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Abstract. Different moisture processes in the atmosphere leave dis-
tinctive isotopologue fingerprints. Therefore, the paired analysis of wa-
ter vapour and the ratio between different isotopologues, for example
{H2O, δD} with δD as the standardized HDO/H2O isotopologue ratio,
can be used to investigate these processes. In this paper, we propose a
novel semi-supervised approach for trajectory segmentation to extract
information that enables us to identify atmospheric moisture processes.
While our approach can be transferred to a variety of domains as well, we
focus our evaluation on Lagrangian air parcel trajectories and modelled
{H2O, δD} fields. Our final aim is to understand the free tropospheric
{H2O, δD} pair distribution that is observable by satellite sensors of the
latest generation. Our method adopts a recently developed density-based
clustering algorithm with constrained expansion, CoExDBSCAN, which
identifies clusters of temporal neighbourhoods that are only expanded
with regards to a priori constraints in defined subspaces. By formulating
a constraint for the correlation of {H2O, δD}, we can segment trajecto-
ries into multiple phases and extract the regression coefficients for each
phase. Grouping segments with similar coefficients and comparing them
to theoretical values allows us to find interpretable structures that corre-
spond to atmospheric moisture processes. The experimental evaluation
demonstrates that our method facilitates an efficient, data-driven anal-
ysis of large-scale climate data and multivariate time series in general.

Keywords: Semi-Supervised Clustering · Multivariate Time-Series ·
Time-Series Segmentation · Climate Research.

1 Introduction

With advances in technology that translates into an increasing amount of data,
researchers across many disciplines face new challenges analysing and gaining
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knowledge from massive volumes of data. For example, the U.S. National Oceanic
and Atmospheric Administration (NOAA) cites for their Big Data Program that
tens of terabytes of data are generated from satellites, radars, ships, weather
models, and other sources a day [13]. Unsupervised learning methods such as
cluster analysis are particularly useful in analyzing large amounts of data since
it allows domain experts to consider groups of objects rather than individual ob-
jects and to focus on a higher level representation of the data [19]. While many
advances in cluster algorithms have been made for spatiotemporal data [11, 19],
such as atmospheric model data, many proposed methods lack the exploitation
of available a priori knowledge that might improve the output quality [5]. Espe-
cially semi-supervised learning clustering algorithms, which incorporate a prior
knowledge into the clustering process, can improve the quality of the results
[3]. In this paper, we propose a novel semi-supervised approach for subsequence
time series clustering based on our recently developed density-based clustering
algorithm with constrained expansion called CoExDBSCAN [4]. By applying Co-
ExDBSCAN we can segment trajectories of {H2O, δD} pair distributions into
multiple phases which can be associated with atmospheric moisture processes.
Identifying such processes is an important scientific task to infer the dynamics of
cloud-circulation systems. Investigating the atmosphere from a cloud-circulation
system perspective is essential to address the significant uncertainty of climate
predictions [1].

The two main contributions of our work presented here are:

– Adaptation of our CoExDBSCAN algorithm for trajectory segmentation by
formulating a constraint on the {H2O, δD} pair distribution to differentiate
multiple phases of a trajectory.

– Extracting information about the regression coefficients for each phase and
comparing the distribution of coefficients to theoretical values to identify
corresponding atmospheric moisture processes.

The remainder of this paper is organized as follows. Section 2 introduces re-
lated work and background knowledge about our data, the theory behind the re-
lation of {H2O, δD} and atmospheric moisture processes. In Section 3 we present
the experimental evaluation of our proposed approach and provide a discussion
of the results in Section 4. We conclude the paper in Section 5 and provide an
outlook on future research.

All dataset together with the code for this paper are publicly available in the
supplementary GitHub repository3.

