example.

The use-case [5] assumes a factory with multiple working places where groups
of workers work in shifts. The workers have access only to the workplace to which
they have been assigned. Also, before the shift, they have to collect protective
gear from a dispenser, without which they are not allowed to enter the workplace.
The workplace is equipped with machines that can monitor their state and also
can be reconfigured. The actual detailed log of what the machine did and what
its internal settings are is confidential as it constitutes the intellectual property of
the factory. To support the production in the factory, there is a constant in-flow
of trucks bringing in material and taking out finished products. The truck is
allowed to enter the factory only when it is designated so in the schedule and to
enter the factory it must use a designated gate within a designated time interval.

Primarily, the access-control permissions are of two kinds: allow and deny (in
a case of inconsistencies, evaluation order is allow–deny).

The identified examples of situations, in which the system encounters a state
that was not anticipated and the access-control rules do not count with it, are as
follows:

Example 1 A dispenser breaks and stops distributing the protective gear
which is required to enter a shift. The system has to allow a foreman to open the
dispenser so as to distribute the protective gear manually. Applying our source
categorization, this falls into system structure and behavior, since the failing
dispenser would be a structure problem and the opening and the distribution of
gear by the foreman would be a different system behavior.

Example 2 An access gate is disconnected from the central authorization
service and thus prohibits anyone to pass through because the access cannot be
verified (this is actually quite a commons situation of gates letting the trucks
inside the factory). The system has to allow the security personnel on the gate
to manually define who can pass through. This would also fall into the system
structure since the access gate would be a missing component and the system
behavior category since the default behavior is changed.

Example 3 A machine is broken and repair requires that a third-party repair-
man has access to internal machine logs. In order to do the job, the repairman



requires access data summaries which are anonymized over several shifts. As the
repairman arrives at the place, it turns out that access to the data cannot be
given because the data cannot be properly anonymized because the last operation
was not long enough to collect the required data points that are needed to
ensure proper anonymization. The source categorization would categorize this
example into system structure since the broken machine introduces uncertainty,
and system environment since the input data adds uncertainty whether machine
can be repaired by the technician or not.

Example 4 An unexpected and unauthorized person appears at a workplace.
By the system design this cannot happen because the person would have to pass
a security gate. In this case, the system should dynamically enable the foreman
or some other trusted person in the vicinity to access information allowing them
to determine the person identity and reason to be there before the security
personnel is called. As for our source categorization this would be in the category
environment, since the context (here attendance of person) introduces uncertainty
to the system.

In all the examples above, the system needs to autonomously take a decision
which is beyond its pre-designed access control rules. In doing so, it has to
evaluate how the access-control rules should be adapted in order to minimize the
potential risk and loss (i.e., what is risked if the access-control rules are weakened
and what can be lost, if the rules are strictly followed and not weakened).

3.1 Examples analysis
Here, we analyze the presented situations from multiple different views in order
to build the situational patterns in the next section.

In Example 1, the system gives rights to someone, who is already trustworthy.
Particularly, the foreman is responsible for the whole shift and has rights to
access personal information about all the workers in his/her shift and has overall
responsibility of the shift. Thus, assigning him/her the rights for the dispenser
does not represent a significant security issue. On the other hand, not to assign
the rights means that the shift cannot be executed without the protective gear
and there might be a significant loss for the company.

In Example 2, the situation is similar from the risk/loss view. Again, the
access right (for the gate now) is assigned to someone, who is trustworthy and in
fact already has a superior access right (the security personnel is responsible for
all the entries to the factory area anyway).

Nevertheless, there is an important difference between Example 1 and Example
2 which is characterized by the question which component in the security chains
is broken. In the Example 1, the dispenser is a terminal component in the chain.
Thus, the foreman needs to be assigned with a additional access right (open
the dispenser), however no one (foreman, workers) has it currently assigned. In
Example 2, the gate is disconnected and cannot verify access rights. The broken
part here is an intermediate component in the security chain which assigns the
access rights. The security personnel thus replaces a component (the gate) in the
chain and the scenario is as before.



