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Abstract

The transition from a linear to a circular economy is urgently needed to mitigate environmen-

tal impacts and loss of biodiversity. Among the many potential solutions, the development of

entirely natural-based materials derived from waste is promising. One such material is

mycelium-bound composites obtained from the growth of fungi onto solid lignocellulosic

substrates, which find applications such as insulating foams, textiles, packaging, etc. During

growth, the fungus degrades and digests the substrate to create a web-like stiff network

called mycelium. The development of the mycelium is influenced by several factors, includ-

ing the substrate composition. As food waste accounts for nearly 44% of total municipal

solid waste, incorporating food in the substrate composition could be a means to increase

the nutrients absorbed by the fungus. In this paper, we study the effects of the addition of

food supplements on the growth of two fungal species, Ganoderma lucidum and Pleurotus

ostreatus. The substrates, the food supplements, and the mycelia are characterized using

Fourier-transform infrared spectroscopy, scanning electron microscopy, and optical micros-

copy. Our results show that addition of barley as a supplement significantly boosts the

growth of G. lucidum and P. ostreatus. Using a common food as a nutritious enrichment for

the development of mycelium is a simple and straightforward strategy to create waste-

based mycelium-bound biocomposites for a large range of applications, on-site, therefore

promoting a circular economy.

1. Introduction

In the era of the Anthropocene, transitioning from a linear to a circular economy is a must, in

order to mitigate environmental impacts and the loss of biodiversity [1, 2]. Among the various

solutions to support this transition, mycelium-bound composites, which are composite mate-

rials obtained from lignocellulosic substrates and fungi, have appeared highly promising for a

large variety of applications such as packaging, insulation and design [3]. Fungi can grow on a
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large variety of substrates, most of which can be derived from agronomic and agricultural

waste. On the one hand, growing fungi for mushroom consumption, i.e. the fruiting bodies of

fungi, permits the transformation of low-quality waste to high-quality food [4]. On the other

hand, growing fungi for composite fabrication, i.e. using the vegetative part of the fungus

called the mycelium, allows the transformation of low-quality abundant waste to affordable

and recyclable products such as insulation foams, protective panels, architectural bricks, and

packaging [5, 6]. Mycelium-based products can therefore support the transition to a circular

economy through establishing bio-based loops [7]. Mycelium products enable the valorization

of agricultural and agronomic waste, the reduction in transportation costs by being grown and

fabricated on-site, and the recycling of its constituents, among other advantages. The first cru-

cial step in this life cycle is the selection of adequate substrates for the growth of the fungus.

Although the development of mycelium biocomposites has been investigated using various

substrates, the effects of foods as supplements for the fungal growth and the resulting proper-

ties of the composites have not been studied extensively in the literature.

The most common fungal species in mycelium-based products are Ganoderma lucidum
and Pleurotus ostreatus. These fungi are used extensively due to the medicinal and nutritious

properties of their fruiting bodies [8, 9]. During cultivation on solid lignocellulosic substrates,

the fungi obtain their nutrients by degrading the lignin of the substrates using enzymes. These

nutrients are then digested and used for biosynthesis by the fungus. The composition of the

substrate is therefore crucial for the development of the fungus. In nature, fungi grow on a

large variety of rich organic substrates that result from decaying plants, fruits, and animals.

Numerous studies of mycelium growth and mycelium-based products report the use of differ-

ent types of substrates. Although the growth parameters and quality of fungi depends on many

factors including temperature, humidity, light, and air flow, several substrates and supple-

ments have been reported as preferable for the growth of the G. lucidum and P. ostreatus. The

various substrates and supplements explored in the literature are summarized in Fig 1 and

Table 1, where the occurrence reports the percentage of research papers published to date.

Among all the substrates and supplements, the ones that are circled and squared are those

reported as boosting the growth of P. ostreatus and G. lucidum, respectively. As seen in both

Fig 1 and Table 1, many supplements resulting from agronomic waste appear to be promoting

growth. However, the specific characteristics that the supplement should have in order to

enhance the fungal mycelium growth and properties are not always known due to the lack of

Fig 1. Review of substrates and supplements used for P. ostreatus and G. lucidum. The percentage of occurrence refers to the

occurrence of these ingredients reported in the literature (see Table 1 for the references). The circles and squares indicate

compositions that have been reported to increase the yield of P. ostreatus and G. lucidum, respectively. The sawdust commonly used is

typically from oak, alder, beech, acacia or poplar.

https://doi.org/10.1371/journal.pone.0260170.g001
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Table 1. Literature overview of the influence of substrates and supplements on the growth of G. lucidum and P. ostreatus.

