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Abstract

Nowadays, field-programmable gate arrays (FPGAs) offer enormous computational
power and flexibility. Furthermore, they are often integrated on a single chip with
embedded multi-core processors, DSP engines, and memory controllers. This makes
them suitable for large and complex applications. Simultaneously, the progress made
in the field of high-level synthesis and availability of standardized interfaces (such
as Advanced eXtensible Interface 4) led to the development of specialized and novel
functionalities by design houses. All this created a need for outsourcing or licensing
FPGA intellectual properties (IPs). A pay-per-use IP licensing model where these IPs
are protected from all the market participants will benefit the developers of the IPs.
Also, FPGA system developers are usually small to medium enterprises that can benefit
from it in terms of time-to-market and per-unit cost.

In academia and industry, several IP licensing models and protection solutions are
available that can be deployed; however, they are prone to multiple security challenges.
In some cases, the proposed security measures caused unnecessary resource overhead
and restrictions for the system developers, i.e., they are restricted from using the
essential features of their device. Furthermore, they do not address two functional
challenges: the floorplanning of the IP on the programmable logic (PL) and the
generation of IP’s end-product (bitstream) independent of the overall design.

In this work, a pay-per-use licensing scheme is proposed and realized using a security
framework (SFW) to address all these challenges. The scheme is pragmatic, less restrictive
for the system developers, and offers security against IP theft. Furthermore, measures
are taken to protect the system from an IP that has malicious circuitry in it. The SFW
comprises a trusted operating system (OS), a rich OS, several supporting components
(e.g., TrustZone logic, side-channel attack (SCA) resistant decryption engine), and
software components, e.g., bitstream analysis. A device running the SFW can be
considered a trusted device that can directly communicate with a repository or an IP core
developer to acquire the IP in an encrypted form. The decryption and authentication
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of the IP happen on the device, which reduces the attack surface and makes them less
prone to IP theft attacks. Also, the plaintext IP is stored in a protected memory of
the trusted OS. The plaintext IP is then analyzed and only configured on the PL if it
is authentic and has no malicious circuitry. The bitstream analysis functionality and
the SFW subcomponents make it possible to partition the PL resources into secure and
non-secure ones, i.e., extending the trusted execution environment (TEE) concept to the
PL. This is the first work so far that has extended the TEE to the PL.

The aforementioned SCA-resistant decryption engine is an advanced encryption
algorithm’s implementation that is modified to resist electromagnetic and power
consumption leakages. The protected design has two countermeasures where the first
one supports implementation diversity and moving target defense, while the second
one only supports implementation diversity. These countermeasures are scalable even
at run-time. The evaluation of these countermeasures also includes scalability’s effect
on the area overhead and security strength.

In addition, the earlier mentioned functional challenge of floorplanning IPs is addressed
by proposing mixed-integer linear programming based fine-grained Automatic Floor-
planner, which targets recent, larger, and complex FPGA devices. The floorplanner maps
a set of IPs on the FPGA by creating precise reconfigurable regions. This maximizes the
remaining available resources for the overall design. The second functional challenge
is that existing tools do not provide a flow to generate IPs in a standalone environment.
The challenge is addressed by proposing an independent IP generation flow. This flow
can be used by the market participants to generate IPs of a design independent of the
overall design without compromising IPs” compatibility with the overall design.

II



Zusammenfassung

Heutzutage bieten field-programmable gate arrays (FPGAs) enorme Rechenleistung
und Flexibilitit. Zudem sind sie oft auf einem einzigen Chip mit eingebetteten
Multicore-Prozessoren, DSP-Engines und Speicher-Controllern integriert. Dadurch
sind sie fiir grofie und komplexe Anwendungen geeignet. Gleichzeitig fiihrten
die Fortschritte auf dem Gebiet der High-Level-Synthese und die Verfiigbarkeit
standardisierter Schnittstellen (wie etwa das Advanced eXtensible Interface 4) zur
Entwicklung spezialisierter und neuartiger Funktionalitdten durch Designhduser. All
dies schuf einen Bedarf fiir ein Outsourcing der Entwicklung oder die Lizenzierung
von FPGA-IPs (Intellectual Property). Ein Pay-per-Use IP-Lizenzierungsmodell, bei
dem diese IPs vor allen Marktteilnehmern geschiitzt sind, kommt den Entwicklern der
IPs zugute. Aufierdem handelt es sich bei den Entwicklern von FPGA-Systemen in der
Regel um kleine bis mittlere Unternehmen, die in Bezug auf die Markteinfithrungszeit
und die Kosten pro Einheit von einem solchen Lizenzierungsmodell profitieren kénnen.

Im akademischen Bereich und in der Industrie gibt es mehrere IP-Lizenzierungsmodelle
und Schutzlésungen, die eingesetzt werden koénnen, die jedoch mit zahlreichen
Sicherheitsproblemen behaftet sind. In einigen Fillen verursachen die vorgeschlagenen
Sicherheitsmafinahmen einen unnétigen Ressourcenaufwand und Einschrankungen
fiir die Systementwickler, d. h., sie konnen wesentliche Funktionen ihres Gerits nicht
nutzen. Dartiiber hinaus lassen sie zwei funktionale Herausforderungen aufier Acht:
das Floorplanning der IP auf der programmierbaren Logik (PL) und die Generierung
des Endprodukts der IP (Bitstream) unabhédngig vom Gesamtdesign.

In dieser Arbeit wird ein Pay-per-Use-Lizenzierungsschema vorgeschlagen und unter
Verwendung eines security framework (SFW) realisiert, um all diese Herausforderungen
anzugehen. Das vorgestellte Schema ist pragmatisch, weniger restriktiv fiir Systemen-
twickler und bietet Sicherheit gegen IP-Diebstahl. Dariiber hinaus werden Mafinahmen
ergriffen, um das System vor einem IP zu schiitzen, das bosartige Schaltkreise
enthdlt. Das ,Secure Framework” umfasst ein vertrauenswiirdiges Betriebssystem, ein
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reichhaltiges Betriebssystem, mehrere unterstiitzende Komponenten (z. B. TrustZone-
Logik, gegen Seitenkanalangriffe (SCA) resistente Entschliisselungsschaltungen) und
Softwarekomponenten, z. B. fiir die Bitstromanalyse. Ein Gerdt, auf dem das
SFW lduft, kann als vertrauenswiirdiges Gerdt betrachtet werden, das direkt mit
einem Repository oder einem IP-Core-Entwickler kommunizieren kann, um IPs in
verschliisselter Form zu erwerben. Die Entschliisselung und Authentifizierung des IPs
erfolgt auf dem Gerit, was die Angriffsflache verringert und es weniger anfillig fiir
IP-Diebstahl macht. Aufierdem werden Klartext-IPs in einem geschiitzten Speicher des
vertrauenswiirdigen Betriebssystems abgelegt. Das Klartext-IP wird dann analysiert
und nur dann auf der programmierbaren Logik konfiguriert, wenn es authentisch ist
und keine bosartigen Schaltungen enthélt. Die Bitstrom-Analysefunktionalitdt und die
SFW-Unterkomponenten ermdglichen die Partitionierung der PL-Ressourcen in sichere
und unsichere Ressourcen, d. h. die Erweiterung des Konzepts der vertrauenswiirdigen
Ausfiihrungsumgebung (TEE) auf die PL. Dies ist die erste Arbeit, die das TEE-Konzept
auf die programmierbare Logik ausweitet.

Bei der oben erwdhnten SCA-resistenten Entschliisselungsschaltung handelt es sich
um die Implementierung des Advanced Encryption Standard, der so modifiziert
wurde, dass er gegen elektromagnetische und stromverbrauchsbedingte Leckagen
resistent ist. Das geschiitzte Design verfiigt tiber zwei Gegenmafinahmen, wobei die
erste auf einer Vielzahl unterschiedler Implementierungsvarianten und veranderlichen
Zielpositionen bei der Konfiguration basiert, wiahrend die zweite nur unterschiedliche
Implementierungsvarianten verwendet. Diese Gegenmafinahmen sind auch wihrend
der Laufzeit skalierbar. Bei der Bewertung werden auch die Auswirkungen der
Skalierbarkeit auf den Flachenbedarf und die Sicherheitsstédrke berticksichtigt.

Dartiber hinaus wird die zuvor erwdhnte funktionale Herausforderung des IP Floor-
planning durch den Vorschlag eines feinkérnigen Automatic Floorplanners angegangen,
der auf gemischt-ganzzahliger linearer Programmierung basiert und aktuelle FPGA-
Generationen mit grofieren und komplexen Bausteine unterstiitzt. Der Floorplanner
bildet eine Reihe von IPs auf dem FPGA ab, indem er prazise rekonfigurierbare
Regionen schafft. Dadurch werden die verbleibenden verfiigbaren Ressourcen fiir
das Gesamtdesign maximiert. Die zweite funktionale Herausforderung besteht darin,
dass die vorhandenen Tools keine native Funktionalitit zur Erzeugung von IPs in einer
eigenstindigen Umgebung bieten. Diese Herausforderung wird durch den Vorschlag
eines unabhéngigen IP-Generierungsansatzes angegangen. Dieser Ansatz kann von
den Marktteilnehmern verwendet werden, um IPs eines Entwurfs unabhédngig vom
Gesamtentwurf zu generieren, ohne die Kompatibilitdt der IPs mit dem Gesamtentwurf
zu beeintrachtigen.
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1 Introduction

Field programmable gate arrays (FPGAs) are general-purpose semiconductor devices
that can be (re-)programmed after manufacturing. Among the programmable logic
devices, they offer the highest configurable resources and can be used to realize more
complex designs. They evolved from having fewer simple configurable logic blocks
(CLBs), and programmable interconnects to complex chips combining heterogeneous
configurable resources such as CLBs, blocks of random access memory (BRAMs), digital
signal processing (DSP) blocks, etc. Furthermore, their variants are available where
they are integrated with embedded multi-core processors, DSP engines, and memory
controllers, commonly known as programmable system-on-chip (SoC) FPGAs. Few
examples of their usage are accelerating algorithms, digital signal/image processing,
network infrastructures, ASIC prototyping, aerospace, defense, consumer electronics,
industrial motor control, scientific instruments, and security systems [137].