The Example 3 is a different one. Here, the security risk is that the repairman
can see unanonymized data and the loss is that the shift cannot proceed (which
can lead to loss of profit for the company). However, the repairman typically has
signed a kind of NDA (non-disclosure agreement) as even only via his/her presence
in the company, he/she is eligible see proprietary information. Thus, relaxing
on having the access right for seeing unanonymized data does not represent a
significant issue (the anonymized data are a second level of protection—the first
one is NDA).

Example 4 is quite close to Example 1. Here, the system has to give additional
rights to someone, who is already trustworthy (the foreman is responsible for the
whole shift and all workers in the shift).

3.2 Summary

Based on the analysis from the previous section, we can identify two dimensions
defining a space, in which new rules are created: (i) whether something is allowed
or denied (ii) what is done with access rights.

For the first dimension, the options are obvious, either the new rule works
with: (1) the allow permission, or with (2) the deny permission.

For the second dimension, the options are: (A) a permission is given to
a component, (B) decision about a permission assignment is delegated to a
component, (C) a permission is removed.

Table 1 maps the examples to the space of above defined dimensions. The
cases not covered by the examples above, can be exemplified as follows (in the
table marked as Post-hoc examples): For the 1xC case (removing the allow
permission, Post-hoc C example)—if the foreman tries to read information not
accessible to him/her, it is evaluated as a potential security attack and all his/her
access rights are removed. For the 2xA case (adding the deny permission to a
component, Post-hoc A example)—if the repairman starts to read data unrelated
to the machine/shift, new rule with the deny permission for him/her is created.
For the 2xB case (delegating the deny permission to a component, Post-hoc B
example)—as in the previous one, if the repairman starts to read data unrelated
to the machine/shift, new rule delegating the deny permission to the foremen is
created.

A B C
1 Example 1, 4 Example 2 Post-hoc C
2 Post-hoc A Post-hoc B Example 3

Table 1: 1st vs 2nd dimension

Also, from the analysis, we can observe that the typical reasons that someone
obtains new permissions is

(a) he/she already has a role that implies governance over part of a system for
which the new permission is to be granted – thus the new permission does
not extend the scope of governance of the subject, it only completes it,



(b) he/she has an equivalent role to someone who already has the permission,
(c) a risk connected with obtaining the new permission is low compared to the

loss connected with not obtaining the permission.
Similarly, we can observe that the typical reasons that someone is loosing per-
missions is that he/she is trying to perform a suspicious operation and thus, as a
preventive measure, he/she looses access.

Note that item (c) subsumes (a) and (b). However, we still list (a) and
(b) separately because these conditions are easier to establish. Whereas the
comparison of risk vs. loss is typically difficult to do. In situations when this
ratio cannot be reliably done, it is necessary to assume that the risk is too high.

4 Situational patterns for uncertainty
With the analysis performed, we can define the situational patterns, which serve
as a strategy for dynamic adaptation of security access rules.

For describing the patterns, we use a format inspired by the classical books
on patterns [18,12], however we have updated the format to our needs (which is a
common and recommended practice [20], i.e., to update the format to own needs
as the content is more important than the form). Our format is: (i) Name of the
pattern, (ii) Solution (description of the pattern), (iii) Context (determination of
components and their behavior where the pattern is applied), (iv) Consequences
(in our cases, mainly the risk discussion), and (v) Example.

There are three identified patterns following the second dimension from
Section 3. Plus, there are sub-variants following the first dimension in those case
where the division is necessary.

4.1 Pattern 1a – Adding an allow rule
Solution A new situation cannot be handled with currently assigned permis-

sions — a new allow permission needs to be assigned, i.e., a new security
access rule assigning the allow to a component is added to the system.

Context The allow permission, i.e., a rule with the allow permission, is assigned
to a component, which either has: (a) such a role in the system that the
new rule does not fall outside the component’s area of competence, or (b) a
similar role in the system as a component that already has the same rule.

