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Abstract: Every driver knows that his car is slowing down or accelerating when driving up or down,
respectively. The same happens on uneven roads with plastic wave deformations, e.g., in front
of traffic lights or on nonpaved desert roads. This paper investigates the resulting travel speed
oscillations of a quarter car model rolling in contact on a sinusoidal and stochastic road surface.
The nonlinear equations of motion of the vehicle road system leads to ill-conditioned differential-
algebraic equations. They are solved introducing polar coordinates into the sinusoidal road model.
Numerical simulations show the Sommerfeld effect, in which the vehicle becomes stuck before
the resonance speed, exhibiting limit cycles of oscillating acceleration and speed, which bifurcate
from one-periodic limit cycle to one that is double periodic. Analytical approximations are derived
by means of nonlinear Fourier expansions. Extensions to more realistic road models by means of
noise perturbation show limit flows as bundles of nonperiodic trajectories with periodic side limits.
Vehicles with higher degrees of freedom become stuck before the first speed resonance, as well as in
between further resonance speeds with strong vertical vibrations and longitudinal speed oscillations.
They need more power supply in order to overcome the resonance peak. For small damping, the
speeds after resonance are unstable. They migrate to lower or supercritical speeds of operation.
Stability in mean is investigated.

Keywords: road models; quarter car models; limit cycles; acceleration speed portraits; speed
oscillations; velocity bifurcations; noisy limit cycles; limit flows of trajectories; Sommerfeld effects;
differential-algebraic systems; polar coordinates of roads; covariance equations; stability in mean;
supercritical speeds; analytical travel speed amplitudes; Floquet theory applied to limit cycles

1. Introduction to the Problem

Vertical vibrations of a vehicle driven by a constant force and rolling on a sinusoidal
road surface are coupled with its horizontal travel motion, affecting the vehicle speed which
fluctuates around a mean value. The coupling between both planar motions is caused by
the permanent direction change of the contact force to ground along the contour of the
road profile. This paper explains the nonlinear model of this dynamic problem applying
averaging methods to calculate stationary solutions before and after the resonance speed.
Numerical integrations are applied to obtain limit cycles around the averaged solutions,
plotting the fluctuating car acceleration against the true velocity. Stationary solutions
are stable in mean when the slope of the driving force speed characteristic is positive.
Vice versa, they are unstable for negative slopes. This leads to the so-called Sommerfeld
effect [1] that for a given driving force the car becomes stuck before the resonance speed
and can only pass over the resonance and the unstable velocity range after the resonance
by considerably increasing the driving force [2]. First investigations of velocity jumps and
turbulent speeds in nonlinear vehicle road dynamics are given by Wedig in [3–7] applying
sinusoidal and random road models introduced by Robson et al. [8–10]. The first order
road model in [11,12] is extended in [3,4] to a second order one which includes sinusoidal
models. Blekhman and Kremer studied the same vehicle road system in [13,14] for the
special case of small road excitations to calculate only the average response of driving
cars (see also [15]). In [2,7], these investigations are extended to large sinusoidal road
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surfaces and double-periodic limit cycles in the phase plane of longitudinal acceleration
and oscillating speed. In the present paper, new results for mean values and amplitudes of
speed oscillations are calculated by means of Fourier expansions. Stability investigations by
means of Floquet theory are proposed. Extensions to quarter car models with two degrees
of freedom are made. The new speed amplitudes calculated in this paper show that the
longitudinal speed oscillations of the vehicle are stable in the lower speed range before the
resonance speed and in the upper higher speed range. In the middle range immediately
after the resonance peak, stationary speeds are unstable and therefore physically not
realizable. These stability properties correspond to the Duffing problem where vertical
displacement vibrations of the vehicle possess three different amplitudes in the resonant
speed range: the upper and lower displacement vibrations are stable and the middle range
vibrations are unstable, as well.

2. Coupled Vertical and Longitudinal Vehicle Road Dynamics

Figure 1a shows the applied quarter car model rolling on a wavy road with vertical
displacement z and derivative u taken along the travel way s. In the following, the
quantities z and u are called road level and slope, respectively. They generate vertical car
vibration displacement y and velocity

.
y, which are coupled by the vehicle speed v =

.
s and

described by the two equations of motion

.
v =

[
ω2

1(y− z) + 2Dω1
( .

y− .
z
)]

tan α + f /m , (1)

..
y + 2Dω1

( .
y− .

z
)
+ ω2

1(y− z) = 0,
.
y = ω1x (2)

where s is the travel displacement of the vehicle and x =
.
y/ω1 denotes the coordinate of

the vertical vibration velocity. In Equations (1) and (2), dots denote derivatives with respect
to time t. The parameter ω2

1 = c/m determines the natural frequency ω1 of the vertical
vehicle vibrations, 2Dω1 = b/m denotes the damping, and f is the driving force which is
constant or slightly decreasing with growing speed. In Figure 1b, both force characteristics
are plotted in yellow-black. In the following, constant driving force is applied only. The
nonlinear term in Equation (1) represents the damper and spring force multiplied by tan α
that takes the horizontal component of the contact force N by means of tan α = dz/ds One
finds Equations (1) and (2) already in the literature in [13,14] and in [2–7].
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Figure 1. (a) Quarter car model rolling on sinusoidal road surface driven by the constant force f. 
(b) Driving force speed characteristic for two parameters 𝑧௢Ω  of the road unevenness marked by 
red and cyan color, respectively, and two driving force characteristics marked by yellow-black 
lines. 

In first investigations, the road level and slope are assumed to be sinusoidal as  
Figure 1. (a) Quarter car model rolling on sinusoidal road surface driven by the constant force f.
(b) Driving force speed characteristic for two parameters zoΩ of the road unevenness marked by red
and cyan color, respectively, and two driving force characteristics marked by yellow-black lines.