2 Background

2.1 Trajectory Clustering

Trajectory clustering and subsequence time series clustering are well established
research fields. Trajectories can be described as sets of measurements which are
3 https://github.com/bertl4398/iccs2021
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measured as a function of an independent variable, typically time, where each
individual trajectory measures a possible multidimensional response variable [7].
One of the first comprehensive methods for this type of data has been introduced
by Gaffney et al. [7], who proposed a probabilistic mixture regression model ap-
plying the Expectation Maximization (EM) algorithm to cluster trajectories and
demonstrated their approach analysing extratropical cyclones [8]. Since cluster-
ing whole trajectories can overlook common behaviour in partial segments of the
trajectories, Lee at al. [10] proposed a partition-and-group framework and a tra-
jectory clustering algorithm called TRACLUS, which they demonstrated among
others in the field of climate research for hurricanes landfall forecasts. Following
the given notion of trajectory data, there is no distinction to time series data
in general, however the data records per individual trajectory can frequently
be too short to be amenable to conventional time series modelling techniques,
which requires specialized approaches [7]. Zolhavarieh et al. [21] compiled a well
received survey about subsequence time series clustering algorithms and ap-
plications. More recently there have also been subsequence time series cluster
algorithms proposed that are model-based [9], completely unsupervised [20] or
semi-supervised [4]. We have recently developed the semi-supervised algorithm
CoExDBSCAN, that utilizes the original DBSCAN algorithm proposed by Ester
et al. [6], to find density-connected clusters in a defined subspace of features and
restricts the expansion of clusters to a priori constraints. Because we can formu-
late an a priori constraint on the {H2O, δD} pair distribution of our data based
on expert knowledge, CoExDBSCAN is a suitable choice to our problem. Co-
ExDBSCAN has been demonstrated to be especially suited for spatiotemporal
data, where one subspace of features defines the spatial extent of the data and
another subspace the correlations between features. We can apply the algorithm
to differentiate multiple phases in our trajectory data. However, by focusing on
the temporal aspect of the trajectories, i.e. considering our data as multivariate
time series, in distinction to the original algorithm we define the time space of
the data as subspace for the distance based density computations. In this way
we are able to find subsequences that follow our formulated constraint on the
{H2O, δD} pair distribution. For a detailed explanation of the original DBSCAN
and CoExDBSCAN algorithms as well as the pseudo code of the algorithms, we
refer to the original papers by Ester et al. [6] and Ertl et al. [4] respectively.

2.2 Research Data

Our final research aim is to link the global {H2O, δD} pair distribution observed
in the MUSICA IASI satellite-based remote sensing data set [17, 2] to different
moisture processes that occurred prior to the observation. This dataset offers
well-documented {H2O, δD} pair data from the year 2014 to 2020 with high
quality and global coverage. The generation of this unique dataset has become
only recently possible through advances in satellite sensor technology and re-
trieval theory. In this dataset and throughout this paper, H2O indicates the
water vapour concentration measured in parts per million by volume (ppmv);
δD corresponds to the standardised ratio value between light and heavy water
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Fig. 1: Example global MUSICA IASI H2O data for morning satellite overpasses
at 2016-06-08. H2O values are in parts per million by volume (ppmv) in loga-
rithmic scale. The depicted data are limited to cloud free observations and have
been filtered for best quality (retrievals with good sensitivity and low errors).
The red square indicates our area of interest for the trajectory clustering.

i.e. H2O and HDO [17]. Figure 1 and Figure 2 illustrate the characteristics of
the MUSICA IASI dataset.

Figure 1 shows the global H2O observations retrieved from the infrared
atmospheric sounding interferometer (IASI) onboard the EUMETSAT (Euro-
pean Organisation for the Exploitation of Meteorological Satellites) Metop-A
and Metop-B (Meteorological Operational) platforms for morning overpasses at
the 8th June 2016 for about five kilometers altitude. For this single day 183,036
individual observations are available after filtering out cloudy and partly cloudy
observations as well as observations with bad quality.

Figure 2 depicts the {H2O, δD} pair distribution starting from the same
date at the 8th June 2016 until the 30th June 2016 for the area of interest (red
rectangle in Figure 1). All MUSICA IASI {H2O, δD} data are shown as gray
dots and the contours are at 2.5%, 10% and 50% levels, meaning the percentage
of data lying outside the indicated area.

Different water cycle processes affect the isotopic composition of atmospheric
water differently, for example lighter isotopes evaporate preferentially while heav-
ier isotopes condense preferentially. The red lines in Figure 2 illustrate the the-
oretical dependencies of δD as a function of H2O. Noone et al. differentiate
between five processes that leave a distinct trace in the {H2O, δD} value space
[14]:

1. Rayleigh pseudoadiabatic process in which the liquid water that con-
denses is assumed to be removed as soon as it is formed, by idealized instan-
taneous precipitation (red dotted line in Figure 2)
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Fig. 2: Example MUSICA IASI {H2O, δD} pair distribution. The 61,283 ob-
servations are for morning and evening satellite overpasses from 2016-06-08 to
2016-07-30 withH2O in logarithmic scale in the area of interest (see red rectangle
in Figure 1); red lines indicate theoretical lines.