Fungus Substrate Supplements Results Ref

G. lucidum Oak sawdust Rice bran, food waste compost 15% food waste compost gave highest yield of fruiting bodies.

Higher concentration reduced the yield.

[10]

G. lucidum Sawdust of hornbeam Tea waste, wheat bran and

CaCO3

20% of tea waste led to highest yield. Increased growth due to

high amounts of K, N, Fe, Mg.

[11]

G. lucidum
&

Wheat straw Olive by-products Increase in the protein content of P. ostreatus mycelium and

in glucan for G. lucidum.

[12]

P. ostreatus
G. lucidum Cotton stalk, maize straw, rice straw, sugarcane

bagasse, wheat straw

Wheat bran and corn gluten Rice straw showed the highest yield with increase in protein

and polysaccharide content.

[13]

G. lucidum Shredded cassava Wheat bran, rice bran, MgSO4 Wheat bran more favourable than rice bran. [14]

Ganoderma
&

Spent mushroom substrate Wheat bran and soybean flour Food supplement increased the laccase activity and the

formation of fruiting bodies.

[15]

P. ostreatus
G. lucidum Alder, beech and oak sawdust, flax shives N.A. Higher yield on alder and beech sawdust. [16]

G. lucidum Sawdust from acacia Soy residue from was tofu

manufacturing.

Highest rate of mycelial growth for media ratios of C to N

content on the growing substrate.

[17]

Ganoderma
&

Leaves from hazelnut, tilia, European aspen,

wheat straw, beech sawdust, waste paper

Wheat bran Wheat straw led to higher growth. Wheat bran led to

contamination.

[18]

P. ostreatus
P. ostreatus Wood chips, boll, sugar beet pellet pulp, palm

fiber

Wheat bran, rice bran, soya

cake powder, rice bran, carrot

pulp

Highest yield for boll, beet pellet and palm fiber with

supplements.

[19]

P. ostreatus Diaper and food waste. N.A. Showed it could grow. [20]

P. ostreatus Acacia sawdust, corncob, sugarcane bagasse N.A. Highest growth on corncob and sugarcane bagasse. [21]

P. ostreatus Poplar sawdust. Food waste compost, rice bran Optimum growth rate for 12% rice bran and 25% food waste [22]

P. ostreatus Rice straw, wheat straw, paper, sugarcane

bagasse, sawdust of alder

Rice bran Rice straw alone was found to give the highest yield [23]

P. ostreatus Potato dextrose agar, yam dextrose agar, sweet

potato dextrose agar, malt extract agar

Molasses, glucose Potato and yam dextrose agar led to the highest yield. Largest

colony growth with 1 to 5% sucrose supplement.

[24]

P. ostreatus Wheat stalk, millet stalk, soybean stalk, cotton

stalk

N.A. Highest yield on soybean stalk. [25]

P. ostreatus Sawdust from Triplochiton scleroxylon, rice

straw, banana leaves, maize, corn husk, rice

husk, elephant grass

N.A. Highest yield on sawdust. The yield was found to correlate

with the high cellulose, lignin and fibre content of the

substrate.

[26]

P. ostreatus Alfalfa, barley hay, sawdust (not specified),

wheat hay

Salts Highest growth on wheat hay and distilled water. [27]

P. ostreatus Sawdust (not specified) Cassava peel, yam peel,

plantain leaf

Sawdust supplemented with 10% cassava peel led to the best

results.

[28]

P. ostreatus Wheat straw Grape pomace Some toxicity from the grape pomace. [29]

P. ostreatus Sawdust from beech, oak and poplar, wheat and

rye straw, by-products from the textile industry,

flax and hemp shives

N.A. Wheat and rye straw with flax shives led to the highest yield. [30]

P. ostreatus Empty fruit bunch and sugarcane bagasse N.A. Empty fruit bunch can be used. [31]

P. ostreatus Wheat straw, cotton gin-trash, peanut shells,

poplar, oak sawdust, corn cobs, olive press-cakes

N.A. Highest growth on the cotton gin-trash, peanut shells and

poplar sawdust.