In first investigations, the road level and slope are assumed to be sinusoidal as

z(s) = z0 cos(Ωs) and u(s) = −z0 sin(Ωs), (3)
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where z0 is the amplitude of the road surface and Ω is the angular spatial frequency
determined by the wave length L = 2π/Ω of the road. Equations (1)–(3) represent
a DA equation system where the role of algebraic terms is taken by sinusoidal terms. To
eliminate these terms, the road level z and slope u in Equation (3) are differentiated with
respect to the way coordinate s in order to obtain the increments dz = −z0Ω sin(Ωs)ds and
du = −z0Ω cos(Ωs)ds that leads to the homogeneous nonlinear oscillator equations

.
z = vΩu ,

.
u = −vΩz , (4)

which are obtained when both increments above are divided by dt and ds/dt is replaced by
the speed v. Furthermore, dz/ds = −zoΩ sin(Ωs) = Ωu holds so that Equation (1) reads as

.
v =

[
ω2

1(y− z) + 2Dω1
( .

y− .
z
)]

Ωu + f /m. (5)

Equations (2), (4) and (5) describe a five-dimensional problem with five unknowns [4,7]:
the horizontal travel speed v(t) of the vehicle, its vertical vibration by displacement y(t)
and velocity

.
y(t) = ω1x(t), and the road level z(t) and slope u(t). For analytical and

numerical investigations, it is appropriate to introduce the dimensionless time τ = ω1t
and the related speed v = vΩ/ω1, as well as the related coordinates (z, u) = (z, u)z0 and
(y, x) = Ω(y, x). Their insertion into Equations (2), (4) and (5) leads to

v′ + 2D(z0Ω)2u2v = z0Ω(uy + 2Dux)− (z0Ω)2zu + f Ω/c, (6)

z′ = vu, u′ = −vz, IC. : z(0) = 1, u(0) = 0, (7)

y′ = x, x′ = −(y + 2Dx) + zoΩ(z + 2Dvu) . τ = ω1t, (8)

where prime denotes differentiation with respect to the dimensionless time τ = ω1t. To
improve numerical integration [2,7] in Equations (6)–(8), the polar coordinates

z = r cosϕ and u = r sinϕ (9)

are introduced into the road Equation (7) that leads to the transformation equations

r′ cos ϕ− rϕ′ sin ϕ = vr sin ϕ,

r′ sin ϕ + rϕ′ cos ϕ = −vr cos ϕ,

which are solved by means of the determinant ∆ = cos2 ϕ + sin2 ϕ = 1 and Cramer’s
rule to

r ′ = 0, ϕ′ = −v.

Without loss of generality, the related polar radius is integrated to r = 1. Note that
the derivative of the polar angle is equal to the negative speed of the vehicle. According
to the definition of polar coordinates, the polar angle turns counterclockwise into the
mathematically positive direction. The applied oscillator, however, rotates clockwise. This
is the reason why both quantities have opposite signs.

3. Speed Driving Force Characteristic of Traveling Vehicles

In order to derive the driving force speed characteristic, shown in Figure 2, the
equations of motion are approximately investigated assuming that the oscillating speed of
the vehicle can be averaged by v(τ) = v = const. In this case, the sinusoidal solutions

y(τ) = yc cos(vτ) + ys sin(vτ), z(τ) = cos(vτ),

x(τ) = xc cos(vτ) + xs sin(vτ), u(τ) = − sin(vτ)
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are applicable and inserted into Equation (8) in order to obtain the matrix equation
0 −v −1 0
v 0 0 −1
1 0 2D −v
0 1 v 2D




ys
yc
xs
xc

 = z0Ω


0
0

2Dv
1


applying the coefficient comparison. The first two rows of this matrix equation yield
xc = vys and yc = −xs/v. Both relations are inserted into the last two rows, obtaining(

v2 − 1
)

xs + 2Dv2ys = zoΩv,

− 2Dxs +
(

v2 − 1
)

ys = zoΩ 2Dv.

Appl. Sci. 2021, 11, 10431 4 of 14 
 

቎ 0 −𝜈 −1 0𝜈 0 0 −110 01 2𝐷 −𝜈𝜈 2𝐷  ቏ ቎ 𝑦௦𝑦௖𝑥௦𝑥௖ ቏ = 𝑧଴Ω ቎ 002𝐷𝜈1  ቏ 
applying the coefficient comparison. The first two rows of this matrix equation yield 𝑥௖ =𝜈𝑦௦ and 𝑦௖ = −𝑥௦ 𝜈⁄ . Both relations are inserted into the last two rows, obtaining (𝜈ଶ − 1) 𝑥௦ + 2𝐷𝜈ଶ𝑦௦  = 𝑧௢Ω𝜈, −2𝐷𝑥௦ +  (𝜈ଶ − 1)𝑦௦ = 𝑧௢Ω 2𝐷𝜈. 

