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Abstract. The formation and analysis of clusters in multivariate time
series can reveal interesting patterns and complex correlations in tem-
poral data. However, traditional clustering methods based on distance
metrics fall short to discover interpretable characteristics and structures
reflected by these clusters. This paper provides a new method for semi-
supervised time point clustering based on the temporal proximity of time
points and the correlation of their corresponding values. For this purpose,
we utilize CoOExDBSCAN, a recently developed density-based clustering
algorithm with constrained expansion. CoExDBSCAN allows to iden-
tify clusters of temporal neighbourhoods that are only expanded with
regards to a priori constraints in defined subspaces. Adopting this algo-
rithm to time series data and grouping segments with similar correlations
allows us to find accurate and interpretable structures. We provided a
comparison to state-of-the-art methods and verification of our approach
on a synthetic dataset and an experimental evaluation on a real-world
dataset. The experimental assessment shows that our clustering results
can further serve as an effective basis for time series classification.

Keywords: Semi-Supervised Clustering - Time Point Clustering - Multi-
variate Time Series.

1 Introduction

The increasing amount of data produced over time by a variety of sensors and
scientific instruments available through new technologies and increasing storage
capacity provides unique opportunities to discover characteristics and structures
reflected by meaningful clusters in such time series. Especially recurring subse-
quences in streams of multiple measurements, that can be organized as multivari-
ate time series, can be interpreted as recurring events or actions. These recurring
events can be used to discover repeating patterns, understanding trends, detect
anomalies and in general better interpret large and high-dimensional datasets
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[10]. For this purpose, time series have to be segmented and clustered in a way
that the temporal proximity of time points is taken into account and multi-
ple segments can belong to the same cluster. A number of methods can tackle
this task for univariate time series [29], but fall short to discover interpretable
clusters for multivariate time series [13]. Specifically methods merely based on
distance metrics such as euclidean distance or dynamic time warping [4] can not
capture structural similarities based on correlations across time. For static data,
there has been a growing interest in semi-supervised clustering methods, for ex-
ample constrained clustering, where additional a priori information or domain
knowledge is incorporated into the clustering process, to better capture complex
relations between features [20, 3, 6]. In general semi-supervised clustering algo-
rithms can be divided into two groups, pointwise and pairwise algorithms, where
the former has pre-labeled points available and the latter is usually expressed
in must-link and cannot-link constraints |1, Chapter 20, Agovic et al.]. In this
paper, we propose a new method for semi-supervised time point clustering based
on CoExDBSCAN [8], a recently developed density-based clustering algorithm
with constrained expansion. Our approach follows the pairwise semi-supervision
and extends the concept to cluster-wide constraints. By applying CoEzDBSCAN
to time series data and constraining the cluster extension to the correlation of
time point values, we are able to identify clusters of segments with similar corre-
lations. Our experimental evaluation shows that these clusters can be associated
with recurring events and therefore can be utilized to serve as an effective basis
for time series classification.

Our contributions can be summarized as follows:

— We apply the CoEzDBSCAN algorithm to time series data by defining the
time space of the data as subspace for the distance based density compu-
tations. In this way, we are able to find temporal neighbourhoods whose
expansions are restricted by additional constraints.

— We propose a constraint formulation to restrict the cluster expansion to the
correlation of time point values.

— We form groups of segments with similar correlations. These groups can be
interpreted as recurring events or actions.

— Finally, we provide an experimental assessment on real-world data and demon
strate a concept that can serve as an effective basis for time series classifica-
tion utilizing the clustering results.

The remainder of this paper is organized as follows: Section 2 provides an
overview of related work and marks out the differences to our approach. Section 3
details the adaption of the CoEzDBSCAN algorithm and constraint formulation
for time series data. In Section 4 we present the verification of our approach and
the comparison to state-of-the-art methods, while the experimental evaluation
on a real-world dataset is given in Section 5. Section 6 concludes this paper with
a discussion of the results and outlook on future research.
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2 Related Work

Time series clustering is a well-established and active research field across dif-
ferent application domains, for example in industry, biology, energy, medicine,
finance or climate. Multiple surveys provide a clear and structured overview of
past and current research in time series clustering and its subdomains whole
time series clustering, subsequence time series clustering and time
point clustering [29,2,32]. Our approach falls into the category of time point
clustering. Zolhavarieh et al. [32] describe in their review of subsequence time
series clustering time point clustering as

"[...] the clustering of time points on the basis of a combination of their
temporal proximity and the similarity of their corresponding values. This
approach is similar to time series segmentation. However, time point
clustering is different from segmentation in the sense that all points do
not need to be assigned to the cluster; that is, some of [the| points are
considered noise."