Consequences By adding the allow permission, the affected component can
have higher access within the system than originally intended and it might
lead to a potentially dangerous situations. Thus the trade-off has to be
greater for adding the allow permission than for not adding it (and therefore
leaving the system in a non-functional state).

Example The Examples 1 and 4 are direct representatives of this pattern.

4.2 Pattern 1b – Adding a deny rule
Solution A potentially dangerous situation occurs in the system. The deny

permission is assigned to the component (i.e., a new security access rule
assigning the deny to a component is added to the system).



Context A component has started to misbehave—accessing more than is usual
and/or necessary for it. As a security measure, the deny rule is assigned to
the component.

Consequences The situation here is reversed to the Pattern 1a, i.e., the trade-off
has to be greater for limiting access right for the affected component.

Example The Post-hoc A example is direct representative of this pattern.

4.3 Pattern 2a – Removing an allow rule

Solution A potentially dangerous situation occurs in the system. The allow
permission is removed from the component (i.e., an existing security access
rule assigning the allow to a component is removed from the system).

Context A component has started to misbehave and or is broken. As a security
measure, the allow rule is removed from the component. The pattern is very
similar to the Pattern 1b—the difference is that the Pattern 1 is used when
there is no rule to be removed.

Consequences The situation here is the same as for the Pattern 1b
Example The Post-hoc C example is direct representative of this pattern.

4.4 Pattern 2b – Removing a deny rule

Solution The system runs in a situation that is blocked by a rule with the deny
permission. The deny permission is removed from the component (i.e., an
existing security access rule assigning the deny to a component is removed
from the system).

Context The system can continue in the common operations only if a component
can access an entity (e.g., another component) but there is a rule denying
the access. The rule is removed.

Consequences The rule can be removed only in the case the rule represents
redundancy in the security chain.

Example The Example 3 is direct representative of this pattern.

4.5 Pattern 3 – a new access rule validator

Summary The system runs in a situation that is blocked by a component
that validates access for other components (e.g., the component is broken).
Another component is chosen as a replacement and serves as a new validator.

Context The selected component has to already have a supervisor-like role in
the system.

Consequences As the selected component has to already have a supervisor-like
role, the risk of assigning additional permissions to it is minimized.

Example The Example 2 is direct representative of this pattern for the allow
permission and the Post-hoc B for the deny permission.

5 Applying patterns in an adaptation framework

zAs we described in [3], we model dynamic security rules as ensembles. This
allows us to target dynamic security in collective adaptive systems. Ensembles are



instantiated dynamically to reflect ever changing situations and collaborations in
a system.

An ensemble definition is static in terms which permission it assigns and
the predicate identifying components it applies to (i.e., subjects and objects
of the permissions). The dynamicity comes from the fact that an ensemble is
instantiated at runtime for each group of components that match the roles and
constraints in the ensemble. The components are identified by their state. As this
state changes throughout the lifetime of the system, the selection is dynamic.

From the architecture perspective, we model the system as an adaptive system,
where security ensembles generate access control rules that are understood by
legacy systems. This is the first-level of adaptation as shown in Figure 1 –
controlled by an Adaptation Manager. In this paper, we see the adaptation as
decentralized. As such, we assume multiple Adaptation Managers, each of which
instantiates ensembles in its domain of control and determines access control
rules pertaining to particular subjects and objects.

To account uncertainty that is addressed by the situational patterns as
presented in this paper, we build on our approach to architectural homeostasis [22]
and incorporate the patterns described in this paper as a meta-adaptation layer
(i.e., a layer that adapts the ensembles themselves) as visualized in Figure 1.