This reduced equation system possesses the determinant ∆= (𝜈ଶ − 1)ଶ + (2𝐷𝜈)ଶ. It 
is solved by Cramer’s rule in order to obtain first 𝑥௦ and 𝑦௦ and then 𝑥௖ and 𝑦௖, as follows:  

           𝑥௦ = 𝑧௢Ω𝜈 ሾ𝜈ଶ − 1 − (2𝐷𝜈)ଶሿ ∆⁄ ,                   𝑥௖ = 𝑧௢Ω2𝐷 𝜈ସ ∆⁄ ,               (10) 𝑦௦ = 𝑧௢Ω2𝐷𝜈ଷ ∆,                        𝑦௖ = 𝑧௢Ω [1 + 𝜈ଶ(4𝐷ଶ − 1)} ∆.⁄  ⁄  (11)

These results coincide with the linear theory of a constant vehicle speed. They are 
inserted into the velocity Equation (6) to calculate the time dependent driving force  𝑓Ω/𝑐 = 2𝐷(𝑧଴Ω)ଶ𝜈 sinଶ 𝜈𝜏 + 𝑧଴Ω[(𝑦ത + 2𝐷𝑥̅) − 𝑧଴Ω cos(𝜈𝜏) ] sin(𝜈𝜏) 

which is needed to keep the speed 𝜈 constant. Its mean value is calculated as    𝑓Ω/𝑐  = (𝑧଴Ω)ଶ𝐷νହ [⁄ (𝜈ଶ − 1)ଶ + (2𝐷𝜈)ଶ] ,              with   ν = vΩ 𝜔ଵ⁄ . (12)

The approximated force speed characteristic in Equation (12) is plotted in Figure 1b 
for the two road surface parameters 𝑧଴Ω = 1.4 and 0.8, marked by red and cyan lines, re-
spectively. The dashed line represents the asymptote 𝑓Ω/𝑐 = (𝑧଴Ω)ଶ𝐷ν, which is propor-
tional to the speed, indicating that one needs a linearly growing driving force to reach 
higher speeds of operation. Obviously, the increasing driving force is needed to compen-
sate the energy loss in the damper, which is growing with higher speeds, as well. 

  
(a) (b) 

Figure 2. (a) Force speed characteristic (thick red) against speed. Transients of limit cycles for driv-
ing force values marked on the thick red characteristic by green, cyan, and yellow triangles. (b) 
Bifurcations of limit cycles of scaled and shifted accelerations against travel speed when the vehicle 
becomes stuck before the resonance speed. One-periodic limit cycles in the super-critical speed 
range. The applied driving forces are marked by green, yellow, red, and cyan triangles. 

The force speed characteristic (12) represents a linear approximation obtained by av-
eraging the oscillating driving speed. In order to check the validity and stability of the 
result in Equation (12), numerical simulations are performed by applying the Euler 
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Figure 2. (a) Force speed characteristic (thick red) against speed. Transients of limit cycles for
driving force values marked on the thick red characteristic by green, cyan, and yellow triangles.
(b) Bifurcations of limit cycles of scaled and shifted accelerations against travel speed when the
vehicle becomes stuck before the resonance speed. One-periodic limit cycles in the super-critical
speed range. The applied driving forces are marked by green, yellow, red, and cyan triangles.

This reduced equation system possesses the determinant ∆ =
(
v2 − 1

)2
+ (2Dv)2. It

is solved by Cramer’s rule in order to obtain first xs and ys and then xc and yc, as follows:

xs = zoΩv
[
v2 − 1− (2Dv)2

]
/∆, xc = zoΩ2Dv4/∆, (10)

ys = zoΩ2Dv3/∆, yc = zoΩ[1 + v2
(

4D2 − 1
)
]/∆. (11)

These results coincide with the linear theory of a constant vehicle speed. They are
inserted into the velocity Equation (6) to calculate the time dependent driving force

f Ω/c = 2D(z0Ω)2v sin2 vτ + z0Ω[(y + 2Dx)− z0Ω cos(vτ) ] sin(vτ)

which is needed to keep the speed v constant. Its mean value is calculated as

f Ω/c = (z0Ω)2Dv5/[
(

v2 − 1
)2

+ (2Dv)2] , with v = vΩ/ω1. (12)

The approximated force speed characteristic in Equation (12) is plotted in Figure 1b
for the two road surface parameters z0Ω = 1.4 and 0.8, marked by red and cyan lines,
respectively. The dashed line represents the asymptote f Ω/c = (z0Ω)2Dv, which is
proportional to the speed, indicating that one needs a linearly growing driving force to
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reach higher speeds of operation. Obviously, the increasing driving force is needed to
compensate the energy loss in the damper, which is growing with higher speeds, as well.

The force speed characteristic (12) represents a linear approximation obtained by
averaging the oscillating driving speed. In order to check the validity and stability of
the result in Equation (12), numerical simulations are performed by applying the Euler
scheme to

v′ + 2D(z0Ω)2u2v = z0Ω(uy + 2Dux)− (z0Ω)2 zu + f Ω/c, (13)

y′ = x, x′ = −(y + 2Dx) + zoΩ(z + 2Dvu) . ϕ′ = −v, (14)

where the related level and slope of the road surface are given by z = cosϕ and u = sinϕ
dependent on the polar angle ϕ, the derivative of which is equal to the negative speed
of the vehicle. The numerical results obtained are presented in Figure 2a by plotting
the scaled and shifted acceleration of the vehicle against the true speed where squares
denote initial values of acceleration and speed; triangles are mean values of acceleration
and speed calculated after the initially transient period, providing a sufficiently long
time for the averaging procedure. In Figure 2b, stationary limit cycles are shown for
a stronger road excitation given, e.g., by z0Ω = 1.0, which leads to the road amplitude
zo ≈ 3.2 mm, e.g., for the wave length L = 20 mm. Note that phase portraits of velocity over
displacement are not applicable for the travel kinematics since the horizontal displacement
of the traveling vehicle is growing infinitely. Instead of phase portraits of displacement and
velocity, Figure 2b shows limit cycles of velocity against acceleration. Obviously, there are
two speed regions where the limit cycles are stable; the first is in the under-critical speed
range before the resonance speed v = 1. The second is far beyond the resonance in the
higher speed range of operation. In between both stable speed ranges, the slope of the
speed driving force characteristic is negative. In this range, limit cycles are not stable and
therefore not realizable. This instability is plausible and physically explained inside the
yellow area shown in Figure 2a. Accordingly, a speed perturbation by means of ∆v < 0
into the negative speed direction on the left side of the dynamic equilibrium generates
an acceleration back to the equilibrium since the applied force ∆ f > 0 is larger than that
one being necessary in the new perturbed situation. In this case the positive driving force
difference is equal to the vertical distance between the green and red circle. However, the
vehicle is braked if the speed perturbation goes into the positive speed direction on the
right side of the dynamical equilibrium. In this case, the applied driving force is smaller
than the one necessary to maintain the new perturbed dynamic equilibrium, marked by the
right red circle. Vice versa, a speed driving force characteristic with negative slope leads to
monotonous instability with the effect that speed leaves the unstable branch. In Section 5,
it is shown that the negative slope condition coincides with the instability in mean, which
is derived by applying the Hurwitz criterion to the variational equations of the averaged
equations of motion.