We follow along this distinction and will give a more formal definition in Section
3. Without the differentiation on noise points, i.e. points that do not belong
to any cluster, algorithms and methods developed for subsequence clustering
are inter-comparable to those developed for time point clustering in terms of
extracting similar segments from individual time series. Zolhavarieh et al. [32]
provide a comprehensive overview of methods for subsequence time series clus-
tering, especially within the context of the discussion if any method can produce
meaningful results at all or if all methods for subsequence time series clustering
are actually meaningless [14].

Since the traditional Euclidean distance metric as a similarity measure for
clustering algorithms is not taking the order of the data points into account, a
similarity measure called Dynamic Time Warping (DTW) has been proposed
[25] and improved over time, for example by averaging a set of sequence to
be used with similarity-based methods like k-means [19]. Another prominent
clustering algorithm for static data that has also been adopted for spatial and
temporal data is DBSCAN introduced by Ester et al. [9, 26, 15]. Schubert et al.
showed that DBSCAN continues to be relevant even for high-dimensional data,
although the choice of parameters becomes more challenging [27]. The algorithm
has also been modified for constrained clustering, for example C-DBSCAN [24]
and CoExDBSCAN [8]|. CoExDBSCAN has been demonstrated to be especially
suited for spatio-temporal data, where one subspace of features defines the spatial
or temporal extend of the data and another subspace of features defines the
inherent correlations between features.

Besides distance-based algorithms, model-based clustering algorithms for time
series have been proposed as well. In a recent publication, Hallac et al. [10]
use graph representations for time series subsequences from Markov random
fields (MRF) to group similar sequences into clusters, called Toeplitz inverse
covariance-based clustering (TICC). TICC simultaneously segments and clusters
the data based on its correlation and has been demonstrated to be able to find
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structural similarities in real-world data [10]. Also in the field of unsupervised
learning and deep unsupervised learning, model-based clustering algorithms for
time series data are subject to recent and continuous research. Qin Zhang et
al. proposed a method for unsupervised salient subsequence learning (USSL) to
extract salient subsequence features from time series, called shapelets [31].

In this paper, we propose a semi-supervised time point clustering method,
which sets it apart from complete unsupervised methods, for example USSL,
model-based methods like TICC and solely similarity-based methods like k-
means with DTW. Since CoExDBSCAN offers the flexibility to cluster points
that are close in one subspace and the expansion of clusters complies with a priori
constraints, we choose to adopt this algorithm for time point clustering and the
extraction of similar subsequences. Our adaptation of the algorithm and formal
definitions of the relevant concepts is explained in detail in the next section.

3 Semi-Supervised Time Point Clustering

In this section, we provide the necessary definitions and details about our adap-
tation of the CoFxDBSCAN algorithm, as well as the formulation of our con-
straint to restrict the cluster expansion. Rodpongpun et al. [22] provide following
definitions on subsequence time series clustering, i.e. Definition 1 and 2.

Definition 1. A time series T of size m is an ordered sequence of real-value
data, where T = (t1,ta, .. tm).

Definition 2. A subsequence T; ,, of length n of time series T is
Tin = (tistit1, - tign—1), where 1 <i<m—n+1,n < m.

Definition 2 can be extended to allow elements to be omitted.

Definition 3. A subsequence Ts of length n of time series T is an arranged
sequence of data that omits some elements without changing the order of the
remaining elements. Tg = (ts;,tsy,..-ts, ), where |[Ts| =n and Vs; € [1,m] : s; <
Si+1-

One of the six main definitions that are essential for the DBSCAN and
CoExDBSCAN algorithms is the definition of the e-neighbourhood [9] and its
modification the CoExtDBSCAN e-neighbourhood [8].

