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Abstract
The formation and analysis of clusters in multivariate time series can reveal interest-

ing patterns and complex correlations in temporal data. However, traditional clustering
methods based on distance metrics fall short to discover interpretable characteristics
and structures reflected by these clusters. This paper provides a new method for semi-
supervised time point clustering based on the temporal proximity of time points and
the correlation of their corresponding values. For this purpose, we utilize CoExDB-
SCAN, a recently developed density-based clustering algorithm with constrained expan-
sion. CoExDBSCAN allows to identify clusters of temporal neighbourhoods that are
only expanded with regards to a priori constraints in defined subspaces. Adopting this
algorithm to time series data and grouping segments with similar correlations allows us
to find accurate and interpretable structures. We provided a comparison to state-of-the-
art methods and verification of our approach on a synthetic dataset and an experimental
evaluation on a real-world dataset. The experimental assessment shows that our clus-
tering results can further serve as an effective basis for time series classification.
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1. Introduction

The increasing amount of data produced over time by a variety of sensors and scientific
instruments available through new technologies and increasing storage capacity provides
unique opportunities to discover characteristics and structures reflected by meaningful clus-
ters in such time series. Especially recurring subsequences in streams of multiple measure-
ments, that can be organized as multivariate time series, can be interpreted as recurring
events or actions. These recurring events can be used to discover repeating patterns, under-
standing trends, detect anomalies and in general better interpret large and high-dimensional
datasets [1]. For this purpose, time series have to be segmented and clustered in a way that
the temporal proximity of time points is taken into account and multiple segments can be-
long to the same cluster. A number of methods can tackle this task for univariate time series
[2], but fall short to discover interpretable clusters for multivariate time series [3]. Specifi-
cally methods merely based on distance metrics such as euclidean distance or dynamic time
warping [4] can not capture structural similarities based on correlations across time. For
static data, there has been a growing interest in semi-supervised clustering methods, for
example constrained clustering, where additional a priori information or domain knowledge
is incorporated into the clustering process, to better capture complex relations between fea-
tures [5–7]. In general semi-supervised clustering algorithms can be divided into two groups,
pointwise and pairwise algorithms, where the former has pre-labeled points available and the
latter is usually expressed in must-link and cannot-link constraints [8, Chapter 20, Agovic
et al.]. In this paper, we propose a new method for semi-supervised time point clustering
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based on CoExDBSCAN [9], a recently developed density-based clustering algorithm with
constrained expansion. Our approach follows the pairwise semi-supervision and extends the
concept to cluster-wide constraints. By applying CoExDBSCAN to time series data and
constraining the cluster extension to the correlation of time point values, we are able to
identify clusters of segments with similar correlations. Our experimental evaluation shows
that these clusters can be associated with recurring events and therefore can be utilized to
serve as an effective basis for time series classification.

Our contributions can be summarized as follows:

• We apply the CoExDBSCAN algorithm to time series data by defining the time
space of the data as subspace for the distance based density computations. In this
way, we are able to find temporal neighbourhoods whose expansions are restricted
by additional constraints.

• We propose a constraint formulation to restrict the cluster expansion to the corre-
lation of time point values.

• We form groups of segments with similar correlations. These groups can be inter-
preted as recurring events or actions.

• Finally, we provide an experimental assessment on real-world data and demonstrate
a concept that can serve as an effective basis for time series classification utilizing
the clustering results.

The remainder of this paper is organized as follows: Section 2 provides an overview of
related work and marks out the differences to our approach. Section 3 details the adaption of
the CoExDBSCAN algorithm and constraint formulation for time series data. In Section 4
we present the verification of our approach and the comparison to state-of-the-art methods,
while the experimental evaluation on a real-world dataset is given in Section 5. Section 6
concludes this paper with a discussion of the results and outlook on future research.

2. Related Work

Time series clustering is a well-established and active research field across different ap-
plication domains, for example in industry, biology, energy, medicine, finance or climate.
Multiple surveys provide a clear and structured overview of past and current research in
time series clustering and its subdomains whole time series clustering, subsequence
time series clustering and time point clustering [2, 10, 11]. Our approach falls into
the category of time point clustering. Zolhavarieh et al. [11] describe in their review of
subsequence time series clustering time point clustering as

"[. . .] the clustering of time points on the basis of a combination of their
temporal proximity and the similarity of their corresponding values. This
approach is similar to time series segmentation. However, time point clus-
tering is different from segmentation in the sense that all points do not need
to be assigned to the cluster; that is, some of [the] points are considered
noise."