Figure 2a shows three limit cycles in the stable under-critical speed range for the
driving forces: f Ω/c = 0.1, 0.2, and 0.3 marked by green, cyan, and yellow triangles,
respectively. The limit cycles are obtained by plotting the scaled and shifted acceleration
against the true travel speed. The selected initials are marked by colored squares. Thin
black lines are transients which start in the squares and end in the thick colored lines
of the one-periodic limit cycles. After this initial period, the simulation is continued
a sufficiently long time in order to calculate the mean values of speed and acceleration,
which are plotted marked by colored triangles. Obviously, the triangles showing speed and
acceleration coincide with the initial values of the applied speed driving force characteristic.
Since the accelerations are shifted upward by the applied value of the speed driving
force characteristic, the acceleration mean value is vanishing when both triangles coincide.
The same property is obtained in the stable region of super-critical speeds 2 < v < 4,
where three one-periodic limit cycles are shown on the right side in Figure 2a. Again, the
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transients are marked by thin black lines. After a sufficiently long initial time, the transients
go over to the stationary limit cycles marked by green, cyan, and yellow.

In Figure 2b, the applied wave parameter is doubled by z0Ω = 1 with the consequence
that the amplitudes of the speed oscillations become much broader. Moreover, the one-
periodical limit cycles bifurcate into double-periodic ones when for growing driving force
the vehicle becomes stuck in the under-critical speed range. This bifurcation scenario is
demonstrated by the green limit cycle obtained (left side, Figure 2b) for the related driving
force f Ω/c = 0.3, which goes over to the yellow double-periodic one if the related force is
increased to f Ω/c = 0.6. For the further increased driving force f Ω/c = 0.9, the calculated
limit cycle is still double-periodic marked by red and bifurcates back into the one-periodic
limit cycle marked by cyan if the driving force is again increased to f Ω/c = 1.2. For further
growing driving force, the resonance speed v = 1 is reached with strong oscillations
in the vertical and horizontal direction and then passed up to high speed ranges where
the driving force can be again decreased. Associated limit circles are single periodic as
shown in the right side of Figure 2b. They are obtained for f Ω/c = 2.7, 3.3, 3.9, and 4.5,
marked by green, yellow, red, and cyan, respectively. Correspondingly, colored triangles
represent the averaged travel speeds together with the applied driving force. The applied
vehicle damping is D = 0.2 and the time step of integration is ∆τ = 2× 10−5. Note that
for f Ω/c = 0.9 two different limit cycles are obtained: the first in the under-critical speed
range and the second one in the upper-critical speed range. Both are marked by red. In
between both stable limit cycles, there is a middle one which is unstable und therefore not
realizable. Note that one finds the same behavior in rotor dynamics, where the Sommerfeld
rotor leads to the same driving characteristic [2] when in Equation (12) the road factor z0Ω
is replaced by the mass ratio of the unbalanced rotor, the translation velocity by the rotation
speed ratio, and the driving force by the moment. More details on Sommerfeld effects in
rotor dynamics are given in [16–20].

4. Stable and Unstable Oscillation Amplitudes of Vehicle Speeds

In Figure 3a, the vibration amplitudes of the vertical displacement (red) and velocity
(pink) of the vehicle are plotted against the travel speed together with the speed driving
force characteristic shown in blue. The displacement and velocity amplitude are

Ay =
√

y2
s + y2

c , and Ax =
√

x2
s + x2

c ,

respectively, where the coefficients ys, yc and xs, xc are determined by Equations (10) and (11).
The blue curve in Figure 3a represents the speed driving force characteristic dependent on
speed. As already derived, stable travel speeds are only realizable in those speed regions
where the slope of the characteristic is positive marked by thick blue lines in the under-
and super-critical range. In the middle range, where the slope is negative, the blue curve
is replaced by a thin black line, indicating that the calculated stationary speed is unstable
and therefore not realizable. From this it follows that the calculated amplitudes Ay and Ax
of the vertical vibrations of the vehicle are not realizable in the middle speed range, as
well. In the super-critical speed range, however, all stationary vibration amplitudes are
stabilized with growing speed and end into asymptotes marked by a dashed line, which are
linearly growing, constant without increasing and decreasing for the force characteristic,
the velocity, and the displacement amplitude, respectively. Obviously, the asymptote of
the driving force corresponds to acceleration. Both quantities, force and acceleration, are
linearly increasing with growing speed of the vehicle.
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Figure 3. (a) Vibration amplitudes of the vertical velocity (pink) and displacement (red) of the vehicle
in comparison with the force speed characteristic (blue) in the under- and supercritical speed range.
(b) Travel speed oscillation amplitudes (green) and extended force speed characteristic (red-cyan).

