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Modern astroparticle physics makes wide use of machine learning methods in such problems as
noise suppression, image recognition, event classification. When using these methods, in addition
to obtaining new scientific knowledge, it is important also to take advantage of their educational
potential. In this work we present a demo version of the machine-learning based application we
have created, which helps students and a broader audience to get more familiar with the cosmic ray
physics, and shows howmachine learningmethods can be used to analyze data. Thework discusses
the prospects for expanding the application’s functionality and methodological approaches to the
development of interactive outreach materials in this area.
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1. Introduction

Nowadays outreach is of big importance for any field of science. Alongside with informing a
broader public about the most recent progress in modern research, it also contributes to increase of
investigators’ opportunities through attraction of additional funding and manpower—both in form
of citizen science collaborators and new research personnel.

As the interest in advanced IT technologies (such as neural networks, cloud computing and
virtual reality) grows, they find more and more applications in research activities. On the one
hand usage of modern methods increases public interest in research, on the other hand one faces
new challenges related to public scientific communication: educating people both about the new
technologies and how they are used to achieve the research goals, with taking into account the
interdisciplinary nature of this knowledge.

In this work, we study the issue of promoting both machine learning and astroparticle physics.
In order to do so, we consider the experience of our colleagues in outreach projects and analyze
their experience in Section 2, then present our datasets and methods in Section 3, and introduce
the Streamlit [1]-based outreach application developed by us in Section 4. The conclusion is given
in Section 6.

2. Information technologies in outreach projects

The importance of outreach for particle physics and astrophysics is so great in recent years
that, besides the creation of a huge number of outreach and educational projects worldwide, this
has led to the emergence of associations of educators, such as IPPOG [2] and Teilchennetzwerk [3],
as well as special sections dedicated to such projects at major [astro]particle-physics conferences
such as EPS HEP Spring Meeting [4], DPG Spring Meeting [5], and the International Cosmic Ray
Conference [6].

Intensive scientific communication is becoming a popular trend, supported by such large
collaborations as IceCube, Auger [7, 8], KASCADE [9], KARTIN [10], KM3NeT [11], etc., as
well as by large scientific institutions such as DESY [12](Germany), and the National Institute for
Nuclear Physics [13] (INFN, Italy).

A large share of projects in the field of outreach and education is occupied by the segment
of activities aimed primarily at the development of school education (such as QuarkNet [14],
HiSPARC [15], Showers of Knowledge [16], EEE [17]) and focused on high school students and
intensive communication with students and educational institutions.

The involvement of wider audience in science is associated both with citizen science projects
(such as CREDO [18], REINFORCE [11]), and with easier-to-understand formats of excursions,
exhibitions and video presentations.

At the same time, quite often the formats used by projects have the classic form of lectures,
seminars, publications in periodicals and social networks, and while each of the mentioned projects
has social networks and a web-page, the use of modern IT technologies in the outreach area is still
quite limited.

One of the breakthroughs in this regard was the release of Jupyter Notebooks [19] in 2015,
which allowed scientists and communicators to share analysis code in a convenient way. Today,
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this platform is used for outreach by such collaborations as Auger, KASCADE, Tunka-Rex [20] and
many others, and the publication of open materials in this format has become de facto standard for
open data and scientific communication.

Interactive web applications are another interesting example of creating modern interactive
outreach materials. Their distinctive feature is their wide availability that allows to use them on any
mobile device online, without being limited by place or geographic location. Another distinguishing
feature of this group of materials is the focus on the most modern technologies such as virtual reality
and neural networks.

For example, augmented and virtual reality applications [21], developed by IceCube collabo-
ration, allow users to learn more either about the physics of neutrinos and the mechanisms of their
detection, as well as about life of astroparticle researchers at the South Pole.

A gamified web application based on the use of convolutional neural networks (CNN) [22]
was created for TAIGA [23] experiment in the framework of GRADLC initiative. In this work the
CNN, taught on TAIGA IACT’s simulated data is used to determine a particle’s type by its imprint
on the IACT detector.

Interesting examples of interactive high-tech applications are citizen science applications such
as online tools of the Gravitational Wave Open Science Center [24] as well as Cosmic@Web [12],
CREDO detector [18].

The main advantages of applications are their high availability and interactivity. Besides,
they can demonstrate modern technologies “in action” without requiring programming knowledge.
Thus, applications provide an opportunity to increase engagement of current audience and to attract
new one.