We follow along this distinction and will give a more formal definition in Section 3. Without
the differentiation on noise points, i.e. points that do not belong to any cluster, algorithms
and methods developed for subsequence clustering are inter-comparable to those developed
for time point clustering in terms of extracting similar segments from individual time series.
Zolhavarieh et al. [11] provide a comprehensive overview of methods for subsequence time
series clustering, especially within the context of the discussion if any method can produce
meaningful results at all or if all methods for subsequence time series clustering are actually
meaningless [12].
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Since the traditional Euclidean distance metric as a similarity measure for clustering
algorithms is not taking the order of the data points into account, a similarity measure
called Dynamic Time Warping (DTW) has been proposed [13] and improved over time, for
example by averaging a set of sequence to be used with similarity-based methods like k-means
[14]. Another prominent clustering algorithm for static data that has also been adopted
for spatial and temporal data is DBSCAN introduced by Ester et al. [15–17]. Schubert
et al. showed that DBSCAN continues to be relevant even for high-dimensional data,
although the choice of parameters becomes more challenging [18]. The algorithm has also
been modified for constrained clustering, for example C-DBSCAN [19] and CoExDBSCAN
[9]. CoExDBSCAN has been demonstrated to be especially suited for spatio-temporal data,
where one subspace of features defines the spatial or temporal extend of the data and another
subspace of features defines the inherent correlations between features.

Besides distance-based algorithms, model-based clustering algorithms for time series have
been proposed as well. In a recent publication, Hallac et al. [1] use graph representations for
time series subsequences from Markov random fields (MRF) to group similar sequences into
clusters, called Toeplitz inverse covariance-based clustering (TICC). TICC simultaneously
segments and clusters the data based on its correlation and has been demonstrated to be
able to find structural similarities in real-world data [1]. Also in the field of unsupervised
learning and deep unsupervised learning, model-based clustering algorithms for time series
data are subject to recent and continuous research. Qin Zhang et al. proposed a method for
unsupervised salient subsequence learning (USSL) to extract salient subsequence features
from time series, called shapelets [20].

In this paper, we propose a semi-supervised time point clustering method, which sets it
apart from complete unsupervised methods, for example USSL, model-based methods like
TICC and solely similarity-based methods like k-means with DTW. Since CoExDBSCAN
offers the flexibility to cluster points that are close in one subspace and the expansion of
clusters complies with a priori constraints, we choose to adopt this algorithm for time point
clustering and the extraction of similar subsequences. Our adaptation of the algorithm and
formal definitions of the relevant concepts is explained in detail in the next section.

3. Semi-Supervised Time Point Clustering

In this section, we provide the necessary definitions and details about our adaptation of
the CoExDBSCAN algorithm, as well as the formulation of our constraint to restrict the
cluster expansion. Rodpongpun et al. [21] provide following definitions on subsequence time
series clustering, i.e. Definition 1 and 2.

Definition 1. A time series T of size m is an ordered sequence of real-value data, where
T = (t1, t2, ..., tm).

Definition 2. A subsequence Ti,n of length n of time series T is
Ti,n = (ti, ti+1, ..., ti+n−1), where 1 ≤ i ≤ m− n+ 1, n < m.

Definition 2 can be extended to allow elements to be omitted.

Definition 3. A subsequence TS of length n of time series T is an arranged sequence
of data that omits some elements without changing the order of the remaining elements.
TS = (ts1 , ts2 , ...tsn), where |TS | = n and ∀si ∈ [1,m] : si < si+1.

One of the six main definitions that are essential for the DBSCAN and CoExDBSCAN
algorithms is the definition of the ϵ-neighbourhood [15] and its modification the CoExDB-
SCAN ϵ-neighbourhood [9].
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Definition 4. Let DB be a database of points. The ϵ-neighbourhood of a point p, denoted
by Nϵ(p), is defined by

Nϵ(p) = {q ∈ DB|dist(p, q) ≤ ϵ} (3.1)

Definition 5. Let DB be a database of points. The CoExDBSCAN
ϵ-neighbourhood of a point p, denoted by Nϵ(p), is defined by

Nϵ(p) = {q ∈ DB|dist(pS , qS) ≤ ϵ ∧ constraints(pR, qR)} (3.2)
where pS, qS are the subspace representations of point p and q of the user-defined spatial
subspace S, pR, qR are the subspace representations of point p and q of the user-defined
constraint subspace R and the constraints function evaluates true for each constraint Ci

in a user-defined set of constraints C = {C1, C2, ..., Cn}.

