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Abstract
Signal processing is a fundamental component of almost any sensor-enabled system, with a
wide range of applications across different scientific disciplines. Time series data, images, and
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video sequences comprise representative forms of signals that can be enhanced and analysed for
information extraction and quantification. The recent advances in artificial intelligence and
machine learning are shifting the research attention towards intelligent, data-driven, signal
processing. This roadmap presents a critical overview of the state-of-the-art methods and
applications aiming to highlight future challenges and research opportunities towards next
generation measurement systems. It covers a broad spectrum of topics ranging from basic to
industrial research, organized in concise thematic sections that reflect the trends and the impacts
of current and future developments per research field. Furthermore, it offers guidance to
researchers and funding agencies in identifying new prospects.

Keywords: signal processing, measurement systems, optical measurements, machine learning,
biomedical applications, environmental applications, industrial applications

(Some figures may appear in colour only in the online journal)
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1. Introduction

Dimitris K Iakovidis

University of Thessaly

In the history of science, the establishment of signal processing
as a discrete field of science is placed in 1940s [1]. In that dec-
ade, masterpiece papers were published, mainly in the con-
text of communications, with a monumental work to be that
of Claude Shannon’s ‘A mathematical theory of communica-
tions.’ That period signified the progress of signal processing
also in the context of other fields, including radio detection and
ranging (radar) technology, which flourished upon the needs
of military applications during World War II [2]. Since then,
especially after the revolution of digital technology of the six-
ties, signal processing has become an integral part of almost
any sensor-enabled system.

The applications of signal processing are numerous,
extending well-beyond the domain of communications. Multi-
source temporal data series, two or higher dimensional data
structures, such as images and video, can be regarded as sig-
nals. Signal quality is affected by different factors, such as the
characteristics of the sensors used for their acquisition, and
non-deterministic phenomena related to the data acquisition
environment. Signal processing methods have been devised to
transform the signals so that different application needs are
met. Common transformations aim to signal quality or fea-
ture enhancement and signal compression. Signal processing
methods may precede, or be an integral part, of signal analysis
methods, aiming to reveal important information about the
content of the signals, including their semantics and the meas-
urement of observable quantities. It is therefore evident that
there are strong dependencies between sensor-based measure-
ments and signal processing, either in the preparation phase or
in the analysis phase of the signals considered by a measure-
ment system.

In the recent years, the increase of computational resources
has triggered a remarkable progress on adaptive systems with
generic architectures, enabling the solution of more and more
difficult signal processing and analysis problems. Such sys-

tems are the basis of machine learning (ML) and artificial
intelligence (AI), and today, complex architectures, such as
deep artificial neural networks (DNNs) [3], may include mil-
lions of free parameters that can be tuned by an algorithm to
infer solutions, based solely on the input data. This trend, usu-
ally referred to as deep learning (DL), has already entered the
domain ofmeasurement science, with several works indicating
the effectiveness of today’sMLmethods to solvemeasurement
problems.

This roadmap presents a critical overview of the state-of-
the-art signal processing and analysis methods and applic-
ations, aiming to highlight future challenges and perspect-
ives towards next generation measurement systems. These
are measurement systems of the Fourth Industrial Revolu-
tion, leveraging and contributing to the scientific and techno-
logical advancements of the next decades. It is organized in
four sections. Section 2 identifies issues related to signal pro-
cessing that are worth considering in contemporary measure-
ment systems. These include uncertainty modelling, which is
a fundamental issue that is still open, and issues related to net-
workedmultisensor measurement systems based on internet of
things (IoT) technologies. Section 3 identifies challenges with
respect to signal processing for optical measurement systems.
In this direction signal processing perspectives are discussed
in the context of particle image velocimetry (PIV) and interfer-
ometry. Sections 4 and 5 deal with a broad spectrum of applic-
ations, where measurement quality and efficiency can have a
significant societal or economic impact. These span to biomed-
ical, remote sensing, environmental, and industrial domains.

Many of the challenges and perspectives identified in this
roadmap are associated with ML, which is undoubtedly a
promising direction. However, it should not be considered as
a panacea for the treatment of any signal processing or meas-
urement problem. By taking a closer look to a problem under
investigation and by understanding the involved physical pro-
cesses other solutions, either without or combining DL with
knowledge about the problem under investigation, could be
more efficient. This is also highlighted in the roadmap, along
with a multitude of other directions for novel research results
and progress.
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2. Signal processing considerations in
contemporary measurement systems

2.1. Signal uncertainty modelling

Melanie Ooi1, Ye Chow Kuang1 and Serge Demidenko2

1 University of Waikato
2 Sunway University

Status

Since the advent of the digital revolution, the volume of data
acquisition and processing has been growing at an alarm-
ing rate. It has been fuelled by new technologies and tools
as well as by the naïve confidence that there would be wis-
dom and knowledge within the acquired data that can reveal
new insights. However, the confidence in data-driven decision-
making does not depend on the amount but rather on the
usefulness of data [4]. Data usefulness can be generally cat-
egorised into (a) discrimination of what is relevant, (b) inter-
pretation of the information acquired, and (c) identification of
sources, measurement, andmanagement of uncertainties of the
data (signals) as they inherently affect the operations of data-
driven systems.

It is therefore crucially important to account for uncertain-
ties when employing or designing such systems especially in
mission-critical domains such as health, environment, secur-
ity, etc. The sources of uncertainties are associated with the
measurement of system input signals as well as with the pro-
cessing of these signals by the system itself (that is naturally
not perfect and having physical, technical, performance, and
other constraints). The technique to infer output uncertainties
given the uncertainties of input is known as the propagation
of uncertainty. Known uncertainties of the inputs to a known
measurement system can be propagated through amodel of the
system to find the probability density function or cumulative
distribution function of the constraints, allowing characterisa-
tion of the uncertainties imposed by the system. This, in turn,
facilitates various types of system analysis where needed. If
no adequate model of the system is known, a model can be
developed by measuring input quantities in relation to output
quantities to determine their relationship.

Current and future challenges

The Guide to the Expression of Uncertainty in Measurement
(GUM) [5] outlines three methods to evaluate the propagation
of uncertainty:

(a) GUM uncertainty propagation framework. This analytical
approach is sufficient for largely linear cases. Unfortu-
nately, it can be inaccurate in real-world scenarios in pres-
ence of non-linearities.

(b) Monte Carlo simulation. It is valid for wider classes
of uncertainty estimation problems. However, it is

computationally more expensive and requires large simu-
lation sizes for complex problems thus limiting its use.

(c) Analytical methods based on statistical moments. In fact,
the GUM uncertainty framework outlines the simplest
form of the moment-based method with just twomoments:
mean and standard deviation. This somewhat limits the
framework’s application since just two moments are insuf-
ficient to model complex problems.

A concise yet quite comprehensive outline of the area of mod-
elling uncertainty of signals can be found in [6] published
almost a decade ago. There have been a large number of new
results in this very active research domain including signal
uncertainty evaluation, propagation through the measurement
procedures, modelling, applications, etc, while further extend-
ing the foundations formulated byGUM, e.g. [7–10]. This area
continues to expand while progressing to address the numer-
ous challenges, such as advancing approaches for uncertainty
evaluation for time-dependent measurements and their imple-
mentation for routine applications, increasing efficiency and
reducing the cost of a Monte Carlo method for uncertainty
evaluation, studying advanced approaches based on comput-
ing moments of higher orders of the output-of-interest, devel-
oping computationally efficient uncertainty evaluation tech-
niques and tools enabling real-time applications, and so on.

Advances in science and technology to meet
challenges

Among the promising advances in the field under discussion
is the analytical modelling of the uncertainty within a process
of technical design optimisation. Uncertainty evaluation tools
are employed to estimate the reliability and robustness of pro-
posed design solutions. Here the reliability reflects the level of
confidence in meeting a physical design constraint, whereas
robustness refers to the sensitivity of an output to the uncer-
tainties in the inputs. This method has been implemented in
the structural design [11], whereby the overall reliability and
robustness of a prescribed constraint of the structure compris-
ing many elements (e.g. beams, columns, etc), is often sought-
after based on the knowledge of uncertainty of each element.
This information is then fed into deterministic optimization
algorithms (i.e. where uncertainties of the design parameters
are not considered) to find the best design solution while min-
imising weight/cost and meeting the physical constraints with
a desired level of reliability along with less susceptibility to
the system uncertainties. As a result, a design that meets the
required reliability and safety can be achieved. This technique
likely would be applicable to designing measurement systems
with numerous sensor elements.

Modelling uncertainty propagation within a complex sys-
temwill be an important tool to build a robust decision-making
system. And herein lies the problem—the existing uncertainty
propagation methods have historically been focused on tech-
niques that serve the main role of reporting/estimating output
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uncertainty and are confined to static or quasi-static operat-
ing environments [12]. State-of-the-art techniques are capable
of evaluating input-output uncertainty of systems represen-
ted by linear or polynomial functions. Theoretical advances
to estimate input-output uncertainty of the systems represent-
able by more flexible models such as radial basis functions or
artificial neural networks (ANNs) would expand the ability to
estimate uncertainty in complex decision making. In the cases
where closed-form solutions cannot be found, limiting solu-
tions (similar to the central limit theorem) could provide use-
ful theoretical bound in the design of large and complex signal
processing systems. Further investigations, development and
introduction of such improved techniques will help to advance
the research subject area of uncertainty propagation beyond
the current boundaries.

Technical challenges for uncertainty evaluation and mod-
elling are mainly associated with complex signal processing
structures having a multitude of distributed inputs and outputs
deployed to carry out long-term missions in varying environ-
ments (e.g. large-scale IoT systems) where the data reliability
and system stability are not guaranteed. This would negatively
affect the fundamental items of dealing with uncertainties—
calibration (and system identification) and traceability [13].
A viable solution would be self-adaptive sensing with soft-
calibration using the acquired data, where yet again, sig-
nal and uncertainty modelling would play a central role
in developing efficient and robust self-tuning algorithms.
Transferability between applications would be important
to enable cost-effective large-scale integration. Improving
data acquisition and sensor fusion have to be achieved as
well as optimisation of the computational efficiency (e.g.
achieving the best trade-off between computational accuracy

versus resource utilization [14]) would also need to be
advanced.

Concluding remarks

It can be expected that the future intelligent measurement
systems with embedded data-driven decision-making will
continue to be characterised by the large-scale long-term
deployment of multitudes of sensing elements connected to
high-performance signal or data processing equipment. The
uncertainty associated with the signals or data arriving from
the sensing elements is to be accounted for along with the
uncertainty of signal processing in time or complex digital
computations performed by the system thus supporting the
avoidance of unintended wrong decisions or results at the sys-
tem outputs. And that is where lies the importance of the
advancement of the theory, practice and tools for uncertainty
modelling and evaluation (a good example of an uncertainty
evaluation tool is given in [15]). The progress achieved in
many topics associated with this field in recent years has been
very significant. Yet, in terms of finding more general solu-
tions that would be required for the design and deployment of
the next-generation measurement systems, the challenges are
serious.
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2.2. Signal processing for IoT-based measurements

Alexandr Shestakov1, Vladimir Sinitsin1 and Manus Henry1,2,3

1 South Ural State University
2 Coventry University
3 University of Oxford

Status

Recent decades have seen rapid developments in the scope
and sophistication of networked sensor technology, particu-
larly within the context of the internet of things (IoT) [16, 17].
The IoT raises a wide range of technical challenges for distrib-
uted sensing, including the development of energy-aware data
acquisition systems, localization of mobile IoT nodes, syn-
chronization protocols, and security [18]. Further questions
arise concerning basic measurement functionality. The default
assumption is that the measurement calculation and associated
signal processing should be identical to that of an equivalent
non-networked sensor. Perhaps, even simplified measurement
calculations may be employed to reduce the complexity, cost
and power consumption of the local device, if it can also be
assumed that, at the network level, sophisticated data fusion
may overcome the metrological limitations of individual sens-
ing nodes. An alternative approach, promoted via an IEEE
Recommended Practice [19, 20], would claim that ‘a paradigm
shift in the sensor world is on the horizon: the signal will
be processed entirely at the point of measurement (POM)’,
i.e. that more, not less, measurement calculation should be
performed locally, in order to reduce power, communication
bandwidth and data storage requirements. The challenge is
to develop schemes whereby local signal processing in indi-
vidual nodes can be configured and modified, ideally as dir-
ected by the network level. For example, certain Fieldbus pro-
tocols, developed in the 1990s for industrial applications [16],
provide a limited capability for downloading signal processing
tasks into local nodes. A valve position can bemodified using a
control algorithm downloaded into a nearby temperature, pres-
sure or flow sensor, for example. However, this capability is
limited to distributing fixed function blocks (e.g. PID) across
the device network. Here we present two promising techniques
that provide more flexible, localised signal processing within
the IoT domain. The first technique [20] provides a universal
framework for extracting features from a measurement signal,
resulting in a compact form of signal encoding. The second
technique [21] provides a low cost, modular signal processing
block that can be flexibly configured to perform a wide range
of signal processing tasks, including for IoT devices.

Current and future challenges

IoT roll-out will generate an exponential rise in the num-
ber of sensing nodes, deployed in diverse environments. This
poses challenges to designers and users, whether of indi-
vidual components or entire systems. ‘As systems become

more interconnected and diverse, architects are less able to
anticipate and design interactions among components, leav-
ing such issues to be dealt with at runtime. Soon systems will
become toomassive and complex for even themost skilled sys-
tem integrators to install, configure, optimize, maintain, and
merge’ (cited in [21]). Big data and ML techniques have made
remarkable progress in implementing top-down analysis, con-
dition monitoring, and efficient operation for a wide range of
complex systems. However, the question arises as to what sig-
nal processing capabilities might be provided at the lowest
level to support autonomous and adaptive systems at higher
levels, while also minimising processing and data bandwidth.
Such developments would counteract the sometimes low pri-
ority currently afforded software development for IoT devices,
where ‘… often software engineering is the last activity after
mechanical and electrical design, facing a lack of informa-
tion and limited development time because of delays in the
other disciplines. On the other hand, bugs created in other
disciplines need to be fixed by means of software’ (cited in
[21]). One route to new capability is to develop signal pro-
cessing means to characterise real-time measurement beha-
viour through a compact form of coding, as a further stage
of processing beyond the basic measurement. This should be
simple enough to be implemented within any sensor node,
while being sufficiently expressive to support a wide range
of potential uses at both the local (sensor to sensor, sensor to
actuator) and the system level. Another route is to consider
whether sensor signal processing tasks can be characterised
in a modular, parameterised form, so that task modification or
augmentation can be compactly defined and communicated by
the system down into the individual sensing node. This would
facilitate flexible and adaptive processing of high bandwidth
transducer data and produce high information content, low
bandwidth, and possibly bespoke measurements, as required
and requested by the higher-level system.

Advances in science and technology to meet
challenges

The IEEE Recommended Practice 21451 [20] provides an
interpolation-based segmentation algorithm to encode any
time series into a sequence of signal shapes. It is intended for
real-time operation within any sensor and provides a standard
means of signal identification and information fusion. Figure 1
shows the set of segment types, an example signal, and its cor-
responding coding vector: C is the character type, while M
and T are timing markers. The technique excludes amplitude
information, as it aims to encode only shape. However, max-
ima and minima are readily identified at the intersections of
specific segment pairs—for example, maxima occur at ‘de’,
‘df’, ‘ge’, or ‘gf’ junctions. A simple application example [20]
consists of heating liquid in a tank, where the heating actuator
asks the temperature sensor to verify that the temperature is
rising. The recommended signal shape characterisation is suf-
ficient to support decentralised, ad-hoc interactions between
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Figure 1. (Upper) classes for defining line segments; (lower)
example of signal description using mark, class, tempos notation;
© 2013 IEEE. Reprinted, with permission, from [19].

devices, including the formulation of requests that can be inter-
preted and answered with low bandwidth yes/no responses.
The Prism [21, 22] is a linear phase finite impulse response
(FIR) filter where, unusually, the calculation is recursive so
that the computational cost per sample is low and fixed, irre-
spective of filter length. Prism design and instantiation, given
desired parameter values, is also trivial. This design simpli-
city and low computational cost support the use of Prism
networks to carry out a variety of signal processing tasks,
including low-pass, bandpass and notch filtering, and track-
ing [21], whereby frequency/phase/amplitude values are cal-
culated for a sinusoidal, typically post-filtered, signal. Spec-
tral analysis is also supported [23]. These properties enable
the creation of new signal processing schemes within net-
worked sensors on an ad-hoc, as needed basis. Figure 2 sum-
marises a demonstrator: a wireless acceleration sensor [24]
measures angular acceleration for condition monitoring of
rotating machinery. A chipped or broken gear tooth results
in modulation in the amplitude of the 4th harmonic of the
rotation frequency; a Prism signal processing scheme can
be instantiated for real-time tracking of this parameter to
provide fault detection [25], where in this case the scheme is
instantiated to support the current (assumed steady) speed of
rotation.