2. Super-Rayleigh remoistening associated with isotopic exchange as rain-
drops evaporate into a subsaturated layer (red solid line in Figure 2)

3. Reversible moist adiabatic process with a transition to a Rayleigh process
when condensation is to ice and irreversible (not shown, would be a line with
a weaker slope as the dotted line in Figure 2)

4. Mixing of two different mixing members having a specific {H2O, δD} char-
acteristic (red dashed lines in Figure 2 show two examples)

5. Terrestrial transpiration mixing with land source (not shown)

Noone’s work establishes a theoretical basis for using isotope ratio observa-
tions paired with the water vapor mixing ratio to identify different water sources,
condensation processes, and transport pathways in the troposphere. Moreover,
Noone et al. were able to derive slope and intercept of the linear relationship
between H2O and δD from measurements of the isotope ratio of water vapor at
the Mauna Loa Observatory [15].

In this paper, we apply our segmentation algorithm to the {H2O, δD} pairs
modelled along Lagrangian air parcel trajectories. As model data we use the high-
resolution data from the regional isotope-enabled atmospheric model COSMO-
iso [12] and the trajectories are determined with the tool LAGRANTO [18].
The trajectories’ calculation setup is oriented towards the overpass times and
altitudes representative for the MUSICA IASI data. Analysing the model data
enables us to reveal the kind of moisture processes that can be observed in the
MUSICA IASI {H2O, δD} pair data. We utilize the theoretical and observa-
tional findings by Noone in our experimental evaluation to identify atmospheric
moisture processes that correspond to different {H2O, δD} pair distribution for
different segments of our trajectory data. Our focus will be on rain events, where
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(a) Example DBSCAN Clustering Result (b) Example Moisture Processes

Fig. 3: Illustration of 3,194 trajectories out of 11,853 that have been colored
according to their geographical closeness, bearing similarity and height difference
along each individual trajectory (a). (b) illustrates the association of individual
trajectories to different moisture processes as a result of the CoExDBSCAN
segmentation.

Rayleigh pseudoadiabatic, Super-Rayleigh, and reversible moist adiabatic pro-
cesses affect the {H2O, δD} pair distribution, in contrast to non-rain events,
where air mass mixing processes are dominating the {H2O, δD} pair distribu-
tion. Our semi-supervised approach with the adaptation of the CoExDBSCAN
algorithm with the appropriate constraint formulation for our research objective
is detailed in the next section.

3 Experimental Evaluation

For our experimental evaluation, we organize our Lagrangian air parcel trajec-
tory dataset as multivariate time series, e.g. backward trajectories for individual
air parcels, and focus on an area of interest with the arrival of all trajectories
above West Africa at pressure levels 575 and 625 hectopascal (hPa). The trajec-
tories are calculated daily for local morning (9 am) and evening (9 pm) times
during the period from June 8, 2016 to July 30, 2016, resulting in 12,720 indi-
vidual trajectories (11,853 after filtering) with 169 time steps each with a time
delta of one hour; each trajectory comprises a time frame of 7 days. Figure 3a
illustrates our trajectory dataset, depicting 3,194 individual trajectories out of
11,853 that have been colored according to their similarity, using DBSCAN on
a precomputed distance matrix. For the precomputed distance matrix, each tra-
jectory has been converted to a 4 · 169 = 676 dimensional vector; the latitudinal
(1) and longitudinal (2) difference for each time point to the arrival coordinates,
the bearing (3) for each consecutive point and the scaled height difference (4)
for each consecutive point, 169 points each. This initial clustering is only done
to associate and compare individual segments as a result of our CoExDBSCAN
segmentation, see Figure 3b, and is completely independent from our trajectory
clustering.
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For the trajectory segmentation we adopt the CoExDBSCAN algorithm by
defining the temporal order of the data points, the time dimension, as the spatial
subspace. Following the definition of the CoExDBSCAN ε-neighbourhood, see [4]
and Definition 1 for reference, with the time dimension as the spatial subspace
the ε-neighbourhood describes a neighbourhood of lagged points, similar to a
time window, where the maximum lag in time for the initial data points is
defined by the ε parameter and the minimal amount of data points that are
required to form a cluster is defined by the minPts parameter.