Another essential definition is the direct density-reachability, which requires points to
belong to the same ϵ-neighbourhood with at least minPts within the neighbourhood to
form a cluster. If and only if these conditions are met, the algorithm starts to expand the
cluster from every point within the ϵ-neighbourhood.

Definition 6. A point p is directly density-reachable from a point q wrt. ϵ and minPts if
(1) p ∈ Nϵ(q) and
(2) |Nϵ(q)| ≥ minPts (core point condition).

For the remaining definitions of the original DBSCAN and CoExDBSCAN algorithms
as well as the pseudo code of the algorithms, we refer to the original papers by Ester et al.
[15] and Ertl et al. [9] respectively.

The transition from Definition 4 to Definition 5 allows us to define the temporal order of
the data points as the spatial subspace and to provide a constraint function that is evaluated
in another subspace for the clustering algorithm. With this transition, the ϵ-neighbourhood
describes a neighbourhood of lagged points, similar to a time window, where the maximum
lag in time for the initial data points is defined by the ϵ parameter and the minimal amount
of data points that are required to form a cluster is defined by the minPts parameter, see
Definition 6, direct density-reachable points of the original DBSCAN algorithm.

For any data point ti at time i the algorithm considers all points tj at times j ∈ [i −
ϵ, i + ϵ] as candidates for an initial subsequence. If all constraints are satisfied for any
tj , ti and tj belong to the same subsequence, which is further extended at point tj . All
resulting subsequences follow Definition 3 and all points within each subsequence satisfy all
constraints. The omitted elements from one subsequence, if any, are either belonging to
another overlapping subsequence or are disregarded as noise.

We have determined a constraint formulation through empirical evaluation that has been
proven to be especially suited for correlated data. For each evolving subsequence we compute
the residuals of an ordinary least squares linear regression and include neighbouring points
in this subsequence if and only if the square of the residual of a neighbouring point deviates
from the mean of the square of the residuals of the current points in the subsequence only by
a certain factor δ. This δ has to be determined either via parameter selection, for example
grid-search, or via a priori knowledge about the nature of the time series.

Definition 7. A point tj belongs to a subsequence TS of length n of a time series T of
length m, with TS = (ts1 , ts2 , ...tsn) where |TS | = n and ∀si ∈ [1,m] : si < si+1, iff

(Ytj − Ŷtj )
2 < δ · 1

n

sn∑
k=s1

(Ytk − Ŷtk)
2 (3.3)

where Y and Ŷ are the dependent variable and fitted value of the linear regression respec-
tively.
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After splitting the time series into subsequences, first, we label all sequences with less than
required data points (reqP ts) as noise; such sequences can appear if the minPts parameter
has been set to a small number and the sequence could not be expanded due to the given
constraint. Second, we compute the regression coefficients for each remaining subsequence
and group sequences with equal or slightly different regression coefficients for the dependent
variable into the same cluster. The threshold for different coefficients has to be determined
the same way as the δ parameter, either via parameter selection, for example grid-search,
or via a priori knowledge about the nature of the time series. This process can be repeated
for multiple time series and will result in clusters of subsequences as following.

Definition 8. A cluster C is a set of subsequences of one or multiple time series, C = {T (l)
S }

for 1 ≤ l ≤ N , where N is the number of total subsequences, where each time point in every
subsequence satisfies the conditions formulated in Definition 6 and Definition 7, and each
subsequence of points T

(l)
S satisfies following conditions:

(1) ∀T (l)
S :

∣∣T (l)
S | ≥ reqP ts (subsequences with more than reqPts)

(2) ∀T (l)
S , T

(o)
S ∈ C : ∥βl − βo∥ < θ (regression coefficients close)

where βl, βo are the regression coefficients of a linear regression of all time points in subse-
quences T

(l)
S , T

(o)
S respectively for a threshold θ.

It should be noted, that our constraint (Definition 7) has been specifically formulated to
cluster linear segments with similar regression coefficients for a given time series. This makes
our approach especially suited for time series that exhibit such inherent characteristic, for
example correlated events in the feature space. However, our approach could be used to find
non-linear segments as well by designing an appropriate constraint or multiple constraints,
but finding and expressing suitable constraints for the CoExDBSCAN algorithm remains a
challenging task [9].

Following Definition 1 to 8, our approach for semi-supervised time point clustering for
multivariate time series can be summarized in four steps.