Pattern 3

Pattern 1b

A M

P E

K

Pattern 1a

A M

P E

K

Dynamic security rules

H-Adaptation
Manager

Adaptation
Manager

Hall 1 Hall 2

Hall 3

Dispenser

Gate

homeostasis layer adaptation layer system

coordinate

monitor

coordinate

monitor

Fig. 1: Meta-adaptation framework

The idea is that each pattern is reflected as one strategy of the meta-adaptation
layer. The strategy modifies existing ensembles that implement the dynamic
security of the collective adaptive system. This extra layer extends the adaptation
space of the system and helps tackling situations that were not fully anticipated
and lie beyond the scope of the system states addressed by the security ensembles
(i.e., the middle layer in Figure 1)

Each pattern is represented as a MAPE-K adaptation loop that monitors
the system for unanticipated situations targeted by the particular pattern. The
pattern also determines the dynamic security rules that have to be introduced to
tackle the unanticipated situation.

Listing 1 shows a brief excerpt of the security specification via ensembles for
our factory use-case. The specification is written in our DSL, which is created as
an internal DSL in the Scala language.



1 class TestScenario() extends Model {
2 object CAS extends Component { /∗...∗/ }
3 class Gate(/∗...∗/) extends Component { /∗...∗/ }
4 /∗ ... ∗/
5 class FactorySystem(factory: Factory) extends RootEnsemble {
6 class GateAccess(gate: Gate) extends Ensemble {
7 initiatedBy(CAS)
8 val assignedTransports = transports.filter(tr => tr.assignedGate == gate)
9 class TransportAccessThroughGate(transport: Transport) extends Ensemble {

10 situation {
11 (now isEqualOrAfter (transport.scheduledArrival minusMinutes 5)) &&
12 (now isEqualOrBefore (transport.scheduledArrival plusMinutes 15)) &&
13 transport.assignedGate == gate
14 }
15 allow(transport, Enter, gate)
16 }
17 val transportAccesses = rules(transports.filter(tr => tr.assignedGate == gate).map(tr => new

TransportAccessThroughGate(tr)))
18 }
19
20 class ShiftTeam(shift: Shift) extends Ensemble {
21 initiatedBy(CAS)
22 object AccessToFactory extends Ensemble {
23 situation {
24 (now isEqualOrAfter (shift.startTime minusMinutes 45)) &&
25 (now isEqualOrBefore (shift.endTime plusMinutes 45))
26 }
27 allow(shift.foreman, Enter, shift.workPlace.factoryBuilding)
28 allow(assignedWorkers, Enter, shift.workPlace.factoryBuilding)
29 }
30 object AccessToDispenser extends Ensemble {
31 situation {
32 (now isEqualOrAfter (shift.startTime minusMinutes 40)) &&
33 (now isEqualOrBefore shift.endTime)
34 }
35 allow(shift.foreman, Use, shift.workPlace.factoryBuilding.dispenser)
36 allow(assignedWorkers, Use, shift.workPlace.factoryBuilding.dispenser)
37 }
38 object AccessToWorkplace extends Ensemble { /∗ ... ∗/ }
39 object AccessToMachine extends Ensemble { /∗ ... ∗/ }
40 object NoAccessToMachineSensitiveDataOtherThanFromWorkplace extends Ensemble { /∗ ... ∗/ }
41 object AccessToBrokenMachine extends Ensemble {
42 val assignedRepairmen = repairmen.filter(rm => rm.machine == shift.workPlace.machine)
43 allow(assignedRepairmen, Read("logs"), shift.workPlace.machine)
44 }
45 deny(repairmen, Read("∗"), shift.workPlace.machine, PrivacyLevel.SENSITIVE)
46 /∗ ... ∗/
47 rules(
48 AccessToFactory, AccessToDispenser, AccessToWorkplace,
49 AccessToMachine, AccessToBrokenMachine, CancellationOfWorkersThatAreLate
50 )
51 }
52 val shiftTeams = rules(shifts.filter(shift => shift.workPlace.factoryBuilding.factory ==

factory).map(shift => new ShiftTeam(shift)))
53 val gateAccessRules = rules(gates.map(gate => new GateAccess(gate)))
54 }
55 val factoryTeam = root(new FactorySystem(factory))
56 }

Listing 1: Original security specification

Below, we overview the parts of the specification important to this paper.
Details about the syntax and semantics of DSL for security ensemble specifications
are available at [24].