Figure 2. (Top left) wireless acceleration sensor; (top right) sensor
mounted on gear box; (middle) time-varying amplitude of 4th
harmonic for normal, chipped and broken gear; (bottom)
Prism-based signal processing network to diagnose gear fault;
© 2018 IEEE. Reprinted, with permission, from [25].

Concluding remarks

A comprehensive approach to the evolution of the internet of
things should include a reconsideration of how signal pro-
cessing tasks can be defined and implemented. The devel-
opment of novel techniques to facilitate flexible and adapt-
ive calculations at the POM, i.e. within the sensing node
itself, will help to reduce the computational, communication
and data storage requirements that will continue to constrain
the power and sophistication of fully autonomous systems.
Current research typically considers, on the one hand, IoT
implementations of well-established signal processing tech-
niques, such as frequency estimation [26] or filtering [27], or
on the other hand, application-specific requirements such as
for healthcare [28, 29]. The two techniques described here
suggest the potential for developing novel signal processing
approaches to support localised, flexible signal processing as
required by IoT. The examples provided are an encoding tech-
nique to characterise the shape of any signal, and the Prism, a
recursive FIR signal processing building blockwith low design
and computational cost. The diversity of these approaches sug-
gest that alternative valuable techniques await discovery and
application in future research programmes.
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3. Optical measurements

3.1. PIV data processing

Andrea Sciacchitano1 and Stefano Discetti2

1 Delft University of Technology
2 Universidad Carlos III de Madrid

Status

PIV is awell-established versatile technique for velocitymeas-
urements of fluid flows. PIV is nowadays used in an impress-
ively wide spectrum of applications, covering aerodynam-
ics, biomedical flows, meteorology, oceanography, industrial
applications and many more. The unique feature of PIV is
its capability to deliver instantaneous velocity fields, thus
enabling computation of vorticity fields and identification of
coherent structures. Although with a wealth of variants, the
processing of PIV images has reached a mature state. The core
of the process is the use of algorithms to track the motion of
particle images, inmost cases based on either cross-correlation
analysis [30] or individual tracking [31]. PIV algorithms have
been progressively refined along the last three decades, lead-
ing to a sophisticated combination of image pre-conditioning
and processing techniques [32] able to deliver a highly accur-
ate flow characterization in an impressive range of condi-
tions. Removal of unwanted background reflections from the
image recordings is typically carried out by subtraction of
the time-minimum or time-average pixel intensity. In most
cases the velocity field is retrieved via cross-correlation ana-
lysis on small regions, often referred to as interrogation win-
dows, covering the flow field (see figure 3). The process is
generally multi-step, iterative, with progressive grid refine-
ment. A detection, removal and correction of outliers is nor-
mally carried out after each pass. A-posteriori quantification
of the measurement uncertainty is nowadays possible based
e.g. on the analysis of the correlation statistics [33]. For three-
dimensional (3D) flow measurements by tomography, the
Shake-the-Box algorithm [34], based on the iterative particle
reconstruction coupled with prediction and correction of the
particle images positions along individual trajectories (see
figure 4), has demonstrated higher accuracy and efficiency
with respect to correlation-based algorithms.

PIV is now considered the dominant method in experi-
mental flow characterization, and it is the most prominent can-
didate to provide full flow description in experiments. This
is particularly relevant in applications where numerical sim-
ulations are either not reliable or not even feasible. While
PIV processing can now be regarded as well established, large
margins for improvement are foreseen with a clear reward
ahead. PIV is still considered a technique for expert practi-
tioners and with significant user-dependence on the results,
being this especially true for volumetric measurements. Fur-
thermore, we have witnessed the progressive increase in data
size and dimensionality of PIV along its history, starting
from few instantaneous snapshots of planar measurements to
thousands of time-resolved volumetric representations of flow
fields, each one including tens of thousands of vectors. The

complete flow description is extremely attractive for valida-
tion of numerical methods and is fostering research efforts in
data assimilation.

Current and future challenges

Despite the widespread use of PIV in research laborator-
ies worldwide, applications of the technique in the industrial
environment are hindered by several limitations concerning
both the measurement hardware and the data processing
algorithms. Those include: the relatively small size of the
measurement domain; the large times required for system
calibration; the presence of unwanted laser light reflections,
which locally hinder the evaluation of the flow velocity;
the limited dynamic spatial and velocity ranges, both not
exceeding O(100) [35, 36]; the dependence of the meas-
urement results upon the user’s expertise, and in particu-
lar the selection of the processing algorithm; the limited
knowledge on the measurement uncertainty. These issues are
further exacerbated when 3D flow measurements are per-
formed, due to the use of multiple cameras and volumetric
illumination.

Notwithstanding these difficulties, research efforts in the
last decade have led to establish volumetric PIV as a stand-
ard tool for research [37]. Time-resolved velocity measure-
ments are now available up to frequencies approaching 1MHz
[38], thus opening an unprecedented perspective for com-
plete moderate-to-high-Reynolds number flow characteriza-
tion. Nevertheless, the high frequency content of the velo-
city spectra is typically inaccessible due to measurement
noise; currently, it is not clear whether multi-frame processing
algorithms are capable to suppress the measurement noise
without filtering the physical fluctuations. Enforcing first prin-
ciples to extract field measurements of pressure [39] and scalar
transport has pushed PIV in the last years beyond the mere
measurement of kinematic quantities. Such approaches require
high-repetition-rate equipment to achieve time resolution, thus
limiting their applicability to relatively low speed flows. A cur-
rent challenge is to overcome this limitation to transform PIV
into a robust complete-flow-characterization tool in experi-
mental aerodynamics.

Advances in science and technology to meet
challenges

Advances in high-repetition rate equipment, seeding particles
for small response time, as well as multi-frame image interrog-
ation algorithms, will be key enablers forMHz-range PIV [40],
thus unveiling flow dynamics occurring at high-frequencies.

Bridging the gap between research laboratories and
industry requires a higher level of automation in the PIV data
acquisition and processing. Robotic PIV systems have been
introduced [41] to enlarge the size of the measurement domain
to cubic metres without compromising the data acquisition
time. The development of AI approaches is considered cru-
cial to optimise both image acquisition (automatic identifica-
tion of viewing directions, measurement regions and number
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Figure 3. Analysis of double frame PIV recording based on digital cross-correlation. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer. [35] © 2018.

Figure 4. Schematic description of the Shake-the-Box algorithm. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer. Experiments in Fluids. [34] © 2016.

of samples to maximise the data quality) and data processing
(user-independent optimisation of the processing parameters).
Furthermore, robust uncertainty quantification methodologies
based on the design of experiments framework shall be intro-
duced that quantify the uncertainty associated with each of
the relevant error sources [42]. Finally, image and data com-
pression approaches will be crucial to enable researchers and
engineers to handle the incredible wealth of flow information
acquired.

Advances in data fusion and data assimilation approaches
will have a key role in enriching the measurement data by
enabling the determination of flow properties otherwise not
accessible, such as surface pressure and wall shear stress,
thus leading to the evaluation of the aerodynamic load dis-
tributions, or flow scales beyond the Nyquist limit imposed
by the spatial sampling with particles. Promising pathways
include imposing the compliancewith the governing equations
of fluid motion, either based on the Navier–Stokes or on the
Lattice-Boltzmann formulations, and the use of variational
data-assimilation frameworks employing adjoint computa-
tional fluid dynamics.

ML algorithms are also expected to be a key player in
addressing the challenges to increase the robustness and user-
independence of PIV image processing. Promising research
avenues are opened by the deployment of DL algorithms.
The perspective of such methods is to exploit the recent
advances of computer vision to increase the temporal and
spatial resolution of PIV beyond the limits of the image
acquisition system. The developments in super-resolution ML
algorithms (see, for instance, generative adversarial neural net-
works) are now offering intriguing research pathways. This
is expected to stimulate research efforts on novel physics-
informed algorithms since in most of the applications of PIV

the underlying equations are known and can be enforced to
regularize the final output. Furthermore, ML algorithms can
pave the way towards embedding time-resolution in stand-
ard low-repetition-rate PIV using sparse high-repetition-rate
simultaneous measurements, thus easing the achievement of a
complete flow dynamics characterization.

Concluding remarks

PIV is offering the perspective of a complete technique for
flow characterization, with robust and reliable measurements
to validate numerical simulations and to explore configura-
tionwhere simulations are not accessible. Themain challenges
ahead are identified in the improvement of the flexibility and
robustness of the technique to ease its transition from being
a specialized technique to a standard tool also in industrial
practice. Although hardware advances are foreseen as a strong
beneficial asset for this process, very promising opportunit-
ies in this direction are offered by advanced signal processing.
A strong embedding of first physical principles by means of
data fusion, data assimilation or physics-informed DL meth-
ods is expected to be a key player in the next years. The recent
advances in computer vision are also already contributing to
setting up a new generation of PIV processing methods, open-
ing new perspectives for improved accuracy, mitigation of the
user dependence, and for uncertainty quantification.
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3.2. Interferometry signal processing
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Interferometry conveys information about distance and
changes in distance by the interference of a sinusoidal light
signal that is transmitted with its reflection from an object of
interest, such as a mirror or a diffusing target. The interfer-
ometric signal to be processed comes from a photodetector;
ideally the signal to be processed has the form:

I= I0 [1+m cos (2ks+φ0)] . (1)

This is the output signal obtained at the photodetector as the
beating of the reference beam ER = E00 exp iωt, and the meas-
urement beam propagated forth and back to the target at dis-
tance s, ES = ES0exp i(ωt − 2ks). We wish to trace back the
distance s or displacement ∆s contained in the phase term
φ= 2ks+φ0 under the cosine function. Specifically, s= s(t) is
the time-dependent distance of the target, I is the photodetector
current, I0 = E00

2 + ES0
2 its mean value, m = 2 ES0E00/I0

the modulation index (or fringe visibility), φ = 2ks the inter-
ferometric phase accumulated over the path 2s, k = 2π/λ the
wavevector and λ the wavelength, and φ0 a constant phase
term, equal to arm imbalance in a two-beam interferometer
[43, 44]. While the problem is trivial when s(t) is monotonic,
because we can invert equation (1) as s(t) = (1/2k) arccos
[(I/I0 − 1)/m] − φ0, as soon as s(t) has minima or maxima
the cosine function periodicity (or the multi-values of arccos)
prevent to obtain an unambiguous inversion.

Figure 5 shows an example of sine-wave displacement
s(t) = s0 sinω0t for which the signal cos(2ks0 sinω0t + φ0)
exhibits a slower periodicity in correspondence with the max-
ima/minima of s(t) [43]. Traditionally, the problem is solved
by modulating the laser wavelength (heterodyne interfero-
meter, typical solution for vibrometers [45]), or by adding a
second interferometric signal, of the type sin (2ks + φ0), so
as to have a complete pair {sinφ,cosφ} identifying the phase
φ = 2ks unambiguously.

A different approach to overcome the ambiguity was
developed after the introduction of the self-mix configuration
of interferometry [46] by which, as soon as the feedback level
is moderate the interferometric waveform becomes distorted
and a switching appears with the sign of the increasing/de-
creasing displacement (figure 5, bottom panel). Taking advant-
age of this self-unwrapping, the inversion operation can be car-
ried out with no error and a limit set by noise at about ±5 nm,
provided the parameter of the experiment (feedback factor C
and linewidth enhancement α) are known [47].

Current and future challenges

The first challenge of interferometric measurements is that
of applications to mechanical engineering [48] and machine

tool control is to work on native, untreated surfaces (the non-
invasiveness feature) and this means that the phase measure-
ment shall be carried out in the speckle pattern regime [43]
of optical field returning from the target. The speckle statist-
ics corrupts both amplitude and phase of the returning field. In
amplitude, we have fading of the signal, with the occurrence of
dark speckles with near-to-zero amplitude, whereas the phase
error amounts to a full 2π every time we go out of a coher-
ence region or swing out of the speckle size. Amplitude fading
is defeated by operating in space (or eventually wavelength)
diversity, and the technique known as bright speckle tracking
[49] has been shown to solve the problem, at the expense of
a small addition to the optical objective collimating the beam
out of the laser source: a piezo XY deflector moving the spot
projected on the target so as to maximize the amplitude of
the return. Once fading is overcome, it is the residual speckle
phase error to limit the measurement accuracy. An analysis
of the phenomenon [50] has revealed that, also in the speckle
regime, we can attain a sub-µm resolution and precision by
properly trading beam size and distance of operation. Even
better is the hypothetic perspective of cancelling the speckle
phase error by taking advantage of the Hilbert conjugation of
phase and logarithm of the amplitude, till now demonstrated
only partially and in special cases [43]. A second challenge to
interferometry is the improvement of sensitivity and resolution
limits for the most demanding applications, like the gravita-
tional wave detection [51]. Figure 6 shows the optical scheme
of VIRGO, the French-Italian detector that uses Fabry–Perot
resonators (mirrorsWE-WI and NE-NI) to improve sensitivity
of a factor ≈103, equal to the finesse of the resonator, so as to
reach the record sensitivity∆s/s0 = 10−23 that is necessary to
sense gravitational waves.

A further challenge is the application to medicine and bio-
logy of low-coherence source imaging, also known as optical
coherence tomography (OCT) [52]. Upon scanning the refer-
ence arm length, we get the in-depth scan of the surface from
which the interferometric signal is collected, and in this way,
we obtain a 3D image of the tissue (skin, blood vessel, ret-
ina) under test. The 3D image is further processed to identify
and recognise the diagnostic details of interest (lesions, melan-
oma, etc). Since now, identification and recognition have
been carried out by convolutional neural network (CNN) pro-
cessing of the image at a single wavelength. A new possib-
ility is offered by spectral-scanning OCT because it entails
also the wavelength dependence of image details and there-
fore contains potentially more information as described in next
section.

Advances in science and technology to meet
challenges

Signal processing for an interferometric instrument becomes
increasingly crucial to tackle physical and technological lim-
its. For mechanical applications, digital acquisition at high
sampling frequency allows to better filter out disturbances
and to highlight the desired measurement. Thanks to going
digital, complex processing strategies, such as neural networks
(NNs) and ML techniques, are applicable in real time to the
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Figure 5. The interferometric signal has periodicities that make it
difficult to trace back the actual displacement, like can be seen
comparing the sine-wave excitation s(t) (first panel), and the
corresponding interferometric signal (second panel). Using a special
configuration of interferometry, called self-mix, we get (in the
moderate feedback regime, last panel) switching in the waveform
telling the sign of the displacement ∆s.

Figure 6. VIRGO optical scheme principle (from [51]). This is an
example of very-large Michelson interferometer, with 3 km long
arms and enhanced sensitivity. Reproduced from [51]. © IOP
Publishing Ltd. All rights reserved.

phase evaluation (for example, NN are applied to gravitational
waves). Various complex inverse problems can now be solved
numerically, to reach the desired information.

