
A Vertical Mixture Cure Model for Credit Risk Analysis

Ewa Wycinka and Tomasz Jurkiewicz

Abstract Credit risk assessment is one of the most important tasks of banks and
other financial institutions. There are three main reasons of credit termination:
maturity, early repayment and default. Credits that mature can be considered as
not susceptible to early termination, whereas early repayments can be treated as
competing risk to default. Most credits end on time (mature) or are repaid early,
default happens only for a few percentage of credits. Modelling probability
of default requires taking into account the probability of early repayment and
maturity. We propose the use of a vertical mixture cure model with a cured
fraction to analyse the probability of default. Empirical research was conducted
on the sample of 5,000 consumer credit accounts of a Polish financial institution.
Credits were observed 24 months since origination. The vertical mixture cure
model was estimated with characteristics of borrowers as predictors. The
discrimination ability of the model through 24 months of the credit life span was
compared with a mixture model that has been earlier proposed in the literature.
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1 Introduction

As banks grant loans to consumers, they expect that the capital as well as the
interest will be repaid at predefined times (usually in monthly instalments). For
credits granted for a fixed term, paying back all of the instalments is called
credit maturity (Dirick et al, 2015). Some credits are terminated earlier. Early
repayment means that a credit is fully repaid before the predefined end date.
The second reason for early termination is default, defined as payment of an
instalment overdue by 90 days. The risk of default equates with the credit
risk which is the chance that a borrower will be unable to make the required
payments on his debt obligations.

Accords on capital adequacy, known as The Basel II and Basel III Accords,
legally required more accurate credit risk calculations. This increased the banks’
interest in statistical and operational research models to manage a borrower’s
account during its life, including any possible write-off. Additionally, the
international financial reporting standard IFRS 9 Financial instruments that
came into force in January 2018 extends the requirements in the area of credit
risk analysis by introducing the obligation of probability of default estimation
for more than one year ahead in order to evaluate lifetime expected credit
losses (Vaněk and Hampel, 2017).

There are many statistical and operational research models to manage a
borrower’s account during its life, and possible write-off, but none of them
has been proved to be much better than any other (Thomas et al, 2005). This
legitimises searches for better methods. The purpose of this study is to propose
the use of mixture cure models for competing risks with vertical approach for
the probability of default in time under the control of the probability of early
repayment and the probability of maturity. The rest of the paper is organised
as follows. Section 2 is the review of the most important papers about mixture
cure models, as well as presenting applications of survival methods to credit
risk assessment. In section 3, basic definitions from the competing risks theory
are given. The application of the vertical approach in the analysis of competing
risks using mixture cure models is described in section 4. The next section
comprises the description of the empirical study of the group of credits and
the results of the application of a mixture cure model with competing risks to
default risk assessment. The estimated model will be compared to the mixture
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cure model proposed by Tong et al (2012). The last part of the paper comprises
a discussion of the results and suggestions for further research.

2 Literature Review

Mixture cure models belong to survival analysis methods. The concept of
biostatistical models comprising a cured fraction of patients has a long his-
tory (Farewell, 1986). The first models were proposed by Boag (1949) and
Berkson and Gage (1952). Larson and Dinse (1985) proposed regression models
to assess the effect of covariates on the joint distribution of time and type of
events based on the marginal distribution of the type of event (Equation 5).
Nicolaie et al (2019) proposed a vertical modelling approach based on the
marginal distribution of time to event (Equation 6) to model competing risks with
a cured fraction. Nicolaie et al (2019) used the proposed method in medicine
(the survival of patients with malignant melanoma).

Probably the first ones who adopted survival analysis methods for credit risk
assessment were Green and Shoven (1986). They used a Proportional Hazards
(PH) model to evaluate mortgage termination by refinance. However, after
Narain (1992) applied accelerated failure time models to the risk of default,
the interest in the use of methods of survival analysis to credit risk assessment
increased considerably. Stepanova and Thomas (2002) gave attention to the
presence of competing risks in credit risk assessment and evaluated separate
Cox PH models for default and early repayment. Tong et al (2012) used mixture
cure models to model not only the risk of default, but also the risk of maturity.
Watkins et al (2014) proposed a parametric mixture cure model, based on the
approach presented by Larson and Dinse (1985), to assess in one model the
probability of default, early repayment and maturity. Dirick et al (2015) extended
this approach by replacing the parametric hazards model by a semiparametric
Cox PH model. In this paper, we propose to use vertical models with a cured
fraction for credit risk analysis.