Definition 4. Let DB be a database of points. The e-neighbourhood of a point
p, denoted by N.(p), is defined by

Nc(p) = {q € DB|dist(p,q) < ¢} (1)

Definition 5. Let DB be a database of points. The CoExDBSCAN
e-neighbourhood of a point p, denoted by N.(p), is defined by

Nc(p) = {q € DB|dist(ps,qs) < € A constraints(pr, qr)} (2)
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where pg, qs are the subspace representations of point p and q of the user-defined
spatial subspace S, pr, qr are the subspace representations of point p and q of the
user-defined constraint subspace R and the constraints function evaluates true
for each constraint C; in a user-defined set of constraints C = {C1,Cs, ...,Cp}.

Another essential definition is the direct density-reachability, which requires
points to belong to the same e-neighbourhood with at least minPts within the
neighbourhood to form a cluster. If and only if these conditions are met, the algo-
rithm starts to expand the cluster from every point within the e-neighbourhood.

Definition 6. A point p is directly density-reachable from a point q wrt. € and
minPts if

1. p€ N.(q) and
2. |Ne(q)| > minPts (core point condition).

For the remaining definitions of the original DBSCAN and CoExDBSCAN
algorithms as well as the pseudo code of the algorithms, we refer to the original
papers by Ester et al. [9] and Ertl et al. [8] respectively.

The transition from Definition 4 to Definition 5 allows us to define the tem-
poral order of the data points as the spatial subspace and to provide a constraint
function that is evaluated in another subspace for the clustering algorithm. With
this transition, the e-neighbourhood describes a neighbourhood of lagged points,
similar to a time window, where the maximum lag in time for the initial data
points is defined by the € parameter and the minimal amount of data points that
are required to form a cluster is defined by the min Pts parameter, see Definition
6, direct density-reachable points of the original DBSCAN algorithm.

For any data point ¢; at time 7 the algorithm considers all points t; at times
Jj € [i —€,i+ ¢ as candidates for an initial subsequence. If all constraints are
satisfied for any t;, ¢; and ¢; belong to the same subsequence, which is further
extended at point ¢;. All resulting subsequences follow Definition 3 and all points
within each subsequence satisfy all constraints. The omitted elements from one
subsequence, if any, are either belonging to another overlapping subsequence or
are disregarded as noise.

We have determined a constraint formulation through empirical evaluation
that has been proven to be especially suited for correlated data. For each evolv-
ing subsequence we compute the residuals of an ordinary least squares linear
regression and include neighbouring points in this subsequence if and only if the
square of the residual of a neighbouring point deviates from the mean of the
square of the residuals of the current points in the subsequence only by a certain
factor §. This ¢ has to be determined either via parameter selection, for example
grid-search, or via a priori knowledge about the nature of the time series.

Definition 7. A pointt; belongs to a subsequence T's of length n of a time series
T of length m, with Ts = (ts;,ts,,...ts,) where |Ts| =n and Vs; € [1,m] : s; <
Si41; Zﬁ

. 1 & .
(¥, = ¥i)2 <00 = 3 (Y —¥i,)? 3)

k:SI
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where Y and Y are the dependent variable and fitted value of the linear regression
respectively.

After splitting the time series into subsequences, first, we label all sequences
with less than required data points (reqPts) as noise; such sequences can appear
if the minPts parameter has been set to a small number and the sequence could
not be expanded due to the given constraint. Second, we compute the regression
coefficients for each remaining subsequence and group sequences with equal or
slightly different regression coefficients for the dependent variable into the same
cluster. The threshold for different coefficients has to be determined the same
way as the § parameter, either via parameter selection, for example grid-search,
or via a priori knowledge about the nature of the time series. This process can
be repeated for multiple time series and will result in clusters of subsequences
as following.

Definition 8. A cluster C' is a set of subsequences of one or multiple time
series, C' = {Tél)} for 1 <1< N, where N is the number of total subsequences,
where each time point in every subsequence satisfies the conditions formulated
in Definition 6 and Definition 7, and each subsequence of points TS) satisfies
following conditions:

1. VTS(}) : ‘Tél)| > reqPts (subsequences with more than reqPts)
2. VTél),Téo) € C |81 — Boll < 8 (regression coefficients close)

where By, Bo are the regression coefficients of a linear regression of all time points
in subsequences Tg), Téo) respectively for a threshold 6.

It should be noted, that our constraint (Definition 7) has been specifically
formulated to cluster linear segments with similar regression coefficients for a
given time series. This makes our approach especially suited for time series that
exhibit such inherent characteristic, for example correlated events in the feature
space. However, our approach could be used to find non-linear segments as well
by designing an appropriate constraint or multiple constraints, but finding and
expressing suitable constraints for the CoExtDBSCAN algorithm remains a chal-
lenging task [§].

