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ABSTRACT

To ensure safety and ease of navigation and to protect the adjacent terrain, sloped
banks at inland waterways are commonly secured by bank protections, which safe-
guard slopes against erosion, e. g. caused by hydraulic loading from shipping and,
if applicable, natural currents. Bank protection, which serve as superimposed load,
reduce the risk of local slope sliding failure and liquefaction resulting from ship-
induced rapid lowering of the water level.

In order to promote inland shipping as a sustainable transport mode, it is required
to provide a sustainable waterway infrastructure, which, for instance, allows for a
broad navigability of larger or more powerful vessels. As a result of high design
standards which bank protections had and still have to meet, to date, the expan-
sion of a waterway is required to allow for the passage of larger vessels, which,
in turn, resulted in large construction and ecological costs. However, under in-
creasing economic and ecological pressures, an increased utilisation of the exist-
ing infrastructure, possibly with a reduction of standards, attracts growing atten-
tion.

Current deterministic design approaches eschew any information on risks and lack
a systematic basis for evaluating the degree of conservativeness inherent to design.
They account for uncertainties arising from the definition of characteristic values of
actions and material parameters as well as from the design model itself by conser-
vative design assumptions and empirical knowledge. However, the development
of a sustainable design and maintenance strategy involves meaningful key figures
about the performance of a structure over lifetime, considering site-specific design
conditions and with respect to risks associated with failure.

Using the example of loose armour stone revetments at German inland waterways,
this thesis examines how probabilistic methods can be applied to revetment design.
It is assumed that a reliability-based approach provides comparable key figures
such as the reliability index or the probability of failure, which allow for a systematic
evaluation of the degree of conservativeness inherent to design. Moreover, it is
assumed that updated recommendations for the choice of characteristic values, the
consideration of their probability of occurrence as well as the clarification of limit
states will allow for a project-specific design that accounts for local traffic and safety
requirements. Conservative design assumptions can be replaced by site-specific
knowledge.

By means of expert interviews, the most significant causes of damage and damage
types as well as current maintenance procedures are explored. Sensitivity analyses
are performed to identify significant input parameters. Reliability analyses assist in
investigating the most significant parameter uncertainties inherent to actions and
material parameters. Within the scope of this thesis, statistical uncertainty is in-
vestigated by an extended bootstrapping approach; model factors are determined
to account for transformation uncertainty, and a random field approach is used
to quantify the effects of spatial variability of soil properties on revetment design.
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As for the practitioner, the effect of parameter uncertainty on the resulting armour
stone size and armour layer thickness is studied.

Based on the findings of this thesis, a probabilistic design concept for bank revet-
ments is drafted and supplementary recommendations regarding selected aspects
of such a probabilistic design concept are outlined.
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UBERBLICK

Zur Gewahrleistung der Sicherheit und Leichtigkeit der Schifffahrt und zum Schutz
des angrenzenden Gelandes werden gebdschte Ufer an Binnenwasserstrafsen durch
Ufersicherungen geschiitzt. Diese sichern die Boschung vor Erosion, z. B. verursacht
durch hydraulische Belastungen der Schifffahrt und gegebenenfalls nattirliche Stro-
mungen. Ufersicherungen, die als Auflast dienen, verringern das Risiko einer loka-
len Boschungsrutschung und einer Verfliissigung des Bodens infolge einer schiffs-
induzierten schnellen Wasserstandsanderung.

Um die Binnenschifffahrt als nachhaltigen Verkehrstrager zu fordern, bedarf es ei-
ner Wasserstrafieninfrastruktur, die z. B. eine weitgehende Befahrbarkeit durch gro-
Bere oder leistungsfahigere Schiffe erlaubt. Aufgrund der hohen Bemessungsstan-
dards, denen Ufersicherungen entsprachen und heute entsprechen miissen, ist bis-
her der Ausbau einer Wasserstrafse erforderlich, um die Durchfahrt grofserer Schiffe
zu ermoglichen, was wiederum hohe bauliche und 6kologische Kosten verursachte.
Unter zunehmendem wirtschaftlichen und 6kologischen Druck gewinnt eine Nut-
zung der bestehenden Infrastruktur, moglicherweise mit einer Reduzierung der Be-
messungsstandards, an Aufmerksamkeit.