Since these devices offer enormous computational power and flexibility, they are used
to implement large and complex systems. Also, their support of the dynamic partial
reconfiguration (DPR) feature enables them even to host larger designs. Using DPR, a
library of functionalities can be provided to the device via a non-volatile memory (NVM)
and programmed dynamically over an existing functionality that is no longer in use.
However, the development of such systems or applications often requires significant
effort and competencies in several disciplines, e.g., machine learning, cryptography,
computer vision. To overcome these challenges, system developers can outsource their
system’s sub-functionalities to specialized third parties. Similarly, FPGA design of
novel algorithms or efficient implementation of existing ones can be licensed from
specialized third parties. This need to outsource or license designs/sub-functionalities
created an FPGA intellectual property (IP) market ecosystem. Figure 1.1 shows an SoC
FPGA, where IPs of specialized applications are integrated. For example, the developer
of this system can license FPGA IPs of automotive or computer vision applications.
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Figure 1.1: IPs of specialized applications configured on an SoC FPGA

Furthermore, these designs can be implemented at higher abstraction levels using
high-level synthesis tools [92] as they have improved significantly over the years. The
availability of standardized IP interfaces (such as Advanced eXtensible Interface 4
(AXI4) [125]) and DPR-like features also benefit the FPGA market by making the
development and integration of FPGA designs easier.

An essential aspect of the FPGA IP market is considering the security of these devices,
which can be viewed from two perspectives. Firstly, these devices are increasingly used
inapplications that need security against adversaries interested in bypassing the security
of such applications. Secondly, the devices are used to implement sophisticated and
complex systems that require significant investment, which must be protected against
piracy [88], reverse engineering [11, 95], or tampering. To address the security threats
from both viewpoints, the device vendors provide several protection mechanisms.
However, for the second case, the focus is mainly on protecting the system developer’s
IPs. This makes the devices vulnerable in cases where system developers are licensing
IPs from other parties. In terms of security, this work is focused on highlighting these
vulnerabilities and offer solutions to protect third party IPs. In addition, security threats
to the system caused by these IPs are also considered and countered.

Like this work, others have developed tools, flows, and proposed licensing models to
protect the assets of individual participants of the FPGA IP market. However, they have
not addressed several functional and security challenges. To explain them and their
solutions, it is important first to present the participants of the FPGA IP market, types
of IP licensing models, and delivery format of the FPGA-based IPs. All these topics are
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presented below in the same order as their mention. Then, challenges are outlined, and
the chapter concludes with the contributions of the thesis.

1.1  Participants of the FPGA IP Market

The participants of the FPGA IP market are introduced here, and their names are kept
the same as are presented in other related work [25, 174, 176, 82, 157].

¢ Hardware Manufacturer: It is a semiconductor foundry that manufactures
integrated circuits (ICs). There are companies, such as Intel, that do both
design and manufacturing of ICs. However, the complexity and cost aspect
of manufacturing led to the existence of companies that only do the design. They
are known as fab-less semiconductor companies, e.g., Xilinx. Similarly, there
are Pure Play foundries that only do the manufacturing of ICs, e.g., Taiwan
Semiconductor Manufacturing Company.

¢ FPGA Vendor (FV): They design and sell FPGA and SoC chips. They offer families
of products with varying sizes of programmable logic (PL) and hard-wired
functionalities for security and flexibility.

* IP Core Vendor (CV): These are design houses that provide IP cores. Their
specialty can be an efficient implementation of algorithms or a novel algorithm
for solving a problem.

¢ System Developer (SD): These participants are the consumers of the IP cores
designed by CVs. SDs provide a complete solution or product, where parts can
be outsourced to IP core vendors (CVs).

¢ Trusted Third Party (TTP): It is a role that can be played by a third party, which
supports the process of IP licensing as a neutral and trustworthy entity. Their
service can include managing encryption keys as well as IP or device registration.

1.2  Types of IP Licensing Models

The IP licensing model can be either perpetual (one-time) or non-perpetual. The
non-perpetual licensing can be per-use or periodic, or acombination of both. In software,
the discussion of perpetual versus pay-per-use licensing started quite earlier, which
suggests that the latter will lead to a lower cost without a large up-front payment [27].
Furthermore, it leads to a more significant investment in product development under
most conditions, which results in higher software quality [22]. These findings are

3
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also applicable to FPGA-based IPs because they are similar to software IPs from a
delivery and utilization perspective. For example, both can be delivered digitally via a
communication channel as their implementation’s end-product is in digital form.

Both types of IPs are implemented using programming languages and are processed
by tools to generate the end-product that can function on a device. The register
transfer level (RTL) description of an FPGA IP can be implemented using hardware
description languages (HDLs) such as Verilog, VHDL, or System-Verilog. Then, the
implementation is processed by the FPGA vendor (FV) tools to generate a device-specific
bitstream (FPGA configuration data). Similarly, a software IP can be implemented using
programming languages (e.g., C/C++ or Java). The implementation is then processed
by several tools (compiler, assembler, linker, etc.) to generate an application executable.

A perpetual IP licensing model for FPGA-based IPs will lead to a large up-front payment.
Usually, FPGA applications are low volume, and paying higher fees for IPs will result
in a higher per-unit cost, discouraging SDs from licensing IPs under such models.
On the other hand, a pay-per-use licensing model will result in lower per-unit costs.
Furthermore, the continued revenue from the licensed IP to the CV creates an incentive
to invest more into the quality of their IP. In conclusion, the pay-per-use model will
benefit the FPGA IP market and its participants. However, it is essential that the model
is simple, feasible, and provides security assurances to the CVs that their IP will not
be overused [88], reverse engineered [11, 95], or sold to another party by the system
developer (SD). Also, SDs would require assurances that the licensed IP is authentic
and free of malicious behavior.

1.3  Delivery Format

For FPGAs, an IP can be delivered as design files (RTL description) or configuration
data, commonly known as bitstream. The RTL description is implemented using
HDLs and then processed by the FPGA vendor (FV) tool to generate a device-specific
bitstream. Both forms need to be encrypted before delivery to avoid IP theft attacks
[88], e.g., reverse engineering and cloning. However, encrypted RTL-based IPs would
require support from the FV tools to decrypt, integrate, and process them to generate
their bitstreams. In addition, the generated bitstreams need to be in an encrypted form
for protection. All this indicates a substantial effort in developing these features in
the FV tools, which means IP core vendors (CVs) would require to share their revenue
with the FV and trust them with their IPs. Xilinx’s SignOnce IP Licensing [136] is an
example of one such approach. Alternatively, open-source or tampered FV tools can be
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used to avoid these shortcomings; however, they are often hard to use (lack of support)
and require continued maintenance. Also, companies, specifically CVs, would avoid
using tampered and/or non-certified tools because they might have a backdoor that
can be used to access the plain-text IPs. Another major drawback of using encrypted
RTL-based IPs is that they are processed with FV tools on a workstation, which leads to
a large attack surface that includes but is not limited to the FV tool, operating system,
and memories.

Alternatively, encrypted bitstream-based IPs (I Pg,it) can be decrypted on the FPGA
device and do not require further processing, which reduces the attack surface and
makes them less prone to IP theft attacks. Physical attacks [175, 94] on the device can be
used to extract their plain-text form, but these attacks are also valid for the encrypted
bitstream generated for RTL-based IPs. Therefore, like most other IP licensing schemes
[25, 42,176, 82,157, 158], this work focuses on distributing I P, cpit.

1.4 FPGA IP Market Challenges

As argued in Section 1.2, non-perpetual or pay-per-use licensing is the approach that
benefits the FPGA IP market in terms of IP quality, a steady stream of revenue for
CVs, and affordability for SMEs. It is also established, in Section 1.3, that delivering
IPE,cgit offers the highest level of security against IP theft or overuse. Of course, only
encrypting IP will not solve all the security issues, but it is the starting point. Since
these are the obvious choices, a large number of proposed solutions are based on them.

The primary goal of IP licensing models is securing IPs, and therefore the existing
solutions are focused on it. However, they have ignored other challenges such as
generation of IPs independent of the overall FPGA design, floorplanning of the IPs on
the FPGA, or detecting malicious behavior in an IP to protect SD’s design. In addition,
some security and feasibility challenges are also not addressed by these solutions.

For an overview, all these challenges are presented below.

1. Side-Channel Attacks: In almost all the IP licensing models, decryption engines
on the device decrypt the IPg;cpi;. These engines implement cryptographic
algorithms that are, in theory, secure against mathematical attacks. However,
their implementations suffer from physical attacks that are commonly known as
side-channel attacks (SCAs). Using SCAs, an adversary can extract the secret key
used in the decryption process and can, therefore, access the IP in plaintext form
(IPp1ainBit) (see Section 4).
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2. Manual Floorplanning: As mentioned in Section 1.3, licensed IPs must be
delivered as encrypted bitstreams. The first step in generating an IP’s bitstream
would be its floorplanning on the PL. However, existing FPGA vendor tools only
offer manual floorplanning of IPs on the PL. Manually placing IPs on the PL can
lead to inefficient utilization of the PL resources because modern FPGAs, unlike
initial ones, have an irregular distribution of heterogeneous resources such as
CLBs, BRAMs, DSPs, etc. Additionally, designs (IPs) are often realized using
more than one type of resource.

3. Standalone Generation of Design’s Bitstream: DPR feature, supported by major
FVs (See Section 2.1.4), can generate a bitstream of a sub-design specific to a PL
region, which can be afterward configured on that PL region using configuration
interfaces. However, the DPR flow follows an incremental design methodology,
which means IPs can only be realized after the static design (see Figure 2.2) is
implemented. The static design is like a stencil, where the missing pieces are IPs.
Without it, an IP cannot be implemented, and therefore its end-product cannot
be generated. Using the DPR feature means that CVs would require access to the
SD’s proprietary design, which in itself is a security threat to SD’s design. This
is the second functional challenge that is not addressed by any of the existing IP
licensing models.

4. Readback Attack: The next challenge to the FPGA IP market is the Readback
attack from which all existing solutions suffer. Readback is a debug feature that
can read out the configuration data even if the device’s security features are
enabled. This way, an adversary can access the plaintext IP (IPpj,iypit). The attack
is explained in detail in Section 3.1.4.

5. Malicious IP: Another critical issue is the existence of malicious functionalities
in IPs. Such malicious IPs can impact the system by changing its functionality,
degrade performance or cause leakage of secret information. The insertion of
malicious functionality by man-in-the-middle can be avoided by delivering IPs
in an authenticated encrypted form. However, it cannot be ensured that the CV
has not inserted such functionality. A malicious functionality can be a Trojan
or an attempt to tamper other PL regions that are not reserved for the IP (see
Section 3.3).

6. Relying on TTP: Some of the mentioned challenges can be mitigated by introduc-
ing a trusted third party (TTP) that mediates between CVs and SDs by managing
secret keys or confidential data. Most of the existing licensing models rely on a
TTP; however, the degree to which each party can rely on the TTP can also cause
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1.5

security problems. In most cases, they have or can easily have IP’s bitstream in
plaintext form.

Restricting Access of SD’s to their Device: Some of the existing solutions reduce
the degree of trust on the TTP by proposing countermeasures like core installation
modules (CIMs) [25, 42, 54, 82,157, 158] or restricting SD’s access to the processing
system (PS) [39]. However, this leads to the blockage of PL or PS resources used
by their owner (SDs), which is also not a favorable outcome.