An application may be used either individually, or in conjunction with supplementary classes
in educational institutions, or at science festivals for introductory tutorials or as interactive exhibits.

For the stated reasons, we decided to develop our own ML-based application based on open
data from the KASCADE experiment.

3. Materials and methods

3.1 KASCADE open data

KArlsruhe Shower Core and Array DEtector (KASCADE) [25] is an detector aimed to study
the cosmic ray primary composition and hadronic interactions. It was represented by an extensive
air shower array, which included 252 scintillator detectors stations on a rectangular grid measuring
simultaneously the electronic, muonic and hadronic components of the showers and located at
110 m a.s.l., 49◦ N, 8◦ E at the 200 × 200 m2 area. The detectors worked in the energy range
1014–2 × 1016 eV. Later with KASCADE-Grande extension the energy range was extended to
1014–1018 eV. KASCADE (including all extensions) was in the operation from 1996 to 2013.

The data of the KASCADE experiment is published open-access on the KCDC portal [26],
created in 2013 and later expanded within the activities of the GRADLC initiative [27]. Data access
is provided by the websites of both collaborations and by the API.

For this work, we used CORSIKA [28] simulations, generated individually for H, He, C, Si,
Fe primaries employing three modern hadronic interaction models: QGSJet-II.04 [29], EPOS-
LHC [30] and Sibyll 2.3c [31].
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Table 1: The amounts of primary particles in the application datasets.

Dataset primary type total
p He C&O Si Fe

dataset1 900 250 500 700 550 2900
dataset2 1000 500 300 180 200 2180

Two mixed data samples were prepared, numbered 1 and 2 in the application, respectively. The
amounts of primary particles comprising the datasets can be found in table 1.

Both datasets contain the following reconstructed shower components: decimal logarithm of
primary energy lg E , shower core coordinates (X, Y ), zenith angle Ze, azimuth angle Az, decimal
logarithm of electron lg Ne and muon number lg Nµ at observation level, and shower age Age. A
table describing the structure of datasets can be found in Fig. 1 b).

3.2 Machine learning for solving astroparticle problems

The machine-learning models used in the application are described in detail in the work [32]
devoted to mass reconstruction of primaries and determining spectra of individual mass-groups
composition.

They are based on the random forest [33] algorithm, which is an ensemble machine-learning
method, using sets of decision trees on various sub-samples of training data. It is a very well-
know flexible and robust supervised learning algorithm, broadly used for both classification and
regression tasks. The general idea of the method is that a combination of learning models improves
the overall result. In accordance with the basic principle of ensembling, each tree is built on its own
training sample and there is an element of randomness in the choice of splits to ensure the quality
and variety of the underlying algorithms. Our study used an implementation of the random forest
algorithm from the scikit-learn [34] library.

The classifier was trained to return one of the five mass groups based on available hadron-
interaction models using the following quality cuts: X2 + Y2 < 91 m, lg Nµ ≥ 3.6, lg Ne ≥ 4.8,
Ze < 18◦, 0.2 < Age < 2.1.

3.3 Approaches used for deploying neural networks models

There is a large number of solutions used to create custom web apps for machine learning and
data science [35]. The most popular ones are the Dash [36] and Streamlit [1] libraries, and such
solutions as Voila, Shiny, Panel can be used as well [37]. It is also a fairly common approach to
use broader web frameworks such as Django, Tornado, or Flask [38].

The mentioned solutions can be grouped according to such criteria as:

• Supported programming language(s). Shiny only supports the R language, while all the
other approaches work with the Python language, and some also with the Julia.

• Simplicity, which directly affects development speed. One of the leaders in this parameter is
Streamlit. The Voila library also has a relatively simple API.
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a)

c)

e)

b)

d)

Figure 1: a) Interactive interface to explore in-
dividual shower parameters distributions; b) In-
teractive interface to explore some of 2d shower
parameters distributions; c) Interactive interface
to explore individual shower parameters distribu-
tions; d) Interactive interface to explore some of
2d shower parameters distributions; e) Interactive
interface to explore some of 2d shower parameters
distributions.
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• Purpose. While solutions such as Streamlit and Voila are designed specifically for creating
interactive applications in data science, and therefore have rather limited functionality, the
use of general-purpose web frameworks allows one to create more flexible and adaptive
solutions—which, nevertheless, affects development speed and support complexity.