Derzeitigen deterministischen Bemessungsansatzen fehlt es an Information hinsicht-
lich Risiken und einer systematischen Grundlage fiir die Bewertung implizit im
Bemessungsansatz enthaltener Sicherheiten. Deterministische Bemessungsansatze
berticksichtigen die Unsicherheiten, die sich aus der Definition charakteristischer
Einwirkungen und Widerstande sowie durch das Bemessungsmodell selbst erge-
ben, durch konservative Annahmen und empirisches Wissen. Die Entwicklung ei-
ner nachhaltigen Bemessungs- und Instandhaltungsstrategie beinhaltet jedoch aus-
sagekréftige Kennzahlen zur Leistungsfahigkeit eines Bauwerks iiber seine Lebens-
dauer unter Beriicksichtigung standortspezifischer Bemessungsbedingungen und
im Hinblick auf die mit einem Versagen verbundenen Risiken.

In dieser Arbeit wird am Beispiel von losen Schiittsteindeckwerken an deutschen
Binnenwasserstrafien untersucht, wie probabilistische Methoden auf die Deckwerks-
bemessung angewendet werden konnen. Es wird davon ausgegangen, dass ein zu-
verlassigkeitsbasierter Ansatz Kennzahlen wie den Zuverlassigkeitsindex oder die
Versagenswahrscheinlichkeit liefert, die eine systematische Bewertung der system-
inhdrenten Sicherheiten einer Bemessung erlauben. Dariiber hinaus wird angenom-
men, dass aktualisierte Empfehlungen fiir die Wahl charakteristischer Kennwerte,
die Berticksichtigung ihrer Wahrscheinlichkeit sowie die Spezifizierung von Grenz-
zustanden eine projektspezifische Bemessung unter Beriicksichtigung der ortlichen
Verkehrs- und Sicherheitsanforderungen ermoglichen. Konservative Bemessungs-
annahmen kénnen so durch standortspezifisches Wissen ersetzt werden.

Mit Hilfe von Experteninterviews werden die wichtigsten Schadensursachen und
Schadensarten sowie aktuelle Instandhaltungsstrategien untersucht. Sensitivitats-
analysen dienen der Identifikation signifikanter Eingangsparameter. Zuverlassig-
keitsanalysen helfen bei der Untersuchung der Parameterunsicherheiten verbun-
den mit Einwirkungen und Widerstanden. Im Rahmen dieser Arbeit wird die statis-
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tische Unsicherheit durch einen erweiterten Bootstrapping-Ansatz untersucht; Mo-
dellfaktoren werden bestimmt, um der Transformationsunsicherheit Rechnung zu
tragen, und ein random field - Ansatz wird verwendet, um den Einfluss der raumli-
chen Variabilitat der Bodeneigenschaften auf die Deckwerksbemessung zu quanti-
fizieren. Was den Praktiker betrifft, so wird der Einfluss der Parameterunsicherheit
auf die resultierenden Steindurchmesser und die Deckschichtdicke untersucht.

Basierend auf den Ergebnissen dieser Arbeit wird ein probabilistisches Bemessungs-
konzept fiir Deckwerke entworfen und erganzende Empfehlungen zu ausgewahl-
ten Aspekten eines solchen probabilistischen Bemessungskonzeptes skizziert.
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Notation

Notation

Although some symbols are used with multiple indexes, they are usually listed only once as
examples. Exceptions are symbols whose meaning changes with the index. The dimensions
are: length [L], mass [M] and time [T].