Following Definition 1 to 8, our approach for semi-supervised time point
clustering for multivariate time series can be summarized in four steps.

1. Compute the CoExDBSCAN clustering result for each time series with the
time dimension as the spatial subspace and the correlated features as the
correlation subspace with the constraint formulated in Definition 7. Each
cluster is equivalent to a subsequence. (adaptation of the algorithm)

2. Label all subsequences with less than the minimum required number of time
points as noise, if any. (modification of the algorithm)

3. Compute the linear regression coefficients between the correlated features
for each subsequence. (adaptation of the algorithm)
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4. Group all subsequences with equal or close regression coefficients up to a
certain threshold into one cluster. The resulting clusters, see Definition 8,
contain segments of one or multiple time series that are similar to each other
in terms of temporal proximity and correlation of the comprising time points.
(improvement through innovation)

4 Verification

To verify our approach detailed in the previous section, we compared the re-
sults of our semi-supervised time point clustering method to a baseline k-means
clustering for time-series data with dynamic time warping (DTW), a Gaus-
sian Mixture Model (GMM) and the Toeplitz inverse covariance-based cluster-
ing (TICC) method. The k-means with DTW algorithm is a well established
similarity-based method for time series and time point clustering and is available
in a variety of programming languages. The Gaussian Mixture Model is a gen-
eral, model-based approach that provides a sound mathematical-based approach
for statistical modelling of a wide variety of random phenomena [16,17]. As a
state-of-the-art comparison we choose TICC [10], since the authors have shown
that their method outperforms a range of model-based and distance-based clus-
tering methods for clustering multivariate time series subsequences. Since our
own implementation is based on Python, we choose the k-means with DTW im-
plementation from the tslearn machine learning toolkit for time series data [28]
and the GMM implementation from the scikit-learn machine learning package
[18] in Python as well; the code of the TIC'C method is also provided in Python
by the authors [10].

We use a synthetic dataset for verification and comparison that has known
correlations between two features and known temporal subsequences. Because
the correlations and the order of subsequences are known, we can evaluate all
methods against the ground truth. We use two metrics, the adjusted Rand index
and the clustering accuracy. The Rand index measures the similarity between
two data clusterings by counting equal elements in subsets created by the two
partitions of the data, the true partition (true labels) and the computed parti-
tion (predicted labels) [21]. Since the expected value of the Rand index of two
random partitions does not take a constant value [30], Hubert et al. introduced
an adjustment for chance to the Rand index [12]. The adjusted Rand index is
thus ensured to have a value close to zero for random labeling independently
of the number of clusters and samples and exactly one when the clusterings are
identical, up to a permutation [18]. Our second metric, the cluster accuracy, finds
the best match between the true labels and the predicted labels. The greater the
clustering accuracy, the better the clustering performance [23].

Our synthetic dataset has four temporal sequences that are repeated once:
"1, 2, 3,4, 1,2, 3, 4", illustrated in Figure 1la) and b). Each sequence has two
correlated features (x1 and x2), generated according to Table 1.

For each sequence, we choose one feature evenly distributed on the given
interval plus some randomly distributed noise and the other feature according
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Sequence|Points|Feature x1 Feature x2 Noise
1 10 |21 €[-50,100] + €[22 =0.1-x1 + ¢ £~ N(0,4)
2 20 zl € [100,250] + £ |22 = —0.2 - £1 + 39.65 + £|€ ~ N(0,4)
3 20 z1 € [100,250] + &£ |22 = 0.5 - 21 — 106.94 + £ |£ ~ N(0,4)
4 10 |zl €[=50,100] + £|22 = —0.6 - 21 + 4.52 + £ |€ ~ N(0,4)
Table 1: Value range and generation methods.
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Fig. 1: Synthetic dataset; a) time series for feature x1, b) time series for feature
x2 and c¢) joint feature space {x1,x2}. Labels are true labels.

to a specific linear equation plus some randomly distributed noise that leads
to overlapping areas in the joint feature space as depicted in Figure 1lc). This
overlap in feature space is particularly challenging for cluster algorithms, since
distance-based and density-based algorithms can not distinguish between the
overlapping clusters without a priori information.