In order to introduce efficient solution methods, the time increment dτ in Equations (6)
and (8) is eliminated by the angle increment dϕ = −vdτ that leads to the time-free equations

vy◦ = −x, vx◦ = (y + 2Dx)− z0Ω(z + 2Dvu), (15)

vv◦ − 2D(z0Ω)2u2v = (z0Ω)2 zu− z0Ω(uy + 2Dux)− f Ω/c, (16)

where prime in (.)′ = d(.)/dτ is replaced by a circle in (.)◦ = d(.)/dϕ denoting differentia-
tion with respect to the polar angle ϕ. In Equations (15) and (16), the related road level and
slope are sinusoidal and dependent on the polar angle ϕ. Accordingly, the vertical vehicle
vibrations and the longitudinal speed oscillations are calculable inside one period by means
of shooting methods to obtain numerical solutions for vp(ϕ), y(ϕ) and x(ϕ). The associated
characteristic multipliers ρi are investigated by means of the new equation system

vp

 ∆y
∆x
∆v

o

+

 0 −1 yo
p

−1 −2D xo
p + z0Ω2Du

z0Ωu 2Dz0Ωu vo
p − 2D(zoΩu)2


 ∆y

∆x
∆v

 = 0

which is obtained when the perturbations y = yp + ∆y, x = xp + ∆x, and v = vp + ∆v
are inserted into Equations (15) and (16) and the perturbation equations are linearized
in the ∆ quantities. According to the Floquet theory, the calculated periodic solutions
are asymptotically stable with respect to ϕ if all multipliers ρi satisfy |ρi| < 1. For known
velocity vp(ϕ), the applied polar angle can be integrated back to time by which the sequence
of associated time distances is determined. Note that the four-dimensional time system
(13) and (14) is not ergodic since the polar angle ϕ is a state variable that grows infinitely
by permanent rotation. This disadvantage is avoided by eliminating the time variable by
means of the polar angle, which leads to the three-dimensional angle system (15) and (16)
where the polar angle now represents the independent integration variable restricted to
one-periodic interval. The solutions of this new time-free equation system are ergodic, and
multiplicative ergodic theorems are applicable in order to calculate characteristic numbers
of the dynamic system of interest.

For the new angle Equations (15) and (16), new analytical solutions are derived by
means of the introduction of the Fourier expansions

y(ϕ) = yc cos ϕ + ys sin ϕ + · · · , z(ϕ) = cos ϕ (17)

x(ϕ) = xc cos ϕ + xs sin ϕ + · · · , u(ϕ) = − sin ϕ, (18)

v(τ) = vo + vc cos 2ϕ + vs sin 2ϕ + · · · , (19)
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where the zeroth Fourier coefficient vo of the speed expansion in Equation (19) takes the
role of the averaged speed v in Section 3. The insertion of the expansions (17) and (18)
into Equation (15) and the coefficient comparison of the sinusoidal terms of cos ϕ and
sin ϕ leads to the same result, already noted in Equations (10) and (11). All other terms
are cutoff and can only be taken into account when higher expansions are introduced.
The insertion of the expansions (17), (18), and (19) into the speed Equation (16) and the
coefficient comparison leads to

vs =
D(zoΩ)2v2

o

[
(zoΩ)2(1 + 4D2v2

o − v4
o
)
− 4v4

o

]
2
[
(v2

o − 1)2 + (2Dvo)
2
][

4v2
o + (zoΩ)4D2

] , (20)

vc =
(zoΩ)2v3

o

{
1 + v2

o

[
4D2 − 1 + D2(zoΩ)2

]}
[
(v2

o − 1)2 + (2Dvo)
2
][

4v2
o + (zoΩ)4D2

] , (21)

which represent new results for the amplitudes of the travel speed oscillations. In Figure 3b,
the resultant speed amplitude Av is plotted against the mean speed vo = vΩ/ω1 by

Av =
√

v2
c + v2

s , lim
vo→∞

Av = D(zoΩ)2[4 + (zoΩ)2]/8 (22)

and marked by a thick green line. Obviously, the speed amplitude vanishes if the vehicle
slows. It is increasing up to the resonance speed and decreases again for further growing
speed, up to the asymptote given in Equation (22). In addition to the above coefficient
comparison of terms with cos 2ϕ and sin 2ϕ, all terms with cos 0 lead to the extended
speed driving force characteristic

f Ω/c =
D(zoΩ)2v3

o

(v2
o − 1)2 + (2Dvo)

2 {v
2
o + (zoΩ)2

v2
o

[
1− (zoΩ)2D2 − 4D2

]
− 1

2
[
4v2

o + (zoΩ)4D2
] } (23)

where the first part coincides with Equation (12) and the second part gives a correction of
second order. The extended speed driving force characteristic in Equation (23) is plotted in
Figure 3b. The red line marks the first approximation noted in Equation (12). Its second
order approximation, noted in Equation (23), is marked by a thick cyan line. It is close
to the red line of the first approximation. Thin black lines represent speed driving force
characteristics with negative slope where the calculated solutions are unstable and therefore
not realizable.