Definition 1. Let DB be a database of points. The CoExDBSCAN
ε-neighbourhood of a point p, denoted by Nε(p), is defined by

Nε(p) = {q ∈ DB|dist(pS , qS) ≤ ε ∧ constraints(pR, qR)} (1)

where pS, qS are the subspace representations of point p and q of the user-defined
spatial subspace S, pR, qR are the subspace representations of point p and q of the
user-defined constraint subspace R and the constraints function evaluates true
for each constraint Ci in a user-defined set of constraints C = {C1, C2, ..., Cn}.

In general, we consider a trajectory as a time series T of size m as an ordered
sequence of real-value data, T = (t1, t2, ..., tm), and a subsequence of length n as
Ti,n = (ti, ti+1, ..., ti+n−1), where 1 ≤ i ≤ m−n+1; a subsequence is considered
an arranged sequence of data that omits some elements without changing the
order of the remaining elements [21]. The algorithm starts with an initial time
point and considers all temporal neighbours to form a cluster following Definition
1. Our constraint on the {H2O, δD} pair distribution to differentiate multiple
phases of individual trajectories has been conceptualized together with domain
experts and the constraint parameter δ empirically determined, see Definition 2.
We constrain the expansion of clusters e.g. subsequences by including a neigh-
bouring point in the ε-neighbourhood only if the residuals of an ordinary least
squares linear regression for the current cluster points without the neighbouring
point deviates only by a certain factor δ from the ordinary least squares linear
regression including the neighbouring point, formulated in Definition 2.

Definition 2. A point tj belongs to a subsequence of points
Ti,n = (ti, ti+1, ..., ti+n−1), where 1 ≤ i ≤ m− n+ 1, iff

(Ytj − Ŷtj )2 < δ · 1
n

(i+n−1)∑
k=i

(Ytk − Ŷtk)2 (2)

where Y and Ŷ are the dependent variable and fitted value of the linear regression
respectively.

Algorithm 1 gives a pseudo code representation of our semi-supervised trajec-
tory segmentation approach. The algorithm takes a set of trajectories as input,
as well as the parameters and subspace selections for CoExDBSCAN. To ex-
emplify our approach and demonstrate the flexibility to segment likewise only
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a subset of individual trajectories, we focus on rain events within trajectories
without any loss of generality. These events have been identified by retrieving
the time points where the moving average over three consecutive time points for
the relative humidity are above a certain threshold and extending the event to
at least three time points if necessary.

Algorithm 1: Semi-Supervised Trajectory Segmentation
input : trajectories T
input : time radius ε
input : density threshold minPts
input : residual threshold δ
output: point labels per trajectory labelt initially undefined

1 foreach trajectory t in trajectories T do
2 timePoints = sortByTime(t, ascending);
3 phasesAscending = CoExDBSCAN(timePoints.time,

timePoints.{ln(H2O),ln(deltaD/1000 + 1)}, ε, minPts, δ);
4 timePoints = sortByTime(t, descending);
5 phasesDescending = CoExDBSCAN(timePoints.time,

timePoints.{ln(H2O),ln(deltaD/1000 + 1)}, ε, minPts, δ)
6 foreach phaseAscending in phasesAscending do
7 foreach phaseDescending in phasesDescending do
8 if sum(OrdinaryLeastSquares(phaseAscending).residuals2) < sum(

OrdinaryLeastSquares(phaseAscending).residuals2) then
9 labelt ← phaseAscending;

10 else
11 labelt ← phaseAscending;

The identified trajectories with a subset of rain events are sorted by time
in ascending and descending order, see Line 2 and 4 in Algorithm 1. For each
time ordering we compute the labels using CoExDBSCAN with the time dimen-
sion, timePoints.time, as the spatial subspace and the natural logarithm of
the water vapour values together with the natural logarithm of the isotopologue
ratio value divided by 1,000 plus one, timePoints.{ln(H2O),ln(deltaD/1000
+ 1)}, as the constraint subspace, see Line 3 and 5. The remaining parameters
have been empirically determined and proposed by domain experts and set to
ε = 2, minPts = 3 and δ = 2 in this example. Computing the segmentation in
both temporal orders is necessary, because the outcome of the linear regression
in our constraint depends on the deviation of the residuals from the current
cluster points, which can be different following the trajectory points in ascend-
ing or descending temporal order. The final segmentation of the trajectory, or
the subset of time points within a trajectory, is the selection of phases from
the ascending and descending CoExDBSCAN run where the outcome with the
squared residual sum is lowest, Line 6 to 11 in the algorithm.
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(d) Timely Order of Events for (c)