[32]

G. lucidum
&

Wheat straw Olive mill waste and olive

pruning residues

Small concentration in olive mill and pruning residues

increased the protein content in both fungi. Generally, P.

ostreatus grew more than G. lucidum

[12]

P. ostreatus
G. lucidum
&

Cellulose Potato dextrose Cellulose with potato dextrose led to higher growth

presumably because simplest to digest.

[33]

P. ostreatus
P. ostreatus Cocopeat with sawdust (not specified) N.A. 50% cocopeat led to the highest yield. [34]

https://doi.org/10.1371/journal.pone.0260170.t001
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detailed characterisation of the supplements and the variation of many components available

in the substrate composition.

Employing supplement sources derived from the food industry is promising in the scope of

a circular economy. Indeed, growth of mycelium for mycelium-derived products could be a

means to utilize food waste which amounts to one third of the total food production per year

[35] and 44% of the municipal solid waste, according to the World Bank 2018 [36]. Similar to

other living organisms, fungi accumulates various minerals and nutrients, which in turn influ-

ence their morphology, growth and behaviour [37, 38]. Among the various food sources used

as enriched and fortified nutrients for humans and animals, the most common ones are cereal

crops and fatty seeds [39]. For example, wheat, rice, corn, barley, oats, or flaxseed are com-

monly used as supplements for dairy cows and other human and animal consumption [40,

41]. In general, the determination of whether a substrate and the accompanying supplements

are suitable for mycelium growth is explored by investigating the mass of mycelium grown.

Literature lacks data with regards to the morphology and composition of the mycelium

formed, as well as of the supplements used. Furthermore, some supplements were found to

exhibit better properties only in conjunction with selected substrates and only for specific fun-

gus species.

In this paper, we complement current research on the effect of substrates composition and

preparation by exploring the impact of commonly available food sources on the growth of P.

ostreatus and G. lucidum. To this aim, experiments on the growth compatibility of mycelium

with substrates from bamboo and wood chips and barley, oats, and flaxseeds were carried out

and characterised using electron microscopy and elemental analysis. Indeed, composition and

morphology of the mycelium are two key factors that significantly contribute to the properties

of the final mycelium-bound composites [42, 43]. It was observed that the common crop bar-

ley is effective in boosting the growth of both P. ostreatus and G. lucidum in non-optimized

substrate conditions. The additional nutrients brought by the supplements were able to grow a

larger amount of mycelium as compared to the same substrate without the food. The results of

this work are expected to contribute to enhancing the fabrication process of mycelium-based

products for a large variety of solid waste-based substrates.

2. Materials and methods

2.1. Materials

G. lucidum and P. Ostreatus were sourced from Malaysian Feedmills Farms, Malaysia and Kin

Yan, Singapore, respectively. Dendrocalamus Asper bamboo were collected from Indonesia

and dried in an oven (IKA, Malaysia) at 80˚C for one week. They were subsequently grinded

with the Fritsch cutting mill pulverisette 15 and sieved by the Fritsch Vibratory Sieve Shaker

Analysette 3 Spartan to obtain 200 μm-length fibres.

The food supplements were staple food purchased from the local supermarket including

brown flaxseed meal (Origins, Healthfood, product of U.S.A., HACCP certified), organic pearl

barley (Origins, Healthfood, product of U.S.A., HACCP certified), instant oatmeal (Quaker,

100% Australian wholegrain oats, product of Malaysia). The wood chips were purchased from

Vadigran, Belgium. The flaxseeds were used as purchased, whereas the barley and oats were

grounded with a blender mixer (PowerPac) for approximately 7 and 3 minutes, respectively.

The wood chips were also ground for 7 minutes.