3 Competing Risks

Let (), �) be a bivariate random variable with ) , a continuous variable repre-
senting the time to the first event, and � = : (: = 1, . . . , ?), a discrete variable
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denoting the type of event. Due to the right censoring, the variable (), �) is
only partially observable. We observe a pair (min{),)2}, �). As the result, the
joint distribution of (), �) is difficult to identify.

However, the joint distribution is completely specified by the cumulative
incidence function CIF (also called subdistribution) of the event : , which is the
probability that an event of type : will occur until time C (Lindqvist, 2008)

�: (C) = %()≤C, � = :). (1)

The CIF is not a proper distribution function because

lim
C→∞

�: (C) = %(� = :). (2)

The sum of the cumulative incidence functions for all of the ? types of events is
equal to the overall distribution function (Pintilie, 2006)

� (C) =
?∑

:=1
�: (C). (3)

The CIF can be presented as

�: (C) =
∫ C

0
ℎ: (D)((D) du (4)

where ℎ: (C) is the cause-specific hazard for event : at time C and ((C) is the
overall survival function (the probability of being free of any event prior to
time C), that is ((C) = 1 − � (C) (Pintilie, 2006).

For the bivariate random variable (), �), marginal and conditional distri-
butions can be delineated. Conditional distributions of the bivariate random
variable can be expressed as

% () = C |� = :) = %() = C, � = :)
%(� = :) (5)

and
% (� = : |) = C) = %() = C, � = :)

%() = C) (6)

where %(� = :) is the marginal distribution of event types and %() = C) is the
marginal distribution of the time of the first event.
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4 Vertical Approach to Mixture Cure Models for
Competing Risks

Mixture cure models (cure rate models) assume that an analysed population is
not homogeneous and consists of two subpopulations. The first subpopulation
comprises units that are not susceptible to the event (units that will never experi-
ence the event). These are long event-free survivors. The second subpopulation
includes units that are susceptible to the event. These units experience the event
during follow-up or they will experience the event in time.

Let us consider all the events in spite of the type of an event. Let . be the
indicator of susceptibility with . = 1 if the unit is susceptible to the event,
with the probability %(. = 1) = ? and . = 0 otherwise. The Y variable
is only partially observable. If the event occurs during the follow-up then
. = 1, in the opposite case the unit could be not susceptible or the event
would occur out of the follow-up. The unconditional distribution function in a
mixture cure model approach is

� (C) = pF(C |. = 1) + (1 − ?)� (C |. = 0), (7)

where � (C |. = 0)≡0 is the degenerate distribution function (Peng and Tay-
lor, 2014). Therefore the second element of the sum can be omitted. If the
interest is in the effect of covariates on ) , then the unconditional distribution
function can be expressed as

� (C |G, I) = ?(I)� (C |. = 1, G) (8)

where G and I may or may not be the same vectors of covariates measured at
time zero, related respectively to the probability that the event occurs and the
probability of time to the event. The ?(I) is the probability of being susceptible
and can be evaluated by a logit model

ln
( ?(I)
1 − ?(I)

)
= I) V. (9)

This part of the mixture cure model is called an incidence model. The conditional
(on . = 1) distribution function for the susceptible units can be modelled by the
Cox PH model, through the relation � (C, . = 1) = 1 − ((C, . = 1), as



6 Ewa Wycinka and Tomasz Jurkiewicz

( (C |. = 1, G ) = (0(C |. = 1)exp(G)1) (10)

where (0(C) is a baseline hazard function. This part of the mixture cure model is
called a latency model. Maximum likelihood estimators of the parameters (V, 1)
and the estimator of the function (0(C) are evaluated in an iterative maximisation
algorithm (EM algorithm; Peng and Dear, 2000).

Nicolaie et al (2019) proposed an extension of the above mixture model to the
competing risks by putting the contribution of the cause-specific hazard of the
cause : in an overall hazard in the model. The conditional relative cause-specific
hazard of cause : at time C is defined as

c: (C |. = 1) = %(� = : |) = C, . = 1) (11)

and is the probability that the event of type : occurs given any event occurs and
given time C. This probability can be estimated by a multinomial logit model

ln
( c: (C |D)
1 − c: (C |D)

)
= W)�(C) + h)D (12)

where �(C) is a vector of predefined time functions, e.g. B-spline functions, and
D is a vector of covariates (Nicolaie et al, 2019). To evaluate the conditional on
. = 1 cumulative incidence function (CIF) on cause : , Nicolaie et al (2019)
proposed to compute the cause-specific hazard function from Equation 4 as the
product of the conditional relative cause-specific hazard of cause : (c: (C)) and
the cause specific-hazard for all causes (overall hazard), denoted by h.(C):