Fig. 4: Example trajectories with two rain sequences, which can be identified by
the crosses. (a) with additional segmentation of a continuous sequences based on
the defined constraint for the regression coefficients and (c) without additional
segmentation. (b) and (d) illustrate the timely order of events according to the
number of hours before arrival from 168 to 0 (dark blue to dark red).

Figure 4 shows the segmentation result of two example trajectories. Figure 4a
and Figure 4c depict the results of our semi-supervised segmentation approach
with dots indicating non-rain events (air mass mixing) and crosses indicating rain
events, which have been segmented into different coloured phases with different
regression coefficients. Figure 4b and Figure 4d visualize the temporal order
of the corresponding trajectories’ events coloured according to the number of
hours before arrival from 168 to 0 (dark blue to dark red). The first example
trajectory in Figure 4a has two rain events with three distinct phases, where
the first event from hour 168 to hour 159 before arrival (see Figure 4b) has
been segmented into two different phases with different regression coefficients
with statistical significance (p-value < 0.05, blue crosses and orange crosses);
the second event starts at hour 124 and ends at hour 119 before arrival with a
steady regression coefficient, however not statistically significant (green crosses).
The second example trajectory in Figure 4c shows again two rain events, the
first from hour 140 to hour 133 before arrival and the second from hour 38 to
hour 32 before arrival. The regression coefficients are unvarying with statistical
significance (blue crosses and orange crosses). We clearly observe different slopes
of the linear regression lines fitted to the two different rain events.
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Comparing the rain segments from both example trajectories with the the-
oretical evolution of δD as a function of H2O, see Section 2.2, we can interpret
the segmented event in Figure 4a (blue and orange crosses) and the two timely
separated phases in Figure 4c (blue and orange crosses) as different kind of
rain processes. For example, the first phase in Figure 4c (blue crosses) is in line
with super-Rayleigh processes, i.e. there is some interchange between condensed
moisture and vapour. The second phase (orange crosses) is close to a Rayleigh
process, i.e. can be explained by condensation and direct rainout, without sig-
nificant interchange between condensed moisture and vapour.

These two example trajectories demonstrate that our approach can (1) iden-
tify timely separated events as well as (2) split timely connected events
with varying regression coefficients. The latter gives novel opportunities for iden-
tifying details of the related rain processes. Being able to distinguish these fine-
grained structures in large volumes of data emphasizes the benefit of applying
our method, which we discuss in the following section.

The histogram in Figure 5a outlines the distribution of regression coefficients
with statistical significance (p-value < 0.05) for all rain segments as a result of
our semi-supervised trajectory segmentation, analysing all 11,853 trajectories,
clipped to the interval [−1.0, 1.0] (omitting four segments < −1.0 and three
segments > 1.0). Of all rain events 7.6% have a negative slope, 58.6% have a
slope between 0.0 and 0.1, and 33.8% have a slope greater than 0.1.

Figure 5b depicts the distribution of the {H2O, δD} pairs modelled in the
area of interest at the altitudes that are representative for the MUSICA IASI
data. The grey dots show all model data, i.e. represent the same as the grey dots
in Figure 2, but modelled instead of measured data. The lines are 50% contour
lines. The grey contour line is for the whole data set, see Figure 2. The blue,
orange, and green contour lines are for data points representing air masses that
experienced rain events during the last five days prior to arrival. The colours
are according to the coefficients that characterise the rain events (i.e. they are
in line with Figure 5a). If an air mass experienced rain events with two different
characteristics, the respective data point belongs to both groups. We can clearly
identify air masses that experienced a Super-Rayleigh process (green contour
line is almost completely below the theoretical Rayleigh line).