5. Stability in Mean and Robustness with Regard to Disturbances

Note that the velocity Equation (13) is determined by the products of road level z
and slope u multiplied by the two vibration coordinates y and x = y′. These products
are called covariances [2]. They determine the dependency of the response of the system
from the road excitation. The application of the product rule of differentiation to the road
Equation (7) and the vehicle Equation (8) leads to the covariance equation system

zy
uy
zx
ux


′

+


0 −v −1 0
v 0 0 −1
1 0 2D −v
0 1 v 2D




zy
uy
zx
ux

 = z0Ω


0
0

z2 + 2Dvzu
zu + 2Dvu2

, (24)

where the related speed v of the vehicle is determined by Equation (13) as

v′ + 2D(z0Ω)2u2v = z0Ω(uy + 2Dux)− (z0Ω)2 zu + f Ω/c . (25)
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Level and slope of the road are z(τ) = cos(vτ) and u(τ) = − sin(vτ), respectively.
Again, this is a DA equation system where transcendentals take the role of algebraic terms.
For numerical integrations, the sinusoidal terms in Equation (3) are generated by means
of the road oscillator, noted in Equation (7). The oscillator is transformed by means of the
polar coordinates

z(ϕ) = cos ϕ, u(ϕ) = − sin ϕ, ϕ′ = −v, (26)

which are inserted into Equations (24) and (25). The remaining equation ϕ′ = −v deter-
mines the derivative of the polar angle and couples the polar angle back to the speed of
the vehicle.

In order to derive analytical approximations, the averaging method is applied by
taking the time mean values < z2 > = < u2 > = 1/2 and < zu > = 0 in Equations (24)
and (25) that leads to (

1− v2
)

uy + 2Dux = zoΩvD

− 2Dv2 uy +
(

1− v2
)

ux = zoΩv/2,

when in Equation (24) for (.)′ = 0 the first two rows are applied to eliminate zy and zx.
Subsequently, the covariances uy and ux are calculated and inserted into Equation (25)

D(z0Ω)2v = z0Ω(uy + 2Dux) + f Ω/c,

which finally leads to the same speed driving force characteristic

f Ω/c = (z0Ω)2Dv5/[
(

v2 − 1
)2

+ (2Dv)2] ,

already noted in Equation (12). Note that the above applied time mean values are exact
when the speed of the vehicle is constant. For oscillating speeds, the time mean values are
approximations.

Following [2], the averaged Equation (24) are applied to investigate the stability in
mean of the averaged speed by means of the perturbation equation system

∆v
∆zv
∆uy
∆zx
∆ux

+


D(z0Ω)2 0 −z0Ω 0 −2Dz0Ω
−uy0 0 −v0 −1 0
zy0 v0 0 0 −1
−ux0 1 0 2D −v0

zx0 − z0ΩD 0 1 v0 2D




∆v
∆zv
∆uy
∆zx
∆ux

 = 0 (27)

which is obtained by means of the perturbations v = v0 + ∆v and αγ = αγ0 + ∆αγ for
(α, γ) ∈ {z, u, y, x}. The insertion of the perturbations into the averaged Equations (24)
and (25) and linearization in the ∆-terms yields the fifth order stability Equation (27)
with the characteristic equation ∆(λ) =A0λ5 + A1λ4 + · · · A5 = 0. The determinant of
Equation (27) yields

A5 =
(z0Ω)2Dv4

0
[
v4

0 − 6
(
1− 2D2)v2

0 + 5
](

1− v2
0
)2

+ (2Dv0)
2

. (28)

According to the Hurwitz criterion, A5 < 0 determines divergence that gives the
boundary of monotonous instability. Obviously, the stability condition A5 > 0 coincides
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with the positive slope condition of the speed driving force characteristic calculable by
differentiating Equation (12) with respect to the travel speed v that gives

d
dv

(
f Ω
c

)
= (z0Ω)2v4D

v4 − 6
(
1− 2D2)v2 + 5[(

1− v2
0
)2

+ (2Dv)2
]2 > 0 .

This result coincides with Equation (28) except that the positive definite denominator
in Equation (28) is squared. Hence, the negative slope condition and the instability in
mean lead to the same instability boundary. This is plausible and physically explainable,
as already done in the yellow area in Figure 2a. The instable speed range vanishes with
increasing damping.

In addition to the stability behavior, the robustness of the limit cycle calculation with
regard to disturbances is of interest. When disturbances are generated by brief shocks, the
eigenvalues of the stability matrix in Equation (27) must be calculated. They determine the
growth behavior with which the disturbances increase or decrease, respectively. In the case
of stationary disturbances, noise models are introduced. Figure 4a shows a stochastic limit
cycle obtained for the quarter car model in the case that the angle motion on the sinusoidal
road form is perturbed by additive noise given by

dφτ = −Vτdτ + σdWτ , ∆Wn =
√

∆τ Nn. (29)
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Figure 4. (a) Limit cycle flow of a bundle of irregular trajectories with double-periodic side limits
when the acceleration is plotted against the true vehicle speed. (b) Double-periodic crater-like proba-
bility density of the vehicle speed and acceleration with fast and slow motions in the phase plane.

In Equation (29), capital letters with index τ denote set functions [21,22] dependent
on time. Noise is generated by normally distributed numbers Nn with zero mean [23].
The stochastic angle perturbation takes into account that the road surface is no longer
sinusoidal but more realistically irregular and noisy with bounded realizations. For small
noise intensities σ, this leads to response realizations which are bounded, as well.

Initial results are shown in Figure 4a where trajectories of a stochastic limit cycle are
plotted in the phase plane of travel velocity and acceleration scaled by 0.3 and shifted by
the applied driving force. The realizations are calculated by means of Equations (24)–(26)
where the polar angle in Equation (26) is replaced by Equation (29). The applied damping
is given by D = 0.2, the driving force by f Ω/c = 0.6, the road level by zoΩ = 0.9, and the
noise intensity by σ = 0.03. The Euler scheme is applied with the time step ∆τ = 10−4. The
mean value of the shifted acceleration and true velocity is marked by a yellow triangle on
the red curve of the speed driving force characteristic, indicating that the mean acceleration
is vanishing and the mean travel speed coincides with Equation (12). The comparison with
the double-periodic yellow limit cycle in Figure 2b shows that its sharp line is widened to
a bundle of nonperiodic realizations, the boundaries of which are double periodic with