�: (C |. = 1, G, D) =
∫ C

0
c: (E |. = 1, D) h.(E |. = 1, G) ((E |. = 1) 3E (13)

where h.(C |. = 1, G) = ℎ0.(C, . = 1) exp(∑<
:=1 V:G:) and ((C, . = 1) are

evaluated by the Cox PH model. Nicolaie et al (2019) proved that the max-
imum likelihood estimators of the parameters (W, h) in Equation 12 can be
estimated separately from estimators of the parameters (V, 1) and an estimator
of the function (0(C).

Finally, the unconditional cumulative incidence function (for the whole
population) can be expressed as

�: (C |I, G, D) = ?(I) �: (C |. = 1, G, D). (14)
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5 Data Analysis

Empirical research was conducted on a sample of 5,000 consumer credit accounts
from a portfolio of 60-month personal loans of a Polish financial institution. All
of the credits were granted in five subsequent months. Each credit was observed
for 24 months or until early repayment or default if that occurred earlier. There
were 2,188 creditors (43.8 %) who repaid all 24 instalments (or had a delay in
payment that was shorter than 90 days), 297 creditors (5.9 %) who defaulted
during the first 24 months, and 2,515 creditors (50.3 %) who repaid the credit
(early repayments). Default is the event of interest, whereas earlier repayment
is considered to be a competing risk. Borrowers who repaid all 24 instalments
were considered to be long-survivors.

The dataset contains typical application characteristics used in credit scoring
such as: amount of credit, amount of the instalments, the purpose of the loan,
age of the applicant, property and educational level. For the requirements
of the financial institution sharing the data, the names of the variables were
anonymised. Variables are denoted by letter X and numbers. Numbers preceded
by an underscore denote the number of the variable’s attributes. Variables
without underline are binary. All the variables were categorised in order
to maximise Kaplan-Meier survival curves between the distinct attributes
(Wycinka, 2015). Because application characteristics were highly correlated
between each other, the association structure of the data was revealed with the
use of Markov network structures (Edera et al, 2014). Variables associated with
the highest number of other variables were included in the model as predictors
whereas variables correlated to them were not selected. Subsequently, a stepwise
Akaike Information Criterion (AIC) procedure was applied to check if any
of the explanatory variable should be removed from the model. Ultimately,
5 predictors were left in the model. The choice of the variables proposed in
this paper is partially subjective but the method is easy to apply and allows to
identify correlated variables.

Different methods of variable selection were used for mixture cure models
by other authors: Tong et al (2012) used backward variable selection to leave
only significant covariates in the model. This method, however, is not proper in
the case of correlated variables (Harrell, 2015). Dirick et al (2015) described
the use of a genetic algorithm as well as some modification of AIC for variable
selection in mixture cure models. The drawback of this method is that it is
time-consuming.
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As the next step in model building, assumption of the proportionality of hazards
in the Cox model was verified with the test proposed by Lin et al (1993) and
Li et al (2015). All the calculations have been made in R (packages: Survival
(Therneau, 2015), goftte (Sfumato and Boher, 2017), SMcure (Chao Cai
and Zhang, 2015), Hmeasure (Anagnostopoulos and Hand, 2019), bnlearn
(Scutari, 2010)). Estimates of the parameters of the model are presented
in Table 1.

Table 1: Estimates of the mixture cure model for default and early repayment (vertical approach).

Covari-
ates

Latency Part Incidence Part Relative Hazard

(Logit Model) (Cox Model) (Logit Model)
OR 95 % CI p-value HR 95 % CI p-value OR 95 % CI p-value