Greek letters

Parameter Dimension Definition

o4 [1] importance factor

B [LL~1] slope angle

Bo [1] regression parameter

b1 [1] regression parameter

Bc [1] Cornell reliability index

BrL [1] Hasofer-Lind reliability index

Bw [LL~1] angle between wave crest of secondary diver-
ging wave and the axis of the ship or the bank
line

VB [ML2T2?] unit weight of soil

Vg [ML2T?] buoyant unit weight of soil below the ground-
water table

Y [ML2T72] buoyant unit weight of the armour stones below
the groundwater table

Ve [ML2T?] buoyant unit weight of the filter layer below the
groundwater table

s [ML2T?] unit weight of armour stones

7G,d [1] partial factor of resistances

7Q [1] partial factor of actions

Ap [ML~1T—2] excess pore pressure

€ M error

¢ [1] similarity parameter

0 [L] scale of fluctuation

7 M mean

vp [1] mean occurrence rate of Poisson distribution

£ M standard deviation of e

p [1] correlation coefficient

PP [1] Pearson correlation coefficient

s [ML~3] armour stone density

Pw [ML~3] water density

o [1] standard deviation

o [ML~1T—2] effective normal stress

o, [ML~1T—2] effective vertical overburden stress

T [ML™1T2] shear stress

TA [ML~IT—2] additional stress from a revetment suspension

TF [ML~1T2] additional stress from a toe support

T [ML~IT—2] shear strength
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Notation

Parameter Dimension Definition
) [1] standard density function of a Gaussian distri-
bution
¢ [LL~1] effective friction angle of soil
qﬁb/hydr [LL~1] angle of repose of the armour stones
P [1] Shield’s parameter
Latin letters
Parameter Dimension Definition
a [1] pore pressure parameter
A [L?] cross-section area
b [1] pore pressure parameter
b* [1] pore pressure parameter att=5s
bws [L] water surface width
B [L] vessel width
B* [1] uniaxial loading efficiency parameter
B [1] empirical factor considering the fre-
quency of occurrence
By [1] empirical factor considering the revet-
ment stability (stability coefficient)
bws [L] water surface width
c [1] consolidation coefficient
¢ [ML~'T—2] effective cohesion of soil
Chs [1] empirical factor considering the slope in-
clination
Cisb [1] Izbash factor
cov [1] coefficient of variance
dp [L] armour layer thickness
dp, pres [L] in-situ armour layer thickness
dp, req [L] required armour layer thickness
dr [L] filter layer thickness
derit [L] critical depth of failure surface
deritB [L] critical depth of failure surface to prevent
soil liquefaction
dshore [L] passing distance at the shore
D [L] sieve diameter
D5 [L] mean armour stone diameter
D50 req [L] required mean armour stone diameter
Ds0,pres [L] in-situ mean armour stone diameter
Dy 50 [L] nominal armour stone diameter
E M expected value
Eoed [ML™1T—?] oedometric modulus
EFE [1] elementary effects
f [1] density function
F [1] distribution function
FO [1] Sobol First Order index
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xiii

Parameter Dimension Definition
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g [ML2T?] required unit weight under buoyancy

g0 [LT—?] gravity

Hgesign [L] design wave height

Hgeo [L] secondary wave height

Heec div [L] divergent secondary wave height

Hsecq [L] secondary transversal stern wave height

Hec trans [L] transversal secondary wave height

Hyow [L] maximum bow wave height at the bank
for an eccentric sailing line

Hgtern [L] maximum stern wave height at the bank
for an eccentric sailing line

Hgtern, design [L] stern wave height relevant to the determ-
ine the armour stone size

I [1] indicator function

k [LT] hydraulic conductivity

k1 [1] stability criterion in Izbash (1935) equa-
tion

et [LT ] effective hydraulic conductivity

K, [ML~1T—2] bulk modulus of the gas

K [ML™1T?] bulk modulus of the solid

Ky, [ML~!T—2] bulk modulus of water

Kuwg [ML~1T—?] bulk modulus of the water-gas-mixture

L [L] vessel length

m [LL™1] slope inclination

M M model factor

N [1] number of simulations

Ns [1] stability number describing the stability
of riprap against wave attack

m [1] number of variables, layers, ...