(1) Compute the CoExDBSCAN clustering result for each time series with the time
dimension as the spatial subspace and the correlated features as the correlation
subspace with the constraint formulated in Definition 7. Each cluster is equivalent
to a subsequence. (adaptation of the algorithm)

(2) Label all subsequences with less than the minimum required number of time points
as noise, if any. (modification of the algorithm)

(3) Compute the linear regression coefficients between the correlated features for each
subsequence. (adaptation of the algorithm)

(4) Group all subsequences with equal or close regression coefficients up to a certain
threshold into one cluster. The resulting clusters, see Definition 8, contain segments
of one or multiple time series that are similar to each other in terms of temporal
proximity and correlation of the comprising time points. (improvement through
innovation)

4. Verification

To verify our approach detailed in the previous section, we compared the results of our
semi-supervised time point clustering method to a baseline k-means clustering for time-
series data with dynamic time warping (DTW ), a Gaussian Mixture Model (GMM ) and
the Toeplitz inverse covariance-based clustering (TICC ) method. The k-means with DTW
algorithm is a well established similarity-based method for time series and time point clus-
tering and is available in a variety of programming languages. The Gaussian Mixture Model
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Table 1. Value range and generation methods.

Sequence Points Feature x1 Feature x2 Noise
1 10 x1 ∈ [−50, 100] + ξ x2 = 0.1 · x1 + ξ ξ ∼ N (0, 4)

2 20 x1 ∈ [100, 250] + ξ x2 = −0.2 · x1 + 39.65 + ξ ξ ∼ N (0, 4)

3 20 x1 ∈ [100, 250] + ξ x2 = 0.5 · x1− 106.94 + ξ ξ ∼ N (0, 4)
4 10 x1 ∈ [−50, 100] + ξ x2 = −0.6 · x1 + 4.52 + ξ ξ ∼ N (0, 4)
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Figure 1. Synthetic dataset; a) time series for feature x1, b) time series for feature x2
and c) joint feature space {x1,x2}. Labels are true labels.

is a general, model-based approach that provides a sound mathematical-based approach
for statistical modelling of a wide variety of random phenomena [22, 23]. As a state-of-
the-art comparison we choose TICC [1], since the authors have shown that their method
outperforms a range of model-based and distance-based clustering methods for clustering
multivariate time series subsequences. Since our own implementation is based on Python,
we choose the k-means with DTW implementation from the tslearn machine learning toolkit
for time series data [24] and the GMM implementation from the scikit-learn machine learn-
ing package [25] in Python as well; the code of the TICC method is also provided in Python
by the authors [1].

We use a synthetic dataset for verification and comparison that has known correlations
between two features and known temporal subsequences. Because the correlations and the
order of subsequences are known, we can evaluate all methods against the ground truth.
We use two metrics, the adjusted Rand index and the clustering accuracy. The Rand index
measures the similarity between two data clusterings by counting equal elements in subsets
created by the two partitions of the data, the true partition (true labels) and the computed
partition (predicted labels) [26]. Since the expected value of the Rand index of two random
partitions does not take a constant value [27], Hubert et al. introduced an adjustment for
chance to the Rand index [28]. The adjusted Rand index is thus ensured to have a value
close to zero for random labeling independently of the number of clusters and samples and
exactly one when the clusterings are identical, up to a permutation [25]. Our second metric,
the cluster accuracy, finds the best match between the true labels and the predicted labels.
The greater the clustering accuracy, the better the clustering performance [29].

Our synthetic dataset has four temporal sequences that are repeated once: "1, 2, 3, 4, 1,
2, 3, 4", illustrated in Figure 1a) and b). Each sequence has two correlated features (x1 and
x2), generated according to Table 1.

For each sequence, we choose one feature evenly distributed on the given interval plus
some randomly distributed noise and the other feature according to a specific linear equation
plus some randomly distributed noise that leads to overlapping areas in the joint feature
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Table 2. Summary of clustering results for the synthetic data using the adjusted Rand
index (ARI) and cluster accuracy (ACC) metrics.

Clustering Method ARI ACC Parameters
Modified CoExDBSCAN 0.88 0.93 ϵ = 2,minPts = 1, δ = 4, θ = 0.01

GMM 0.67 0.75 n = 4, n_init = 10, init_params = kmeans
TICC 0.36 0.58 n = 4, w = 1, λ = 0.11, β = 0

k-means with DTW 0.26 0.52 n = 4

space as depicted in Figure 1c). This overlap in feature space is particularly challenging for
cluster algorithms, since distance-based and density-based algorithms can not distinguish
between the overlapping clusters without a priori information.