As an example, the central problem of interferometric
image reconstruction for detail recognition that are of clinical
interest in using an OCT can be formulated in very general
terms: it is to be able solving the constitutive Kubelka–Munk
set of equation for the ongoing power flux I(x, y, z, λ) and

the backscattered power flux J(x, y, z, λ) through the sample.
Writing the fluxes simply as I(z, λ) and J(z, λ), i.e. letting the
x, y dependence implied, we have:

d I(z,λ)/dz = −A(z, λ) I(z, λ) + s(z,λ)J(z, λ)

d J(z,λ)/dz = A(z, λ)J(z,λ) − s(z,λ) I(z,λ) (2)

whereA(z, λ) and s(z, λ) are the attenuation and backscattering
coefficients of the details inside the image at depth z.

In the equation above, the quantity J(z, λ) is the measure-
ment output coming from the OCT interferometer, and our
computational task is to find out the best estimates of the spec-
tral attenuation A(z, λ) and of the spectral backscattering s(z,
λ) coefficients for every pixel of the x, y image, given themeas-
ured J(z, λ). The problem is a difficult one because it is ill-
conditioned and requires an algorithmic improvement of the
calculation process respect to the well-known Gauss–Newton
method, but is worth considering because the A(z, λ) depend-
ence more easily identifies the class of detail in the 3D image
compared with the CNN processing used so far. The rather
large dimensionality (the typical image may have 64 pixels
in each coordinate and 16 values of λ) and the real time
requirement add another challenge to the computation, which
is however interesting because applicable to a wide class of
problems.

Concluding remarks

Interferometry is one of the most powerful measurement tech-
niques in Physics, Engineering and Biomedical Sciences, and
we have observed it is advantageously cross-fertilised by the
advances in technology on one side and advances in data pro-
cessing on the other side. Modern techniques of signal pro-
cessing find broad application to interferometry, for phase
evaluation or reconstruction of the desired measurand. The
current signal processing trend shows a progressive evolution
from analog systems [45] to digital processing (see bibli-
ography of [44]), thanks to high-speed sampler with high-
resolution, and to real-time signal processors. Next genera-
tion of interferometry could be simplified in optical architec-
ture and more and more advanced in digital signal processing:
this evolution will allow to reduce the cost, thus broaden-
ing the possibilities of application in the industrial world (see
[43, 44, 53, 54]).
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4. Biomedical measurements

4.1. Biosignal processing for pervasive health
monitoring

Andreas Menychtas and Ilias Maglogiannis
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Status

Historically, healthcare is one of the domains that is highly
benefited from the technological advancements in the differ-
ent scientific areas, with the continuous creation of new clin-
ical pathways, and innovative treatment plans. The contribu-
tion of information and communication technologies on this
was fundamental, establishing the concepts of eHealth and
mHealth, and accelerating the adoption of solutions for proact-
ive and personalized care, which play key role in the enhance-
ment of the mental and physical health and in the improvement
of wellbeing in general [55]. In a broad context, ‘eHealth’ or
‘electronic healthcare’ refers to the sets of computing infra-
structure and applications that assist the provision of medical
services utilizing digitized medical data processed or in raw
formats. In case the applications allow the users to be ‘mobile’
then we are referring to the ‘mHealth’ ecosystem. The evolu-
tion of sensing technologies, the availability of sophisticated
hardware in commodity products and the wide use of smart
‘things’, from phones, watches, and wearables, to advanced,
special purpose equipment for the continuous measurement
of vital signs, creates a rich profusion of data which can be
exploited in pervasive health monitoring. The impact, in pop-
ulation and individual level, of these immense amounts of
biosignal data which are produced every day, is even higher
as a result of the modern methodologies and techniques which
are used for signal processing and knowledge extraction. This
knowledge, which is produced by analysing streaming data
from biosignal sensors, and by correlating health data from
personal, organizational, or public repositories, is nowadays
crucial in the processes of decision-making by healthcare pro-
fessionals and the assessment of patients’ health condition.
There are also cases, that the processing results are directly
consumed by systems for the identification of health deterior-
ation, estimation of risks, and for personalized coaching in the
concepts of quantified-self and assisted living. ML, complex
event processing and anomaly detection are among the techno-
logies which are used for the processing of biosignals and are
at the core of modern provisioning models in healthcare, such
as the notion of digital-twin, the AI-assisted diagnostics, and
the personalized medicine (figure 7). The importance of the
vital sign processing approaches and the creation of valuable
insights is also significant, if we take into consideration the
disruption in everyday life due to extreme events such as the
COVID-19 pandemic, and their effect in healthcare and other
digital systems.

Figure 7. Vital sign processing overview for pervasive health.

Current and future challenges

The main characteristic of the biosignals is that they are con-
tinuously updated and they can measure, quite effectively in
most cases, important characteristics of patients’ health status.
At the same time, the nature of biosignal data itself intro-
duces several challenges for their effective management, pro-
cessing, and analysis. The constantly increasing number of
different and diverse data types, following the abundance of
hardware and sensors for measuring activity and biosignals,
creates a complex environment for managing and manipu-
lating the data [56]. The analysis processes and methodolo-
gies are becoming even more complicated taking into con-
sideration the multi-modal nature of the signals, since they
have different granularity, with sensors and data sources to
produce on the one hand unprocessed raw data such as the
users’ heartrate, or aggregated data and events on the other
hand, such as the identification atrial fibrillation following
the measurement of ECG. The overall processing flow is
hindered though by missing, untrusted and inconclusive meas-
urements due to sensormisuse or network connectivity failures
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which introduce additional difficulties. da Costa et al [57] have
provided a very enlightening analogy between the character-
istics of health data from sensors and Big Data. The chal-
lenges related to the biosignal volume, velocity, variety, vera-
city, visualization and value are at the core of modern health
applications which not only deal with data but also with the
knowledge produced using processing techniques for noise
removal, data fusion, semantic annotation and trend analysis.
Since the processing typically takes place on mobile platforms
or on the edge of the network, the similarities become appar-
ent. The complexity increases in modern systems where differ-
ent data streams, local and remote, medical and non-medical
(e.g. location), should be combined and aggregated with his-
torical data from the centralized electronic health records of
healthcare organizations, taking also into consideration the
limitations on the resources availability and energy consump-
tion [58]. In this context, signal processing is often followed
by analysis techniques which are taking place in multiple lay-
ers of the application stack, such as clustering, support vector
machines, decision trees, neural and deep networks that are
used for predictions, assessment of health parameters and risk
estimation [59].

Advances in science and technology to meet
challenges

The first step towards the improvement of biosignal data pro-
cessing and analysis is the unification of the techniques for
manipulating data of different nature or data provided from
different sources. The analysis methodologies may consid-
erably benefit from the existence of an abstraction layer for
data access which will be able to support all data types and
sources across systems and devices. This should cover only
the different characteristics of biosignals that can be found in
electronic health records but also the interactions between sys-
tems that operate on the data, from mobile phones and edge
devices to centralized digital repositories for vital signs and
cloud computing platforms. Even though solutions for pro-
cessing health data in different levels are discussed in liter-
ature [60, 61], their generalization and applicability for per-
vasive health monitoring is limited. Furthermore, processing
methodologies dealing with streaming data such as complex
event processing, or data from external, non-health related,

sources such as users’ location or other environmental para-
meters are even more difficult to be adopted without unified
approaches for data exchange and health services interoperab-
ility. Although for several health data types there have been
notable implementations of standards and models e.g. HL7
and FHIR [62], the biosignal data, and their extensions on
Quantified-Self and social aspects [60], still lack of specific-
ations that are natively accepted in processing and analytics
frameworks. Example of this limitation is the incomplete list
of Bluetooth GATT specifications which only cover a frac-
tion of the constantly increasing list of biosignals acquired
from devices and sensors. In addition, advancements on the
semantic interoperability of biosignal data is a fundamental
feature for their effective analysis from healthcare profession-
als and experts in different domains. This also includes the
modelling and encoding of the analysis results and of the
knowledge that is created in the separate processing levels so
that experts and systems can effortlessly operate on them, and
in that way transparently re-instantiate the data analysis loop
following the annotation and fusion of new vital signs and
health data on top of the knowledge that has been already cre-
ated in the past.

Concluding remarks

The creation of harmonized data lakes of biosignals on which
the mechanisms for processing and analysis of data oper-
ate, should be the first step towards the wide adoption of
advanced and efficient biosignal analysis methodologies for
pervasive health monitoring. The increasing usage of sensors,
the innovations in sensing technologies, and the advance-
ments in fields of signal processing, event identification and
knowledge extraction, require the use of models and stand-
ards which will facilitate the data integration processes. Cor-
relation of biosignals and other health data, is fundamental in
a ubiquitous healthcare ecosystem, where advanced analysis
mechanisms can effectively function, allowing professionals
to exploit them to gain insights on public health, and individu-
als to improve their wellbeing [63]. The landscape is chan-
ging fast, with experts and end-users embracing these techno-
logies and concepts however, important steps are still required
to ensure the veracity of vital signs, as well as the privacy of
the users, through strict certifications and policies.
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After the first recordings of electrical activity in humans by
means of electrodes attached to the scalp by the German psy-
chiatrist Hans Berger in 1924, a lot of research was carried
out improving the signal acquisition [64]. Although the prin-
ciples and basic procedures of non-invasive EEG have hardly
changed, new advances in materials and electronic systems
technologies support the development of a new generation of
EEG sensors (figure 8). The most conventional sensors are wet
electrodes utilizing a saline or different type of gels to increase
signal to noise ratio (SNR) by increasing the scull contact area
and decreasing impedance. Although they guarantee a high-
quality signal recording they have several disadvantages. Gen-
erally the montage time is relatively long, skin irritations can
occur and the hair must be washed after each measurement.
To overcome these problems a new generation of dry elec-
trode has been developed and evaluated by different compan-
ies (figure 8) and researchers [65–67]. For example Hinrichs
et al [68] showed in a very recent study that the signal quality,
ease of montage set-up and high usability of the dry electrodes
comply with the needs of clinical applications. Even though
the signals recorded from dry electrodes are sometimes nois-
ier [69–71], their advantages of a fast setup, user-friendliness
and wearer comfort are indisputable.

Several studies confirmed that the signal quality of dry elec-
trodes can match the quality of wet electrodes depending on
the context. For basic research of brain activity large multi-
channel settings are required to apply sophisticated processing
methods and deliver reliable insights in brain functioning. But
nevertheless dry electrodes are successfully used in clinical
studies [69] or in BCI applications [64, 69] with a limited num-
ber of channels. Both sensors are commercially available as
wired or wireless systems. Especially the latter can be used out
of the lab measuring free movements of persons without cable
restrictions. Although wet electrodes are still considered as the
golden standard, new advances in dry EEG electrodes give rise
to extended future applications in more diverse research fields
[70].

Current and future challenges

When working with EEG signal processing, four major steps
can describe the general pipeline: acquisition, pre-processing,
feature selection, and modelling (figure 9). Each step has
its own challenges: while recording, a small SNR and the
reduction of different artefacts caused by environmental or
physiological sources are amongst the greatest challenges in
EEG studies. A second factor restricting common use of non-
invasive EEG devices is the practical use of wet electrodes.

Although dry electrodes provide a faster setup and user com-
fort, they are still very sensitive to noise. For this reason, effort
is also being made into developing active electrodes that pre-
amplify EEG signals [72].

Pre-processing is an essential step in EEG data analysis
as it is carried out to remove any artefacts and leaving only
the desired EEG features for further analysis. The main chal-
lenge at this step is the reduction of noise while simultaneously
keeping the relevant features, and removing those that will
not be included in the model. This process can be as simple
as channel selection, re-referencing methods, or frequency fil-
tering, or more complex with blind source separation, wave-
let transform (WT) methods, empirical mode decomposition,
canonical correlation analysis or nonlinear mode decomposi-
tion [71]. The main challenge when extracting and selecting
features from EEG signals is the incredible amount of vari-
ables that can be inferred from them. Features can be as simple
as amplitude, statistical measures or segments used for event
related potentials, but can also be abstract mathematical rep-
resentations, like Hjorth features, differential entropy, higher
order crossing, independent and principal component ana-
lyses, autoregressive, wavelet packet decomposition, or con-
nectivity indices. This process is so overwhelming that some
researchers use stochastic methods like genetic algorithms to
sample a small, but relevant number of features to model.
Modelling refers to the understanding of the neurophysiolo-
gical bases for the behaviour measured. The mathematical and
computational methods to understand how those bases relate
to the physical measurement of EEG restrict our capacity to
abstract and predict accordingly. Generally, simple models
tend to be linear, but more complex models can make use
of nonlinear Bayesian statistics, clustering algorithms, like
nearest neighbours classifiers, NNs, or a combination of these,
into ensemble algorithms. Many methods have been created
over the years for specific use-cases, but no general-use model
exists for EEG processing [73].

Advances in science and technology to meet
challenges

Several studies in the past compared dry-electrode perform-
ance with different types of wet electrodes (active and passive,
water-based) but lacking homogeneity in comparison. This is
one important step which should be addressed in future studies
being able to make reliable statements about the signal qual-
ity of dry electrode approaches and pave the way for improve-
ments. The creation and use of diverse electrodes allows for the
development of new techniques for EEGmeasurement. This is
the case of textile and tattoo electrodes for wearable techno-
logy, which allow for more diverse kinds of measurements.
Conductive dry electrodes can be custom designed and 3D
printed. Textile electrodes allow for soft wearable devices for
prolonged measurements where participants can move freely.
Tattoo electrodes provide minimally invasive and comfortable
long-term measurements. Non-contact electrodes provide the
promise of non-invasiveness, a fast setup, user-friendliness,
comfort, and daily use electrodes. But also the combination
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Figure 8. Different types of electrodes (1) passive sintered AgCl electrode, (2) gel-based active Ag/AgCl electrode (g.LADYbird from
g.tec), (3) gel-based active electrodes (Brain Products GmbH), (4) gel-based wavegard electrodes (ANT Neuro), (5) gel-based slim active
(actiCAP, Brain Products), (6) passive dry electrode (g.SAHARA electrode, g.tec), (7) water-based passive electrode (Mobita, TMSi), (8)
dry EEG comb electrodes (OpenBCI), (9) unicorn hybrid electrode (g.tec), (10) semi-dry saline based electrodes (Greentek). Sensors 2, 6, 7
have been evaluated in [68]. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer. [64] © 2021.

Figure 9. A generalized EEG signal processing pipeline.

of two different types of sensors, e.g. dry and wet, opens new
ways to improve the SNR during EEG recordings [65, 72–74].
Although it is well known that the signal quality is strongly
associated with the compatibility between the amplifier and
electrodes, most of the existing literature has focused on elec-
trodes only instead of the entire system. Therefore in future
studies electrodes and assigned amplifiers should be evaluated
together to find bottlenecks.

DL provides techniques for data-driven discovery of relev-
ant signal features, while being specifically resilient to noise.
DL methods are capable of automatically learning features
relevant to researched conditions, creating at the same time
a model of the relationships between those features. For this
reason, they can achieve similar results in problems such as
mental state detection, motor decoding, or speech decoding
[75]. A disadvantage of this automatic learning is the explain-
ability of the created models, an area of opportunity in the field
that has begun to be explored just recently [76]. This enables
a more direct comparison of DL model with those created by
traditional methods. A less explored advantage of DL model
relies on transfer learning (TL); the possibility of usingmodels
that have been trained on specific datasets for different goals,

or in different datasets, and being able to obtain accurate res-
ults with very little or no training. This is a good indicator
that multi-objective multi-modal models are viable. The fast
advances in computing hardware and software for DL make it
one of the most promising techniques for reliable automated
EEG data processing [77].