Lower Up-
per

Lower Up-
per

Lower Up-
per

Intercept 3.93 2.44 6.35 0.1397 . . . . 0.12 0.06 0.23 0.0000
X 1_1 1.79 1.09 2.92 0.0287 1.24 1.02 1.51 0.0287 2.06 1.45 2.92 0.0000
X 1_2 0.92 0.72 1.18 0.2153 0.88 0.78 1.00 0.0465 0.45 0.34 0.60 0.0000
X 2_1 0.81 0.58 1.13 0.1500 0.90 0.77 1.06 0.2000 0.87 0.61 1.25 0.4529
X 2_2 0.79 0.55 1.14 0.5130 0.85 0.71 1.01 0.0706 0.65 0.44 0.96 0.0309
X3 1.26 0.96 1.66 0.4578 1.03 0.90 1.20 0.6417 2.17 1.66 2.84 0.0000
X4 1.14 0.70 1.86 0.0739 0.99 0.76 1.28 0.9267 2.66 1.76 4.02 0.0000
X5 0.67 0.48 0.94 0.0363 1.09 0.94 1.26 0.2532 2.36 1.62 3.42 0.0000
bs(Time)1 . . . . . . . . 0.12 0.03 0.56 0.0064
bs(Time)2 . . . . . . . . 1.34 0.58 3.08 0.4874
bs(Time)3 . . . . . . . . 0.99 0.47 2.09 0.9780
(.) = variables not included in the model, bs = B-spline basis function

In the next step, empirical relative cause-specific hazards were calculated as

ĉ: (C |. = 1) = 3tk

3C
(15)

where 3tk is the number of defaults in time C (events of type :) and 3C is the
number of all types of events (both defaults and early repayments) in time C.
The results are presented in Figure 1 (dotted line). Due to the definition of the
default, it could appear for the first time in the third month. In the analysed
sample, the first early repayment was recorded in the fourth month. As a result,
relative cause-specific hazard for the default in the third month is equal to one.
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In subsequent months, values of the relative hazard vary around 0.107 and
slightly grow each month. The effect of time on relative hazard was smoothed
by B-spline functions (Figure 1, solid line).

Figure 1: Relative cause specific hazard of default.

Splines, as well as other covariates, were included in the logit model for relative
hazard (Equation 12). Because there were only two competing risks analysed
(default and early repayment), the multinomial logit model was reduced to a
binary logit model.The results are given in Table 1.

Each part of the model uses the same covariates. However, their role is different.
Let us analyze the variable -2_2 and its parameters. In the latency part, OR =
0.79, which means that the borrower with -2_2 = 1 has a 21 % lower risk of being
susceptible than the reference group. In the incidence part, HR = 0.85, which
means that for a susceptible borrower with -2_2 = 1 the risk of early termination
is 25 % lower than for the reference group. Additionally, OR=0.65 means that the
susceptible borrower with -2_2 = 1 has a 45 % lower risk of termination due to
default than the reference group. The discrimination measures for the model given
in Table 1 are: McFadden’s pseudo R-squared 0.085 and �*� = 0.715.

Finally, conditional and unconditional cumulative incidence functions were
calculated for all of the units. In order to explore how the model fits at each time
C, a set of binary data was created for each moment C, in which one denoted the
unit for which default occurred up to time C and zero denoted the unit for which
default did not occur till time C. The unconditional cumulative incidence function
for default at time C, calculated for each unit, was used as a score function. Four
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different discrimination measures were used: Area under the Receiver Operating
Characteristic Curve (AUC), Kolmogorov-Smirnov statistic, Gini coefficient
and H-measure. Confidence intervals for the measures of discrimination were
calculated as 2.5 and 97.5 percentiles from 10,000 bootstrapped samples. The
results are given in Table 2.

Table 2: Discrimination measures of mixture cure model for default and early repayment (vertical
approach) at different months.

Month H (95 % CI) Gini (95 % CI) AUC (95 % CI) KS (95 % CI)