2.2. Characterisation of the food supplements and substrates

Small samples were removed from the bulk with tweezers and placed into a drying oven (IKA,

Malaysia) overnight at 48˚C. Electron micrographs were obtained using a scanning electron
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microscope (SEM) JSM-5510LV, JEOL, Japan on samples deposited onto a carbon tape and

coated with 45 seconds of gold using the Cressington 108 Gold Sputter Coater, United King-

dom. The size distributions were obtained by measuring sizes from the micrographs using the

software Image J (NIH, U.S.A.) and calculated from more than 100 measurements. The min-

eral content was determined from the packaging information. Fourier-transform infrared

spectroscopy (FTIR) was conducted with a FTIR Spectrometer (Frontier, United States) using

the Attenuated Total Reflectance method. Each composition was measured for at least 3 times

on different samples and the average measurement was used for calculation purpose. The pH

values of the substrates were measured using pH paper and was neutral between 6 and 7 for all

substrates.

2.3. Growth of the mycelium

All tools and containers were sterilized with an autoclave (MaXterile 60, Daihan, South Korea)

at 121˚C for 45 minutes. The substrates inoculated with the fungus were deposited in a recipi-

ent, moisturized to maintain a humidity of nearly 99% and fresh air exchange was also

ensured. The growth experiment was conducted up to 10 days for G. lucidum and for 27 days

for P. ostreatus. For both fungi, the samples were kept in the laboratory environment, with a

temperature of 22 ± 0.5˚C. The compositions were varied following Tables 2 and 3. The

weights included in the tables are the dry weights of the ingredients measured before the addi-

tion of water. The growth with the supplements were carried out for at least three times.

2.4. Characterisation of the mycelium

At each specific time point during the growth, the containers were opened, and a sample of

mycelium was taken out. The earliest day for sampling was day 7 due to the lack of mycelium

optically visible at earlier days. Small samples were dried overnight at 48˚C before being sput-

tered with gold for 45 s and observed in SEM. Lengths of hyphae and pore diameters were

Table 2. Composition used in the growth experiments with the three food supplements and the two fungus species.

Fungus species Lignocellulosic substrate Amount of food supplement Amount of inoculum Amount of water

G. lucidum 1 g bamboo 0.5 g barley 0.5 g 3 g

G. lucidum 1 g bamboo 0.5 g oats 0.5 g 3 g

G. lucidum 1 g bamboo 0.5 g flaxseed 0.5 g 3 g

P. ostreatus 2 g bamboo 2 g barley 1 g 3 g

P. ostreatus 2 g bamboo 2 g oats 1 g 3 g

P. ostreatus 2 g bamboo 2 g flaxseed 1 g 3 g

https://doi.org/10.1371/journal.pone.0260170.t002

Table 3. Composition used in the growth experiments with barley, and the two lignocellulosic substrates bamboo, and wood chips, at different mycelium to water

ratios.

Fungus species Lignocellulosic substrate Amount of barley supplement Amount of inoculum Amount of water

P. ostreatus 2 g bamboo 1 g 0.5 g 3 g

P. ostreatus 2 g bamboo 1 g 1.5 g 3 g

P. ostreatus 2 g bamboo 1 g 2 g 3 g

P. ostreatus 2 g bamboo 1 g 2 g 6 g

P. ostreatus 2 g wood chips 1 g 0.5 g 3 g

P. ostreatus 2 g wood chips 1 g 1.5 g 3 g

P. ostreatus 2 g wood chips 1 g 2 g 3 g

P. ostreatus 2 g wood chips 1 g 2 g 6 g

https://doi.org/10.1371/journal.pone.0260170.t003
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measured more than 100 times using the software Image J. FTIR was conducted using a FTIR

Spectrometer and the Attenuated Total Reflectance method. Each composition was measured

at least 3 times on different samples and the average measurement was used for calculation

purpose.