Concluding remarks

Summarizing, there are already a lot of different EEG sensors
commercially available but not all of them deliver reliable and
high signal quality recordings. Therefore a lot of research and
development is still necessary to improve SNR, design fea-
tures and usability of the sensors and amplifiers. The meth-
ods that drive this technology are bound to general signal pro-
cessing techniques, but the continuously increasing computer
power, AI, and the techniques that develop from it can be
easily applied both as a modelling, and as a knowledge dis-
covery tool. In the next few years, we expect a wide variety
of user-friendly devices, combined with powerful computing
techniques to improve the development and understanding of
human EEG.
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4.3. Optical image processing for in vivo
measurements and diagnostics
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Minimally invasive examination and treatment are continual
challenges formedical science. In this context, optical imaging
technologies play an important role by offering tools for in vivo
screening at different wavelengths. Measurements performed
in vivo, include the measurement of size, distance, and optical
biomarkers. Endoscopy is the basic tool that can be comple-
mented by emerging techniques revealing tissue properties
valuable for diagnostic purposes, such as OCT, near-infrared
fluorescence imaging, and multispectral/hyperspectral ima-
ging [78]. Size measurements in endoscopic procedures are
still based mainly on empirical comparisons of the target with
a reference object, e.g. biopsy forceps. This approach can
affect clinical decisions and lead to inappropriate recommend-
ations [79]. Towards more objective and accurate in vivo size
measurements, methods based on image processing have been
proposed to perform comparisons with reference objects or
structured light projections [80, 81]. To alleviate the need for
external references, more recent image processingmethods are
based on ANNs and geometric calculations upon the optical
camera characteristics, using one or more images as input
(figure 10) [82, 83].
In vivo distance measurements are useful for the localiz-

ation of findings within the body, e.g. anomalies. They are
usually performed with wearable sensor arrays or radiologic
procedures; however, recent image processing methods prom-
ise accurate results, more conveniently and less costly [83].
These methods follow the principles of visual odometry, and
they have been investigated using both geometric and ANN-
based approaches. Both distance and size measurements can
be affected by the depth estimation accuracy. Typically, depth
is assessed using two cameras in a stereoscopic setup, render-
ing the imaging system more costly and imposing constraints
in miniaturization. Recent studies indicate that monocular
depth measurements can be competently performed in vivo
by DL methods [82, 84]. DNNs have dominated computer-
aided diagnosis by offering a generic approach to image fea-
ture extraction. They have also proved effective in the detec-
tion of pathologies based on optical biomarkers [85]. New
avenues to the identification of such biomarkers open with
hyper-spectral/multi-spectral image analysis, which enables
rapid clinical assessment of pathologies (figure 10) [86].

Current and future challenges

A major challenge for the development of trustworthy in vivo
measurement systems based on image processing is the val-
idation of the performed measurements. Since such measure-
ments are performed within living organisms, it is difficult to

Figure 10. Architectural outline of a contemporary image-based
measurement system.

establish a gold standard for accuracy and uncertainty estim-
ation. This challenge becomes even greater considering the
elasticity, the deformability, and the motility of the living
tissues.

Methods based on ‘black box’ approaches that learn from
data, such as DNNs, have dominated image processing. DNNs
are recognized for their high learning capacity; however, they
usually require large volumes of training data to provide suf-
ficient generalization. One of the largest obstacles today for
the translation of the respective research to clinical practice,
is the limited data availability, which originates: (a) from the
vague and inflexible ethico-legal data sharing frameworks;
and (b) from the need for image annotations by medical
experts, which is usually a time-consuming and costly pro-
cess. Another obstacle is that the ‘black box’ approaches are
not explainable, in the sense that the clinicians cannot under-
stand the reasons for the inferences of a ML system. Efforts
dealing with this challenging issue are still limited [87].

The accuracy of image-based in vivo measurements
depends on image quality. Restrictions with respect to image
resolution are usually imposed by the small size of the image
sensors satisfying the miniaturization requirements of the
endoscopes, and the small energy consumption of battery-
based solutions, e.g. wireless capsule endoscopes. Image
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quality can be significantly affected by noise artefacts, which
are often induced by the image communication channels and
lossy image compression algorithms, used to reduce the band-
width and storage requirements. Body fluids or other content,
e.g. mucus or debris, that may randomly interfere with the con-
tent of interest in the camera field of view can also be con-
sidered as noise affecting the quality of the measurements.
However, coping with such noise, is a challenge that usually
requires a different image processing approach in different
medical imaging modalities.

Another challenge that is rarely addressed is the capacity
of image-based measurement methods to provide coherent
and consistent results on different images, acquired from the
same or different imaging systems, e.g. to obtain comparable
measurements from consecutive endoscopic video frames,
or from the measurement of the same target using different
endoscopes.

The majority of the current endoscopic image-based meas-
urement methods have been proposed mainly in the context of
gastrointestinal endoscopy [85], whereas fewer have been pro-
posed in other contexts, such as laparoscopy [88] and colpo-
scopy [89]. Challenging perspectives arise with respect to the
application, adaptation, and validation of the current methods
to other optical endoscopic imaging contexts and modalities.

Advances in science and technology to meet
challenges

A common approach to the validation of in vivomeasurements
is ex vivo or in vitro experimentation; however, usually it is
costly, and it requires mechanical engineering skills to develop
the experimental setup. In silicomodelling and simulation can
provide a sufficiently realistic solution for the implementation
of digital twins of the measurement systems. Such a solution
can combine different models, e.g. multiphysics, appearance,
and device models, it can be applied for automated simula-
tions on virtual patients, considering the material properties
and the motility of the living tissues. Furthermore, it can com-
plement the development ex vivo experimental setups via 3D
printing. In the same spirit, realistic synthetic medical images
with ground truth annotations can be generated to augment the
training of DNN-based image processing methods (figure 11)
[90–92]. However, the use of synthetic training data is only
a compromise, which could be fundamentally solved by the
adoption of a standardized digital image annotation and report-
ing framework by hospitals, and a research-friendly privacy
preserving medical data sharing framework.

From a methodological perspective, the requirements of
DNN-based image processing methods for annotated data, can
be limited by investing more research effort on less super-
vised and unsupervised learning methods. For example, semi-
supervised methods can be trained with both annotated and
non-annotated data, weakly supervisedmethods can be trained
with less informative annotations, and unsupervised methods
can be supported by domain knowledge instead of training
data. In this light, the detection and quantification of optical

Figure 11. (a) Synthetic endoscopic images of the colon created
from computed tomography (CT) images using cinematic rendering.
(b) Respective ground truth depth maps. Reproduced from [90].
© IOP Publishing Ltd. All rights reserved.

biomarkers could also be based on outlier detection methods,
e.g. one-class classification systems, since the training of such
methods can be based on normal samples.

Research directions towards image quality enhancement,
include the development of improved super-resolution meth-
ods that may be able to offer even sub-pixel accuracy in
measurement applications, less lossy or lossless compres-
sion algorithms, and noise reduction methods. The devel-
opment of more robust image calibration, image matching
and registration methods, can contribute to the improvement
of the consistency and coherence of the image-based meas-
urement results. To this end, illumination invariance and
patient-specific or intra-patient image normalization methods
are directions that require further investigation. An uncer-
tainty analysis involving different patients and optical imaging
devices, where possible, would contribute to a more essential
progress in this field.

Concluding remarks

Current advances on image processing and analysis indic-
ate the feasibility of accurate image-based contactless in vivo
measurements for minimally or even non-invasive optical ima-
ging systems. Several studies have demonstrated their advant-
ages over other methods based on special sensors or external
references; however, most these methods are still at a relat-
ively early research stage. Their translation to clinical prac-
tice requires efforts mainly towards enhancing their robust-
ness, in a data-efficient way, and testing their performance in
environments that enable a closer approximation of the real-
world in vivo conditions. Addressing the challenges identified
in this paper, will contribute to the evolution of next genera-
tion in vivo optical measurement systems that will be safer and
less discomforting for the patients, as well as more reliable and
efficient for the medical professionals.
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4.4. MRI: signal processing and simulation
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MRI is used in medicine for imaging, among others, ana-
tomy, function, perfusion, diffusion and tissue viability which
serve as a diagnostic tool, for risk assessment and for guid-
ing treatment. MRI is based on the response of the hydro-
gen nucleus to radio frequency (RF) pulses while the patient
lies inside a strong static magnetic field and its gradients. Dif-
ferent biophysical properties lead to image contrast used for
diagnosis. To obtain conventional quantitative tissue paramet-
ers, multiple images are acquired with different scan paramet-
ers that affect the quantity to be measured. The images are
then interrogated on a pixel-by-pixel basis to estimate the tis-
sue parameters, such as T1, T2, T2∗, diffusion coefficients,
and extracellular volume. Accuracy and precision issues in tis-
sue parameter mapping across MRI scanners have been docu-
mented. For example: pulse sequence, scan protocol, hardware
characteristics, reconstruction software and parameter estim-
ation methods may affect T1 and T2 mapping in cardiac MRI
[93].

Ideally, it would be desirable to use a simple pulse sequence
with a simple image reconstruction and parameter estimation
method that can quantify a large number of tissue parameters
on a variety of hardware platforms. In conventional MRI this
is not possible since signal localization and tissue parameter
estimation are separated into two distinct steps and treated
as two different problems. Unifying the spatial localization
and parameter estimation problems would potentially allow
for more flexibility in executing faster scans and estimating
more than one tissue parameters with less-than-ideal hardware
and a simpler pulse sequence.

MR physics simulators are essential for solving the large-
scale computational problem of a unified approach to sig-
nal localization and parameter estimation. To date, MR sim-
ulators are mostly used as research tools for pulse sequence
design, hardware in-silico testing and educational purposes.
Adding complexity to MR physics simulators to include hard-
ware imperfections will allow for their use as part of both
the image reconstruction chain and the parameter estimation
process.

Several MR simulation platforms have been described in
the literature. However, the increased complexity of realistic
MR experiments leads to unacceptable simulation times thus
hindering their applicability to clinical practice. Simplifica-
tions of the MRI physics models may have the potential to
reduce the simulation times, but these come at the cost of
reduced accuracy and generalizability. On the other hand,

cloud computing and advancements in graphical processing
unit (GPU) technology have led to the implementation of
advanced MR simulation platforms, which are able to execute
complexMRI simulations within reasonable times, whichmay
enable clinical applications [94].

Current and future challenges

AI and machine learning (ML) provide unprecedented oppor-
tunities for improving image-based diagnosis, prognosis, and
risk stratification. However, these algorithms require a large
amount of training data and preferably annotated datasets,
which may be expensive to produce. In order to overcome this
limitation, MRI simulations have been used to produce train-
ing datasets using realistic models of human anatomy [95].
This approach, which is an example of solving the forward
problem, is based on the solution of the Bloch equations which
yield the MRI signal that describes the evolution of the mag-
netization with a specific tissue model. The simulation pro-
tocol can incorporate various scanning parameters and recreate
artefacts, if needed. The production and incorporation of more
detailed anatomical models, such as statistical atlases that rep-
resent normal and pathological conditions, constitutes one of
the main challenges.

A current and future challenge in MRI is solving the
inverse problem, i.e. to estimate tissue parameters through-
out the imaging volume based only on the acquired sig-
nal. MRI physics simulators are essential for solving the
inverse problem since they provide a reference for compar-
ing the acquired signal in an effort to obtain accurate recon-
structions of quantitative multi-parametric maps. To this end,
magnetic resonance fingerprinting (MRF) uses a specialized
pulse sequence with pseudorandom pulse sequence paramet-
ers, such as RF flip angle and repetition times, in order to pro-
duce ‘fingerprints’ for each combination of tissue properties
[96]. A sophisticated MR simulator has been used with the
SQUAREMR framework to quantify T1 in cardiac MR using
existing clinical pulse sequences [97]. More recently, Mag-
netic Resonance Spin TomogrAphy in Time-domain (MR-
STAT) [98] was proposed, which considers the problem of
parameter map reconstruction as a large-scale nonlinear inver-
sion problem based on an MRI simulator, which can be
solved using optimization algorithms (figure 12). This enables
accurate tissue parameter estimation but requires long sim-
ulation times, on the order of hours for a single 2D brain
slice even when using high-performance computing (HPC)
clusters.

Simulation-based reconstruction algorithms have also the
potential to measure additional tissue properties. Recently, an
approach called MRF with exchange was proposed [99] to
quantify sub-voxel relaxation times in single scan and extra-
cellular volume, used as a marker of myocardial fibrosis. DL
and MR simulators can also be used in tandem to better estim-
ate tissue relaxation times [100].

The simulation-based reconstruction techniques have
shown promising results, however, the transition from research
to clinical practice remains challenging. Towards this goal
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Figure 12. Graphical overview of the MR-STAT reconstruction algorithm. The signal d(t) acquired by the scanner is compared with a
simulated signal produced using the same pulse sequence in an anatomical model with known tissue properties s(a, t). Optimization
algorithms are used to change these properties so as to minimize their difference (error) and thus to reconstruct the images with the correct
tissue characteristics.

both small-scale technical and large-scale clinical validations
must be considered.

Advances in science and technology to meet
challenges

The main barrier for applying simulation-based techniques in
clinical practice is the long computational times. Simulation-
based reconstruction techniques based on inverse problem
solution, such as MRF and MR-STAT, require fast and accur-
ate computation of the simulated MR signal. Towards this
goal, technological advances should aim to reduce simulation
times.

Hardware innovations, such as HPC and general-purpose
computing on GPU, enable the faster and parallel computa-
tion of the constantly growing complex models, allowing for
performance improvements of computationally intensive cal-
culations regarding tissue characterization. The integration of
newer technologies has shown to progressively decrease the
computational time.

Apart from raw computational power, which will always
be useful, the implementation of novel algorithms can also
help propel thesemethods into clinical practice. DL techniques
have demonstrated success in solving medical imaging prob-
lems. As described by Liu et al, recurrent NNs can be used as
an alternative to the Bloch physics simulation for computing
large-scale MR signals and derivatives [101] and accelerate
computation.

However, an ever-increasing amount of data requires
increased computational power. In the future, quantum com-
puters will likely outperform classical computer architectures
and out stage them for applications requiring HPC. However,
the design of quantum circuits differs significantly from that of
a classical computer and thus the implementation of the NNs
may require more qubits or lead to inconsistencies. Jiang et al
proposed the QuantumFlow framework which is based on the

co-design of NNs and quantum circuits [102] and could be
used for processing high resolution MR images.

Smarter algorithms are needed for estimating the deriv-
atives of functions that are used for optimization purposes.
This will help reduce the overall computational load. Smarter
algorithms are also needed for simulating MRI physics. Such
an example has been demonstrated by prolonging the smallest
simulation time interval [103]. In the end, smarter algorithms
may allow for large speedup simulation time.

Concluding remarks

Current MRI scanners are characterized by their increased
cost and the fact that they are difficult to use, since a special-
ized technician with medical physics background is required
to apply any modification related to the scanning protocol.
Next generation systems must overcome these obstacles.
Simulation-based image reconstruction approaches in MRI
have demonstrated their early usefulness on tissue parameter
estimation with high accuracy. The common ground challenge
in this field is the need for reducing simulation times since the
simulator is part of the inner loop of the algorithms. In addi-
tion, this approach can allow the reconstruction of numerous
images simultaneously, such as diffusion, perfusion, or flow
images, without the need of specialized pulse sequence to be
applied. Advances in technological infrastructure and com-
puter science and in particular GPU technology may lead to
simulated experiments reflecting the full complexity of MR
physics to increase accuracy of quantitative parameters. Feas-
ibility studies and extensive clinical tests must be performed
in order to ensure the usefulness of these methods. The stand-
ardization of the simulation-based reconstruction algorithms
should be considered in terms of their application in clinical
practice [104]. Finally, hardware advances can lead to reduc-
tion of the costs and thus the more extensive adoption of MRI
in the clinical pathway.
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Ultrasound imaging has been rapidly developed and well-
established since the 1950s. The non-invasion, portability,
and low costs make it one of the most commonly used ima-
ging techniques in clinical and research settings. In soft bio
tissue imaging, for like liver tissue examination and pren-
atal diagnosis, ultrasound combines deep penetrability and
good spatial resolution. The high temporal resolution and
non-ionizing-radiation also make the real-time ultrasound effi-
cient in guiding interventional therapy.