Hardware Modification: Some older licensing models [41, 42, 120] require
modification of FPGA devices to carry out their schemes. Such modifications
make a scheme inapplicable for available products and require the development
of new devices. In addition, they prevent the adoption of schemes by the industry.

Contributions and Outline

The main contributions of this thesis are listed below. They address all the challenges
presented in Section 1.4.

¢ The first challenge to the FPGA IP market is side-channel attacks that are countered

by proposing two countermeasures. They are based on the moving target and
implementation diversity concepts. Individual contributions specific to these
countermeasures are:

— A complete implementation of the countermeasures is done and presented.
An automated flow is implemented that generates different scaled variants of
the countermeasures. Furthermore, the implementation diversity part of the
countermeasures can be scaled up/down dynamically (see Section 4.3.7).
This makes the design easily adaptable to different scenarios and is a
significant improvement over other similar work.

— The implementation is realized and evaluated on the Xilinx Zynq UltraScale+
MPSoC ZCU102.

— Scaled variants of both countermeasures are evaluated individually and
combined to create a more secure system. Furthermore, the effect of
scalability on the resource overhead and security strength is presented.

Details of the proposed countermeasures, their implementation, and evaluation are

presented in Chapter 4.

The second challenge, manual floorplanning, is addressed by implementing mixed-
integer linear programming (MILP) based fine-grained Automatic Floorplanner,
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which targets recent, larger, and complex FPGA devices, e.g., Xilinx Zynq Ultra-
Scale+ XCZU9EG-2FFVB1156 MPSoC. The floorplanner maps a set of IPs on the
FPGA by creating an optimized floorplan of reconfigurable regions (RRs). The
floorplanner considers the distribution of heterogeneous resources on FPGA’s
layout and the resources utilized by the IPs. The objective of the floorplanner is
to have minimum resource waste, which leads to higher resources for the static
design (see Figure 2.2) as the static design’s logic cannot be placed in the RRs of
the resulted floorplan.

The details of the floorplanner are presented in Chapter 5, including related work, problem
definition, device representation, MILP modeling, experimental results, and evaluation.

¢ The following contribution of the thesis is solving the problem of generating IPs
independently, i.e., the third challenge to the FPGA IP market. The work explains
the reasons why existing FV tools do not support independent IP generation.
Afterward, several requirements are presented and argued that if FV tools fulfill
them, they can generate compatible bitstream-based designs independently. This
makes the work general and can be adopted to any FV tools or devices. In the next
step, one of the requirements is analyzed that causes the lack of support. Then,
several third party tools are presented that can overcome the lack of support.
Since these tools also have limitations, a flow is presented that uses a trusted third
party to solve this problem. The added advantage is that it matches the target use
case, i.e., IP licensing schemes. Most IP licensing schemes utilize a third party
who is responsible for security-specific tasks.

The details of this contribution are presented in Chapter 6.

¢ Challenges from 4 to 8, presented in Section 1.4, are addressed with the thesis’s
main contribution: a pay-per-use IP licensing scheme and its realization using a
security framework (SFW). The scheme is practical, less restrictive for SDs to use
their device, offers security against IP theft, and protects the system from malicious
IPs. The SFW consists of a trusted execution environment (TEE), a rich execution
environment (REE), software modules for authentication, decryption, and analysis
of bitstreams. Furthermore, it also includes several hardware components that
are configured on the programmable logic (PL). Details of this contribution are
presented below.

— The TEE has access to the encrypted IPs, where they are decrypted, au-
thenticated, and analyzed for malicious behavior using trusted applications
(TAs).

— The bitstream analysis makes sure that the IP is targeted to the location of
the PL resources assigned to it. This feature allows the partitioning of the
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PL into a secure and non-secure region, i.e., extending the TEE concept to
the PL.

— The secure region contains components supporting the SFW, such as Trust-
Zone logic, a configuration controller, and interconnects. It also has RRs for
all licensed IPs.

— The non-secure region is for SDs, where they can configure their custom
designs (IPs).

— The configuration and readback of the secure PL region can only be issued
by the TEE. (Re-)configuration and readback of the non-secure PL region
are still possible from the non-secure master (REE) via an API implemented
in the TEE. This way, security is extended to the PL without affecting the
available features like DPR and readback. Here, the term non-secure only
means that the resources are non-secure for the unprotected licensed IPs
because SD has full access to them.

— The REE is for system developers (SDs) to run their applications. Further-
more, SDs can also configure their IPs (self-developed) on the non-secure PL
region.

— Validation of the scheme is done by implementing it on a Xilinx Zynq
UltraScale+ MPSoC ZCU102.

The details of the IP licensing model are presented in Chapter 7, and the implementation
issues are discussed in Chapter 8.

Holistically, the work tries to solve the practicality and security challenges of the FPGA
IP market. The work is the first usage of a trusted execution environment (TEE) for
IP protection and TEE extension to the programmable logic. The proposed security
framework isolates some device assets to provide a TEE while keeping most of the
device resources and features available to the system developer. The processing of
IPs (e.g., decryption, analysis, and configuration) happens in a trusted environment,
significantly reducing the attack surface. In addition, physical attacks on the decryption
engines and memory are investigated, and measures are implemented to counter these
attacks.






2  Background

The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia Lopez, and Jiirgen Becker. More details on contributions is
found in Section 1.5.

This chapter explains the relevant background knowledge required to understand the
contributions of the thesis, which is presented in two parts. The first one is about
reconfigurable devices, where their structure, types, and features (e.g., DPR) are briefly
discussed. These details will help understand automatic floorplanning and standalone
generation of IPs presented in Chapters 5 and 6, respectively.

The second part of the chapter presents the background knowledge in security. In-
formation assurance and its properties (e.g., confidentiality, integrity, authentication)
are introduced in this part. Since IPs are processed by the devices in the IP licensing
scheme use case, establishing these properties on the device will ensure that processed
IPs are secure. A system or device can have these properties using several security
mechanisms, e.g., cryptographic algorithms, trusted execution environment (TEE), and
secure boot. These sub-topics are also presented in the second part of the chapter.

2.1 Reconfigurable Devices

Reconfigurable or programmable logic devices (PLDs) are integrated circuits that can
be configured with any digital circuit or even reconfigure to update existing ones after
manufacturing. Programmable logic arrays, generic array logic, complex programmable
logic devices, and field-programmable gate arrays (FPGAs) are some examples of PLDs.
The rest of the section focuses on FPGAs, where a discussion is presented on the basic
components, topology, and programming technology. Afterward, the DPR feature is
discussed.
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2.1.1 Basic Components

The basic components of an FPGA are logic-, input/output- (I/O), wiring blocks, a clock
network, a configuration/scan chain, and a test circuit [53]. A generalized discussion is
provided below.

* Logic Block: A logic block can be implemented as a lookup table (LUT), a
multiplexer, or a product term logic. A product term logic means an AND-OR
array structure. These implementation methods have a programmable part, which
can be updated to realize any logic circuit [53].

¢ Input/Output Block: These are the blocks that connect I/O pins and the wiring
blocks. In addition, they have flip-flops to hold values and control circuits such
as the pull-up, pull-down, I/O directions, slew rate, and open drain.

* Wiring Block: Wiring channels, connection- and switch blocks can be collectively
called wiring blocks. They provide connection between logic blocks and between
logic and I/0O blocks.

® Others: The logical functionality or connectivity of all the blocks discussed above
is determined by the value written in their respective configuration memory. A
configuration chain exists on FPGAs, which can be used to write the configuration
data bits to all configuration memories serially. Besides this, FPGAs have clock
networks, scan chains, and testing circuits.

The logic and routing resources of the device do not represent a specific functionality
and need to be programmed (configured) to realize one. Logic blocks, after program-
ming, are set to represent a sub-functionality, while the wiring/routing resources are
programmed to realize the desired connectivity between the logic blocks. Collectively
along with IO and other blocks, the device provides the desired functionality.

The storage of configuration information in the resources can be done using static
random access memory (SRAM), anti-fuse, or flash memory. Each type of memory has
its pros and cons that are discussed in Section. 2.1.3.

2.1.2 Topology

The FPGA layout can be realized in several ways based on the arrangement of logic
and interconnect resources. In [127], authors classified them into five categories: island
style, row-based, sea-of-gates, hierarchical, and one-dimensional structures. The details
can be found in [127]. An island-style architecture of the FPGA, along with the basic
components, is shown in Figure 2.1.

12
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I/0 block (IOB)

L Switch block (SB)

|~ Logic block (LB)

Connection block (CB)

. Routing channel

Figure 2.1: Island-style FPGA structure [53]

21.3 Programming Technology

FPGAs are roughly categorized based on the semiconductor technologies used for the
manufacturing of the configuration memory. The technologies considered so far are
erasable programmable read-only memory (EPROM), electrical EPROM, flash, anti-fuse,
and SRAM. Among them, anti-fuse, flash, and SRAM are common and commercially
successful. A discussion on them is presented below.

Anti-fuse

Anti-fuse, as the name suggests, performs the opposite function to a fuse. This
type of memory provides volatile storage that is initially in an open state, having an
impedance in the order of a few giga-ohms [127]. The application of a high voltage
changes it permanently to the conducting state representing a digital circuit. Actel’s
programmable logic interconnect circuit element and QuickLogic’s ViaLink are some
examples that use this technology, whose structure and features are discussed in [4, pp.
28-29].

The pros of a programmable cell-based on Anti-fuse are as follows:

¢ Small size in comparison to SRAM and Flash memory cells;

¢ Nonvolatile, therefore, does not require external storage for configuration data on
power down.

¢ Highly resistant to Reverse engineering;

13
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¢ Robust against soft errors.
The cons are as follows:

¢ Cannot be re-programmed;
¢ Requires a special programmer;
® Programming takes longer;

¢ The programming yield is less than 100

Flash Memory

This type of memory uses non-volatile storage offered by EPROM, EEPROM, and flash
memory technologies. A typical transistor based on these technologies has two gates
instead of one, a control and a floating one. When current flows through the transistor,
electrons are trapped on the floating gate because it is isolated. The charge on the
floating gate is non-volatile and can be removed by exposing it to ultraviolet light in
EPROMs and applying an electrical field in the case of flash and EEPROMs [127]. More
details about the flash memory, its structure, types, and functionality can be found in [4,
pp- 25-26].

The pros of a programmable cell-based on Flash memory are as follows [4, pp. 30]:

e Non-volatile;

¢ Has lower size than that of SRAM;

Can immediately operate on power-up;
¢ Can be re-programmed;
* Strong against soft errors.
The cons are as follows:
¢ Requires a high voltage for re-configuring in comparison to SRAM;
e State-of-the-Art CMOS process cannot be used;

® Restriction on the number of re-configurations.