Appl. Sci. 2021, 11, 10431 11 of 15

two loops and one node of two crossing limit flows. Figure 4b shows the associated double-
crater-like probability distribution density on the phase plane of velocity and acceleration
calculated for the stronger noise intensity σ = 0.05. Clockwise rotation in the phase plane
of acceleration and true speed is slow when the probability density is high and vice versa
fast for low densities. Note that Figure 4a,b present new results in nonlinear stochastic
vehicle dynamics, obtained by applying noise perturbations that are bounded by means of
the applied sinusoidal terms. For small intensity σ, the limit flow in Figure 4a possesses
periodic side limits in spite of the fact that all limit cycle realizations are random. This is
a new effect presented in this paper. For growing intensity σ, the inner side limits of the
limit cycle shown in Figure 4a become broader and finally disappear, such that only the
outer side limits remain, and the whole phase plane in Figure 4a is covered by realizations
of velocity and acceleration.

6. Stable Travel Speeds of Road Vehicle Systems

To extend the above investigations to higher order models, consider the quarter car
model with two degrees of freedom shown in Figure 5a. The motions of the car body of
mass M and the wheel mass m are described by the equations of motion

..
y + 2Dω1

( .
y− .

x
)
+ ω2

1(y− x) = 0, z(s) = z0 cos(Ωs), (30)

..
x + 2Bω2

[
(1 + β)

.
x− .

z− β
.
y
]
+ ω2

2 [(1 + γ)x− z− γy] = 0, (31)

where the system frequencies ω1, ω2 and the damping coefficients D, B are introduced
together with the stiffness and damping ratios γ and β, and defined as follows:

ω2
1 = c/M, 2Dω1 = d/M, γ = c/k,

ω2
2 = k/m, 2Bω2 = b/m, β = d/b.
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Figure 5. (a) Quarter car model with 2 +1/2 DOF rolling on wavy ground without losing road
contact. (b) Vertical vibration amplitudes of car body (red) and wheel (pink). Speed driving force
characteristic marked by green for stable speeds and by black lines when the travel speed is unstable.

The parameter γ denotes the stiffness ratio of the car and wheel spring c and k,
respectively. Correspondingly, β is the damping ratio of the car and wheel damper d and
b, respectively. The reference frequencies ω2 and ω1 describe the decoupled vibrations
of the wheel and car body. In addition to Equations (30) and (31), the dynamic balance
in horizontal direction gives a third equation of motion that determines the travel speed,
as follows:

(M + m)
.
v = f +

[
k(x− z) + b

( .
x− .

z
)]

tanα , tan α = dz/ds. (32)
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Note that Equation (32) is of first order with respect to the car speed v, and s denotes
the longitudinal coordinate of the travel path. Note that both masses are assumed to be
concentrated in the contact point of road and vehicle so that only planar translations are
considered. Rotations are excluded.

It is appropriate to introduce the dimensionless vibration and road coordinates by
means of (y, x) = (y, x)/Ω and (z, u) = zo(z, u), respectively. The insertion of these
coordinates into Equations (30) and (31) leads to the dimensionless equations of motion

..
y + 2Dω1

( .
y−

.
x
)
+ ω2

1(y− x) = 0, v = vΩ/ω1, (33)

..
x + 2βω2

[
(1 + β)

.
x− β

.
y
]
+ ω2

2 [(1 + γ)x− γy] = zoΩω2
2(z + 2Bvu), (34)

where v is the related speed of the vehicle rolling on road with level z = cos Ωs and slope
u = − sin Ωs. In order to derive a first approximation, it is assumed that the oscillating
speed of the vehicle can be averaged by v(τ) = v = const. In this case, the travel path is
s = vt and the equations of motion become linear. They are solved by the set-up

y(t) = yc cos(vω1t) + ys sin(vω1t), z(t) = cos(vω1t),

x(t) = xc cos(vω1t) + xs sin(vω1t), u(t) = − sin(vω1t)

In the stationary case, the insertion of these set-ups into Equations (33) and (34) and
the coefficient comparison leads to the linear matrix equation

1 2Dv v2 − 1 −2Dv
−2Dv 1 2Dv v2 − 1

1 + γ− v2κ2 2B(1 + β)vκ −γ −2Bβvκ
−2B(1 + β)vκ 1 + γ− v2κ2 2Bβvκ −γ




xc
xs
yc
ys

 = zoΩ


0
0
1
−2Bv

 (35)

where κ is the reference frequency ratio given by κ = ω2/ω1. The coefficients xc, xs, yc, ys
of the sinusoidal set-up are calculated by means of Equation (35) and inserted into

Ay =
√

y2
s + y2

c , and Ax =
√

x2
s + x2

c ,

which are plotted in Figure 5b against the related speed of the vehicle. The amplitude Ay
of the car body is marked by red and the wheel amplitude Ax by pink. In unstable speed
ranges, both amplitudes are marked by thin black lines.