Our modified and adapted version of CoExDBSCAN yields the best clustering result for
the synthetic data with the highest adjusted Rand index (0.88) and highest cluster accuracy
(0.93), as summarized in Table 2. This approach significantly outperforms the baseline
k-means with DTW, the general clustering approach with GMM and also the state-of-the-
art TICC algorithm. Figure 4 shows the clustering results of our semi-supervised time
point clustering method. The subsequences have been accurately identified and clustered
together, with six data points labeled as noise (5% of all data points). We choose the input
parameters based on a grid search with ϵ, minPts and δ in the range of [1, 5] with a step
size of one and kept the parameters with the highest adjusted Rand index. Subsequences
with two or less points have been labeled as noise.

The second best clustering results are obtain by the Gaussian Mixture Model with all
dimensions included in the clustering process (see Figure 3). Similar results have been
shown by Hallac et al. [1] in their comparison for the same order of subsequences. More
notably, the results between our baseline k-means and state-of-the-art TICC method are
surprisingly indifferent in terms of the cluster accuracy and with a slightly higher ARI score
for the TICC algorithm. Figure 2 illustrates the clustering result for the TICC algorithm.

Varying the TICC input parameters show no tendencies for improving the results, fur-
thermore higher values for the smoothness penalty parameter β have resulted in numerical
errors. However, decreasing the noise on the synthetic data can lead to a better performance.
This increase in accuracy can be observed in all compared algorithms except the baseline
k-means algorithm, while increasing the noise leads to the opposite, decreasing accuracy.
Therefore, the comparison with the presented synthetic data is sound and holds true for a
variation in noise also.

Table 2 summarizes the metric scores and lists the parameters used for each algorithm in
detail. Since k-means, GMM and TICC require the number of clusters as a parameter, we
fixed this parameter to the true number of subsequences. Other parameters have been set to
the cluster algorithms’ default values, besides the number of initializations for GMM that
has been set to ten iterations with the best results to keep, and the window size for TICC
that has been set to one due to empirical evaluation; also the smoothness penalty parameter
β for the TICC algorithm has been set to zero, i.e. without a temporal consistency constraint
[1], according to our Definition 3.

Our approach does not require the number of clusters as an input parameter, which is
usually unknown a priori and should rather be discovered in the clustering process. The
other parameters are intuitively comprehensible, with ϵ corresponding to the time window,
δ corresponding to the factor of maximum deviation from the residuals mean of the linear
regression and θ corresponding to the similarity threshold of the linear regression coefficients
for each subsequence. Given these parameters either through empirical evaluation or expert
knowledge, our approach captures the inherent structure of the data best compared to the
selected algorithms.



8

0 20 40 60 80 100 120
time

50

0

50

100

150

200

250

x1

a) time series of feature x1

0 20 40 60 80 100 120
time

80

60

40

20

0

20

x2

b) time series of feature x2

50 0 50 100 150 200 250
x1

80

60

40

20

0

20

x2

c) feature space {x1,x2}

0.0
1.0
2.0
3.0

Figure 2. Time point clustering with the TICC algorithm; a) time series for feature
x1 with predicted labels, b) time series for feature x2 with predicted labels and c) joint
feature space {x1,x2} with predicted labels.
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Figure 3. Time point clustering with the Gaussian mixture model (GMM); a) time
series for feature x1 with predicted labels, b) time series for feature x2 with predicted
labels and c) joint feature space {x1,x2} with predicted labels (orange crosses and green
squares are overlaid).
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5. Experimental Evaluation

For the experimental evaluation we decided to demonstrate the significance of our ap-
proach on a popular real-world dataset in time series clustering. The LIBRAS movement
dataset [30] is available from the UCI Machine Learning Repository [31] and contains 15
classes of 24 instances each, where each class references to a hand movement type in the
LIBRAS Brazilian sign language. All movements were tracked from video analysis, where in
each frame, the centroid pixels of the segmented objects (the hand) are found, which com-
pose the discrete version a curve with 45 points. All curves are normalized in the unitary
space and mapped in a representation with 90 features, representing the coordinates of the
movement [31]. Each hand movement can be further segmented in distinct sub-movements,
e.g. upper left to lower right, therefore makes it suitable for subsequence and time point
clustering. However, there are no true labels available for individual segments and thus
we can not perform external clustering validation with the adjusted Rand index (ARI) or
cluster accuracy (ACC). However, Figure 6 provides a visual comparison of the CoExDB-
SCAN, GMM and TICC algorithms on the LIBRAS dataset on an individual sample from
the vertical zigzag class (see sample 123 from Figure 5).