14
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SRAM

SRAM is a random access memory that retains data as long as power is being supplied.
They are usually composed of a positive feedback loop (two CMOS inverters) and
two pass transistors (PT). Information is stored in the feedback loop, which can be
overwritten using the PT [4]. As mentioned in Section 2.1.1, a configurable logic block
can be implemented using LUTs and MUXs. LUTs act as a memory that stores the truth
table of a logical expression. Both LUTs and MUXs can be implemented using static
memory. FPGAs using this type of memory are called SRAM-based FPGAs, and they
are currently the mainstream devices.

The pros of a programmable cell-based on Static memory or SRAM are as follows [4,
pp. 31]

¢ State-of-the-Art CMOS process can be used;

* Run-time partial reconfiguration is supported;

¢ No limitation on the number of reconfigurations.
The cons are as follows:

¢ Volatile;

* Memory size is larger;

Harder to secure the configuration data;

Higher sensitivity to soft errors;

¢ Higher on-resistance and load capacity.

Target Programmable Technology

As mentioned in Section 1.3, the delivery format chosen for this work is FPGA’s
configuration data (bitstream) instead of RTL description. Furthermore, the section
discourages integration of IPs on a workstation as that would increase the attack
surface. Instead, features like DPR (see Section 2.1.4) should be used to generate IP’s
end-product and deliver its encrypted form to the device, i.e., to avoid integrating
IPs with static design on a workstation. Therefore, anti-fuse FPGAs cannot be used
for the proposed work as they can only be configured one-time and in a monolithic
form, i.e., would require tools on a workstation for integration. Also, flash memory
FPGAs are not suitable for this work because they are limited by the number of allowed
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Figure 2.2: Dynamic partial reconfiguration flow

reconfigurations (about 10,000 times), and they do not offer DPR.

On the other hand, SRAM-based FPGAs can be reconfigured any number of times and
support DPR. Furthermore, advanced CMOS process technologies can be applied for
their manufacturing, leading to higher integration and performance. Even though their
non-volatile nature makes them vulnerable to additional attacks such as probing and
readback in comparison to the other types; however, they are the only one that supports
configuration of encrypted IPs on the device. Hence, the focus of this work is only on
SRAM-based FPGAs.

2.1.4 Dynamic Partial Reconfiguration (DPR)

Partial reconfiguration is a feature where parts of the PL can be reconfigured instead
of configuring the entire PL. Dynamic reconfiguration means that the configuration
can be done in run-time, i.e., while other designs are functioning. Combining these
two results in DPR, which means a region of the FPGA can be reconfigured while
designs on other regions can still stay active. Figure 2.2 shows this flow. The feature
was introduced almost two decades ago, and today almost all available SRAM-based
FPGAs support it.

Usually, different configurations (designs) are available to the device using a non-volatile
memory and are configured onto the hardware on demand. This dynamic upgrading
of the hardware provides new possibilities. Therefore, this technique is currently the
subject of intense research in academia. More details about the feature can be found
in [164].

More details of the DPR flow can be found in [147].
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2.2 Information Assurance

The protection and risk management of information during its processing, storage,
and transmission is called information assurance. It has five pillars [135], also called
fundamental properties. An information system must have these properties to ensure
that its data is protected against security threats. A brief description of these properties
is given below.

1. Authentication: It is the process of verifying the identity of a user or a system.
It also means to verify that the data produced or transmitted by a user is the
producer or sender of that data.

2. Integrity: This property refers to the accuracy and consistency of the information
over its life cycle. This can be achieved by protecting it from unauthorized
tampering or modifications.

3. Availability: As the name suggests, it refers to the availability of data to be used
or modified by an authorized user.

4. Confidentiality: This property refers to the protection of data being accessed by
an unauthorized user. It is ensured with the use of cryptography.

5. Non-repudiation: In essence, non-repudiation is similar to authentication as it
refers to the verification of the origin of data. This prevents possible denial that a
data is sent by a specific user.

The properties mentioned above are essential for the security of the information or IPs
in an embedded system. The use case of the proposed work is an IP licensing scheme,
where FPGA-based IPs are delivered to the devices. The IPs must be kept confidential
during their transmission, use, or storage to protect them against IP misuses (see
Section 3.2). Also, the receiver must be able to authenticate that the IPs are produced
by the IP core vendor (CV). Also, it needs to be made sure that the IPs are not tampered
with, i.e., their integrity is not compromised.

Information assurance properties can be achieved using cryptographic algorithms. For
example, they can provide Confidentiality of the data at rest or transit using symmetric
or asymmetric encryption. Similarly, Authentication/Non-repudiation of data can be
achieved with the use of hashing functions (see Section 2.3.1) and digital signature
schemes (see Section 2.3.3). Together they also offer Integrity of the data at rest, in
use, or at transit. Integrity can also be achieved using hashing functions and message
authentication codes (MACs) (see Section 2.3.2). MACs are based on symmetric
cryptographic algorithms, and digital signature schemes are based on asymmetric
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algorithms. All the mentioned algorithms are cryptographic and are presented in
Section 2.3.

Cryptographic algorithms are essential in achieving these properties; however, they
also require other security mechanisms to protect devices against security threats. One
such security mechanism is Secure Boot. This feature offers the possibility to boot
the device with authentic encrypted system files, e.g., boot loaders, firmware, and
operating systems. In the absence of such mechanisms, an adversary can boot the
device with system files that have malicious functionality to steal information, IPs, or
encryption keys. A detailed discussion on the Secure Boot mechanism, specific to the
target device, is present in Section 2.4, which is preceded by cryptographic algorithms
for ease of understanding.

Other security mechanisms essential for security are specific to the storage or usage of
the keys used by cryptographic algorithms. If these keys are not properly protected,
an adversary can steal them, which will compromise the entire system’s security. The
hacking of the first generation gaming console from Microsoft, namely Xbox, is a good
example of not protecting the key in use. In 2002, Andrew Huang developed a hardware
board to intercept data transfer over the HyperTransport bus of the Xbox [51]. Since
the symmetric encryption key used to protect the secure boot loader was going over
the bus in plaintext form, he was able to read it. This led to the execution of malicious
code on the device. Therefore, key storage techniques need to be investigated, whose
details are presented in the following section.

2.2.1 Key Storage

In SoC FPGAs, cryptographic algorithms are available in three ways: the hardwired
dedicated decryption engine (DDE) of the device, a custom cryptographic IP core
programmed on the PL, or a software application running on the processing system
(PS). Also, hardware security modules (HSMs) [84] or trusted platform modules
(TPMs) [2] can be used to perform some security operations. However, if HSMs/TPMs
are used for decryption, the plaintext returning from them can be read over a bus/port.
The use case of this work is an IP licensing scheme where IPs need to be decrypted
securely, i.e., without exposing them on a bus. Therefore, HSMs/TPMs are not used
or even discussed anymore, and the rest of the discussion is focused on the first three
ways of using cryptographic primitives.
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DDEs are usually used by the secure boot mechanism. They can also be used for
decrypting FPGA IPs. They are implemented with specialized hardware processors
that are only used for security-specific operations where keys are stored in protected
storage. For example, Xilinx Zynq UltraScale+ devices offer to store the key in volatile
battery-backed RAM (BBRAM) or non-volatile eFUSE storage locations. Furthermore,
the key stored in eFUSE can be either plaintext or obfuscated (i.e., encrypted with the
device family key or with a key generated by a physically unclonable function (PUF)).
Also, the key loading path to the device is write-only, and there is no physical data path
to read back either key (For details, see Chapter 12 of [141]). With all these built-in
security features, it can be stated that the encryption keys used by the DDEs on the
target device are secure. In this work, DDE is used for the Secure Boot mechanism (see
Section 2.4) and not for the decryption of IPs.

As mentioned earlier, cryptographic operations can also be performed using an FPGA IP
or a software application. For these implementations, devices do not offer any security
features or protected storage. A simple solution can be hard coding the cryptographic
key in the software or FPGA IP implementation. However, keys can be extracted from
the software code using reverse engineering. In the case of FPGA implementation,
the readback attack (see Section 3.1.4) can be used to read FPGA'’s configuration data.
Afterward, reverse engineering [96] of the configuration data will yield the key.

Among others, the secure storage-specific challenges can be solved using a trusted
executed environment (TEE). TEEs are secure and isolated environments assisted by the
hardware where trusted applications (TAs) run. This isolation is system-wide, where
resources, applications, and even read-write operations are partitioned into secure and
non-secure. Cryptographic algorithms can be implemented as a TA where secret keys
are hardcoded in it. Since TAs execute inside the TEE, they will be secure even if the
keys are hardcoded in them.

A limitation of the hardware-assisted isolation (TEEs) is that the existing technologies
only partitions PS’s resources. For the PL, only read-write transactions among PS and
PL are distinguished as secure or non-secure. This means reconfiguration and readback
features performed on the PL are not differentiated as secure or non-secure. Even a
non-secure environment or resource can access the entire PL region. This is countered
by partitioning the PL into secure and non-secure regions (see Section 7.4.2), which is
one of the focuses of the proposed work. In cases where the TEE concept is extended to
the PL, hard-coded keys inside the FPGA-based IP’s implementation will also be secure.
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Since this work uses cryptographic algorithms, secure boot mechanism, and TEE to
protect the device and IPs, background information on these topics is presented in the
following sections.

2.3 Cryptographic Algorithms

Cryptography is the science of converting secret messages with the intention of hiding
their meaning [99]. The secret and hidden messages are commonly referred to as
plaintext and ciphertext, respectively. The process of converting plaintext to ciphertext
is called encryption, and the reverse of this process is called decryption. In this
field, techniques and algorithms are developed to offer security in the presence of an
adversary.

The main two main branches of cryptographic algorithms are symmetric- and asymmetric-
key algorithms. The main difference among them is that symmetric algorithms use the
same key for encryption and decryption. However, the asymmetric ones use different
keys. There is another type of algorithms that does not use any key for computation
called hashing functions. Here, first, the hashing functions are presented that are
followed by symmetric- and asymmetric-key algorithms.

2.3.1 Hashing Functions

These cryptographic primitives are widely used in a range of protocols. However, they
were created to support other cryptographic primitives to implement integrity and
authenticity properties. Hash functions compute a message-digest of data, which is
short and has a fixed length. Data, in this case, can be of any length. The message
digest is also commonly called a hash value and can be seen as the fingerprint of the
data. These functions do not require any key for computing the hash value [99, pp. 293].