3. Results and discussion

3.1. Effects of food supplements on the growth of G. lucidum and P.

ostreatus
Three sources for supplement, including pearl barley, flaxseed and oats were selected for this

study. These foods are commonly found in households across the world. Prior to using them

to grow mycelium, they were characterized in terms of size and nutritious content. The size

distribution of each food supplement was of an average of 20 ± 9 μm for barley, 87 ± 47 μm for

flaxseed, and 35 ± 15 μm for oats (Fig 2A–2C). The hardness of the flaxseeds prevented their

grinding to smaller sizes as compared to barley and oats. However, the size distribution for

each food supplement was in the range of 10–100 μm. The compositions of the food supple-

ments were obtained using FTIR and the nutritional values were obtained from the food

packaging. FTIR is a method commonly used for semi-quantitative analysis [44, 45]. We used

FTIR to be able to directly compare the components of the food supplements in the three cate-

gories: lipids, proteins, and polysaccharides. The FTIR measurements were validated by the

information provided on the packaging of the foods. Typically, the frequencies at 3200–2800

cm-1 are attributed to the stretching of CH2 and CH3 found in lipids. The vibration bands at

1560–1525 cm-1 are attributed to the bending of N-H and C-H in proteins. The vibrations at

1200–900 cm-1 are attributed to the stretching of C-O, C-C, P = O and C-O-C of polysaccha-

rides. The broad absorption band at 3500–3000 cm-1 are representing vibrations of water mol-

ecules. The FTIR spectra of the food supplements showed different lipids, protein and

polysaccharide contents (Fig 2D). The results indicate that oats had the highest content of

polysaccharides, whereas flaxseeds had the highest content of lipids and proteins. This trend

follows the nutritional indications from the food packaging. Furthermore, various minerals

were also found to be part of the food sources, especially for the oats which were fortified with

Fe, Zn, and Mg.

The effects of these food supplements on the growth of G. lucidum and P. ostreatus were

studied using bamboo fibers as the substrate (Figs 3 and 4). Without the nutritious supple-

ments, no growth could be found, probably due to a non-optimal combination of the other

parameters, namely temperature, pH, concentration, humidity, light, etc. Nevertheless, in the

presence of the supplements, all substrates exhibited growth which was visualized directly by

white areas on and inside the substrate, denoting the presence of mycelial runs.

G. lucidum grew extensive mycelium after only one week, in presence of barley and oats

(Fig 3A). The mycelium grown also exhibited different morphologies depending on the sup-

plement, which were investigated using scanning electron microscopy (Fig 3B). The hyphae, i.
e., the mycelium filaments, grown on barley and flaxseed-enriched substrates appeared

straight, whereas round tree-like and hollow tube structures were found on the mycelium

grown on oats-enriched substrates. Such highly-interconnected structures have been previ-

ously reported in presence of chitosan, cellulose, or potato-dextrose [33, 46, 47]. Furthermore,

the interconnected network appeared more porous and with wider hypha for the flaxseed-

enriched substrate as compared to the other two (Fig 3C). For the enhanced growth of healthy

mycelium, barley as a nutritious supplement is therefore preferrable. The structure and poros-

ity of the mycelium are important for the properties of the resulting composite, for example
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hydrophobicity and mechanical properties [33]. A tighter mycelium network is therefore likely

to yield a mycelium-bound biocomposite with higher mechanical properties.

The effects of the three food supplements on P. ostreatus were also investigated. The experi-

ments were conducted over a longer period of time as compared to G. lucidum, due to the

slower mycelium growth of P. ostreatus, which is likely due to a non-optimal combination of

the overall parameters, namely concentration of the substrate, food and inoculum, humidity,

light, etc. (Fig 3D). The barley and oats-enriched substrates exhibited a homogeneous and

extensive mycelium growth that was highly visible after 22 and 27 days. However, there was

heterogeneous growth on the flaxseed-enriched substrates with a few millimetric patches of

dense and compact mycelium. The pore diameters and the hyphae widths did not show any

significant difference between the substrates, and the tube-like features observed with G. luci-
dum were not found in these samples (Fig 3E, 3F). However, some areas in the mycelium

grown on the flaxseed-enriched substrate did also exhibit large hyphae width (Fig 3E).