n [1] porosity of soil

Ny [1] porosity of armour layer

O [1] origin

Ds [1] probability of failure

P [1] design point in standard space

Qc [MLT?] calculated loads

Qm [MLT?] measured loads

S [L3L73] degree of water saturation

Sq [1] cumulative damage

SF [1] shape factor

SO [1] Sobol Second Order index

ST [1] Sobol Total Order index

ta [T] drawdown time

T [L] vessel draught

11 [L] layer thickness

Tm [T] mean wave period
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Parameter Dimension Definition
u* [1] minimum distance between origin and
P*inU
Ue [LT~1] flow velocity
Umax [LT ] slope supply flow
Uy [L] vertical displacement
U [1] standard normal space
Verit [LT1] critical vessel velocity
Umax [LT1] maximum flow velocity
Uperm [LT ] permitted speed according to BinSchStrO
Vreturn [LT_l] return current velocity
Vs [LT1] vessel velocity
Vgza [LT~1] drawdown rate
% M variance
x M values of random variable X
X M random variable
Xc M calculated response
Xm M measured response
Y [L] depth of plane in random field analysis
Y M model output
z [L] depth in soil perpendicular to the slope
Za [L] change in water level
'Individually defined
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1 | INTRODUCTION

‘If I have a thousand ideas and only one turns out to be good, I am satisfied.’

—Alfred Nobel, Swedish chemist & creator of the Nobel prizes
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1 Introduction

1.1 Motivation

To ensure safety and ease of navigation and to protect the adjacent terrain, sloped banks at
inland waterways are commonly secured by bank protections (see Figure 1.1), which safeguard
a slope against erosion, e.g. caused by hydraulic loading from shipping and, if applicable,
natural currents. Bank protections, which serve as overburden load, reduce the risk of a local
slope sliding failure and liquefaction resulting from a ship-induced rapid lowering of the water
level. Revetments are the most common bank protection type. Other means of bank protections
are sheet pile walls or biological/biological-technical bank protections.

Figure 1.1: Common bank protections at inland waterways (Photos: BAWArchiv).

In order to promote inland shipping as a sustainable transport mode, it is required to provide
a sustainable waterway infrastructure, which, for instance, allows for a broad navigability of
larger or more powerful vessels. As a result of high design standards that bank protections
had and still have to meet, to date, the expansion of a waterway is required to allow for the
passage of larger vessels, which, in turn, resulted in large construction and ecological costs.
However, under increasing economic and ecological pressures, the design of bank protections
according to proven standards is more and more being questioned. This applies in particular to
waterways where the volume of traffic is expected to remain low, while at the same time larger
vessels may be expected. An increased utilisation of the existing infrastructure, possibly with a
reduction of standards, attracts growing attention.

At present, design values of actions are obtained by empirical equations and worst-case “design
vessel passages”. Following current standards, e.g. (DIN 4020:2010-12, 2010), characteristic
material parameters are commonly defined on the basis of field and laboratory tests. Yet, the
number of samples may not allow for statistical data evaluation. Thus, uncertainties arise with
regard to characteristic action and material parameters, which design standards try to account
for by presumably conservative design assumptions and empirical knowledge. While these
approaches may be suitable, they eschew any information on risks and lack a systematic basis
for evaluating the degree of (non-)conservativeness inherent to design.

Moreover, in contrast to Eurocode standards, current design standards for revetments do not
clearly differentiate between different categories of limit states. Damage that endangers slope
stability is not distinguished from damage that affects the serviceability. The formulation of the
design equations only allows to determine minimum design specifications that ensure slope and
revetment stability. Conclusively, they do not yield a comparable measure for the system per-
formance, which relates to the stability of the revetment and embankment itself.
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1.2 Addressing uncertainty

However, the development of a sustainable design and maintenance strategy involves mean-
ingful key figures about the performance of a structure over lifetime, under consideration of
site-specific design conditions and with respect to risks associated with failure. A reliability-
based or a semi-probabilistic approach can assist in providing consistent information about the
condition of the waterway while meeting the above discussed requirements. It allows to incor-
porate site-specific information like field observations while, at the same time, accounting for
the uncertainties arising from the lack of knowledge inherent to data and design models. In the
future, the generated key figures can assist in quantifying the effects of a reduction of standards
on revetment conditions and necessary maintenance.