3 0.410 (0.210-0.640) 0.650 (0.440-0.840) 0.820 (0.720-0.920) 0.580 (0.400-0.780)
4 0.410 (0.260-0.580) 0.660 (0.500-0.820) 0.830 (0.750-0.910) 0.610 (0.450-0.760)
5 0.407 (0.213-0.636) 0.647 (0.436-0.839) 0.823 (0.718-0.920) 0.584 (0.395-0.780)
6 0.414 (0.261-0.585) 0.663 (0.499-0.820) 0.832 (0.749-0.910) 0.605 (0.446-0.762)
7 0.348 (0.226-0.493) 0.617 (0.472-0.757) 0.808 (0.736-0.878) 0.555 (0.425-0.691)
8 0.310 (0.214-0.435) 0.608 (0.494-0.726) 0.804 (0.747-0.863) 0.521 (0.412-0.648)
9 0.247 (0.166-0.354) 0.541 (0.432-0.654) 0.770 (0.716-0.827) 0.447 (0.351-0.562)
10 0.211 (0.137-0.303) 0.488 (0.384-0.597) 0.744 (0.692-0.799) 0.407 (0.311-0.512)
11 0.193 (0.125-0.277) 0.460 (0.357-0.566) 0.730 (0.678-0.783) 0.381 (0.290-0.476)
12 0.207 (0.142-0.283) 0.485 (0.388-0.581) 0.742 (0.694-0.791) 0.405 (0.321-0.494)
13 0.197 (0.137-0.270) 0.469 (0.381-0.563) 0.734 (0.691-0.782) 0.393 (0.313-0.476)
14 0.187 (0.133-0.254) 0.462 (0.376-0.549) 0.731 (0.688-0.774) 0.384 (0.31-0.463)
15 0.178 (0.126-0.242) 0.449 (0.369-0.536) 0.725 (0.684-0.768) 0.366 (0.298-0.441)
16 0.158 (0.108-0.216) 0.418 (0.339-0.503) 0.709 (0.669-0.751) 0.335 (0.271-0.403)
17 0.156 (0.109-0.211) 0.416 (0.338-0.497) 0.708 (0.669-0.748) 0.331 (0.268-0.396)
18 0.159 (0.113-0.212) 0.424 (0.349-0.501) 0.712 (0.674-0.751) 0.337 (0.276-0.400)
19 0.167 (0.120-0.219) 0.437 (0.366-0.511) 0.718 (0.683-0.755) 0.345 (0.287-0.405)
20 0.168 (0.124-0.219) 0.439 (0.370-0.510) 0.720 (0.685-0.755) 0.345 (0.289-0.404)
21 0.173 (0.127-0.223) 0.444 (0.377-0.514) 0.722 (0.688-0.757) 0.348 (0.293-0.408)
22 0.171 (0.126-0.219) 0.442 (0.376-0.512) 0.721 (0.688-0.756) 0.347 (0.290-0.403)
23 0.167 (0.125-0.212) 0.441 (0.377-0.508) 0.721 (0.689-0.754) 0.345 (0.292-0.398)
24 0.169 (0.128-0.212) 0.444 (0.381-0.506) 0.722 (0.691-0.753) 0.345 (0.291-0.399)

CI = Confidence Interval

We also estimated a mixture cure model for default as the only type of event, as
proposed by Tong et al (2012). In this approach early repayments are considered
as censoring. The estimates of the model are given in Table 3. The latency
part of the model evaluates the probability of early termination due to default
whereas the incident part of the model evaluates the distribution of time to
default. In this approach the relative hazard is not estimated. Comparing these
results with Table 1.1, we can observe changes in the values of parameters of
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variables. Let us focus again on the variable -2_2. In the model given in Table 3
in the latency part OR=0.37. This means that borrower with -2_2 = 1 has a
63 % lower risk of default than the reference group. In the latency part HR=1.32
which means that the hazard for a susceptible borrower with -2_2 = 1 is 32 %
higher than for the reference group. The difference from the model given in
Table 1 is caused by the fact that in the model given in Table 3, borrowers
who have made early repayments are treated as censored observations (still
susceptible to default), not as competing risk. Discrimination measures for this
model are shown in Table 4.

Table 3: Estimates of the mixture cure model for default only.

Covari-
ates

Latency Part (Logit Model) Incidence Part (Cox Model)

OR 95 % CI p-value HR 95 % CI p-value
Lower Upper Lower Upper

Intercept 0.33 0.17 0.62 0.0007 . . . .
X1_1 2.33 1.42 3.84 0.0008 1.32 0.77 2.24 0.3140
X1_2 0.37 0.25 0.55 0.0000 0.93 0.57 1.52 0.7634
X2_1 0.43 0.25 0.76 0.0033 1.27 0.66 2.41 0.4734
X2_2 0.37 0.22 0.65 0.0005 1.32 0.71 2.47 0.3857
X3 1.81 1.28 2.56 0.0008 1.30 0.86 1.96 0.2134
X4 1.22 0.64 2.33 0.5442 1.45 0.58 3.62 0.4259
X5 1.24 0.78 1.97 0.3719 1.52 1.00 2.31 0.0478
(.) variables not included in the model

Table 4: Discrimination measures of mixture cure model for default and early repayment (vertical
approach) at different months (1/2).