• Popularity: according to GitHub ratings, Streamlit and Dash are currently the most popular
solutions.

• Open-source: whilewhile Streamlit or Flask are open source, Dash has proprietary functions.

Taking into account the above factors, for application development Streamlit library was
choosen together with Docker and Kubernetes for the deployment.

4. Results

4.1 User Interface

The interface of the application we have developed consists of five parts, shown in Fig. 1. The
introductory part provides a summary of the KASCADE experiment and a link to the KCDC site,
where one can learn more about the experiment and it’s data preservation.

The next part of the application is a screen for working with datasets. The top lines of the
selected dataset are displayed in pandas dataframe format. The values of the data parameters are
given. Streamlit allows us to sort the dataset strings by the values of certain parameters. It is also
possible to display more records in the dataset or the entire dataset with a scroll bar.

Preliminary examination of the data can be done by constructing 1d or 2d histograms of
parameter distributions. In this case, a 1d histogram can be built for any parameter at the user’s
choice. The following types of 2d histograms are available:

• shower footprint (X core to Y core distribution)

• Ne to Nµ distribution,

allowing one to make preliminary conclusions about the distributions of values in the presented
datasets. Besides, graphs in Streamlit are interactive and allow actions like zooming in or out and
changing the active area of the screen.

Comparison of the results of machine learning models, and the resulting comparison of
hadronic interaction models is shown in the last section of the interface. The user can choose
between the following particle classification models:

• QGSJet-II.04-based hadron mass composition classifier;

• Epos-LHC-based hadron mass composition classifier;

• Sibyll 2.3c-based hadron mass composition classifier.

The classification results for the selected dataset are shown as a pie chart of the number of
primaries determined by the model. It can be seen that for classifiers trained on various models of
hadronic interaction, some differences in predictions are observed.
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4.2 Backend

GUI

Preprocessing
(cleaning, sclaling)

User

data

Inference

model_1

model_n

Predictions

Docker container

Figure 2: Application schema

The internal structure of the application
corresponds to the diagram in Fig. 2.

The user interacts with the GUI, choosing
a dataset and certain actions performed on the
data. Further, preprocessing of events is possi-
ble, though it is not used in the current version
of the application, since the data we use are
simulated and thus do not require cleaning or
handling of missing values, and decision trees
are very robust machine learning models that
are not sensitive to scaling and normalization
of parameters.

However, when extending an application
to work with other machine learning methods
or to work with custom data, the preprocessing
module becomes important.

To obtain predictions of particle types, we use inference working with pre-trained machine
learning models. The application is containerized using Docker technology to improve the security
and stability of its work.

4.3 Deployment

Development workflow is shown in Fig. 3. Application and deployment git repositories are
being stored separately for security reasons. When new commits arrive to the server, they trigger
TeamCity’s pipelines: if the application repository was updated, the build pipeline will be triggered
first, otherwise the deploy pipeline is launched.

In the case of repository updates, the build pipeline performs a checkout of the application
repository, builds the Docker image and pushes it to the private image registry hosted by JetBrains
Space. Otherwise, the deploy pipeline gets activated and renders the new version of Kubernetes
configuration (e.g. with an updated version tag of the Docker image) from its template files and
applies changes to the cluster.

Then Kubernetes updates its application deployment according to the new configuration (e.g.
downloads the new Docker image).

5. Conclusion

In this work we discussed sharing knowledge onmachine learning for astroparticle physics with
a broad audience. In particular, we looked into sharing our results achieved in neural network-based
analysis of KASCADE particle mass composition [32] within an interactive dedicated software for
data exploration and visualization as well as for comparing predictions of neural networks, fit to
different hadron mass compositions models.

In order to achieve this aim, the modern approaches to outreach in particle astrophysics were
studied. Then, we prepared datasets, based on KASCADE simulations. Using Streamlit web
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Deployment config

Application pod

JB Kubernetes cluster

Build pipeline

Deploy pipeline

JB TeamCity

Deployment git repo

Docker registry

JB Space

Application git repo

GitHub repository

Local development server

Application git repo

Deployment git repo

Figure 3: Deploy schema

framework, as well as Docker and Kubernetes, we have developed and deployed the first data-driven
application based on open data from the KASCADE experiment and machine learning models. The
result application is available online at https://kascade-streamlit.labs.jb.gg.

Furtherwork in this areamay include: expanding the range of available visualizations, enriching
the data format, expanding the number of available machine learning models.
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