Our modified and adapted version of CoExDBSCAN yields the best cluster-
ing result for the synthetic data with the highest adjusted Rand index (0.88)
and highest cluster accuracy (0.93), as summarized in Table 2. This approach
significantly outperforms the baseline k-means with DTW, the general cluster-
ing approach with GMM and also the state-of-the-art TICC algorithm. Figure 4
shows the clustering results of our semi-supervised time point clustering method.
The subsequences have been accurately identified and clustered together, with
six data points labeled as noise (5% of all data points). We choose the input
parameters based on a grid search with €, minPts and § in the range of [1,5]
with a step size of one and kept the parameters with the highest adjusted Rand
index. Subsequences with two or less points have been labeled as noise.

The second best clustering results are obtain by the Gaussian Mixture Model
with all dimensions included in the clustering process (see Figure 3). Similar
results have been shown by Hallac et al. [10] in their comparison for the same
order of subsequences. More notably, the results between our baseline k-means
and state-of-the-art TICC method are surprisingly indifferent in terms of the
cluster accuracy and with a slightly higher ARI score for the TICC algorithm.
Figure 2 illustrates the clustering result for the TICC algorithm.
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Clustering Method ARI |ACC|Parameters

Modified CoExDBSCAN|0.88|0.93 |c =2, minPts =1, =4,0 =0.01

GMM 0.67 |0.75 |n =4,n_init = 10,init _params = kmeans
TICC 0.36 [0.58 [n=4,w=1,A=0.11,4=0

k-means with DTW 0.26 |0.52 [n =4

Table 2: Summary of clustering results for the synthetic data using the adjusted
Rand index (ARI) and cluster accuracy (ACC) metrics.

Varying the TICC input parameters show no tendencies for improving the
results, furthermore higher values for the smoothness penalty parameter $ have
resulted in numerical errors. However, decreasing the noise on the synthetic data
can lead to a better performance. This increase in accuracy can be observed in
all compared algorithms except the baseline k-means algorithm, while increasing
the noise leads to the opposite, decreasing accuracy. Therefore, the comparison
with the presented synthetic data is sound and holds true for a variation in noise
also.

Table 2 summarizes the metric scores and lists the parameters used for each
algorithm in detail. Since k-means, GMM and TICC require the number of clus-
ters as a parameter, we fixed this parameter to the true number of subsequences.
Other parameters have been set to the cluster algorithms’ default values, besides
the number of initializations for GMM that has been set to ten iterations with
the best results to keep, and the window size for TICC that has been set to
one due to empirical evaluation; also the smoothness penalty parameter 5 for
the TICC algorithm has been set to zero, i.e. without a temporal consistency
constraint [10], according to our Definition 3.

Our approach does not require the number of clusters as an input parame-
ter, which is usually unknown a priori and should rather be discovered in the
clustering process. The other parameters are intuitively comprehensible, with e
corresponding to the time window, § corresponding to the factor of maximum
deviation from the residuals mean of the linear regression and € corresponding to
the similarity threshold of the linear regression coefficients for each subsequence.
Given these parameters either through empirical evaluation or expert knowledge,
our approach captures the inherent structure of the data best compared to the
selected algorithms.

5 Experimental Evaluation

For the experimental evaluation we decided to demonstrate the significance of our
approach on a popular real-world dataset in time series clustering. The LIBRAS
movement dataset [5] is available from the UCI Machine Learning Repository
[7] and contains 15 classes of 24 instances each, where each class references to
a hand movement type in the LIBRAS Brazilian sign language. All movements
were tracked from video analysis, where in each frame, the centroid pixels of
the segmented objects (the hand) are found, which compose the discrete ver-
sion a curve with 45 points. All curves are normalized in the unitary space and
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mapped in a representation with 90 features, representing the coordinates of
the movement [7]. Each hand movement can be further segmented in distinct
sub-movements, e.g. upper left to lower right, therefore makes it suitable for sub-
sequence and time point clustering. However, there are no true labels available
for individual segments and thus we can not perform external clustering valida-
tion with the adjusted Rand index (ARI) or cluster accuracy (ACC). However,
Figure 6 provides a visual comparison of the CoEzDBSCAN, GMM and TICC
algorithms on the LIBRAS dataset on an individual sample from the vertical
zigzag class (see sample 123 from Figure 5).
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Fig.5: Semi-supervised time point clustering with the modified CoExzDBSCAN
algorithm on the LIBRAS dataset. Nine samples from one class (vertical zigzag)
illustrate the successful segmentation of each time series into similar motions.
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Fig.6: Comparison of clustering algorithms on the LIBRAS dataset on an in-
dividual sample from the vertical zigzag class (see sample 123 from Figure 5);
a) CoExDBSCAN results (points labeled as noise are omitted), b) GMM
results, and ¢) TICC results.