Month H (95 % CI) Gini (95 % CI) AUC (95 % CI) KS (95 % CI)

3 0.406 (0.216-0.634) 0.649 (0.41-0.837) 0.825 (0.705-0.918) 0.587 (0.402-0.783)
4 0.412 (0.255-0.575) 0.664 (0.489-0.812) 0.832 (0.745-0.906) 0.606 (0.447-0.759)
5 0.343 (0.223-0.482) 0.614 (0.455-0.754) 0.807 (0.727-0.877) 0.548 (0.412-0.678)
6 0.320 (0.222-0.436) 0.615 (0.494-0.727) 0.808 (0.747-0.864) 0.533 (0.423-0.648)
7 0.252 (0.170-0.351) 0.546 (0.434-0.654) 0.773 (0.717-0.827) 0.454 (0.355-0.555)
8 0.219 (0.143-0.303) 0.499 (0.385-0.601) 0.749 (0.692-0.800) 0.416 (0.321-0.509)
9 0.200 (0.131-0.282) 0.469 (0.358-0.572) 0.735 (0.679-0.786) 0.388 (0.297-0.476)
10 0.212 (0.145-0.286) 0.489 (0.388-0.584) 0.745 (0.694-0.792) 0.408 (0.322-0.494)
11 0.202 (0.140-0.274) 0.474 (0.377-0.568) 0.737 (0.689-0.784) 0.397 (0.314-0.482)
12 0.192 (0.134-0.258) 0.467 (0.378-0.554) 0.734 (0.689-0.777) 0.389 (0.313-0.466)
13 0.183 (0.129-0.244) 0.454 (0.369-0.537) 0.727 (0.685-0.769) 0.373 (0.300-0.442)
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Table 4: Discrimination measures of mixture cure model for default and early repayment (vertical
approach) at different months (2/2).

Month H (95 % CI) Gini (95 % CI) AUC (95 % CI) KS (95 % CI)

14 0.162 (0.112-0.220) 0.423 (0.343-0.503) 0.711 (0.671-0.752) 0.340 (0.275-0.406)
15 0.158 (0.110-0.214) 0.419 (0.342-0.500) 0.710 (0.671-0.750) 0.334 (0.271-0.400)
16 0.161 (0.115-0.217) 0.427 (0.355-0.506) 0.714 (0.677-0.753) 0.340 (0.279-0.404)
17 0.168 (0.123-0.225) 0.439 (0.369-0.516) 0.719 (0.684-0.758) 0.347 (0.290-0.412)
18 0.168 (0.125-0.222) 0.440 (0.372-0.516) 0.720 (0.686-0.758) 0.347 (0.292-0.408)
19 0.173 (0.129-0.226) 0.446 (0.377-0.519) 0.723 (0.688-0.759) 0.350 (0.294-0.411)
20 0.170 (0.127-0.221) 0.442 (0.373-0.513) 0.721 (0.686-0.756) 0.346 (0.291-0.406)
21 0.165 (0.123-0.214) 0.441 (0.374-0.507) 0.721 (0.687-0.754) 0.344 (0.289-0.401)
22 0.167 (0.125-0.215) 0.443 (0.378-0.507) 0.721 (0.689-0.754) 0.345 (0.292-0.400)
23 0.157 (0.117-0.201) 0.430 (0.365-0.493) 0.715 (0.682-0.746) 0.333 (0.280-0.384)
24 0.158 (0.119-0.201) 0.431 (0.367-0.492) 0.715 (0.684-0.746) 0.330 (0.278-0.382)

6 Conclusions and Further Research

An application of vertical modelling with a cured fraction was used to evaluate
the lifetime probability of default under the control of the probabilities of early
repayment and maturity. The discrimination power of the above method seems
to be quite satisfactory at all analysed time points and is comparable to the
methods proposed earlier in the literature. Better discrimination ability observed
in the first months compared to later periods is combined with wider confidence
intervals. This is due to a low number of cumulative defaults in the first months.

Covariates used in all of the parts of the mixture cure model were categorised
in order to maximise the difference in survival between the units belonging to
distinct attributes of categorised variables. This strategy seems to be appropriate
in the latency part of the model. However, in the incidence part, categorisation
should be made in favour of a maximisation of the odds ratio of early terminated
credits (both defaults and early repayments) to long survivals. Finally, in the
logit model for relative cause-specific hazards, categorisation of the models
could be prepared only on the set of early terminated credits and should aim to
maximise the odds ratio of defaults to early repaid credits. Since the method
of estimation of the parameters of a mixture cure model with competing risks
allows for different sets of covariates, the above proposition of implementing
different categorisation methods should be considered. Dirick et al (2015)
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applied multiple event mixture cure models based on Equation (5) to credit
risk assessment. For further research, it would be interesting to compare that
approach, using the same data set, with the one presented in this paper.
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