The motivation behind using hash functions is to compute a fixed-length short message
from it, which can be transmitted along with the data. Since computing the hash value
does not require any key, the receiver can compute the hash of the received data and
compare it with the received hash value. The verification will ensure that data integrity
is not compromised. However, suppose data and its hash value are sent as plaintext.
In that case, an adversary can modify the data and update the hash value with the new
hash value computed from the modified data. Therefore, at least the hash value must
be sent as ciphertext. Using hash functions to support other cryptographic primitives
for data integrity and authentication are discussed in Section 2.3.3 and 2.3.2.
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Figure 2.3: Secure communication between Alice and Bob on a non-secure channel

2.3.2 Symmetric Key Algorithms

As the name suggests, this class of algorithms relies on similar cryptographic keys for
both encryption and decryption. The keys can be identical or can be easily converted into
each other. This implies that the communicating entities share a common secret, which
is one of the drawbacks of these algorithms because the distribution of the shared secret
would require a secure channel. Figure 2.3 shows a secure communication between
Alice and Bob on a non-secure channel using a shared key, which was distributed via
a secure channel. Even if an adversary acquires secure messages, he can not decrypt
them as he does not have the shared secret. The secure channel shown in Figure 2.3 can
be implemented using asymmetric-key cryptography, which is commonly used for key
distribution.

Another important fact is that the strength of these algorithms can benefit from making
them public. It seems that making the algorithm secret will improve security. However,
this is a disadvantage as secret algorithms cannot be tested by other cryptographers.
Examples of symmetric key algorithms are data encryption standard (DES), triple-DES
(3DES), and advanced encryption standard (AES). Their details can be found in [99].
Here, background information on AES is presented as one of the contributions of this
work is a side-channel attack (SCA) resistant AES implementation (see Chapter 4).
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Figure 2.4: AES Encryption flow diagram

Advanced Encryption Standard (AES)

The US National Institute of Standards and Technology (NIST) called in 1997 for
proposals for a new block cipher, an encryption algorithm that can be applied to a
group of bits called blocks. The call was influenced by the security and implementation
weaknesses found in DES and 3DES. The evaluation process of the submitted proposals
was open and done by the international scientific community organized by NIST. Among
the proposal, the Rijndael block cipher was proposed by two Belgian cryptographers
that can have a block and key size of 128, 192, and 256 bits. In 2001, NIST selected
Rijndael with a block size of 128 bits and a key size of 128, 192, and 256 bits as the new
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Figure 2.5: MAC computation and verification overview

block cipher, commonly known as AES.

AES performs four different operations on a block of data in several rounds. The number
of rounds depends on the key size, which are 10, 12, and 14 for the key width of 128
bits, 192 bits, and 256 bits, respectively. AES operations are substitution byte (SBOX),
shift rows, mix columns, and key addition. An AES round has all four operations in the
order they are presented except the final round, which does not have the mix columns
function. AES encryption starts with Key Addition operation followed by all the rounds
as shown in Figure 2.4. More details about its operations and the decryption process
can be found in [99].

Message Authentication Codes (MACs)

Message authentication codes (MACs) are widely used to provide message integrity
and message authentication. These algorithms are used to compute a short fixed-length
code/tag from a message, which is then appended to the message. As shown in
Figure 2.5, Bob computes a MAC from the plaintext using a key, which is then appended
with the plaintext. Afterward, this data is sent to Alice. After receiving the message,
Alice would like to know whether the data is modified during the transmission or not.
So she computes MAC value (MAC’) from the plaintext and compares it with the MAC
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value received from Bob. Since only Alice and Bob have the common key, only they can
generate or verify a valid MAC.

MACs use the same key, which means they do not provide non-repudiation, i.e., one
cannot say with certainty who created the MAC among the people who have the
shared symmetric key. However, the non-repudiation limitation does not exist with
digital signatures (See Section 2.3.3), which is the asymmetric equivalent of MACs. The
advantage of MACs over digital signatures is that they are faster to compute. HMAC
(Hashing MAC) is a type of MAC where key is appended at the start/end of the data,
and its hash value is computed. Alternatively, MACs can also be computed from
symmetric encryption algorithms such as AES. More details about MAC, its properties,
and types can be found in [99].

2.3.3 Asymmetric Key Algorithms

As mentioned in Section 2.3.2, one of the drawbacks of symmetric cryptography is key
distribution. Even if the key distribution challenge is solved, the algorithms would
require a large number of keys as each pair of users would require a separate key [99].
These drawbacks can be overcome using asymmetric cryptography (also known as
public-key cryptography) that was introduced to the public in 1976 by Whitfield Diffie
and Martin Hellman [24].

Asymmetric encryption relies on a pair of keys per user, where messages are encrypted
with one key and decrypted by the other. The basic idea is that one key of the pair
is made public, called the public key, while the other is kept secret and is referred to
as the private key. One of the advantages of asymmetric cryptography is that it can
be used to distribute keys used in symmetric algorithms over a non-secure channel.
The key distribution and secure communication over a non-secure channel are shown
in Figure 2.6, where Alice sends a secret key to Bob after encrypting it with Bob’s
public key. After receiving the key, Bob decrypts the ciphertext with his private key.
Now that both parties have a common key, they can securely communicate. Since only
Bob’s private key can decrypt the message, an adversary cannot eavesdrop on their
communication. Asymmetric ciphers are computationally several times slower than
symmetric ciphers; that is why the former is used for key distribution while the latter
for encryption large data blocks. Public key cryptography also offers other security
mechanisms such as non-repudiation, identification, and encryption [99, pp. 154].

The only remaining challenge with public-key cryptography is regarding the authen-
ticity of the public key, i.e., how can one be sure that a public key is of the entity that
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Figure 2.6: Secure communication from an entity (Alice) to another one (Bob) using Asymmetric Cryptography

claims its ownership? In practice, the issue is solved with certificates. Certificates
are issued to users or organizations by trusted authorities who bind a public key to a
certain identity [99, pp. 344]. Another minor issue with this branch of cryptography is
that the keys are very long, which results in slower execution times. Further details on
these issues can be found in [99, pp. 155].

RSA cryptosystem

Asymmetric ciphers can be implemented using one-way functions. One-way functions
are the ones where it is easy to compute the function f(x) = y but hard to compute
its inverse f~1(y) = x. For example, finding two large prime numbers and computing
their product can be considered a one-way function, whose inverse would be finding
the prime factors from the product. This is an integer factorization problem that is
considered computationally infeasible for large numbers (e.g., 1024 bits or more). This
principle is the basis for the Rivest-Shamir—Adleman (RSA) cryptosystem, a family of
asymmetric ciphers proposed by Ron Rivest, Adi Shamir, and Leonard Adleman in
1977. Other families of asymmetric ciphers are based on Discrete Logarithm Problem
and Elliptic Curves.

Since these algorithms use large numbers, they are computationally several times
slower than symmetric ciphers. Therefore, they are mainly used for encrypting small
pieces of data, e.g., keys used in symmetric ciphers or signing hashes in the case of
digital signatures. In this work, RSA is used for distributing symmetric cipher keys (see
Section 8.5.1) used for the FPGA IPs. Furthermore, encrypted IPs are also authenticated
using RSA asymmetric cipher (see Section 8.5.2). As the technical details of the algorithm
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are beyond the scope of this work, they are not presented here. However, they can be
found in [99, pp. 173-199].

Digital Signatures

The cryptographic algorithm discussed so far are focused on providing encryption
and data integrity. These security measures are enough against an external adversary;
however, there are several scenarios where legitimate users can act in an untrustworthy
fashion. For example, users communicating using a shared key can agree on the
price of an object, but later one of them denies sending the message. The property of
information assurance dealing with this situation is called non-repudiation, which is
the verification of data’s origin. This can be achieved using a public key cryptographic
algorithm called digital signatures.

Digital signatures can be seen as an asymmetric key equivalent of MACs, as they share
some functional properties such as offering message integrity. As shown in Figure 2.7,
Bob computes a signature of a plaintext using his private key (K,;). Afterward, he
sends both the signature and the plaintext to Alice. Since she already has access to
Bob’s public key (K,p), she can verify the validity of the signature. Since every user is
responsible for keeping their private key secret, Alice can be confident that Bob cannot,
in the future, deny that he sent the message. Furthermore, any modification of the
plaintext by an adversary can be detected as the verification process will show that the
signature is not valid, i.e., digital signatures also offer message integrity.
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24 Secure Boot

In FPGAs, the secure boot mechanism is traditionally implemented using a hardwired
dedicated decryption engine (DDE) and NVM-based keys. An encrypted bitstream is
provided to the device from an external storage medium (e.g., Flash memory), where
DDE decrypts it and configures it on the PL [105]. In Xilinx Ultrascale and Ultra-
scale+ architecture-based FPGAs, DDE is an AES - Galois/counter mode (AES-GCM)
decryption and authentication logic. The encryption keys for which can be stored in
dedicated RAM or eFUSE. Even though AES-GCM is a self-authenticating algorithm
with symmetric keys, these architectures also provide an alternative authentication
way using RSA-2048 (For details see [134]).

Since SoCs have a hardwired PS, their secure boot mechanism involves more com-
ponents. This mechanism can be used to boot authentic encrypted system files (e.g.,
boot loader, firmware, and OSes) on the SoC FPGAs. Zynq Ultrascale+ MPSoC is an
example of SoC FPGA that utilizes dedicated state machines, a platform management
unit (PMU), and a configuration security unit (CSU) to do the system boot-up process.
CSU is the DDE, which contains a triple-redundant processor for controlling boot
operation and a crypto interface block.

Once Zynq Ultrascale+ MPSoC is powered up, the dedicated state machine performs a
series of mandatory and optional tasks. Then, it sends an immutable ROM code to the
PMU, whose integrity is validated against a golden copy stored in the device using the
secure hash algorithm 3 (SHA3) engine. Once these security operations are completed,
PMU sends an immutable ROM code to the CSU, which is again validated against a
golden copy using the SHA3 engine. At this stage, reset to the CSU is released. So far,
the hardware root of trust (ROT) was established using immutable ROM codes (PMU’s
and CSU’s) whose integrity was validated. As CSU is at the center of the secure boot
process, it enforces the hardware ROT once enabled. It also maintains the device’s
security state by prohibiting switching between secure and non-secure states without a
full power-on reset. In addition, CSU is used for the public key’s validation, revocation,
authentication, and decryption of the first stage boot loader (FSBL). Once all these
operations are completed, CSU releases the reset to the specified processing unit. Here,
a summary of the boot process is presented that is focused on the security aspects;
further details on it can be found in Chapters 11 and 12 of [141].
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Figure 2.8: Architecture of the Trusted Execution Environment

2.5 Trusted Execution Environment (TEE)

GlobalPlatform, in TEE System Architecture version 1.2 [36], defines a TEE as "An
execution environment that runs alongside but isolated from an REE (Rich Execution
Environment). A TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets from general software attacks, defines rigid
safeguards as to data and functions that a program can access, and resists a set of
defined threats. There are multiple technologies that can be used to implement a TEE,
and the level of security achieved varies accordingly".