In the last two decades, the significant development of ultra-
sound imaging mainly benefits from the advances in mech-
anics, electronics, and material science. The piezoelectric
micromachined ultrasound transducers [105] and capacitive
micromachined ultrasonic transducers have allowed the man-
ufacturing of miniaturized and high-density transducer arrays,
which significantly enriched the observable information of
sound waves and extended the application scenarios of ultra-
sound imaging. The ultrasound tomography has dramatically
benefited from the dense transducer array, integrated reflec-
tion, sound speed, and attenuation modalities in one imaging
system for depicting breast parenchyma and fibro-adenoma
in detail [106]. The ultrafast ultrasound, powered by plane-
wave beamforming, has also ushered in a new ultrasound ima-
ging era. Supported by ultrafast ultrasound, ultrasound localiz-
ation microscopy collected hundreds of thousands of B-mode
(brightness) images enhanced by microbubbles agent in a few
minutes and achieved super-resolution ultrasonic angiography
(micron-level spatial resolution and centimetre-level penetrab-
ility) for Vivo rat brain [107], as shown in figure 13. Continu-
ous volumetric imaging (real-time 3D echography), energized
by ultrafast ultrasound and high-density transducer array, can
collect 40–50 volumetric images within a single heartbeat
cycle been considered as a promising tool for visualization and
quantitative assessment of cardiac chamber and valves [108].

The hybrid imaging modalities also attracted much atten-
tion in the last decade. Magnetoacoustics imaging, utilizing
high-frequency electromagnet wave to excite ultrasonic wave
in soft tissues, can get access to high-resolution electrical
impedance maps of biomedical tissue [109]. Photoacoustic
imaging [110] integrates the advantages of deep penetration
from ultrasonic imaging and good resolution from optical
imaging and attracted much attention in biomedical imaging
society. Researchers also actively fuse ultrasound imaging
with other imagingmodalities, e.g. electrical impedance tomo-
graphy [111], MRI [112], and OCT [113], to enrich accessible
information for clinical diagnosing and planning.

Current and future challenges

When the sound waves travel in a tissue, the local sound speed
at compressional phases is higher than that at rarefactional
phases. Although tissue-harmonic imaging has proved that
conventional ultrasound imaging can benefit from this kind
of nonlinearity propagation phenomenon, exploring nonlin-
ear acoustics in advanced ultrasound imaging modalities, e.g.
contrast-enhanced ultrasonography and real-time 3D echo-
graphy, is still an open question.

Unlike traditional B-mode imaging, ultrasound computa-
tional tomography aims to take into account the full effects
of refraction, diffraction, and attenuation of sound waves.
However, these effects are usually complicated and hard
to decoupled, making the image reconstruction problems of
ultrasound computational tomography nonlinear and ill-posed.
The reconstruction algorithms, e.g. linear back projection and
simultaneous algebraic reconstruction technique, following
the basic straight-ray model, are computationally efficient but
resulted in crude results. Following some approximation of
the Helmholtz wave equation, the advanced reconstruction
algorithms produced better results but are computationally
intensive. Balancing the speed and accuracy of ultrasound
computational tomography is quite challenging.

The plane-wave beamforming is one of the crucial tech-
niques for ultrafast ultrasound imaging. The plane-wave ultra-
sound transmits in a broad region of interest. It can signi-
ficantly reduce the number of wave projections for image
reconstruction, resulting in ultrafast imaging speed and chal-
lenges to the beamforming and reconstruction algorithms.
Although some recently published plane-wave beamforming
algorithms, e.g. the minimum variance beamforming [114]
and short-lag spatial coherence beamforming [115], achieved
considerable accuracy, the high computational complexity of
these algorithms hampered their real-time applications. Newly
developed DL-based beamforming [116] is just beginning.
More researches are needed to develop advanced beamform-
ing algorithms.

Furthermore, during the clinical applications of advanced
ultrasound imaging techniques, the interpretation of ultra-
sound images is one of the barrier factors that cannot be
ignored. The credible interpretations rely on the clinical spe-
cialist with a certain level of expertise. DL-based methods
may achieve faster, easier, and high-quality image interpret-
ation. However, the interpretability and generalization of the
learning-based methods is still an open question.

Advances in science and technology to meet
challenges

Following Moore’s law, computational power has been sig-
nificantly improved in the last two decades. The flourish-
ing development of HPC techniques, coupled with parallel
multi-core compute clusters, cloud computing, edge comput-
ing, and large-memory GPU, is removing the barriers between
advanced ultrasound imaging and real-time applications.
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Figure 13. Ultrafast detection of individual sources from (a) low-quality B-mode image (averaged stack of 250 beamformed images),
through a thinned skull. (b) Four representative frames were separated by 44 ms (t1–t4) and filtered to remove the slow-moving tissue
signal. (c) Three independent microbubbles blinking over several milliseconds from (b) were followed in the region of interest within the
cortex. The echo of each bubble event (high-contrast pixels) was deconvolved with the PSF to obtain the exact position of the centroid (red
crosses). Superposition of thousands of occurrences yields a highly resolved localization map for this region. (d) Dynamic tracking of
bubbles separates vessels in two populations with opposite blood flow direction. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Nature. [107] © 2015.

Figure 14. (a) Three-dimensional array of transducers used for data generation and subsequent inversion. Each transducer acts as both a
source and a receiver. (b) A snapshot in time of the wavefield generated by a source transducer located at the position indicated by the small
yellow circle, computed via numerical solution of the 3D acoustic wave equation. The wavefield is dominated by strong reflections from the
skull, and by intracranial transmitted energy travelling across the brain. (c) Prototype helmet containing 1024 transducers held rigidly in a
3D-printed framework. (d) Close up of sensor connections in the prototype. (e), (h), (k) Transverse, (f), (i), (l) sagittal, and (g), (j), (m)
coronal sections of the images. (e)–(g) Sections from true models. (h)–(j) Sections from starting models. (k)–(m) Sections from recovered
model. Reproduced from [117]. CC BY 4.0.
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Full-wave inversion, which has been successfully applied
in geophysics, recently has shown its potentials in biomedical
imaging [117]. Unlike the traditional ray model or approx-
imated wave model, the full-wave inversion method takes
account of complex wave propagation in heterogeneous media
and multiple scattering of the wave-field. As a result, the
total interactions between sound waves and tissues, includ-
ing refraction, diffraction, and attenuation, are automatically
considered in its solution, resulting in a significant spatial res-
olution improvement. Although the state-of-the-art full-wave
inversion requires several minutes for calculating one high-
resolution 3D image, as shown in figure 14, its computational
cost is hopefully to be significantly reduced by using HPC
techniques.

As a new paradigm of HPC, the DL technique provided
a convenient solution for learning nonlinear relationships
between two data domains. The solution is so efficient that DL
technology has revolutionized several research fields, includ-
ing computer vision, natural language processing, and compu-
tational biology. In the last few years, the DL technique also
presented promising end-to-end solutions for ultrasound ima-
ging, which could be more robust and flexible than the clas-
sical signal or image processing methods. The impacts of DL
on the ultrasound imaging involves several aspects, including
clutter suppression, beamforming and reconstruction, Doppler
signal processing, super-sensitive microbubble localization,

acceleration of image reconstruction, and intelligent interpret-
ation of ultrasound images. After being well trained, the DL
methods provide efficient models and algorithms beyond con-
ventional imaging and processing techniques, making fast and
accurate ultrasound imaging possible.

Concluding remarks

Ultrasound has played an essential role in biomedical imaging
in both clinical and research settings. Advents of high-density
transducer arrays and ultrafast ultrasound techniques have sig-
nificantly enriched the quantity and quality of the information
accessible for ultrasound imaging. That also brought new chal-
lenges to the research of single and image processing methods
in ultrasound imaging society. The advent of powerful par-
allel computing, full-wave inversion, and DL techniques are
broking the bottlenecks of advanced ultrasound imaging tech-
niques. The rapid progress of ultrasound imaging is coming in
the near future.
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Biometric recognition is used as alternative to more traditional
authentication procedures like tokens or passwords. Unlike the
latter two, which base authentication on ‘something you have’
or on ‘something you know’, biometrics conduct authentica-
tion on ‘something you are’. Contrasting to tokens or pass-
words, biometric identifiers cannot be lost, stolen, forgotten,
or passed-on to non-legitimate users. Also, biometric authen-
tication is much more difficult to deceive or misuse, as bio-
metric identifiers are often nearly impossible to duplicate or
imitate. Even though there have been attempts to forge bio-
metric traits or to circumvent and/or deceive biometric sensors,
also various ways to counteract such fraudulent attacks have
been proposed and successfully deployed. Biometric traits can
be physiological, which depend on the physical properties of
a person (e.g. face, fingerprint, iris, various vascular biomet-
rics, ear, palmprint, EEG, and ECG), or behavioural, which
can be measured during a persons’ interaction with the envir-
onment (e.g. dynamic signatures, keystroke, gait). Speech is
often considered as behavioural, but also carries physiological
properties like voice pitch.

The biometric authentication process is a typical pattern
recognition procedure and consists classically of several dis-
tinct stages: first the data are acquired by the biometric sensor
(satisfying certain quality constraints) resulting in the biomet-
ric sample, and subsequently, this sample is pre-processed
to optimally enable the subsequent processing stages (pre-
processing may include denoising, contrast enhancement, seg-
mentation, and alignment). The next stage comprises the
extraction of biometric features from the sample, resulting
in the biometric template. The next stage compares the bio-
metric template acquired during authentication to the tem-
plate stored in the database which was generated during
the enrolment process. The determined degree of similarity
between the templates is used in the final decision process
to decide if sample verification or identification has been
successful.

Classical biometric recognition is based on hand-crafted
or model-based features, derived from the sample data using
experts’ domain knowledge gained over decades. Contrasting
to classical computer vision with its general purpose feature
descriptors like local binary patterns or key points along with
their descriptors (e.g. SIFT, SURF, HOG, etc), biometric fea-
tures are often based on intrinsic, trait-specific discriminating
properties like face geometry, fingerprint minutiae, or gait pat-
terns. However, with the revolution introducing data-driven
and learning-based signal processing, also biometric techno-
logy has seen the application of DL [118–123], still with some
years delay.

Current and future challenges

While biometric authentication is a generic pattern recognition
process, biometric sample data is by far not generic. Many bio-
metric traits’ sample types have quite distinct properties, often
significantly different as compared to classical data as pro-
cessed and used in traditional computer vision applications.
This poses a particular challenge for learning-based biometric
systems: where do we get our training from? Especially, where
to get these data while still respecting privacy-protecting regu-
lations like the European Union GDPR ? In fact, this challenge
has impacted significantly the waywe perceive biometric tech-
nology today: while face recognition was among the mediocre
biometric traits in terms of accuracy ten years ago, nowadays
it is among the top performers, if not the best. The reason is
found in the widespread availability of facial data on-line, in
social media platforms of various kinds. It is not a coincid-
ence that companies running social media platforms having
access to their users’ facial data are able to come up with the
most accurate face recognition systems on themarket—simply
put, they have access to the largest volume of training data to
tailor and tune their systems. The advance caused by using DL
technology seen in other biometric traits is by far less convin-
cing: often, traditional feature extraction-based technology is
able to compete or is still even superior. The lack of sufficient
training data and the distinct properties of biometric samples
prevent the employment of deep architectures (as required for
high accuracies in large populations) and the effective applic-
ation of TL.

Nevertheless, DL based approaches have been proposed to
a large extent for biometric systems. Seen from a distance, sub-
ject verification or identification is basically a classification
problem. Thus, training a DL based classifier assigning each
subject to a dedicated class seems to be a natural choice for
biometric recognition. However, there are severe limitations—
typically, in biometric systems, new users get enrolled (or
eventually deleted), and when doing this, the system has to
cope with a dynamically changing number of classes, which
limits its applicability. Further, a system with a large number
of classes (i.e. subjects) requires a very deep architecture and
a significant number of training samples per class—which is
often not available. The solution is to train networks to recog-
nise sample similarity/dissimilarity in a Siamese configura-
tion, so that there is no issue in case of unseen subjects.

To overcome the limitations caused by the particular nature
of certain biometric sample types (which limits the effective-
ness of using networks pre-trained on classical vision datasets)
is to employ a combination of TL and fine tuning. Available
biometric training data are used to adjust a networks’ paramet-
ers trained on different types of visual data.

Overall, there is not a single strategy how to apply DL to
biometrics. So far, we have discussed the case of using DL
as an end-to-end system, thus replacing all processing stages.
Contrasting to this, single stages only might be covered by
DL technology, while the entire biometric processing chain
remains unaltered. For example, this applies to iris recognition
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in case we apply DL-based semantic segmentation to extract
iris texture from samples [124], apply semantic segmentation
to extract binary vascular features from finger vein samples
[125], or use specifically trained networks to detect fingerprint
minutiae [126] or others to conduct latent fingerprint segment-
ation [127], respectively.

Advances in science and technology to meet
challenges

The unavailability of sufficiently extensive biometric sample
training data calls for the development of techniques to address
this severe limitation. For example, when combining sample
data from different sensor sources, it is by far easier to result in
sufficiently sized training data. However, often the sensors are
quite different in nature resulting in distinct sample character-
istics. This calls for the development and application of multi-
sensor and cross-sensor training techniques, involving domain
adaptation techniques to compensate for differences also in
feature space. Another approach to handle the difficulty as
imposed by privacy-protective measures is to synthesize bio-
metric sample data. We have seen techniques being developed
that actually generate synthetic samples ‘from scratch’ obey-
ing natural sample properties, or alternatively, to disentangle
identity- and privacy-related information in existing biometric
samples such these can be used in GDPR compliant manner.

Another issue with respect to training data has been identi-
fied and dealt with recently—it has been discovered that unbal-
anced training data leads to bias in the recognition process, in
particular revealing ethnical and gender-related bias. There-

fore, it has turned out that balanced design and fair provi-
sioning of training data are key elements to provide bias-free
biometric recognition systems—a fact that again obviously
hampers the straightforward establishment of large-scale bio-
metric training data.

Finally, mobile devices get increasingly used as distributed
biometric sensor infrastructure. Consequently, also processing
of biometric data on these devices becomes imperative, which
is particularly challenging in case of DL-based approaches.
Thus, advances in this direction are particularly important for
future mobile biometric systems.

Concluding remarks

While DL techniques prevail in many vision areas, their suc-
cess in biometric recognition system is still impeded by a
couple of factors as discussed. However, in case these chal-
lenges can be addressed properly, there is hardly doubt that
also in this field, DL-based techniques will improve on the
state of the art.

The possible usage of DL in biometrics is however not
limited to recognition as such. Other popular and promising
application areas include presentation attack detection, bio-
metric sensor authentication, learning-based template protec-
tion, and many more.
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5. Remote sensing, environmental, and industrial
applications

5.1. Signal processing for global navigation
satellite systems (GNSS)
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Status

With the progress and modernisation of GNSS including GPS,
Galileo, GLONASS, BDS and regional satellite navigation
systems such as QZSS and NavIC, now multi-constellation
and multi-frequency observations are stimulating innovations
[128]. As the most important recent advances, we flag the
change from frequency to code division multiple access in
GLONASS and the introduction of the third frequency band
(L5) in GPS in the latest generation of the satellites. The recent
years also witness a great advancement in populating the
orbital planes of Galileo and BDS constellations. Therefore,
nowadays both systems have become operational to provide
positioning, navigation and timing services on a global scale.

This progress induced the scientific community to pay
a special attention to the integration of multi-constellation
signals into a routine GNSS processing. Also novel posi-
tioning models that addressed such integration subsequently
emerged. One noticeable recent advance is related to themulti-
constellation and multi-frequency precise point positioning
with integer ambiguity resolution, which now achieves even
a millimetre-level precision at a single receiver [129]. This
development would not be possible without significant pro-
gress in the precision of GNSS products such as satellite
orbits and clocks, and the modelling of the satellite biases
that allow isolating carrier-phase ambiguities as integer values
[130, 131].

The limitations of low-cost receivers and smartphones have
spurred a tremendous effort made by the scientific community
to address them. Based on the availability of smartphone-
derived GNSS measurements in May 2016, a number of stud-
ies on the signal quality and algorithm development aiming at
enhancing the positioning precision of mass-market devices
have been carried out, which has become recently one of the
most frequently investigated topics in GNSS [132]. A com-
mon recognition of a poor positioning performance of smart-
phones and low-cost receivers may soon not hold true, since
such receivers are on the way of reaching the performance
close to that of survey-grade GNSS receivers.