Components are used to represent entities in the system that (a) can be
assigned access control, (b) are subject of access control, or (c) can determine
the access control by controlling formation of security ensembles (i.e., acting as
the Adaptation Manager in the middle layer).

The components are listed in lines 2-4. These represent components for the
Gate, Factory, Workplace, Central−Access−System (CAS), etc. but also components
that cannot be directly controlled by the system, but still are relevant to access
control—like Workman, Repairman, etc.

Then, the ensembles representing security specifications are defined. The
ensembles are hierarchical, which allows for more simple definition thanks to
decomposition. The FactorySystem ensemble (line 5) represent the whole system.
The GateAccess (line 6) ensemble controls access through the gate to the factory.
This ensemble is initiated (i.e., its instantiation is controlled by) the CAS com-
ponent and it has a single further subensemble TransportAccessThroughGate (line
9), which is instantiated for each transport coming to the factory. Here, if the
transport satisfies the condition defined in the situation (line 10), it is allowed
to enter through the gate via the allow rule (line 15). Similarly to the GateAccess
ensemble, the ShiftTeam ensemble (line 20) controls access of workers (and other
persons) to and within the factory. It is also decomposed to several subensmbles
controlling access to individual elements of the factory, i.e., the AccessToFactory
ensemble controlling access to the factory, the AccessToDispenser controlling access
to the dispenser for headgear, and so on.

In addition to the allow rules, the specification also lists deny rules. The
semantics is allow-deny, meaning that a deny rule overrides any allow rules. The
deny rules are used in the specification to express cross-cutting policies—e.g.,
that no external repairman should get access to sensitive data. We assume that
all the security to be primarily specified via the allow rules. The deny rules thus
act more as assertions to detect inconsistencies in the specification.

As mentioned above, the H-adaptation manager monitors the system for
unanticipated situations and introduces new ensembles and rules to the security
specification of the system. Particularly for our use-case, if the H-adaptation
manager detects a situation corresponding to the Example 1 (the broken dis-
penser, i.e., the Pattern 1a), it updates the AccessToDispenser ensemble with the
additional allow rule and thus, the ensemble rules will look as follows:

1 object AccessToDispenser extends Ensemble {
2 /∗ ... ∗/
3 allow(shift.foreman, Use, shift.workPlace.factoryBuilding.dispenser)
4 allow(shift.foreman, Open, shift.workPlace.factoryBuilding.dispenser) // ADDED
5 allow(assignedWorkers, Use, shift.workPlace.factoryBuilding.dispenser)
6 }

Listing 2: Updated specification based on Pattern 1a

Similarly, if the H-manager detects a situation corresponding to the Example
3 (the broken machine, i.e., the Pattern 2b), it removes the deny rule at line 45
(in Listing 1) disallowing the repairman to read sensitive data.

If the H-manager detects a situation corresponding to the Example 2 (the
disconnected gate, i.e., the Pattern 3), it updates the GateAccess ensemble so



it is initiated not by the CAS component but by the security personnel, i.e., it
starts as follows:

1 class GateAccess(gate: Gate) extends Ensemble {
2 initiatedBy(gateSecurityHeads(gate)) // instead of initiatedBy(CAS)

Listing 3: Updated specification based on Pattern 3

6 Conclusion

In this paper, we have presented access-control related situational patterns, which
serve as meta-adaptation strategies in cases when an unanticipated situation is
encountered in the system. The patterns primarily target the domain of Industry
4.0, however they are applicable to other similar domains of modern smart cyber-
physical system. They are based on our experience gained from participating
in industrial projects. The patterns represent a first step for self-adaptation of
security management.

Currently, we are continuing with the implementation of the adaptation frame-
work and incorporating the patterns there. As an ongoing work, we investigate
further industrial-based examples and update the patterns correspondingly.
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