1.2 Addressing uncertainty

Although various classifications of uncertainties exist, the most common is the differentiation
between aleatory and epistemic uncertainty. Aleatory uncertainty refers to an inherent uncertainty
due to natural variability such as a variation of soil properties and load intensity, whereas the
epistemic uncertainty describes a lack of knowledge caused by limited, insufficient or imprecise
data or models.

In the case of revetment design, aleatory and epistemic uncertainty can be further divided into
various uncertainties such as transformation uncertainty, statistical uncertainty or spatial vari-
ability contributing to the overall uncertainty of the design. Neither loads nor resistances can be
characterised without uncertainty due to their random nature. For instance, there is an apparent
intrinsic randomness of the characteristic soil properties, since the subsoil is not a standardised
pre-fabricated material such as steel or concrete. The interaction of climate, relief, organisms
and the initial rock material in combination with physical, chemical and biological processes
over time lead to inhomogeneity and anisotropy of soil and, thus, the resulting soil proper-
ties. Characteristic actions, amongst others, may differ depending on the specific waterway
and the characteristics of the selected observation location. In addition, the limited number
of measurements contributes to the uncertainty of actions and material parameters. Finally, it
is emphasised that the design models themselves comprise model uncertainties. The geotech-
nical and hydraulic design equations are a simplification of real-world problems and based on
empirical and semi-empirical methods, which require conservative assumptions and physical
simplifications. An illustration of uncertainties that are related to the design of bank revetments
at inland waterways is given in Figure 1.2.

A precise assignment of uncertainties is difficult, as all types of uncertainty contribute to total
uncertainty and depend on the context of application. Physical, financial and time constraints
impede specification and evaluation of all of the above uncertainties. The so-called unknown
unknowns (“black swans”) require alternative strategies such as robust or resilient design (Phoon,
2020).

1.3 Objectives and methodologies

Uncertainties are inherent to each design and construction in engineering. Various empirical
and semi-empirical methods that commonly require conservative assumptions and physical
simplifications have been proposed to deal with uncertainties. While these approaches may be
suitable, they lack a systematic evaluation of uncertainty. As stated by ISO 2394:2015-03 (2015,
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Figure 1.2: Sources of aleatory and epistemic uncertainty associated with the revetment design along inland water-
ways. The blue circle in the centre represents the “unknown unknowns”. The underlined sources of uncertainty
are accounted for in this thesis.

p- 17), however, “uncertainties shall be represented in the decision process through probabilistic
models such as random variables, stochastic processes and/or random fields.”

This thesis aims at complementing the revetment design by introducing reliability-based meth-
ods. It is assumed that a reliability-based approach provides comparable key figures such as
the reliability index or the probability of failure, which allow for a systematic evaluation of the
degree of (non-)conservativeness inherent to a design. Moreover, it is assumed that updated
recommendations for the choice of characteristic values, the consideration of their probability
of occurrence as well as the clarification of limit states will allow for a project-specific design
that accounts for local traffic and safety requirements. Presumably conservative assumptions
are replaced by site-specific knowledge.

Main objectives of the investigations are:

* to adapt the concept of a reliability-based design for revetments and to evaluate its ap-
plicability by comparing results of deterministic and reliability-based design

* to understand how parameter uncertainty affects revetment design

Based on these objectives, the procedures pursued within this thesis are described as follows:

Using the example of loose armour stone revetments at German inland waterways, it is ex-
amined how probabilistic methods can be applied to revetment design. Qualitative and quant-
itative methods of data collection and evaluation are combined. Sources of uncertainty and
common ways to deal with them are identified by means of a literature review. Expert inter-
views are employed to explore the most significant causes of damage and damage types as well
as current maintenance procedures. Sensitivity analyses are performed to identify significant
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1.4 Outline and contents summary

input parameters. By means of reliability analyses, the most significant parameter uncertain-
ties inherent to basic variables such as actions and material strength are investigated. As for the
practitioner, the effect of parameter uncertainty on the resulting armour stone size and armour
layer thickness is studied.