Fig 2. (A) Electron micrographs of grounded barley (blue), flaxseed (orange) and oats (grey). Size distribution (B) and average diameter

and standard deviation (C) for each food supplement. (D) Representative FTIR spectra. L indicates lipides, P proteins, and PS

polysaccharides. (E) Transmission intensity corresponding to the content in lipides, proteins, polysaccharides obtained from the FTIR. (F)

Mineral concentration in each supplement.

https://doi.org/10.1371/journal.pone.0260170.g002
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Barley as a food supplement appeared to be suitable for the development of healthy myce-

lium for both G. lucidum and P. ostreatus, without requirement of a careful optimization of the

growth conditions. Since the efficacy of degrading enzymes increases with the increase of sur-

face area [48], the smaller size and larger surface area of the barley supplement as compared to

the other two supplements was likely favourable. Flaxseeds were found not to be efficient for

mycelium growth, which could also be linked to their larger size and their lower content in

polysaccharides. Also, the high lipid content might have induced changes in the mycelium

morphology due to a rise in hydrophobicity. Oats were suitable for P. ostreatus but the mor-

phology of the mycelium of G. lucidum was found to be unusual with hollow tube shapes,

which might lead to inhomogeneities and weaker mechanical properties. To increase the yield

of mycelium growth on substrates made of bamboo microfibers, the addition of barley as a

food supplement is therefore promising.

Fig 3. Effects of nutritious supplements on the growth of G. lucidum (A-C) and P. ostreatus (D-F) on bamboo substrate. (A) Pictures showing the growth

of G. lucidum at 1, 6 and 9 days for the three food supplements and control sample without food. (B) Electron microscope images showing the mycelium

after 9 days growth. (C) Pore diameter and hyphae width of the grown mycelium after 9 days, respectively. (D) Optical images showing the growth of P.

ostreatus at 1, 22 and 27 days. (E) Electron microscope images showing the mycelium after 27 days growth. (F) Pore diameter and hyphae width of the

grown mycelium after 9 days, respectively. Blue corresponds to barley supplement, orange to flaxseed and grey to oats.

https://doi.org/10.1371/journal.pone.0260170.g003
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3.2. Comparison of the growth of G. lucidum and P. ostreatus on bamboo

fibers with food supplements

To further characterize the effects of food supplements on the mycelium growth, FTIR was

carried out as a function of time. Indeed, as the fungus is degrading the substrate, it builds a

dense mycelium network composed of lipids, protein, chitin, and polysaccharides. Lipids, pro-

teins and polysaccharides can be deduced from the vibrations as described above for the char-

acterization of the substrate. Chitin is an additional band around 1375–1365 cm-1 for the

bending of C-H. Based on the FTIR spectra, composition ratios were calculated. These are the

ratios between the peak intensities for proteins (P), lipids (L) and chitin (C), respectively, with

the peak intensity for polysaccharides (PS). No major variability between the composition of

the mycelia grown with the different food supplement could be recorded. However, a general

trend could be seen, that was essentially species-dependent (Fig 4A and 4B). The growth of G.

lucidum was indeed continuously increasing with time, whereas P. ostreatus grew quickly dur-

ing the first two weeks, then the growth rate dropped. This decrease in growth is likely due to

the fruiting of the fungus after 20 days (Fig 4C). This result indicates that food supplements

cannot overcome the differences between fungal species and modify significantly the chemical

composition of the mycelium. In the context of mycelium-bound composites, the characteris-

tics of the fungal strain would therefore determinate the mycelium growth kinetics and chemi-

cal composition, whatever the food supplement used. However, for one selected fungal strain,

food supplements can boost the production of mycelium and induce some modification in its

morphology.

3.3. Effect of barley supplement on the growth of P. ostreatus on different

substrates

To test that barley enrichment can be used to increase mycelium growth on lignocellulosic

substrates without requiring careful optimization of growth conditions, a commercial wood

chips blend was obtained from a pet store as a substrate. We demonstrate here the advantage

of using barley as a food supplement to boost the growth of P. ostreatus. As compared to the

bamboo substrate, the wood chips had larger dimensions but no major difference in the FTIR

spectra could be recorded between the bamboo fibers and the wood chips (Fig 5). However, it

is commonly reported that wood has a higher lignin and lower hemicellulose content as bam-

boo [49–51]. The similarity between the FTIR spectra of bamboo and wood chips is likely

related to the pre-processing of the bamboo microfibers, involving grinding, shredding and

the heat treatment at 80˚C.