4 Discussion

As our experimental evaluation demonstrates, our approach can successfully seg-
ment time series, e.g. trajectories or subsequences of trajectories, into sequences
that contain temporal close points which follow a priori constraints. With our
constraint formulated in Definition 2 each segment is differentiated by the devi-
ation from the ordinary least squares regression residuals, which in effect splits
sequences if their individual linear regression is a better fit than their combined
linear regression. This constraint is particularly useful for our research objective
to analyse {H2O, δD} pair distributions that follow theoretical linear relations.
However, in general this constraint restricts the cluster expansion to the cor-



A Semi-Supervised Approach for Trajectory Segmentation 11

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Regression Coefficients

0

50

100

150

200

Co
un

t

Coefficient
< 0.0 (~7.56 %)
[0.0,0.1[ (~58.62 %)
>= 0.1 (~33.82 %)

(a) Histogram of regression coefficients

7.5 8.0 8.5 9.0 9.5
ln(H2O) [ppmv]

300

275

250

225

200

175

150

125

100

D 
[

]

Rayleigh
Mixing
Super-Rayleigh
< 0.0
[0.0,0.1[
>= 0.1

(b) Distribution of regression coefficients

Fig. 5: Histogram (a) of regression coefficients (slope of linear regression line) for
all rain segments as a result of our semi-supervised trajectory segmentation with
statistical significance (p-value < 0.05); and {H2O, δD} distributions (b) of the
model data in the area of interest for all data points (grey dots and contour line)
and for data points representing air masses that experienced rain events (blue,
orange and green colours are as in (a) and represent rain events having different
regression coefficients); contour levels are at 50%.
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relation of time point values and can be transferred to different domains and
datasets. For example motion data in 2D or 3D space can be segmented with
our approach and the same constraint formulation as well, identifying recurring,
similar motions that follow similar linear correlations.

Segmenting our Lagrangian air parcel trajectories enables us to better un-
derstand the complex dynamics that cause the {H2O, δD} pair distribution ob-
servable in the MUSICA IASI dataset. Since our approach is able to distinguish
fine-grained structures in large volumes of data, it is an effective data-driven
analysis method for this purpose. For instance, with the grouping of trajectories
we can draw conclusions on atmospheric moisture transport patterns: Figure 3b
suggests that if we observe a {H2O, δD} data pair below the Rayleigh line, the
air mass has very likely been transported from East to West Africa.

Ongoing research in the area of observational atmospheric data orientated
towards the combination of different sensors might soon allow the global detec-
tion of the vertical distribution of {H2O, δD} pairs (a method for such synergetic
combination has recently been demonstrated using CH4 as an example, Schnei-
der et al. [16]). By using state-of-the-art reanalysis datasets, for calculating the
trajectories our approach could then be used to directly identify different mois-
ture processes in the measured {H2O, δD} fields.

5 Conclusion

In this paper we propose a novel semi-supervised approach for trajectory seg-
mentation and demonstrate our approach to identify different processes in the
atmosphere. We adopt our recently developed algorithm CoExDBSCAN, density-
based clustering with constrained expansion, for trajectory segmentation by for-
mulating a constraint on the deviation from the ordinary least squares regression
residuals of combined or split segments. By further extracting information about
the regression coefficients for each segment and comparing the distribution of co-
efficients to theoretical values we are able to identify corresponding atmospheric
processes. This approach is demonstrated in our experimental evaluation for
Lagrangian air parcel trajectories together with data from the regional isotope-
enabled atmospheric model COSMO-iso [12]. We are able to successfully extract
segments from subsequences of temporal continuous events and compare these
segments with the theoretical evolution of our dependent variable δD as a func-
tion of H2O. By orienting the trajectory calculations towards the overpass times
and altitudes represented by the satellite data, we can use this model evaluation
to better understand the satellite data.

For future work, we plan to further improve the extraction of specific {H2O,
δD} sequences in the model domain and use the model data of rain, cloud etc.
to clearly relate specific {H2O, δD} distributions to distinct moist processes. For
instance we want to demonstrate that our method can be used to distinguish
between air masses that experienced shallow convection or deep convection. The
long-term perspective is to generate multisensor {H2O, δD} observation data,
i.e. to create observation data that offer {H2O, δD} pair information at different
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altitudes. Then use trajectories calculated from state-of-the-art reanalysis fields
and apply the method directly to the observational data. Data-driven analysis of
observation data could significantly improve the insight into the dynamics of such
cloud-circulation systems and would help to improve the significant uncertainty
of climate predictions.
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