Both TEE and REE have access to resources such as processing core, RAM, ROM,
etc. However, at any given time, only one of them is accessing a resource. When
a TEE accesses resources, they are isolated from REEs unless access is authorized.
A controlling TEE considers all of its non-shared resources to be trusted, and these
resources are only accessible by other trusted resources. This makes it a closed-trusted
system. There may be some resources that all execution environments can access. Also,
some REE-specific resources can be made accessible to a TEE, but the opposite may
not be allowed. The execution environment’s isolation requires support from both
software and hardware. The TEE architecture is shown in Figure 2.8. Details about the
architectural specification and interfaces are given in [36].
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TEEs offer a secure environment for trusted applications (TAs) by protecting their
execution code and data. TEEs also offer high processing speeds and a large amount of
memory in comparison to other security environments [38]. Their primary purpose is
the protection of device and TA assets, which is achieved by security features such as
isolation from the rich OS, isolation from other TAs, application management control,
binding (Secure Boot), trusted storage, trusted access to peripherals, and state of the art

cryptography [38].

2,51 Applications

As discussed in Section 2.2.1, TEEs offer an excellent solution to store and manage
keys used by the cryptographic algorithms, which is one of the reasons TEE is used
for the use case of the proposed work. Furthermore, the TEE isolates both the PS and
PL configuration interfaces (see Section 3.1.4), memory regions, TAs, and peripherals.
These security features are requirements for an IP licensing scheme, which is the
proposed work’s use case.

Other TEE applications can be implementing bio-metric authentication solutions, e.g.,
face/fingerprint/voice recognition. User’s private data used as credentials can be
stored in isolated resources to ensure the Rich OS does not have access to it. For
example, users’ fingerprint-specific data (e.g., Hash value) must only be accessible from
specific TAs inside the TEE. Also, applications like contactless payments and mobile
wallets require handling user credentials that could benefit from using a TEE.

Copyrighted data such as movies, music, and books can also be protected using a TEE.
They are protected during transmission via encryption; however, it is decrypted on the
device for consumption. TEEs can make sure that the decrypted content can only be
viewed or heard on the authorized device and can not be copied to an external storage
or the memory regions of the rich OS.

2.5.2 Hardware Support

Several hardware technologies support secure and isolated environments. ARM
TrustZone (TZ), Intel Software Guard Extensions [23], IBM SecureBlue++ [12] and
RISC-V MultiZone™ Security [30] are examples from industry. AMD Secure Processor
(formerly known as Platform Security Processor) [32] and Intel Trusted Execution
Technology [91] are not mentioned as an example because the former utilizes ARM TZ
while the latter relies on a trusted platform module (TPM) and cryptographic techniques
to provide trust on the device. In academia, several approaches [21, 28, 50, 74, 98] have
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been proposed. The focus of this work is using ARM TrustZone to provide IP licensing;
hence only this technology is discussed.

2.5.3 ARM TrustZone

Arm TrustZone (TZ) is a hardware-based system-wide security solution that is available
on recent Arm application processors and microcontrollers. Several TZ components
(e.g., the TZ Protection Controller and TZ Address Space Controller [6]) can be used to
logically partition the system into a non-secure and secure world. With this partition, a
single processor core can execute code from the non-secure and the secure world in a
time-sliced manner. When the processor is executing code from the non-secure world
(REE), it enters a non-secure state where it can only access resources of the non-secure
world. In the opposite case, when the processor enters a secure state, it can access
resources located in both worlds. The switching between the secure and non-secure
world is managed by a security monitor that ensures that the current world’s state of the
processor is securely stored before it leaves the current world. Furthermore, it makes
sure that the state of the world the processor is switching to is also correctly restored.

The access to secure world resources from a non-secure world is restricted by hardware
logic present in the TZ-enabled advanced microcontroller bus architecture AXI buses.
This hardware logic includes an extra control signal for each read /write channel on the
system bus. These additional bits are called non-secure (NS) bits [6].

[3] provides more details and [104] provides a comprehensive survey on the relevant

work. Even though TZ was proposed in 2002, it got more attention during the last few
years from both industry and academia [5, 29, 77, 85, 112, 123].
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The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia Lopez, and Jiirgen Becker. More details on contributions is
found in Section 1.5.

As discussed in Section 1.3, IPs can be delivered in encrypted form as RTL code or
bitstream, and each format has its risks regarding IP theft. However, RTL ones are
prone to more attacks, and licensing schemes using them add extra inefficiencies. For
example, one of the main problems with RTL-based IPs is that they are processed with
FV tools on a workstation, which leads to a large attack surface that includes but is not
limited to the FV tool, operating system, memories. On the other hand, bitstream-based
IPs (IPp1ainBit) are delivered in encrypted form (IPgy.git), which does not require any
pre-processing. IPgy.pit can be directly decrypted and configured on the device, which
reduces the attack surface to the programmable device. Therefore, this chapter mainly
focuses on the security threats specific to bitstream-based IP and the programmable
device. These threats are categorized into three types and are presented below.

1. Theft-Attacks: The first type of attacks are the ones that try to breach the device’s
security to get access to the confidential data inside the device. The confidential
data can be IPpj,inpit, the cryptographic key(s) used to encrypt the IPpj,inpit, the
cryptographic key(s) to protect the secure boot process or communication of the
device with the outside world. These attacks are named as Theft Attacks (see
Section 3.1).

2. IP Misuses: These attacks are specific to IPspj,inpit. At the end of a successful
attack of the first type, an adversary can get IPspjsinpir. Afterward, he can make
this type of attack. Also, these attacks apply to IPs delivered in plaintext form, i.e.,
without encrypting them. These attacks are named IP Misuses (see Section 3.2).
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3. Malicious IPs: The third type of attacks are the ones where a malicious function-
ality is inserted in the IP to harm the overall system. These attacks are named as
Malicious IPs (see Section 3.3).

3.1 Theft Attacks
3.1.1 SCAs on Cryptographic Implementations

Modern key-based encryption algorithms are, in theory, considered mathematically
secure; however, this assumption is not valid for their respective implementations.
Attacks that can take advantage of specific implementation characteristics of cryp-
tographic algorithms are among the most common type of side-channel attacks.
They reveal secret information of the implementation’s inner state, which then, in
turn, can be used to reconstruct the cryptographic key in use [52]. Common side
channels in the case of SCAs on cryptographic algorithm’s implementations are power
consumption, execution time, acoustic and electromagnetic (EM) radiation. A power
analysis attack, for example, exploits the data-dependent nature of the switching
activity of a cryptographic implementation. Since these attacks can be non-invasive
and only use information extracted from physical observation, it is not easy to detect
them. Consequently, one cannot be sure if a secret key is already compromised [52].
Using SCAs, an adversary can acquire data leaked by their implementation and use
statistical methods to acquire cryptographic keys [175, 61, 90, 121]. Differential power
analysis [63], and correlation power analysis [33] are examples of such statistical
methods.

On SoC-based FPGA devices, there are three ways that cryptographic algorithms are
realized, which are presented in the following subsections. All of these implementations
are vulnerable to side-channel attacks.

Hardwired DDEs

Hardwired dedicated decryption engines (DDEs), discussed in Section 2.4, are used
to provide a secure boot mechanism of the device. Since DDEs are at the center of
the secure boot process, it enforces the hardware root of trust (ROT) once enabled.
Moreover, they maintain the security state of the device. If they are compromised (i.e.,
keys are acquired using SCAs), all the subsequent security measures are compromised,
and secret assets of the device can be accessed.
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In addition to the secure boot mechanism, DDE is often used to provide security to
bitstream-based IPs by decrypting them on the device before configuration. If an
adversary acquires DDEs’ keys, they will have access to the IPs in plaintext form.

FPGA IP

The second way an SoC device can offer cryptographic functionality is by offering a
custom cryptographic IP core programmed on the PL. These IPs can be used for secure
communication by the device. SCAs can also compromise them, which will again lead
to a range of attacks, such as an adversary can pretend to be the device or an adversary
can listen to the communication of the device.

Software IP

The third and final way cryptographic functionality can be implemented is to use
a software application running on the processing system (PS) of the device. These
implementations can also suffer from SCAs, and the result will be the same as discussed
in the last section.

3.1.2 DDR Memory Attacks

Double data rate (DDR) memory or DDR synchronous dynamic random access memory
(SDRAM) is a common type of memory used as random access memory (RAM) for
modern processors. These memories are volatile; however, they retain their contents
for several seconds after losing power. This is another side-channel that the SCAs can
exploit. For example, an attacker can do a hard reset of the target machine and acquire
memory contents. This attack is commonly known as a cold-boot attack [47]. The
attack can target all software applications because their sensitive code and data are
often placed in the DDR memory in plaintext form.

Modern DDR memories also suffer from a reliability challenge known as Rowhammer.
This issue emerged due to an increase in DRAM cell density and a decrease in capacitor
size over the past decades. Rowhammer is the bit flip in a specific row of the memory
by repeatedly accessing its neighboring rows [59]. It is considered a threat to data
integrity where an adversary or unprivileged user tampers the data without accessing
it. However, recently another work named RAMBLEED [67] shows its effect on data
confidentiality. Using that attack, an adversary can leverage rowhammer-flipped bits
to read the value of neighboring bits. Attack like these are more relevant to this work,
as plaintext bitstream of IPs are stored in the DDR memory (see Chapter 8).
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These attacks are more severe in cases where cryptographic algorithms are implemented
as software applications that keep the keys and the decrypted data in the memory. For
example, if [Pg,.p;: is decrypted using a software application, the decryption key, and
IPpiainpi Will be stored in the DDR memory, which can be stolen using these attacks.

3.1.3 Probing

As the programmable logic (PL) in SRAM-based FPGAs/SoCs is volatile, the full
bitstream needs to be configured on the PL every time the device is turned on.
Furthermore, the partial bitstreams (IPs) generated using DPR flow are configured in
run-time on the PL using programming interfaces. Both types of bitstreams need to
be provided to the device using non-volatile memory (NVM). This frequent transfer
from NVM to the PL makes them more vulnerable to probing attacks, which is
capturing bitstream using an electrical probe [26]. Another probing attack is recently
published [126], where an optical probe was used against the Dedicated Decryption
Engine (DDE) of a device to capture the bitstreams in plain-text form.