With these advancements, GNSS is now considered as a
fully mature measurement technique which is successfully
employed in a number of geoscience applications. Thanks to
high altitude of GNSS orbits, satellite navigation signals are
comprehensively employed in the water vapour and total elec-
tron content sounding, thus contributing to the space weather,
meteorology and climate monitoring also coupled with tomo-
graphic methods [133]. GNSS reflectometry is a reliable

source of information of the geophysical properties of land,
water and ice surfaces contributing to the climate research and
geohazard monitoring [134].

Current and future challenges

Notwithstanding a tremendous progress of low-cost GNSS
devices and smartphones, we still recognize a number of lim-
itations that deter their application in the most demanding
areas of science and technology. The smartphoneGNSS anten-
nas suffer from a low and inhomogeneous pattern of gain,
high susceptibility to multipath, lack of phase centre models,
and a linear polarization that does not prevent the acquisition
of the non-line-of-sight left-hand circularly polarized signals
[132]. Moreover, users have to handle highly noisy smart-
phone observations, the presence of unaligned chipset initial
phase biases, and other biases that destroy the integer and time-
constant properties of carrier-phase ambiguities.

Moreover, a variety of unknown observational biases
greatly challenge GNSS data processing since they depend
not only on the satellite and receiver hardware, but also on
the signal frequencies and code/phase observables. The num-
ber of such biases can easily amount to the order of hundreds
in a multi-GNSS multi-frequency network analysis, but can
hardly be estimated along with other parameters of interest
(e.g. positions, clocks, atmosphere, etc) due to rank deficiency.
In such cases, these biases will be absorbed by the clock,
ionosphere and ambiguity parameters, with the consequence
of complicating the time datum definition, the total electron
content retrieval, and integer ambiguity resolution. The diffi-
cult part in resolving these biases is to separate them from the
parameters of interest without harming, but rather enhancing
high-precision GNSS.

In addition, the target of an establishment of centimetre-
level positioning accuracy within seconds over wide areas has
been constantly haunting the GNSS community over the past
decades. One of the major obstacles is that GNSS carrier-
phase ambiguities cannot be identified as integers within a
short period of observations. Multi-GNSS multi-frequency
data bring a promising opportunity to form longer wavelength
carrier-phase observables of which the ambiguities can be
resolved nearly instantly. However, frequency-specific obser-
vation errors are adversely amplified therein by nearly a hun-
dred times to a few decimetres, which can hardly allow for the
centimetre-level positioning. One such typical error is themul-
tipath effects which are the most difficult to tackle since they
are purely environment dependent and prevent the use of any
feasible models. Therefore, one of the most critical challenges
to speeding up centimetre-level positioning is to minimise the
multipath effects within multi-frequency GNSS data.

Advances in science and technology to meet
challenges

While the GNSS satellite technology is developing disrupt-
ively, emerging receiver/antenna techniques can also be one
of the important routes to resolving the challenges above. The
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baseband processing to track pseudorange and carrier-phase
within GNSS chipsets, which governs how the receiver biases
are induced, should be reconciled among a variety of manufac-
turers. One common recognition among the GNSS community
is that such receiver biases should be identical with respect to
the satellites emitting the same signals. However, this is not
true for GPS/Galileo/BDS satellites, since the receivers’ pseu-
dorange biases originate in the chip-shape distortions which
are subject to the front-end bandwidths and the correlator
designs of receivers. Hence, advanced GNSS baseband pro-
cessing technologies agreed on by receiver manufacturers are
required to minimize such distortions on the pseudo-random
code tracking [135].

On the other hand, the multipath effects, especially those
jeopardizing GNSS pseudorange, can be potentially reduced
by advanced receiver/antenna architecture designs. One can
introduce the inertial information of mobile receivers into their
baseband chipsets, i.e. the deeply coupled GNSS receivers and
inertial measurement units. In this case, a long coherent integ-
ration time can be applied to the baseband with the goal of
separating the direct and multipath signals in the frequency
domain. This idea is predicated on the fact that the direct and
multipath signals usually have different Doppler frequencies,
which is associated with the different line-of-sight vectors
from the satellites to the receiver and from the reflectors to the
receiver [136]. Furthermore, an advanced antenna designed
with an excellent cutoff pattern can augment the receivers’
baseband to better reduce multipath effects. Such a cutoff pat-
tern means that the antenna gain should stay steady over high

satellite elevations, but drop sharply when close to local hori-
zons. Though classic choke-ring antennas with clumpy ground
planes achieve the steady gain pattern for high elevation satel-
lites, their gain at low elevations is not as good as (about
5–10 dB worse) those ensured by the emerging light and port-
able helix antennas [137]. Such helix antenna designs and the
like could be one of the most achievable directions for the
GNSS community to head for in the near future.

Concluding remarks

In this contribution we have reviewed the current and forth-
coming issues in GNSS signal processing. We believe that
there are no fundamental barriers that would inhibit a steady
improvement in the performance of GNSS positioning and
applications. However, the pace of such progress depends
on the efficient handling of biases and other error sources
in multi-constellation and multi-frequency GNSS signal pro-
cessing, the quality of satellite products, the magnitude of
the research efforts in the processing algorithm development,
emerging receiver and antenna technical progress, and fusion
with other sensing modalities.
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5.2. Proximal hyperspectral imaging for in-situ
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Status

To meet the food needs of the fast-growing world’s popula-
tion, the ability to detect early onsets of plant diseases, predict
an optimum harvest time, estimate yield, ensure biosafety and
sustainability has become of paramount importance in modern
farming.

Plant phenotyping is a term given to the process of meas-
uring a set of physical, biological, and biochemical traits
in a plant. With sensors and measurement devices being a
ubiquitous part of modern life, their application to in-situ
plant monitoring and phenotyping combined with the incor-
poration of information processing is gaining momentum.
The associated multidisciplinary field involving engineering,
physics, computer science, biology and chemistry, amongst
others, is commonly defined as phenomics. Among the
application areas of phenomics is the measurement and estim-
ation of the precise nutrient and/or pesticide requirements
enabling the evidence-driven trade-off analysis between crop
yield and negative environmental impacts. Another import-
ant example is the early detection of crop diseases. It facil-
itates loss-preventive measures thus improving the production
yield.

Digital phenotyping activities involve various forms of
imaging. One of the most promising of them is hyper-
spectral imaging, which has been brought from remote to
proximal sensing applications allowing simultaneous meas-
urement of structural and spectral responses. Early stud-
ies in the field (e.g. [138]) analysed primary character-
istics of plants (such as growth, resistance, architecture,
physiology, yield, tolerance, etc). Whole plant specimens and
their specific components (e.g. roots, leaves, shoots, fruits,
seeds, bark, etc) were examined. Recent studies showed
that hyperspectral imaging data could be linked to plant
chemical composition [139, 140]. It allowed correlating the
non-destructive (NDT) imaging assessment with the tradi-
tional destructive chemical analytical methods, providing
precise measurement of specific chemical compounds. The
studies particularly focused on phytochemical compounds
related to the crop, i.e. anthocyanin [139], carotenoid, and
chlorophyll [140].

The progress in the field has enabled linking the proximal
hyperspectral imaging with not only plant phenotypes but also
with their genotypes [141]. In turn, this opens up the perspect-
ive of identifying genetic strains of the crop with desirable
characteristics (e.g. drought tolerance) so to support reliable
food production [142].

Current and future challenges

Traditional challenges of hyperspectral imaging have been
associated with acquiring sufficient image data of good qual-
ity (i.e. factors such as consistency in imaging setups, illu-
mination, image normalisation, optical distortions, nonlin-
ear sensing sensitivity, etc, contributing to high variations of
the plants’ spectral response measurements). Besides, some
applications demand short acquisition time, high speed of data
processing, and image analysis. Current techniques are often
not fast or accurate enough [143] while also associated with a
high equipment cost.

Some new problems have started to become a bottleneck
slowing the progress of hyperspectral imaging for in-situ
plants monitoring. First of all, it is a lack of commonly accep-
ted protocols for hyperspectral imaging setup and calibration
that could ensure repeatable measurements and standardisa-
tion in data set structures as well as enablemeaningful compar-
ison across experiments. Secondly, image analysis techniques
are yet to be urgently advanced to new heights. For instance,
image samples of biological specimens are nonhomogeneous
even after discounting illumination and imaging noise. This
is due to the different spectral characteristics of the speci-
men parts. Besides, pixel counts of plant parts that are not of
interest could overwhelm the pixel counts of the areas of focus
of analysis. Efficient annotation and correlation of the meas-
ured responses to the intended phenotypes require effective
techniques that should be able to identify and separate spectral
and/or spatial signatures from surrounding noise.

Challenges in relevant statistical analysis methods are also
quite serious. For example, an apparently flat surface of a
hyperspectral image represents the measurement of a spe-
cimen at varying depths/thickness depending on the pen-
etration of electromagnetic waves of different wavelengths.
The confounding effect between thickness (which is often
unknown) and the spectral responses poses a problem to stand-
ard ML algorithms. Besides, traditional statistical methods do
not scale well with large hyperspectral imaging datasets thus
requiring particular ML and pattern recognition techniques.
Sample sizes are often too small when compared to the vari-
ations in crops. This is especially so for mapping of phenotype
and genotype [144], thus leading to poor reproducibility and
could negate the costs in acquiring, storing and analysing the
data.

Advances in science and technology to meet
challenges

A multitude of developments in science and technology is
needed to provide further progress towards addressing the
challenges of proximal hyperspectral imaging for in-situ
plants monitoring. The range of such advances is wide: from
the sensing and image acquisition platforms to image pro-
cessing and data analysis and then to specific applications of
the information. Several needed advances are outlined below.
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Figure 15. Application of proximal hyperspectral imaging to plants.

Advanced toolboxes to fuse multiple sensors aiming to per-
form complex data analysis are yet to come. Out of all the
sensor fusion categories, an efficient algorithm combining a
3D morphological model with hyperspectral images to per-
form the analysis is acutely lacking. This particular fusion
holds great potential to create automated inspection systems
with superhuman prediction performance. The creation of
the comprehensive toolbox is indeed a very challenging task
requiring a team of experts in an array of disciplines such as
plant morphology and physiology, machine vision and ima-
ging, sensor fusion, point cloud modelling, ML, and HPC
among others.

Statistical ML and pattern recognition have been advancing
to address numerous challenges in the niche area of plant phen-
otyping and hyperspectral images analysis. At the same time,
the development of a library of efficient specialised ML and
machine vision algorithms to facilitate high-level phenotype
analysis would be a very useful common platform of a high
value.

Hyperspectral imaging systems are getting more afford-
able, compact, and resilient. Unfortunately, sometimes the
cost improvements are achieved by sacrificing some technical
performance characteristics and functions in specific classes of
niche applications. In this context, vendors’ ability to rapidly
customise their produced systems to address specific needs
of ever-narrowing niche applications could become a key-
important factor to encourage the adoption of proximal hyper-
spectral technology in agriculture and other relevant fields at
an industrial scale.

Robust data management protocols and imaging setups
conforming to formulated and adopted good practices would
be critical to guarantee the quality of data feeding into the
analysis. Reliable data and well-managed databases are pre-
requisite to enable the use of high-performance data-hungry
algorithms associated with image-based plant phenotyping, its
applications, and relevant associated areas [145].

Concluding remarks

Hyperspectral imaging combined with advanced data analyt-
ics (figure 15) has been identified and well-accepted as one
of the enabling technologies of the Fourth Industrial Revolu-
tion addressing the urgent need for accelerating the global food
systems transformation. Proximal hyperspectral imaging for
in-situ plants monitoring is fast coming to the age of matur-
ity, and it has a great potential to become an important part
of the quest. At the same time, a significant number of chal-
lenging research and development problems associated with
algorithms, techniques, and tools for sensing, acquisition, pro-
cessing, analysis, interpretation, etc, as well as the application
of the results are still waited to be addressed [146]. In this
section, some of them have been outlined based on the authors’
experience gained in the field (e.g. [147]).
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5.3. Through-wall sensing, signal and image
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Through-the-wall (TTW) radar imaging is truly a ‘mul-
tifaceted technology’, requiring a wide breadth of integ-
rated and multidisciplinary knowledge across diverse fields
of engineering, such as antennas and array design, sig-
nal processing, waveform design, electromagnetic scatter-
ing and propagation modelling, and imaging algorithms
[148].

Surprisingly, the earliest report of the use of radar sig-
nals for through-wall propagation appeared in an advertise-
ment [149]. The first open research papers and surveys on the
topic of TTW radar appeared around the late 1980s, attracted
by the potential advantages of radar-based through-wall ima-
ging in comparison to alternative technologies based on acous-
tic and x-ray systems. Radio-frequency electromagnetic waves
are attractive since they are able to propagate through common
wall construction materials, such as plaster, bricks, concrete,
and thick and complex multi-layered structures such as cinder
blocks [150].

Although TTW radar systems employing a plurality of
waveforms and algorithms have been proposed and validated
[148], it is difficult to classify the many different solutions
within a unified framework. Performance metrics may include
spatial resolution in range and azimuth directions, maximum
detection range, stand-off distance, processing time, dynamic
range, and practical aspects such as power usage, weight, and
size. Alternatively, the amount of information for situational
awareness can be used [151], starting from 0D systems indicat-
ing human presence and type of human activity, up to 1D, 2D,
and 3D systems capable of providing the distance of the TTW
targets, their locations in range and angle, and even their com-
prehensive volumetric signature, respectively. For example,
figure 16 shows 3D images of a human target located behind
a 60 cm thick reinforced concrete wall wherein the posture of
the person, i.e. standing or laying, can be inferred from the 3D
images [152].

Despite significant advances, TTW imaging is still an
extremely important field for applications in the secur-
ity and safety domains (e.g. hostage situations, firefighter
intervention, building evacuation, earthquake survivor
detection, concealed weapon detection) with several
open research problems for addressal. Some challenging
problems confounding target detection and characteriz-
ation include non-uniformity of the barrier structure in
terms of wall shape and materials, presence of signific-
ant indoor clutter, targets of smaller size, and effects of
multipath.

Figure 16. TTW measurement scenario and example of results at
MS3 Radar Laboratory, TU Delft showing the 3D image of person
in standing position (top) and in laying position (bottom) [152]. The
front face of the wall is the XZ-plane and the radar is positioned
towards the left side. Reproduced with permission from [152].
(c) EuMA.

Current and future challenges

The wall’s effects on the two-way radar propagation path
inhibits the formation of clean 2D/3D images. Compensation
for wall effects requires knowledge of the dielectric properties
of its constituent materials and its internal structure and thick-
ness, which are generally unknown. Approximations based
on average values across different construction material types
introduce errors in reconstructed image quality. Walls contain-
ing internal cavities or metallic rebars create resonant effects
extending the wall’s signature in time, possibly interfering
with those of targets located near the back side of the wall.
Another challenge is the mitigation of ghost targets created by
multipath reflections from the back and side walls, ceiling, and
other obstacles in the indoor environment resulting in artefacts
and distortion in the reconstructed images.

The two-way signal attenuation through the wall affects the
radar’s power link budget and imposes dynamic range con-
straints for detecting small targets located at far ranges [153].
Furthermore, the strong backscattered reflection at the air–wall
interface may saturate the radar receiver. Conventional wall
effect removal techniques include subspace projection, spatial
filtering, background subtraction, change detection, hardware
filtering, and time gating.
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Figure 17. Comparison of RCS of human and representative
furniture arrangements for vertical–vertical (VV) polarization (top)
and horizontal–horizontal (HH) polarization (bottom). © 2015
IEEE. Reprinted, with permission, from [154].