1.4 Outline and contents summary

Figure 1.3 shows the general outline of this thesis. The outline reflects the two main aspects
of the methods outlined above; that is data collection and uncertainty analysis of actions and
soil parameters. A literature review and seven additional appendices provide supplementary
information. The chapters of the thesis are summarised as follows:

Introduction
Chapter 1
Theory on revetment design Theory on reliability assessment )
g L Chapter 2 Chapter 2
«©
=l
2 f Reliability-based revetment design
- Chapter 2
- J
f Field investigations & data quality )
Chapter 3
.5 apter
‘.5 ( R R N
= Expert interviews
5] Chapter 4
] - J
s
A Sensitivity analysis
L Chapter 5 ]
é Uncertainty of actions Uncertainty of material parameters
s Statistical uncertainty
2
= Chapter 6
S
g Transformation uncertainty Spatial soil variability
'f) Chapter 7 Chapter 8
- J
( 7
Summary & conclusions
Chapter 9

Figure 1.3: Outline of the thesis.
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1 Introduction

In Chapter 2, the theoretical background of revetment design and probability theory are in-
troduced. Common methods of a reliability-based design are briefly summarised. Current
research regarding a reliability-based revetment design is outlined. Knowledge gaps are iden-
tified and, thereby, the research questions specified.

In Chapter 3, four field campaigns are introduced as exemplary datasets, which illustrate the
proposed approaches throughout this thesis. Data quality measures are discussed and applied
to the evaluation of the four exemplary datasets.

Chapter 4 investigates which limit states apply to the geotechnical and hydraulic revetment
design. By means of expert interviews, significant damage causes and modes of failure are
identified. Based on these results, applicable limit states are specified. Furthermore, it is ex-
amined how maintenance is currently conducted.

Chapter 5 elaborates the design models with respect to the required design parameters. Sens-
itivity analyses allow, amongst others, to gain insight into the relative importance of the vari-
ous input parameters of design models and assist in identifying limitations of employed mod-
els.

From the Bayesian point of view, statistical uncertainty is a result of limited information such as
a limited number of field observations. When fitting a parametric distribution to limited data,
the parameters of the distribution are of random nature. Based on the exemplary datasets,
Chapter 6 quantifies the uncertainty that results from the limited number of samples by means
of bootstrapping.

Transformation uncertainties inherent to the calculation of characteristic values of actions are
investigated in Chapter 7. Each campaign contains information on vessel passages such as
velocity, bank distance and vessel geometry and on the majority of resulting hydraulic loads.
Measured loads are compared to calculated loads aiming for a characterisation of transform-
ation uncertainty. A model factor approach which may simplify the collection of field data is
introduced. Transformation uncertainty of material parameters is not confined to revetment
design, as it affects all forms of geotechnical constructions. It is therefore not considered in this
thesis.

Inhomogeneous soil parameters such as a locally variable shear strength and hydraulic conduct-
ivity may affect the level of safety obtained with deterministic design approaches. Chapter 8
elaborates the safety margins inherent to the geotechnical design and provides guidance regard-
ing the choice of characteristic soil parameters required in revetment design.

Finally, based on the main findings of the previous chapters, Chapter 9 offers a draft of a prob-
abilistic design concept for bank revetments. For this purpose, the main findings from this work
are summarised. Recommendations regarding specific aspects of a probabilistic design concept
are outlined. Potentials for future research and development are discussed.
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ADDRESSING UNCERTAINTY:

2
RELIABILITY-BASED REVETMENT DESIGN
‘Traditionally, engineering and civil engineering are very deterministic in
their teaching and in the attitude of their practitioners. When something
goes wrong, it takes them by surprise. And yet, all things they are handling,
the raw materials, the input and the output, are random processes. If that
can be taken seriously, the method of design can be improved considerably.’
—Peter Lumb, Professor of Civil Engineering at the University of Hong
Kong
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2.1 Introduction

2.1 Introduction

In order to enable operators of waterways to make optimal use of their resources, future revet-
ment design should aim for a project-specific design targeting local traffic and safety require-
ments. Since the use of site-specific information may reduce or increase safety margins included
in present design standards, uncertainties inherent to input variables and design models must
be considered. Limit states must be defined with respect to risk.