Figure 5 exemplifies the result of our experiment, depicting nine sample time
series from the same class (vertical zigzag), without loss of generality, after ap-
plying the modified CoExDBSCAN algorithm on each series. The last step of
our method, grouping all subsequences with equal or close regression coefficients,
has been implemented in this case through discretization of the coefficients for
each cluster into equal-sized buckets based on their quantiles. This results in
three clusters, which correspond to similar, partial motions. The blue dot time
points indicate a motion staring left in the coordinate space and ending in a lower
right position of the coordinate space. The green square time points indicate a
mirrored motion that starts right in the coordinate space and ends in a lower
left position. The third class of subsequences, orange crosses, indicate a motion
similar to the blue dot sequences, but with a less steep slope, e.g. oriented to a
horizontal motion.

The visual comparison in Figure 6 of the CoExDBSCAN, GMM and TICC
algorithms on the LIBRAS dataset on an individual sample from the vertical
zigzag class shows that CoExDBSCAN provides the best qualitative result. For
each algorithm we performed the discretization of the linear regression coeffi-
cients for each cluster into equal-sized buckets based on their quantiles. With
CoExDBSCAN similar partial motions are grouped into the same category, see
Figure 6 a), while with the GMM method, see Figure 6 b), and with the TICC
algorithm, see Figure 6 c), partial motions with a visual clear change of course
could not be separated. Furthermore, GMM and TICC both require the number
of clusters to form as input parameter, which depends on the class of motion
and number of partial motions to identify. Therefore, both algorithms can mere
express the inherent structure of the dataset, but our modified CoExDBSCAN
method is able to independently discover the intrinsic properties of the data.

In addition to the clustering of similar subsegements, we can utilize the clus-
tering results by comparing the distributions of coefficients, which can serve as
an effective basis for time series classification. If we compute the Kolmogorov-
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Smirnov statistic [11] for each learned distribution against an unseen distri-
bution, we can classify time series that exhibit similar subsequences up to an
accuracy of ~ 67%. Similar accuracy can be achieved by k-nearest meighbors
vote (~ T79%) or a time-series specific Support Vector Classifier (~ 68%)from
the tslearn toolkit [28] without parameter optimization.

This experimental assessment shows that by adopting the CoExDBSCAN
algorithm to time series data and grouping segments with similar correlations
allows us to find accurate and interpretable structures. Moreover, our clustering
results can serve as an effective basis for time series classification, which we plan
to elaborate on in future work.

6 Conclusion

In this article we propose a new approach for semi-supervised time point clus-
tering for multivariate time series. We adopt and modify the CoExDBSCAN
algorithm and apply the algorithm to time series data to find temporal neigh-
bourhoods, whose expansions are restricted to a priori constraints. We propose a
constraint formulation to restrict the cluster expansion to the correlation of time
point values. This constraint is defined by the deviation of time point residuals
from the mean of residuals of time points within a subsequence, based on linear
regression. Beyond the presented low-dimensional verification and evaluation
datasets, our approach remains relevant even for high-dimensional data. This
fact derives from the evaluation by Schubert et al. [27] for the original DBSCAN
algorithm for high-dimensional data and becomes apparent in our research with
climate data, where we apply the presented method to segment trajectories with
high dimensionality.

Forming groups of segments with similar correlations results in clusters of
subsequences, which can be interpreted as recurring events or actions; for exam-
ple similar movements as shown in our experimental evaluation. Our verification
on a synthetic dataset indicates that our method significantly outperforms our
baseline and state-of-the-art comparisons. Our validation and application to the
real-world LIBRAS movement dataset demonstrates that this approach can ac-
curately identify subsequences of similar motions and we are able to extract
distributions of coefficients for each subsequence towards an effective classifica-
tion approach.

For future work, we plan to improve especially this classification aspect and
to provide more detailed comparison studies with other algorithms in the field
of subsequence and time point clustering for multivariate time series.
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