Indoor clutter, typically arising from furniture elements, is
another scourge in TTW radar systems causing high backs-
cattered signals compared to those from human targets [154].
High reflections occur from the large planar surfaces of
the clutter objects, particularly, the front, sides, and back.
Figure 17 shows that the radar cross section (RCS) of furniture
arrangements is generally 5 dB higher than that of the human
over the 1–5 GHz frequency band. This interferes with and
degrades the radar system’s ability to accurately detect, locate,
and track desired targets. Waveform design exploiting spec-
tral characteristics as features are being investigated for target
classification [155].

Achieving high resolution in TTW radar systems is another
major challenge. Low frequencies are preferred for better sig-
nal penetration through the wall but obtaining the necessary
large bandwidth for high down-range resolution is difficult.
In addition, antenna beamwidths are wider at lower frequen-
cies inhibiting high cross-range resolution. Techniques such
asmultiple-input-multiple-output (MIMO) and synthetic aper-
ture radar (SAR) are being investigated for sharpening the
cross-range resolution.

Advances in science and technology to meet
challenges

Advances in MIMO radar systems and related signal pro-
cessing can address some of the open research challenges in

TTW radar imaging [156]. Increasing the number of chan-
nels and where possible, given the operational constraints to
deploy and synchronize such systems, moving towards forms
of distributed, bistatic, or multistatic systems, are expected
to enhance situational awareness. Such systems can achieve
finer angular resolutions for better characterization of the
volumetric target signatures in both azimuth and elevation
planes, i.e. finer details of the targets’ features and postures
for improved situational assessment. Distributed systems can
also provide multi-perspective view of the scene of interest,
enhancing the perception of certain key target scattering fea-
tures for identification, and helping discriminate real tar-
gets from ghosts [157]. In this context, compressive sensing
approaches are additional research paradigms that can play a
key role in minimizing the number of physical channels and
antennas by exploiting sparse sampling techniques, thereby
reducing hardware complexity, expense, size, and processing
time.

More sophisticated Doppler processing approaches are
needed in the area of human movement and vital sign detec-
tion, especially through rubble following disasters [158].
Examples include extraction of very low-level signals due
to shadowing and/or propagation through several collapsed
walls, rejection of Doppler signals from spurious sources such
as fans and motors, and detection of multiple humans of vary-
ing sizes.

Intelligent and adaptive waveform design is another open
research area where target signatures can be enhanced while
suppressing clutter, wall effects, and RF interference. The
recent emergence of arbitrary waveform generators and high-
speed digital samplers has given rise to several newwaveforms
and sophisticated pulse-shaping techniques for improved
detection and localization of targets behind wall barriers and
suppression of ghosts caused by multiple reflections. These
include matched illumination, chaotic, orthogonal frequency-
division multiplexed, and frequency-modulated interrupted
continuous wave (FMICW) waveforms. FMICW waveforms
mitigate wall reflections and improve detection of stationary
targets and moving or breathing humans behind different wall
types [159].

Advances in materials used in antenna fabrication, such as
dielectric lenses and metamaterial-inspired superstrates, also
provide new directions to significantly enhance TTW radar
performance. Examples include bandwidth extension and
multi-frequency operation through feeding structure enhance-
ments [160], antenna size reduction using high dielectric con-
stant substrates, and precise beam focusing and control using
metasurfaces.

AI andML techniques can also play a significant role in the
performance improvements of TTW systems [161]. Examples
include learning better approaches for removal and/or mit-
igation of wall effects and suppression of ghost targets via
generative adversarial networks and denoising networks, as
well as dynamic transmit waveform adaptation for improv-
ing the signal-to-clutter ratio and switching between differ-
ent frequency bands to exploit more favourable propagation
conditions. As the learning capabilities of these algorithms
improve, hybrid techniques could be developed whereby
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physical prior information on the TTW propagation and scat-
tering can be incorporated into theAI/ML algorithms for target
classification and situational awareness, or to provide better
estimation of the physical parameters of the wall for deconvo-
lution of its effects.

Traditional TTW radar techniques involve relatively
expensive hardware deployment costs and higher power
requirement since these operate in an active manner. An
emerging area of TTW research involves the exploitation
of Wi-Fi signals from the increasing deployment of wire-
less local area network (IEEE 802.11) technologies in indoor
environments due to their ubiquity [162]. Since such systems
operate in the passive (i.e. receive-only) mode, opportunities
for advances are called for in the development of beamform-
ing and coherent/non-coherent integration schemes to detect
and track weak signals from targets, adaptive processing to
optimize system performance under uncertainty and noise in
the reference channel, and reduction in the computational load
for cross-correlation processing.

Concluding remarks

TTW radar technology is an essential tool in several milit-
ary, safety and security, law enforcement, commercial, and
more recently, in personal applications, and is used primarily

to detect humans. Although research in TTW radar has been
ongoing for several decades, there are many areas for improve-
ment to enhance target detection, recognition, and imaging.
Although the wall signature appears as a nuisance signal, it
does provide useful information which may be exploited to
suppress its effects in subsequent processing. Detection of
targets buried behind irregularly oriented walls formed by
building collapses is a major challenge. Most TTW radars
are plagued by harsh indoor clutter which may be suppressed
by optimization of the transmit spectrum. Future operation
TTW radar systems may require a dual-frequency approach
wherein lower frequencies are used for high-range detection
while higher, perhaps millimetre-wave frequencies, may pos-
sess the resolution to detect and resolve targets closer to the
wall.

Therefore, next generation measurement systems for
through-wall sensing, signal and image processing applica-
tions are expected to incorporate and integrate several new
technological breakthroughs, such as distributed and dispersed
sensors for more complete views of the target scene, intelligent
and cognitive waveforms for real-time enhancement of targets
and suppression of clutter and interference, advanced Dop-
pler processing techniques for extracting faint vital sign and
motion signals, AI and ML approaches for improved feature
selection and exploitation, andmetamaterial-inspired antennas
for reconfigurable beamforming.
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5.4. Sensors for automated driving
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Since early experiments with autonomous vehicles in the
1980s [163] the vision of automated driving has inspired
numerous research groups all over the world. Today, modern
driver assistance systems are standard to most vehicles and
contribute to enhance safety and comfort. Many experts expect
the market introduction of fully automated vehicles in the not
too far future and that this technology will be disruptive and
revolutionary to the automotive industry [164].

Automated vehicles acquire all relevant information
through their sensors. For safety reasons, a sensor setup should
have redundancy and 360◦ field of view including different
sensor technologies (figure 18).

Automotive radar mainly operates in the 76–81 GHz fre-
quency band. Among all environmental sensors, radar is most
robust against atmospheric influences. The strengths of radar
include high accuracy (measuring object position and radial
velocity) and long range in radial direction, while in azi-
muthal and vertical accuracy radar remains about an order of
magnitude behind cameras and light detection and rangings
(lidars).

Automotive lidar operate in the optical spectrum of about
905 nm and measure distance by the time-of-flight principle.
Today, lidar sensors provide a set of 3D points in the environ-
ment, each associated with a reflectance value. As compared to
cameras, lidars are less affected by strong sunlight and robust
against spatially variable illumination. Restrictions occur for
perception of objects with low reflectivity caused by themater-
ial itself or by an unfavourable viewing angle.

Cameras are closest to human perception and operate in the
visible spectrum of 380–780 nm. No other sensor principle
has comparable perception capabilities when it comes to rich
diversity of information. Cameras can detect, classify, measure
and track moving and static objects of almost any kind. The
status of traffic lights is one example of important information
that can hardly be perceived by any other sensor principle.

As automated driving is a safety-critical application, all of
the above sensor principles are applied in parallel and appro-
priate information fusion methods are applied to yield a con-
sistent and plausibilized representation of the environment for
subsequent motion planning and control [165].

Current and future challenges

The abundance of radar, lidar and video sensors as well as the
computational power required for sensor data processing res-
ult in high cost hindering mass production. Continuous sensor
calibration [166] and countermeasures against contamination
over the long lifespan of a vehicle are yet other challenges for
market introduction.While the redundant use of diverse sensor

technologies robustifies perception, some safety-critical per-
ception tasks, such as traffic light state recognition [167] or
lane marking recognition, are currently only feasible with a
camera, i.e. a single technology.

Another challenge autonomous vehicles may address is
occlusion handling. A pedestrian occluded by a bus may cross
the road and the vehicle is not able to detect him/her until the
pedestrian is inside the detection range. On the other hand,
driving under the expectation of pedestrians emerging behind
any occluding object would lead to velocities in the range of
∼5 km h−1. This dilemma is related to vulnerable road users
safety, so it is very important to make improvements in this
field for the future.

In the last decade, DL has largely improved perception
algorithms. Nevertheless, robustness against different weather
conditions must still be improved [168], as in many countries
heavy rain and snow are not just exceptional conditions.

Furthermore, DL requires a large amount of representat-
ive data to learn from. Driving on the other hand is largely
uneventful, i.e. critical situations occur extremely seldom.
Therefore, it is likely that a vehicle exposed to a particular
critical scenario has only been trained with a moderate num-
ber or coarsely related examples and needs to generalize from
these. Even common scenarios may differ from one coun-
try to another. Infrastructure may also change drastically and
traffic lights, traffic signs, road markings and other road ele-
ments could have a different appearance that the perception
algorithm needs to adapt to.

As an additional ‘virtual sensor’, high definition maps aug-
ment the information basis of autonomous vehicles (AVs)
[169]. While these provide information in a large spatial range
including traffic rules, road topology, speed limits, etc the
main challenge concerning them is how to keep them up to
date with the maintenance of the road infrastructure.

Advances in science and technology to meet
challenges

Next generation measurement systems are improving quality
and lowering their cost:

• Radar development aims to provide array antennas with
improved angular resolution applying beamforming tech-
niques and on-a-chip antennas.

• Likewise, lidar technology migrates from scanning to solid-
state technology, removing any moving parts and making
sensors cheaper and more robust.

• Cameras are based on silicon technology already and thus
follow Moore’s law, i.e. their resolution is increased by
about a factor 2 every 1.5 years. Emerging from GPUs, low
power video data processing units tailored to DL techniques
are under development.

Occlusions imply safety critical situations and are very dif-
ficult to eliminate from a single vehicle perspective. How-
ever, vehicle to vehicle, and vehicle to infrastructure commu-
nication may mitigate this problem. In the extreme, when all
vehicles intentions or trajectories are shared, more efficient
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Figure 18. Different sensor technologies are usually integrated in
typical autonomous vehicle setup. This figure shows an example of
how cameras (in blue), RADAR (in red) and LIDAR (in green) are
used to increase safety by overlapping sensors’ field of view.

trajectories can be generated and negotiated, where effi-
ciency involves a reduction of traveling time and energy
saving.

Challengingweather conditions such as heavy rain, snow or
low light conditions should be considered in vehicle design.
Due to the fact that DL requires large amounts of data,
dataset generation for a wide variety of purposes becomes
a key point. Therefore, tool chains for the acquisition and
augmentation of high quality datasets with relevant corner
case scenarios gain a growing relevance for many discip-
lines and applications. Governmental authorities assist such
activities as they may lead to homologation requirements and
standards.

Datasets covering different regions of the world will con-
tribute to reduce the domain gap and thus improve percep-
tion algorithms. Another solution comes from standardization
beyond countries to have the same traffic lights, traffic signs,
traffic rules, etc and allow algorithms to perform better regard-
less of the country or city.

Classical signal processing has been replaced or combined
with DL techniques. DL is getting integrated in all the software
stages. Consequently, a lot of effort is put into understanding
deep NNs, what their limitations are and how to provide safety
using metrics [170].

To conclude, map verification and crowdmapping is getting
popular due to the fact that high level map information requires
low bandwidth and it can be transmitted to the cloud.

Concluding remarks

Automated driving promises a groundbreaking change to our
mobility. Thus it comes as no surprise that global players
invest great enthusiasm and effort in this technology. These
include established vehiclemanufacturers thatmainly continu-
ously improve their driver assistance systems to adding more
and more automation until full automation is reached. In con-
trast to this evolutionary approach, IT companies aim to build
a fully automated vehicle for a limited operational domain in
a disruptive approach.

In either approach, sensors and perception algorithms are
key components for market introduction. As compared to
many other applications, AVs operate in an open world with
a priori unknown scenarios. Nevertheless, appropriate safety
guarantees need to be provided for the perception system
before market introduction. Furthermore, safety of the vehicle
architecture in general and motion planning in particular are
not just mere additional challenges that need to be approached
before automated vehicles become reality on our roads.
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Status

The scientific era of AEs started in the early 20th century when
researchers around the world started to report distinct sounds
during the investigation of material deformation. Since then
and throughout the years, AE processing has become integ-
ral part of industrial sensing technologies aiming to continu-
ously measure critical material properties and to control and
report the status of production processes. In principle, AE
is a passive monitoring and measurement system with only
receivers and without ultrasound transmitters. Currently, the
AE uses one or more sensors to ‘listen’ to a wide range of
events with unique NDT and dynamic information character-
istics in broadly three application areas: structural testing and
surveillance, process monitoring and control, and materials
characterisation. The latest state of the art in this field is the
development of knowledge-based systems (KBSs) alongside
interactive ML techniques. The adoption of advanced indus-
trial measurement technologies, through AE processing, are
quickly becoming the entry standard for competitive compan-
ies and those that fail to do so are likely to be crowded out of
an increasingly competitive market. As supply chains become
more connected and ‘transparent’ game changing technologies
are shared, through technology transfer licenses, to custom-
ers and competitors alike. Such outward transfer of technology
has become an important dimension in corporate strategies and
has created a highly interdependent ecosystem within most
manufacturing sectors. In the absence of sophisticated digital
measurement and control technologies, the quality of technical
and service support could be extremely compromised. Failure
to provide more advanced industrial measurement systems can
result in whole batch recalls, downstream production delays,
which in turn has a knock-on effect on many sectors such
as construction, automotive, aerospace and machinery. The
impact extends to costly stock management and even potential
loss of contracts. The demand for the development and use of
AE technologies is ever increasing. Modern supply chains rely
more on digitization as a key enabling technology for building
stronger and smarter supply chains through AE measurement
and control.

Current and future challenges

Understanding the physical nature of AE in different processes
is the cornerstone in the development of the AE technology.
The success and the depth of the technology capabilities

depend on the ability to determine unique detectable noise fea-
tures that can be attributed and effectively correlated to target
variables and properties. However, establishing such depend-
ences for different materials and structures is probably the
biggest real scientific and technological challenge [171]. To
address this critical two main approaches are used. These are
broadly the statistical or empirical method and the determin-
istic or fundamental method. Statistical source characterisa-
tion is of wide applicability and it is suitable for complex
geometries, anisotropic or inhomogeneous materials. Determ-
inistic characterisation is based on a reasonably detailed know-
ledge of the physical processes involved in the source so that
a mathematical model can be set up. Even though existing
techniques are highly efficient, they have also shown some
restrictions in handling large number of process parameters
and in turn obtaining a judicious relationship between input
and output target data. Such difficulties were observed mainly
due to the nonlinear and complex nature of phenomena and
parameters involved in industrial AE applications. Several
other challenges have been identified by [172] in relation to
AE. Current AE hardware does not provide sufficient noise
immunity against interferences. At the hardware level this
requires electromagnetically isolated instrumentation. On the
other hand, removing noise during post-processing requires
more advanced techniques, as discussed in the next section,
alongside outlier detection after frequency filtering. Denoising
techniques, such as discrete wavelet filtering of waveform data
and Swansong filtering [173] of hit features, are very effect-
ive at dividing AE signals into discrete and continuous parts.
These can be quantified separately, improving fault diagnosis.
Although adaptive filtering has also been applied for segregat-
ing specific signals into noise-data components, poor replica-
tion and repeatability for generic signals possess a great chal-
lenge. In addition, building AE amplifiers, filters, and power
supplies with sufficiently low noise levels is much more com-
plicated than for other lower frequency sensing applications
(e.g. vibration), due in part to the wide dynamic range and
bandwidth required.