Fig 4. Composition ratios as a function of the growing time for G. lucidum (A) and P. ostreatus (B). P stands for

protein, PS polysaccharide, L lipid and C chitin. For each fungus, the data for each time point have been averaged over

all the experiments carried out with food supplements, irrespective of the nature of the foods. (C) Picture of a fruiting

body of P. ostreatus that developed onto the substrate after 20 days growth.

https://doi.org/10.1371/journal.pone.0260170.g004
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Without barley as nutritious supplement, the wood chips did not lead to the growth of

mycelium from P. ostreatus after 27 days (Fig 6A). This was predicted since large dimensions

and increased lignin content are generally not favourable for mycelium growth. However, in

the presence of barley supplement at 1 g for 2 g of mycelium spawn, significant growth was

observed at varying ratios of mycelium to water content. In this set of experiments, the sub-

strate and food contents were maintained constant while the mycelium and water content

Fig 5. (A) Electron micrographs of the bamboo fibers and wood chips used as substrate. (B) Size distribution of the bamboo fibers and the

wood chips. (C) Representative FTIR spectra. (D) Cellulose, hemicellulose and lignin content in % in the substrates. Data estimated from

[49–51].

https://doi.org/10.1371/journal.pone.0260170.g005

Fig 6. Effects of barley supplement on the growth of P. ostreatus on bamboo and wood substrates. (A) Optical images of P. ostreatus mycelium

grown after 27 days on each lignocellulosic substrate, in presence of barley supplement, for different mycelium to water ratios. The image on the left is

the control sample after 27 days of growth on wood substrate, without supplement. (B) Electron micrographs of the corresponding mycelium. Light

green are wood chips substrates and dark green are bamboo substrates.

https://doi.org/10.1371/journal.pone.0260170.g006
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varied. For both bamboo and wood substrates, higher water content was more favourable for

the growth of the mycelium, probably due to the water absorption of the pure substrate. A

mycelium to water content of 1.5 to 3 seemed to be the best ratio for mycelium growth. No sig-

nificant variations in the pore diameter and hyphae width were recorded between the samples

after 27 days of growth (Fig 6B). These results indicate that adding barley as a food supplement

is indeed a simple means to increase the mycelium growth, even on unfavourable substrates. It

is likely that the mycelium could develop by primarily degrading the barley rather than degrad-

ing the substrate. However, this hypothesis is difficult to verify as the elements of the compos-

ite, namely mycelium, wood chips, and food supplement, are difficult to separate.

Furthermore, the system is synergetic: in absence of wood substrate and in presence of the

food supplement, the mycelium cannot grow properly and contamination by other species

occurs quickly. It could also be hypothesized that the food supplement increases the energy of

the fungus which could then synthesize more enzyme to degrade the substrate as well as

increase its resistance against contamination. Following the secretion of enzymes with time in

the presence of foods could help answer these questions.

4. Conclusions

In summary, the effects of the addition of food supplements on the growth of mycelium of two

fungal species, G. lucidum and P. ostreatus were studied. Between flaxseed, oats, and barley, it

appeared that barley led to significant mycelium growth for both fungi on bamboo and wood

chips substrates. What is particularly interesting is the absence of mycelium growth without

the food supplement, indicating a significant effect of this simple strategy on mycelium

growth. Furthermore, food supplements rich in carbohydrates, such as barley, provided a

more significant increase in growth as compared to those rich in lipids. Also, smaller size was

favourable, probably by facilitating the action of degrading enzymes from the mycelium.

Our results therefore suggest that bringing additional nutrients derived from common food

is an interesting strategy to grow mycelium-bound composites on various substrates, without

the need for careful optimization of the growth. This approach can not only valorize food

waste and green waste into useful materials, but can also be potentially implemented by local

manufacturers without the need for intensive training and specialisation. Indeed, we have

shown that the addition of barley could increase the mycelium growth for two different fungal

species, despite the growth conditions being not optimized in terms of temperature, moisture,

inoculum to substrate ratio. The approach could likely be effective for other fungal species as

well and be used as a simple standard method to produce mycelium-bound composites on var-

ious substrates. It could also be envisaged to use the "energy boost" from the food supplements

to help the mycelium degrade tougher substrates, including plastics.

Overall, mycelium-bound composites have the potential to develop local circular economy.

The results from this study are expected to contribute to the studies of mycelium-bound mate-

rials and their applications.
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