3.1.4 Readback Attack

Readback is a feature provided for most FPGA families. It allows reading the FPGA’s
configuration data for debugging [145, pp. 176]. However, this feature can also be used
to obtain secret information (e.g., keys, proprietary algorithms). Xilinx’s SoC-based
FPGA devices include a PS that has full access to the PL. The PS can read configuration
data using its processor configuration access port (PCAP). In Xilinx devices (both
SoC or non-Soc FPGAs), readback is also supported from the programmable logic
via an internal configuration access port (ICAP). According to Xilinx’s Zyng-7000 SoC
manual [150, pp. 783], both processor configuration access port (PCAP) and ICAP are
trusted channels, and they can be used to read out bitstream even when an encrypted
bitstream is loaded onto the FPGA. We verified this behavior on a Zynq UltraScale+
device by reading out the configured bitstream via PCAP when bitstream encryption
was enabled. In theory, readback can be disabled by setting the bitstream.readback.security
property to Levell while generating bitstreams. Levell security implies that the readback
feature is disabled, and Level2 implies that both readback and reconfiguration features
are disabled [140, pp. 289]. This setting is part of the full bitstream where the security
bits (SBITS) field of the control register 0 of the device is set with the defined security
level [145, pp. 157, 163]. However, this setting can be disabled by updating the SBITS
of the Control Register 0 from PS.
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Similarly, custom logic (e.g., reconfiguration controllers) on the PL can read out the
configuration data using ICAP. PS does not have direct access to ICAP; however, it could
have access to the reconfiguration controller that can directly access ICAP. Furthermore,
a malicious user can configure a configuration controller on the PL while connecting it
to the ICAP. Using these two scenarios, ICAP could be used to launch this attack.

3.2 IP Misuses

Successful theft attacks will lead to the acquisition of the IP by an adversary. Once the
plaintext IP is stolen, it can suffer from multiple IP misuses that are presented in the
following sections.

3.21 Cloning

Cloning is the unauthorized use of intellectual property that might require little or
no modification. In the case of bitstream IPs, it would be creating a copy of the IP’s
configuration data to overuse and sell. This way, an adversary can avoid paying extra
licensing fees and even sell to get revenue from the IP with minimal engineering cost.
FPGAs are off-the-shelve products, and the configuration data (bitstream) is easy to
duplicate, which makes FPGA-based IPs very sensitive to this misuse.

Several countermeasures can avoid this cloning attack. For example, friend or foe
identification, device identifier detection, watermarking, using a physically unclonable
function (PUF), and bitstream encryption. These countermeasures are explained in
detail in [156].

3.2.2 Reverse Engineering

It is the process of analyzing an existing I, in bitstream format or as design files
(RTL /netlist), with the intention of learning the innovation behind it. This allows an
adversary to create the IP with minimum research and development effort, causing
the IP owner and their competitors an unfair disadvantage. Even though the act of
reverse engineering is slightly more challenging with bitstream-based IPs compared
to the design files, still the bitstream obfuscation does not provide any cryptographic
security. It can be reverse-engineered to design files [96]. Furthermore, the design can
be modified to gain access to the protected data or the communication by the device.
This combination of reverse engineering and modification is commonly known as
tampering. Several countermeasures against reverse engineering are presented in [156].
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3.3 Malicious IPs

There is another type of attack that makes use of malicious circuitry in the bitstream of
an FPGA IP. They are categorized into two types, namely, tampering configured designs
and hardware trojans. They are presented in the following sections.

3.3.1 Tampering Configured Designs

To better explain this attack, a short description of bitstream’s structure is needed. The
bitstream of the target device consists of three sections, namely bus width auto-detection,
sync word, and configuration data [145, pg. 154]. The configuration data is composed
of commands and data. Examples of configuration commands are no operation, writing
configuration registers, or writing memory frames. The configuration memory frames
are the smallest addressable segments of the FPGA configuration memory space, and
all operation acts upon an entire frame. Each frame is uniquely addressed, which is
referred to as frame address. The command specific to writing a frame is called "Write
frame address register” (opcode 30002001 in hex) [145, pp. 156].

When the bitstream of IP is generated, it contains frame addresses of the frames (PL
resources) that are assigned to the IP. For example, a system developer (SD) is licensing
IPs from two different core vendors (CVs) to build a system shown in Figure 3.1. From
the system specification, Region IP; is reserved for IP; and the other region is reserved
for IP. If the developer of IP; generates a bitstream that has "Write frame address
register" commands with addresses of the region reserved for IP;, the configuration
process will lead to tampering of IP;. Similarly, a malicious CV can tamper the static
design (see Figure 3.1), which belongs to the SD.

- Region i E Region i
= Ip, &8 P, |
Processing R — 1 N—"
System —|
Static Design

Figure 3.1: Prcoessing system with two IPs on the PL
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Figure 3.2: Example Hardware Trojan [156]

3.3.2 Hardware Trojans

Here, only those hardware Trojans are considered that are inserted in the bitstream of
an IP. They usually have a trigger and a payload circuit, and they are activated under
a rare condition making their detection harder by randomizing the input vector, as
shown in Figure 3.2 [156]. They can be used to change the functionality, degradation of
performance, or information leakage (see [117] for more details). Even though IPs are
delivered in authentic encrypted form, which ensures that a man-in-the-middle cannot
insert a Trojan in the IP. However, a malicious IP core vendor (CV) can insert Trojans in
their IP to launch a software-based power side-channel attacks [161]. These attacks do
not require physical access to the device, and with them, an adversary can compromise
the security of the device remotely.

Furthermore, Trojans can create logical or electrical conflicts to cause malfunction or
damage to the device. This attack was first introduced by Hazdic et al. [162] in 1999.
Similarly, FPGA power-hammering attacks can be used to damage the device. They use
short and self-oscillating circuits to increase power consumption. The work of La et
al. [68] demonstrates that malicious circuits with just 3% of logic on an Ultra96 FPGA
board can consume the power that is usually consumed by the entire FPGA.
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The work described in this chapter was published in [178] and is joint work with co-authors
Benjamin Hettwer, and Jiirgen Becker. More details on contributions is found in Section 1.5.

This chapter addresses side-channel attacks (SCAs), the first challenge to the FPGA IP
market among the ones outlined in Section 1.4. These attacks are a significant threat to
the modern cryptographic algorithms that are, in theory, considered mathematically
secure. However, the same cannot be stated about their implementations because
they often leak secret information about their internal state via side-channels, e.g.,
power consumption [83], electromagnetic (EM) emission [34], and execution time [62].
Once side-channel information is collected, an adversary can run statistical methods
to extract the cryptographic keys. The statistical analysis method can be differential
power analysis [64], and correlation power analysis [16].

Over the years, researchers and industry developed several methods to counter SCAs.
For instance, masking aims to randomize intermediate values that are internally
processed by the cryptographic device to break the connection between the secret
(respectively some intermediate value that depends on the secret) and its power foot-
print [83]. In contrast, hiding countermeasures are different from masking because their
goal is to change the power characteristics directly and thus reduce the signal-to-noise
ratio (SNR). There is a particular class of hiding techniques that use DPR available on
modern FPGAs to increase the SCA resistance of cryptographic systems [87].

These methods aim for randomizing the structure and execution process of a cryp-
tographic hardware implementation while maintaining functional correctness. DPR-
based SCA countermeasures often create only moderate overhead because the employed
reconfiguration infrastructure can be reused for other purposes as well, e.g., to build a
fault-tolerant system [93, 109].
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This chapter presents two countermeasures against SCAs. The first, Target Function
Relocation (TFR), relocates the target function using DPR. Furthermore, the target
function is implemented using different algorithms with varying power consumption.
The selection of the target function’s implementation, its location on the FPGA, and
the time interval between DPR operations are made using the outputs of random
number generators (RNGs). The moving target approach serves as a countermeasure
against EM-based measurement setups, while the implementation diversity approach
counters power analysis-based attacks. The second countermeasure is a Noise Generator
(NG), where different noise modules are implemented at an algorithmic level and are
configured on a single location. Here, the selection process is also random.

The proposed countermeasures are scalable, which means the number of locations and
implementations can be increased or decreased depending on the use case. Furthermore,
several versions of each countermeasure are implemented and evaluated to show the
relationship between resource overhead and achieved security.

The main contributions presented in this chapter are:

* DPRis used in several use cases (e.g., accelerators, communication systems), and
its support requires additional logic such as a reconfiguration controller. This
work proposes to utilize these additional resources to strengthen the security of
these systems.

¢ A complete implementation of both countermeasures is done and presented.
An automated flow is implemented that generates different scaled variants of
the countermeasures. Furthermore, the implementation diversity part of the
countermeasures can be scaled up/down dynamically (See 4.3.7). This makes
the design easily adaptable to different scenarios and is a major improvement
compared to other similar work.

* The implementation is realized and evaluated on the Xilinx Zynq UltraScale+
MPSoC ZCU102, a state-of-the-art platform for advanced automotive and Internet
of Things (IoT) applications based on 16 nm production technology.

¢ Scaled variants of both countermeasures are evaluated individually and combined
to create a more secure system. Furthermore, the effect of scalability on the
resource overhead and security strength is presented.

The rest of the chapter is organized as follows: Section 4.1 provides state-of-the-art
countermeasures against SCAs. The proposed countermeasures and their implemen-
tations are discussed in Sections 4.2 and 4.3, respectively. Afterward, the evaluation is
presented in Section 4.4.
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41 Related Work

The first DPR-based countermeasure against physical attacks has been presented by
Mentens et al. [86]. DPR was used to introduce temporal jitter by adding or removing
registers between subfunctions of an implementation of the AES. Additionally, spatial
jitter could be generated by relocating the subfunctions to four different positions
on the chip. However, the number of different configurations that were achieved in
that specific approach was comparably low (maximum ten) and thus increased the
complexity for a skilled adversary only marginally. Furthermore, the evaluation was
only done on paper without performing any power or EM measurements.

In 2011, Giineysu and Moradi exploited the dynamic reconfigurability of selected FPGA
components to build a set of generic SCA countermeasures [43]. First, Gaussian noise
was generated using lookup tables (LUTs) in shift register mode. Second, a Substitute
Byte (SBOX) scrambling scheme was suggested using the dual-port feature of block
RAM (BRAM). Third, several Digital Clock Managers were stacked together to create a
randomized clock for the cryptographic core. The proposed countermeasures can be
easily combined with arbitrary cryptographic implementations.

Sasdrich et al. employed fine-grained reconfiguration of LUTs (i.e., CFGLUTs) to
randomize the SBOX of a PRESENT implementation [113]. This was achieved by
splitting up the masked-SBOX into two parts with a register in between during runtime.
Additionally, the register was pre-charged with the content of dummy encryption
to avoid a hamming distance leakage. However, the scheme is only practical for
cryptographic schemes with smaller (e.g., 4x4) SBOXs, but not for ciphers with a larger
SBOX such as AES.

Hettwer et al. proposed implementation diversity in combination with DPR to protect
cryptographic circuits [49]. From a single netlist of an AES implementation, a number
of functionally-invariant physically-different circuits were created by randomizing
the placement and routing process. The generated configurations are dynamically
exchanged during runtime using DPR. However, since the complete AES was recon-
figured, the resource and memory overhead is quite large while achieving only an
increased SCA resistance of factor three.