The vertical vibration amplitudes of both masses are calculated for the reference fre-
quencies ω1 = 1/s, ω2 = 2/s, (κ = 2), for the stiffness-ratio γ = 0.5 and for the damping
values D = 0.3, B = 0.2, and β = 0.5 . The applied road wave is chosen by zoΩ = 1. This is
equivalent to the height–length ratio zo/L = 0.159 when the wave frequency Ω = 2π/L is
inserted into zoΩ = 1. The frequency responses in Figure 5b possess two resonance speeds:
the first at v1 = 0.27 and the second at v1 = 1.29. Both eigenvalues are valid for vanishing
damping. In order to decide the realizability of the stationary vehicle speeds applied in
Equation (35), the new speed Equation (32) is investigated in the dimensionless form

m + M
m

.
v/ω2 + 2B(zoΩ)2u2v = f Ω/k + zoΩ(xu + 2Bu

.
x/ω2)− (zoΩ)2uz . (36)

As already shown in Section 3, Equation (36) can approximately be evaluated by
averaging the oscillating speed with

.
v = 0 and introducing the time mean values uz = 0,

xu = −xs/2, and u
.
x/ω2 = κvxc/2 into Equation (36). This gives the new approximated

force characteristic

f Ω/k = B(zoΩ)2v + zoΩ(xs − 2Bκvxc)/2 , (37)
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where xs and xc are calculated by means of Equation (35). New numerical evaluations of
Equations (35) and (37) are plotted in Figure 5b and marked by green for stable speeds
when the slope of the speed driving force characteristic is positive and by black-thin lines
when the slope is negative. In the latter case, the speed applied in Equation (35) is unstable
and physically not realizable. Finally, it is noted that both instability speed ranges are
vanishing for growing damping coefficients.

The instability behavior is numerically investigated by means of simulations applied
to a slightly modified quarter car model with two equal masses m and a third damper
B, as shown in Figure 6a. The car is rolling with velocity v on a wavy road described by
z(s) = zo cos Ωs in dependence on the travel way coordinate s. The speed frequency vΩ is
related to the reference frequency ω1 given by ω2

1 = c/m. The vertical vibrations of this car
model are described by the two nonlinear equations of motion

..
y1 + 2d1ω1

( .
y1 −

.
y2
)
+ 2Dω1

( .
y1 −

.
z
)
+ ω2

1(y1 − y2) = 0, (38)

..
y2 + 2d2ω1

( .
y2 −

.
z
)
− 2d1ω1

( .
y1 −

.
y2
)
+ ω2

1(2y2 − y1 − z) = 0, (39)

where
.
z = vΩu couples both vertical vibrations to the horizontal velocity described by

2
.
v + ω1[ω1(z− y2) + 2d2(

.
z− .

y2) + 2D
( .
z− .

y1
)
]Ωu = f /m. (40)
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1. Multiple Sommerfeld effects are shown before and between all resonances. Regular 
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Figure 6. (a) Extended vehicle model with wheel and car body on a wavy road without losing
contact. (b) Bifurcation from one-periodic limit cycle (red and green) into a double-periodic one
(yellow) before the first resonance. Vehicle becomes stuck before the first and second resonance with
strong oscillations.

The damping coefficients are introduced by B/m = 2Dω1 and bi/m = 2diωi for
i = 1, 2. For numerical integration, the dimensionless time τ = ω1t and the velocity
v = vΩ/ω1, together with the related coordinates (z, u) = (z, u)/zo and (yi, xi) = (yi, xi)Ω,
are inserted into the velocity Equation (40) and vehicle Equations (38) and (39).

Figure 6b shows the average vehicle speed for a given driving force f Ω/c, marked
by a blue thick line. It is calculated for the road level zoΩ = 1 and the damping values
D = d1 = d2 = 0.1. In the middle range of the related driving force (0.60 < f Ω/c < 0.82),
there are five branches of stationary solutions: two solution branches are unstable and
three are stable. The stable speeds possess positive slopes in the driving force speed
characteristic; meanwhile, speeds started in negative slope ranges do not remain in this
range. They migrate to higher or lower speed ranges. Figure 6b shows three limit cycles
(red, yellow, green) before the first resonance, two further limit cycles (red, cyan) between
the first and second resonance and the last three limit cycles for overcritical speeds near
the asymptote f Ω/c = (d2 + D)v, which is marked by a dashed red line. Mean values of
shifted acceleration and true speed are plotted by colored triangles on positive slopes.



Appl. Sci. 2021, 11, 10431 14 of 15

7. Summary and Remarks on Main New Results

When vehicles are rolling on uneven roads and driven by a constant force, vertical
vibrations of the vehicle are induced that are coupled with the horizontal motions of the
vehicle, affecting the travel velocity, which fluctuates around a stationary speed with zero
mean acceleration. The coupling between both planar motions is caused by the permanent
direction change of the contact force to ground along the contour of the road profile. In
the case of sinusoidal road profiles, the vehicle becomes stuck before the resonance speed
and needs more power supply to overcome the resonance in order to reach higher speeds.
The speed range immediately after the resonance where the slope of the speed driving
force characteristic is negative, is not realizable. In this range, the calculated vertical
vibration amplitudes are unstable. This is completely different from the results in linear
road vehicle dynamics. To describe the dynamic effects obtained, the following main new
results are presented:

1. Multiple Sommerfeld effects are shown before and between all resonances. Regular
speeds of operation are far beyond. The periodic limit cycles in Figure 6b are new
results showing how the car speed becomes stuck on positive slopes of the driving
force speed characteristic.

2. In Figure 4a,b, new stochastic limit cycles are shown. For small intensities of white noise,
a bundle of realizations is obtained described by a periodic probability distribution over
the phase plane of the oscillating true speed and zero mean travel acceleration.

3. Fourier expansions are introduced into the nonlinear equations of motion in order to
calculate new analytical approximations for the mean travel speed and the amplitude
of the speed oscillations. These expansions depend on the polar angle which takes
the role of time.

In future, the one wheel vehicle is extended to half car models by which additional
effects are introduced by road excitations with time delays when there is a finite distance
between the front and rear wheel. Analytical investigations by means of Fourier expansions
are applied to higher order vehicle models. For numerical solutions, shooting methods
restrict the integration range to one period of the polar angle by which unstable period
limit cycles can be calculated, as well. The stability of the periodic solutions is investigated
by means of the characteristic multipliers calculated by means of the Floquet theory.
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