Figure 5 exemplifies the result of our experiment, depicting nine sample time series from
the same class (vertical zigzag), without loss of generality, after applying the modified
CoExDBSCAN algorithm on each series. The last step of our method, grouping all sub-
sequences with equal or close regression coefficients, has been implemented in this case
through discretization of the coefficients for each cluster into equal-sized buckets based on
their quantiles. This results in three clusters, which correspond to similar, partial motions.
The blue dot time points indicate a motion staring left in the coordinate space and ending
in a lower right position of the coordinate space. The green square time points indicate a
mirrored motion that starts right in the coordinate space and ends in a lower left position.
The third class of subsequences, orange crosses, indicate a motion similar to the blue dot
sequences, but with a less steep slope, e.g. oriented to a horizontal motion.

The visual comparison in Figure 6 of the CoExDBSCAN, GMM and TICC algorithms
on the LIBRAS dataset on an individual sample from the vertical zigzag class shows that
CoExDBSCAN provides the best qualitative result. For each algorithm we performed the
discretization of the linear regression coefficients for each cluster into equal-sized buckets
based on their quantiles. With CoExDBSCAN similar partial motions are grouped into the
same category, see Figure 6 a), while with the GMM method, see Figure 6 b), and with
the TICC algorithm, see Figure 6 c), partial motions with a visual clear change of course
could not be separated. Furthermore, GMM and TICC both require the number of clusters
to form as input parameter, which depends on the class of motion and number of partial
motions to identify. Therefore, both algorithms can mere express the inherent structure of
the dataset, but our modified CoExDBSCAN method is able to independently discover the
intrinsic properties of the data.

In addition to the clustering of similar subsegements, we can utilize the clustering results
by comparing the distributions of coefficients, which can serve as an effective basis for time
series classification. If we compute the Kolmogorov-Smirnov statistic [32] for each learned
distribution against an unseen distribution, we can classify time series that exhibit similar
subsequences up to an accuracy of ∼ 67%. Similar accuracy can be achieved by k-nearest
neighbors vote (∼ 79%) or a time-series specific Support Vector Classifier (∼ 68%)from the
tslearn toolkit [24] without parameter optimization.

This experimental assessment shows that by adopting the CoExDBSCAN algorithm to
time series data and grouping segments with similar correlations allows us to find accurate
and interpretable structures. Moreover, our clustering results can serve as an effective basis
for time series classification, which we plan to elaborate on in future work.
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6. Conclusion

In this article we propose a new approach for semi-supervised time point clustering for
multivariate time series. We adopt and modify the CoExDBSCAN algorithm and apply
the algorithm to time series data to find temporal neighbourhoods, whose expansions are
restricted to a priori constraints. We propose a constraint formulation to restrict the cluster
expansion to the correlation of time point values. This constraint is defined by the deviation
of time point residuals from the mean of residuals of time points within a subsequence,
based on linear regression. Beyond the presented low-dimensional verification and evaluation
datasets, our approach remains relevant even for high-dimensional data. This fact derives
from the evaluation by Schubert et al. [18] for the original DBSCAN algorithm for high-
dimensional data and becomes apparent in our research with climate data, where we apply
the presented method to segment trajectories with high dimensionality.
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Figure 5. Semi-supervised time point clustering with the modified CoExDBSCAN algo-
rithm on the LIBRAS dataset. Nine samples from one class (vertical zigzag) illustrate
the successful segmentation of each time series into similar motions.
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b) Gaussian mixture model results
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c) TICC results

Figure 6. Comparison of clustering algorithms on the LIBRAS dataset on an individual
sample from the vertical zigzag class (see sample 123 from Figure 5); a) CoExDBSCAN
results (points labeled as noise are omitted), b) GMM results, and c) TICC results.

Forming groups of segments with similar correlations results in clusters of subsequences,
which can be interpreted as recurring events or actions; for example similar movements as
shown in our experimental evaluation. Our verification on a synthetic dataset indicates that
our method significantly outperforms our baseline and state-of-the-art comparisons. Our
validation and application to the real-world LIBRAS movement dataset demonstrates that
this approach can accurately identify subsequences of similar motions and we are able to
extract distributions of coefficients for each subsequence towards an effective classification
approach.

For future work, we plan to improve especially this classification aspect and to provide
more detailed comparison studies with other algorithms in the field of subsequence and time
point clustering for multivariate time series.
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