The work proposed in [15] is similar to this; however, they did not implement most
of their claims. For example, like the proposed work, they claimed to use DPR for
the configuration of SBOX regions and randomized the selection of location for the
target function, its implementation, and the time interval between DPR operations
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(i.e., between consecutive relocations). Instead, they used twelve static versions of the
AES engine, i.e., did not implement and evaluate the stated claims. Furthermore, they
discussed the usage of relocatable partial bitstreams, which means a single SBOX’s
partial bitstream can be relocated to any location by changing the frame addresses
of the bitstreams. However, it was mentioned that this feature is only part of their
future work. In order to simulate the effect of DPR, they mixed up traces from different
configurations. The results indicate that it can improve CPA resistance by more than
two orders of magnitude. However, the authors stress that a fully operational system is
required to determine the actual number of traces needed to break the system, which
is not available up to now.

4.2 Proposed Countermeasures

In this chapter, two DPR based countermeasures are proposed that utilizes the concepts
of moving target (relocating target function) and implementation diversity. Sec-
tions 4.2.1 and 4.2.2 introduce these countermeasures, respectively, while Section 4.3
discusses their implementation in detail.

421 Target Function Relocation (TFR)

The relocation part of the TFR countermeasure is achieved by having multiple
reconfigurable regions (RRs) for the target function of an encryption algorithm. This
serves as a countermeasure against location-based SCAs such as EM attacks. The term
target function refers to the operation(s) of a cryptographic implementation, which an
adversary typically attacks (e.g., the SBOX of an AES in our case). The target function is
the main cryptographic operation in the power leakage model of the attacked device (see
Equation (4.2)), which is assumed to have a measurable influence on the deterministic
part of power or EM traces [83]. Localized EM-based attacks are usually conducted
with small probes having a diameter smaller than one millimeter. The probe is moved
over the chip using a spot size smaller than the probe diameter, and a certain number of
traces are acquired from every position. An attack is then performed for all positions to
find the most suitable probe position. Moving the target function randomly to different
positions on the chip using DPR makes EM attacks substantially harder because the
traces for a single location are mixed up with EM radiations from different logical
elements of the cryptographic circuit. In general, if there are I different locations for
the target function, it can be expected that at least / times more EM traces are needed
to recover the secret key [49].
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Figure 4.1: Block diagram of the SCA-resistant AES.

In order to achieve implementation diversity, the target function is implemented in
several ways, where each implementation generates a different power footprint. The
underlying motivation is that the distinct physical layout (placement and routing) of
each target function’s implementation induces a varying charging capacitance when
the implementation is continuously replaced using DPR. This affects the dynamic
power consumption of the target function and connected resources (e.g., registers) and
counters power measurement-based SCAs. These implementations will be referred to
as reconfigurable modules (RMs). RNGs are used to select location (i.e., RR), target
function’s implementation (i.e., RM), and the time interval between DPR operations.
These issues are discussed in detail in Section 4.3.

4.2.2 Noise Generation (NG)

For this countermeasure, the noise generation module can be implemented in several
ways and is configured on an RR. In this work, hardware description language (HDL)
implementations of a Gaussian noise generator [80], three pseudo-RNGs [19, 70, 106]
and two sine wave generators [119, 130] are used as basic noise sources, which are taken
from open sources. All noise modules are scaled by cascading several of their instances
in series so that they have a significant influence on power consumption. Afterward, all
possible combinations of the six basic noises are generated that resulted in 63 different
noises, which can be calculated using Equation (4.1):

& n!
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C represents the total possible combinations, and # is the number of noises among
which k noises are chosen for a specific combination.

Like the TFR countermeasure, the selection of a noise RM for configuration and the
time interval between DPR operations are made randomly. Both countermeasures
are general and can be implemented for any encryption algorithm. Implementation
differences of the RMs for the target function and noise modules can be at an algorithm-,
synthesis- and/or circuit-level. Algorithm-level differences among RMs mean that
the RMs are implemented using different algorithms, e.g., an AES SBOX implemented
using LUTs and combinational logic. Synthesis-level differences would be changes in
the logic structure, placement, and routing. Circuit-level would be fine-grained changes
to specific paths such as clock inputs of flip-flops. The two latter cases are discussed
in detail by Bow et al. in [15]. In this work, RMs differ on the algorithmic level that
creates variants with a more distinct power footprint than only changing placement
and routing. The number of RMs can be easily increased by combining algorithmic,
synthesis- and circuit-level methods.

4.3 Implementation

The baseline design used for implementing the countermeasures is an 8-bit serial
AES-128 encryption core, which requires 264 LUTs and 253 registers. The target board
used in the measurement setup is a Xilinx ZYNQ UltraScale+ system-on-chip (SoC)
evaluation board. Since the processing system (PS) is used to deliver plain-text data
and key to the core, it is interfaced with the PS using Advanced eXtensible Interface 4
(AXI4). It is also assumed that the target system has a partial reconfiguration controller
(PRC) module, which can be used for the configuration of other logic. Therefore, the
AXl-interfaced AES and PRC, along with AXI interconnect blocks, are considered the
reference design for this work, which requires 3317 LUTs, 4014 registers and 922 CLBs.

The implementation takes 210 clock cycles for single encryption, where each round
of AES is computed in 21 cycles. For TFR, SBOX is selected as the target function, as
discussed in Section 4.2.1. The reference AES design uses only one SBOX for computing
substitute byte functionality for each byte in all the rounds and key scheduling. The
block diagram of the SCA-resistant AES is shown in Figure 4.1. The functionality of the
sub-modules is presented in the following sections.
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4.3.1 AES Serial

AES Serial is a modified version of the reference design. It has 16 SBOXs instead of one,
and for each SBOX, an RR is created so that they can be placed on different locations
of the programmable logic (PL). However, at any clock cycle, only one of the 16 SBOXs
will be used during the operation of an AES encryption. Therefore, multiplexers are
added at the inputs and outputs (IOs) of the SBOXs, as shown in Figure 4.1. More
details about the selection of an SBOX and its IOs are discussed in Section 4.3.4.

Four different HDL implementations of the AES SBOX are used in this work: a LUT-
based implementation, an inverse LUT-based, inverse on Gallois field implementation
taken from opencores.org [131] and Canright’s implementation of a compact SBOX [18].
Partial bitstreams are generated for each implementation targeting all the RRs. Since
there are 16 RRs and four RMs, we have a total of 64 partial bitstreams.

4.3.2 Noise Module

The purpose of this module is the contribution of power consumption noise to the overall
design. As mentioned earlier in Section 4.2.2, several HDL-based implementations are
taken from open sources [19, 70, 80, 106, 119, 130] and by scaling and combining them,
63 different versions are generated. Here, scaling a noise module means using several
instances of the module to create its scaled-up version. An extra RM for the noise
module is generated that does not have any design, making 64 RMs. An RR is created
for the noise module, and partial bitstreams specific to that RR for all 64 versions are
generated.

4.3.3 Partial Reconfiguration Controller (PRC)

Xilinx’s PRC is used for the configuration process, which is activated by a hardware
trigger. The configuration is done using the internal configuration access port (ICAP).
Further details about the usage of dynamic partial reconfiguration (DPR) and PRC can
be found in [144] and [147], respectively.

4.3.4 SBOX Noise Select and Trigger Logic (SNTL)

SNTL is the central controller, which applies countermeasures to the AES module. It
chooses values for all the parameters of the countermeasures, and afterward, sends
necessary control signals to other modules, e.g., hardware trigger to the PRC. This is
done using a control logic and two RNGs, namely RNGsgokr, and RNGigomaz. Three
random values from the RNGsookHz, namely SBOXImpl, TargetLocation, and TriggerTime,
are used by the control logic for the TFR countermeasure. The control logic uses
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SBOXImpl to select an SBOX bitstream (RM) and configures it on the location indicated
by TargetLocation value. The configuration process is triggered when a counter inside
the control logic reaches the TriggerTimergr value. For the NG countermeasure, two
random values (Noiselmpl and TriggerTimenc) are taken from RNGagokpz. The control
logic uses Noiselmpl value to select a noise implementation and TriggerTimeng to generate
a hardware trigger to start the (re)-configuration.

Since the configuration process runs in parallel with AES encryption, SNTL is also
equipped with the functionality to select an SBOX that should be used by the AES
design during the encryption process. As stated earlier, an AES encryption takes 210
clock cycles. For each clock cycle, a different SBOX is selected and is provided with
the correct input value (i.e., sbox_in in Figure 4.1). The rest of the SBOXs are given a
random value to further reduce the SNR of the correct SBOX calculation. These random
values (SBOXInputy) are taken from RNG1gommz. The SBOX selection is also made using
a random value (SBOXSelect) from RNGigommz. Since the AES design is running at
100 MHz frequency, an RNG running at the same frequency is used for the SBOX’s 10
selection and delivering random values to the inputs of all other SBOXes. Also, the PRC
may be currently reconfiguring the selected SBOX. In that case, a complement of the
SBOXSelect value is used for the selection process because the output of the selected
SBOX will be invalid.

The SBOX’s 1O selection and providing random values at the input of non-selected
SBOXes happen in a single clock and for each of the 210 clock cycles. In other words,
the AES design, including the countermeasures, has the same latency and takes the
same number of clock cycles as the reference design.

4.3.5 Bare-Metal Application

A bare-metal application running on the PS moves all the partial bitstreams (RMs) from
the non-volatile memory (NVM) to the RAM. Afterward, PRC’s registers are updated
with the memory location and size of the RMs. AES Serial is then continuously provided
with plain-text and key values and reading the ciphertext once encryption is completed.
A self-test has been implemented to ensure that the AES core works correctly.

4.3.6 Configuration Times

Since all RRs of the TFR countermeasure are equal in size, the bitstreams generated
for them will have the same size, which is 179.5 KB. As mentioned earlier, PRC does
the configuration of the bitstreams using ICAP. The bandwidth of ICAP is 3.2 Gb/s
at 100 MHz [147], which means PRC will reconfigure SBOX in 0.488 ms. For the NG
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countermeasure, there are 64 RMs generated for the same RR, where each is 203.7 KB
in size. Consequently, the configuration time for the noise module is 0.509 msec.

4.3.7 Scalability — Variants Generation and Deployment

Both the countermeasures can be implemented in several configurations to generate
different variants. Variants can differ based on the number of reconfigurable regions
(#RRs), reconfigurable modules (#R Ms), or a combination of both that are used in the
design. Variants that differ in terms of #RRs require changes to the design flow. This
is mainly because for each RR, a dummy design with interface definition needs to be
instantiated in the system while connecting it with other sub-designs. Furthermore, a
constraint file is required, which provides information about the physical location of
the RR. This file can be genera