Advances in science and technology to meet
challenges

The latest state of the art in noise handling and data ana-
lysis is the development of KBSs [174]. KBSs are interact-
ive computer programs which attempt to simulate the exist-
ing knowledge and experience-based thought processes and
provide a wide range of advice. In this direction, ML tech-
niques with the ability to solve intricate and highly nonlinear
processes have attracted worldwide researchers to use them for
AE processing optimization, industrial monitoring and con-
trol. Different ML techniques such as ANNs and CNNs [175]
have been used extensively due to their capability of learning
from the past data and using them to predict the target vari-
able more accurately. The basic functionality of the example
CNN in figure 19 can be broken down into four key areas. The
CNN is trained from AE data collected during thermal spray
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Figure 19. Application of AE in surface engineering high velocity
thermal spray processes. Measuring the coating microhardness from
AE signal classification using convolution neural networks.

coating deposition under different spray conditions. As found
in other forms of ANN, the input layer comprises of pixel val-
ues of a spectrogram image. The convolutional layer determ-
ines the output of neurons that are connected to local areas
of the input through the calculation of the scalar product of
weights and the input volume. The pooling layer then performs
down sampling along the spatial dimensionality of the given
input. Finally, the fully connected layers perform the same
operations found in standard ANNs and attempt to produce
class scores. Through this method of transformation, CNNs

are able to transform the original input layer by layer using
convolutional and down sampling techniques to produce clas-
sification scores [176, 177]. The accuracy of the model can
be significantly improved when large datasets are used dur-
ing training. The background industrial noise, form part of
the training processes and in this respect special and compu-
tationally expensive denoising techniques are not necessary.
The demand for development and implementation of auto-
mated AE systems with computerized testing involving data
acquisition, processing, and evaluation is growing. The true
power of ML techniques is harnessed by the synergistic use of
measurement data from a probe array composed of multiple
sensors.

Concluding remarks

AE based systems are flexible technologies that make qual-
ity management easier. AE acquired live and historic meas-
urement and process monitoring data enable issues that affect
quality to be quickly identified and resolved centrally even
across global operations and into the supplier network. New
capabilities powered by modern ML techniques, allow for
combined real-time data, physical dependency models and
intelligence from different platforms. The ability to simulate,
measure, predict and improve assets plays a vital role in smart
factories of the future [178]. Next generation AE signal pro-
cessing technologies are expected to drive continuous product
improvement and profitability by identifying gaps in perform-
ance, diagnosing deficiencies, correcting and reversing neg-
ative trends, reducing cost, improving yields, and maintaining
equipment reliability. Increased emphasis should be placed on
the evolution of ML techniques and hardware including smart,
wireless, self-powered sensors that report back AE informa-
tion through the next generation 5G networks.
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Status

Signal and image processing for condition monitoring and
fault diagnosis can extract representative features to distin-
guish different health conditions of systems and critical com-
ponents and it is always an emerging and cutting-edge topic.
Thanks to the rapid development of DL, given sufficiently
historical data, advanced fault features can be automatically
extracted by using various DL algorithms. Nevertheless, in
industrial applications, abnormal and faulty data collected
from systems and critical components are seldom available.
Most collected data are in a healthy condition. On this condi-
tion, most DL algorithms for condition monitoring and fault
diagnosis may lose their powerful ability to extract advanced
fault features. Further, even though DL algorithms can extract
advanced fault features, they are difficult to interpret and can-
not be used as objective/loss functions of signal processing and
ML algorithms for guiding parameters tuning. As a result, in
the field of condition monitoring and fault diagnosis, advances
in theoretical investigations on fault feature extraction become
extremely important. The first benefit of theoretical investig-
ations on fault feature extraction is that one can know how
fault features can be used to quantify the characteristics of sig-
nals. The dimensionality of raw signals can be reduced into a
few advanced fault features. The second benefit of theoretical
investigations on feature extraction is to provide more object-
ive/loss functions for signal processing and ML algorithms.
It is well-known that objective/loss functions are one essen-
tial component in various algorithms to determine expected
properties of output results. Once new objective/loss func-
tions are generated from advanced fault features, an amount
of signal processing and ML algorithms will be accordingly
improved. The third benefit of theoretical investigations on
feature extraction is to serve as advanced health indices to
assess degradation performance of systems and critical com-
ponents. If health indices are with desired monotonicity, trend-
ability, robustness, etc, prognostic models for predicting future
feature trends and remaining useful life can be considerably
simplified. The fourth benefit of theoretical investigations on
feature extraction is to build fault feature databases, which are
beneficial to engineers for their practical uses for condition
monitoring and fault diagnosis.

Current and future challenges

The most possible reason why DL algorithms for fault fea-
ture extraction is popular is that DL algorithms are easy

to implement due to their data-driven black-box behaviours.
Once enough historical data are available, any regression/clas-
sification models can be fitted to find the relationship between
inputs and outputs. However, the interpretation of DL-based
features needs strong mathematical skills and wide know-
ledge. Theoretical investigations on fault feature extraction are
parallel to DL-based feature extraction. Some research issues
and challenges exist. Firstly, to design suitable features for
the quantification of a signal, one must be clear to the dis-
tribution characteristics of a signal and needs to design one
or more features to characterize the distribution of a signal.
Secondly, for condition monitoring and fault diagnosis, the
theoretical baseline of features is crucial. This is because the
theoretical baseline serves as a reference to know how and
when current health conditions deviate from a healthy condi-
tion. Thirdly, if multiple features are designed, how to correl-
ate these features and consider their joint condition monitoring
and fault diagnosis? Fourthly, varying operating conditions
exist during condition monitoring and fault diagnosis. How to
design advanced features that are insensitive to varying oper-
ating conditions is great of concern. Fifthly, DL algorithms
have powerful ability to generate advanced features for condi-
tion monitoring and fault diagnosis. How to design advanced
features from DL weights is greatly interesting and attractive,
which provides the reverse thinking of feature extraction from
DL algorithms. Sixthly, a fault feature may only be involved
with one designed property to characterize the distribution of
a signal. It is known that, in a machine run-to-failure process,
signals are varied with degradation time. How to design a com-
posite feature that ownsmultiple properties for conditionmon-
itoring and fault diagnosis is preferable. Seventhly, how to
design analytic and simplified expressions for advanced fea-
tures is beneficial to providing more objective/cost functions
for signal processing and ML algorithms. Eighthly, how to
design fault feature databases to answer that what kinds of
faults need what kinds of fault features is greatly concerned
in industrial applications.

Advances in science and technology to meet
challenges

In recent years, advances in theoretical investigations on fault
feature extraction to meet fault feature challenges have been
reported. Some typical advances are simply introduced as fol-
lows. Firstly, for machine condition monitoring, pioneering
work is spectral kurtosis [179]. The main idea of spectral
kurtosis is to use kurtosis as a fault feature to quantify the
impulsiveness of signals preprocessed by a series of band-
pass filters to monitor impulsive signals caused by local-
ized machine faults. Moreover, the spectral kurtosis of com-
plex Gaussian noise was calculated as a baseline for machine
condition monitoring. Any significant deviation from the
baseline can be used to detect machine abnormality. Sub-
sequently, Shannon entropy [180], Gini index [181], smooth-
ness index [182], quasi-arithmetic means [183], correlation
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Figure 20. Neural network-like structure [186] constructed from the linear decomposition of signal processing algorithms including
wavelet transform, squared envelope and Fourier transform, and sparsity measures for machine condition monitoring.

Figure 21. Sparsity measures [186] used in the fourth hidden layer
of the neural network-like structure for physical interpretation of
fault feature extraction.

dimension and approximate entropy [184], Box–Cox sparsity
measures [185], etc have been theoretically investigated and
they can categorised as sparsity measures and complexity
measures for machine condition monitoring. In figure 20,
signal processing algorithms including WT, squared envel-
ope and Fourier transform, and sparsity measures are lin-
early decomposed as the weighted sum of physical inter-
pretable nodes and their connections form a NN-like struc-
ture [186]. Moreover, the linear decomposition of sparsity

measures [187] in figure 21 are incorporated into the NN-
like structure to physically interpret the use of hand-crafted
features for fault feature extraction and to make the whole
NN-like structure physically interpretable. Here, the ReLU
function is used because machine condition monitoring is
only concerned about positive outputs of the ReLU function
to detect machine abnormality. Secondly, composite health
indices with desired mathematical properties [188–190] were
proposed to fuse process and non-process data to improve the
prognostic ability of health indices. Thirdly, besides condi-
tion monitoring and fault diagnosis, exponential fault features
[191, 192] with random variables and Bayesian updating were
proposed to predict remaining useful life of an exponential
degradation process. Fourthly, WT was mathematically incor-
porated into in the first layer of CNNs [193] to make CNNs
partially interpretable for condition monitoring and fault dia-
gnosis. These works provide preliminary and inspiring res-
ults for further theoretical investigations on more advanced
fault features for condition monitoring, fault diagnosis and
prognostics.

Concluding remarks

Hand-crafted features and DL-based fault features are par-
allel features that can enrich the knowledge domain of con-
dition monitoring, fault diagnosis and prognostics. In recent
years, fault features are not fully and theoretically explored
and subsequently many fault feature issues and challenges will
be addressed. Theoretical investigations on fault features are
an emerging research direction that is helpful for engineers
and academia to fully understand how popular DL algorithms
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extract advanced fault features and how to artificially and spe-
cifically design advanced hand-crafted features to fully charac-
terize the distribution of a signal. Once various advanced fault
features are constructed in fault feature databases, condition
monitoring, fault diagnosis and prognostics would become
mature and reliable.
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Status

Over the past decades, AM has increasingly reshaped the
manufacturing industry, demonstrating benefits such as higher
geometric flexibility and material efficiency as compared to
the traditional subtractive processes as represented by metal
cutting. While details of the specific AM processes may vary,
the general principle of AM is to create tracks of material by
fusing powderswithin a laser-generatedmelt pool and layering
these tracks side-by-side and on top of one another to create
3D components [194]. The sequential relationship of process–
structure–property (PSP) is the central paradigm for scientific
understanding of AM [195], where the process thermal history
involves cycles of repeated melting and solidification of metal
powders to produce hierarchical microstructures.

Due to the multi-physics nature of AM processes, signi-
ficant amount of sensor data can be acquired, making signal
processing an indispensable means for data analysis toward
the discovery of salient patterns that underlie the PSP rela-
tionship. While methods of signal processing have historic-
ally been based on analytical models, the increasing avail-
ability of data due to ubiquitous sensing has enabled data-
driven signal processing as an complementary technique of
growing importance [196]. As illustrated in table 1, model-
based approaches use analytical representation to perform sig-
nal analysis. For example, the characteristic frequency of the
temperature signal measured during AM process provides the
basis for time–frequency analysis of the thermal history and
the inference of properties of the printed part. In comparison,
data-driven approaches directly learn salient patterns that are
characteristic of the AM process from the measured data, and
associates them with part properties by means of numerical
modelling.

Besides the availability of data, increasing attention to data-
driven signal processing techniques can be attributed to sev-
eral additional factors: (a) the increasing complexity in AM
processes, for which high-fidelity analytical models are not
available, (b) new measurement techniques that enable multi-
modal data collection, and (c) advancement in computational
infrastructure for efficient processing of big data [197].

Current and future challenges

While data-driven signal processing techniques have shown to
be effective in deepening the understanding of AM, several
challenges have been identified.

Sensing resolution. AM process is characterized by rapid
interaction between the heat source and metal powders. While
sensing systems such as IR camera and pyrometer have

enabled the in-situ capture of the thermal history associated
with the printed part at the macro-scale, knowledge gaps
at the meso-scale (e.g. powder scale) remain, such as the
mechanism underlying the formation of microstructure (e.g.
pore, crack, and keyhole), caused by the limited spatial and
temporal resolutions of the existing sensors. Revealing these
meso-scale phenomena will provide insight into the influ-
ence of the fundamental interactions driving the AM dynam-
ics. Therefore, research of high-resolution sensing system will
play a crucial role in advancing the state-of-knowledge in
AM [198].

Image processing. Due to the spatial and temporal charac-
terizations required for PSP modelling, imaging has become
the most prominent sensing modality for AM. However, find-
ing salient patterns embedded in the images that are indicative
of process conditions and defects such as porosity, cracking,
balling, delamination, and distortion has remained challen-
ging, since each type of the defects exhibits complex geomet-
rical characteristics, surface textures, and varying scales that
are difficult to characterize using traditional model-based or
even data-driven techniques. Research of advanced image pro-
cessing techniques is needed to take full advantage of the rich
information embedded in the sensing images, which can serve
as the technical foundation for establishing the PSP model
[199].

Model interpretation. The prediction logic of many data-
driven methods, especially that of DL models, is gener-
ally not transparent to the users. For example, it is unclear
which image pixels are used by the network as evidence to
recognize process defects and whether findings from the net-
work are consistent with physical knowledge of heat trans-
fer and material formation. These limitations create signi-
ficant barriers for establishing data-driven signal processing
as a trustworthy complement to physics-based reasoning by
human experts. Future research on interpretable prediction
logic will contribute to establishing user trust in the perform-
ance of data-driven and translating the findings into knowledge
creation [200].

Advances in science and technology to meet
challenges

In recent years, new advances in science and technology have
provided promising means to tackle the challenges in data-
driven signal processing in AM.

To provide sufficient spatial and temporal resolutions
and capture the fundamental interactions occurred in AM
processes, high-speed synchrotron x-ray imaging has been
developed to complement the traditional infrared and visible
light sensing (figure 22). X-ray imaging enables tracking of the
AM dynamics with significantly improved spatial (µm scale
instead of mm scale) and temporal (107 Hz as compared to
105 Hz) resolutions [198].

Recent advancement in data-driven techniques such as
CNNs, which are inspired by the mechanism of human vision
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Table 1. Representative methods for model-based and data-driven signal processing.

Approach Method Representation

Model-based Wavelet transform cwt(s, τ) = 1√
s ∫x(t)ψ

∗ ( t−τ
s

)
dt

Kalman filter p(xk|zk−1)∼ N(x ′
k+K(zk−Gkx ′

k) ,P
′
k−KGkP

′
k)

Data-driven Support vector machine argminw,b
∥w∥2

2 , s.t.yi
(
wTxi+ b

)
≥ 1

Deep neural networks argminw−
∑

yilog(σ (fw (xi)))

Figure 22. Imaging in infrared, visible light and x-ray range for AM process monitoring.

Figure 23. Bi-stream CNN structure for process condition monitoring [201]. Reprinted from [201], Copyright (2019), with permission
from Elsevier.

system for image processing [199], has shown to be effect-
ive in analysing and extracting salient features from the com-
plex image compositions to support PSP modelling. In [201],
a CNN-based method for recognizing surface defects induced
by process condition deviations has been developed, where a
bi-stream CNN structure has been designed to analyse vis-
ible light images of both AM part slices and powder lay-
ers (figure 23) and fuse the extracted defect patterns from
both to enable comprehensive evaluation of the AM condition.
Experimental evaluation has shown high condition recognition
accuracy of 99.4%.

Research efforts towards improving model interpretability
have also been reported, which fall under two categories. The
first quantifies the relevance of individual image pixels in net-
work decision-making as part of a post-analysis. A represent-
ative technique is the layer-wise relevance propagation [202],
which redistributes network’s prediction backwards until a
score is assigned to each image pixel. Positive score values
indicate that the corresponding pixels are used as evidence by
the network to determine process conditions. In comparison,

techniques in the second category embeds knowledge of pro-
cess physics directly into the model design to improve its
interpretability and consistency with physics. For example,
WaveletKernelNet has been developed [193], in which a con-
tinuous wavelet convolutional layer is designed to enable
the discovery of physically interpretable kernels for feature
extraction.

Concluding remarks

With the increasing availability of measurement data, data-
driven signal processing has developed into a promising
alternative to complement traditional signal processing tech-
niques, with the advantage of directly learning salient patterns
that underlie the data to understand the physical phenomenon
of interest. Using AM as an application scenario, this section
summarizes the state of data-driven signal processing for man-
ufacturing process monitoring. In addition, major challenges
to improving sensing resolution, image processing and model
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interpretability are summarized, and early research efforts in
tackling these challenges are highlighted.
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