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Analytical and numerical approach on quenching friction-induced
oscillations in MDOF-systems by the use of high-frequency excitation
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Dry friction is well known to lead to undesired, self-excited vibrations which negatively influence a process or cause dis-
comfort. One attempt to quench these oscillations are superposed high-frequency vibrations. A system consisting of two
visco-elastically coupled masses on a moving belt subject to high-frequency excitation is analyzed. A multiple scales method
is used to find an analytical approach of the system dynamics, which leads to the equation for the slow motion of the system,
which is of interest. Linearizing about the quasi-equilibrium and analyzing the eigenvalues, statements about the stability
of the new equilibrium point can be given. These semi-analytical results are compared to the numerical solution of the full
system and the influence of certain parameters is outlined.
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1 Introduction

Systems subject to dry friction often show self-excited oscillations due to the unsteady friction force and its negative slope at
a small relative velocity. This property holds for systems with one degree of freedom, as well as for systems with multiple
degrees of freedom. The application of an additional external excitation at a high frequency can influence the system dynamics
in such way, that the self-exciting effect is suppressed and a stable equilibrium point can exist. For SDOF-systems, this is
analytically shown in [3] and in [2] good accordance between experiment and simulations is shown. In [1], this approach is
extended to a MDOF-system and first investigations on the stabilizing effect of high-frequency excitation are outlined.

2 Model and analytical approach

To analyze the capability of high-frequency excitation to quench friction-induced oscillations in a MDOF-system, the model
depicted in figure 1 is used. The model is already reduced to dimensionless parameters ζ (mass ratio), γ (stiffness ratio),

Fig. 1: Model of two coupled masses on a moving belt. Fig. 2: Effective friction coefficient depending on the macroscopic
relative velocity vrel and velocity amplitude aω.

di (damping coefficients), fni (normal forces), v0 (belt velocity), ai (excitation amplitudes) and ω (excitation frequency),
according to [1]. For the friction contact, Coulomb friction is used, where the friction coefficient µ depends on the relative
velocity. The exponential form

µ(vrel,i) = sign(vrel,i) (µg + (µh − µg)exp (−|vrel,i|/vs)) , vrel,i = ẋi − v0

is used, which is depicted in figure 2 at aω = 0. According to [3] and [1], a multiple scales approach is used, where additionally
to the slow time τ a fast time scale θ = ωτ is introduced. Furthermore, the motion is divided into a slow part and a fast, small
part x

˜
(τ) = z

˜
(τ) + ϕ

˜
(θ)/ω. This leads to the ordinary differential equation of the slow motion given by equation (1). Here,

the positive definite matrices M (mass), K (damping) and C (stiffness) coincide with those of the full system. The derivation
of this equation is shown in [1]. The influence of the high-frequency excitation and the friction force is included by the term
〈r
˜
(v
˜rel

)〉, which is the mean of the friction force, averaged over one period of the excitation force.
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)dθ , ri(vrel,i) = −fn,iµ(vrel,i) (1)
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2 of 3 Section 5: Nonlinear oscillations

The differential equation for the slow motion is linearized about its equilibrium point z
˜e

, which leads to two additional entries
in the damping matrix K̃, which can be interpreted as damping against the environment
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The magnitudes µ̄′
i describe the slope of the effective friction force at the belt velocity (cf. figure 2) for each mass, respectively.

If the respective mass is excited and v0 < aω, the slope is positive, which has a damping effect. Otherwise, the slope is
negative, which may lead to a self-exciting effect. By applying an exponential ansatz, a statement about the stability of z

˜e
can

be made by using HURWITZ-criteria. This yields conditions for µ̄′
1 and µ̄′

2, depending on the remaining parameters.

3 Results

In figures 3 and 4, two stability maps for the equilibrium point z
˜e

are depicted. The dots represent the stability behavior of
z
˜e

for stable (black) and unstable (gray) solutions resulting from the numerical solving. The thick black line dividing the
areas results from linearization and HURWITZ-criteria. For the numerical solution, the initial conditions are chosen as the
equilibrium point z

˜e
plus a small perturbation. Numerically and analytically approached results show very good accordance.

When both masses are excited and v0 < aiω, both slopes are positive, the related point is in the upper right quadrant, which
is always stable. When only one mass is excited, one slope is positive, while the other one is negative, which yields a point
in the lower right or upper left quadrant. As seen, there are still stable areas, which means that the system can be stabilized
even if only one mass is excited. Figure 3 is for zero damping, whereas figure 4 contains additional external damping, which
increases the valid region for a stable equilibrium point. If the masses are strongly coupled, i. e. γ > 1, the area for stable

Fig. 3: Stability map, determined analytically and numerically,
ζ = 1, γ = 1, d1 = d2 = 0, a = 0.01, ω = 100, v0 = 0.5,
µh = 0.6, µg = 0.4, vs = 0.6.

Fig. 4: Stability map with additional external damping, determined
analytically and numerically, d1 = d2 = 0.05.

points increases. For a weak coupling, i. e. γ < 1, both slopes have to be positive in order to stabilize the equilibrium point.
If the mass ratio is not unity, the area of stable points decreases in such way, that at least the lighter mass has to be excited to
enable the stabilizing effect. For the shown results, not only the behavior concerning stability shows good accordance between
numerical and analytical approach, but also the course of the time function.

4 Conclusions

Based on the procedure in [1], the MDOF-system subject to dry friction was analyzed in a more general way. The importance
of the slopes of the effective friction forces and their impact on the stability of the equilibrium point was outlined by a stability
map. The self-excitation due to dry friction can be suppressed by external high-frequency excitation, even if only one mass is
excited. The comparison between numerical and analytical approach shows that the multiple scales method and linearization
yield good results concerning the stability of the equilibrium point. Additional external damping enlarges the parameter range
for stable equilibrium points. A stiff coupling between the two masses also increases the stable area, whereas a weak coupling
decreases it. A mass ratio differing from unity results in the fact, that at least the lighter mass has to be excited in order to
enable a stabilization of the equilibrium point.
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