This chapter introduces the theoretical background of revetment design and probability the-
ory in detail. Section 2.2 outlines typical constructions of revetments at inland waterways.
Secondly, current deterministic design approaches for revetments (Section 2.3) are presented
and typical damage and failure types as well as their causes are summarised (Section 2.4). Sub-
sequently, methods applied in probabilistic engineering are briefly introduced (Section 2.5).
This is followed by a review of different types of uncertainty which apply in particular to revet-
ment design (Section 2.6). Finally, after a summary and critical evaluation of the present state of
knowledge, the objectives and further procedure of this thesis are specified (Section 2.7).

2.2 Bank revetments at inland waterways

Banks at inland waterways mostly exhibit inclinations of 1:3 (height:length), in rare cases up to
1:2. Most frequently, technical bank revetments are installed, which secure the bank from the
bottom of the river or canal to the highest possible wave emergence (MAR, 2008). Revetments
are built of an erosion-resistant cover layer, a filter layer and, if necessary, a sealing layer below.
There are various types of cover layers, the installation of which depends in particular on the
expected hydraulic loads. The different types of cover layer are summarised in Figure 2.1. This
thesis uses the example of loose rip-rap revetments as a common revetment type at German
inland waterways.

revetments
[
v v v v
monolithic rip-rap technical-biological
I .
block revetments revetments revetments bank protection
[ [
v v v v

loose block interlocking loose rip-rap grouted rip-rap
revetments block revetments revetments revetments

Figure 2.1: Overview of revetment types. Adopted from (Gier, 2017) and supplemented. Subject of this thesis are
loose rip-rap revetments as indicated by the grey shaded rectangle.

For rip-rap revetments, the erosion-resistant cover layer is typically made up of armour stones.
The weight of the cover layer ensures the local stability of the bank against slope sliding and
liquefaction. The filter layer ensures the stability of the base soils by preventing the erosion of
finer material below the filter layer (MAR, 2008; PIANC, 1987a). An important element for a
revetment is the toe protection. Using an embedded toe where the revetment is placed 1.0m
to 1.5m below the river or canal bed is common practice today. Further design types are toe
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2 Addressing uncertainty: Reliability-based revetment design

blankets and sheet pile walls. By providing additional shear strength, the toe support allows for
lower layer thicknesses and prevents the revetment from being destroyed at the toe by hydraulic
attack, especially when ships navigate close to the bank. Figure 2.2 shows a standard revetment
design built in Germany.

Mineral filter layer
or geotextile

Armour stones or .

bt L1
cover layer - mineral filter
~ layer

Figure 2.2: Revetment in construction. Visualisation of revetment elements (Photo: BAWArchiv).

2.3 Deterministic revetment design

2.3.1 Design standards

The design of revetments is distinguished into a hydraulic and a geotechnical design. The
hydraulic design specifies the minimum armour stone diameter necessary to withstand ship-
induced and natural waves and currents. The geotechnical design evaluates the required weight
of the cover layer which ensures local embankment stability (GBB, 2010; PIANC, 1987a, 1989;
Rock Manual, 2007). In the case of loose armour stone revetments, the required weight of the
cover layer is transferred into a layer thickness.

Figure 2.3 shows a graphical representation of the current model for revetment design. As
commonly accepted in slope stability analyses, input variables, which are subsequently also
referred to as basic variables, are differentiated in actions and material parameters. Actions
include waves, currents and drawdown. In the context of this thesis, they are also called hy-
draulic loads. On the resistance side, the material parameters, e. g. friction angle and hydraulic
conductivity, of armour stones and soil are considered in this thesis. This corresponds to the
partial factor approach of DIN EN 1997-1:2014-03 (2010), where, in the case of slope stability, ac-
tions and material strength are compared with regard to predefined limit states. Parameter and
model uncertainties are accounted for by selecting characteristic values, locally non-specific par-
tial and empirical factors (GBB, 2010; Rock Manual, 2007; USACE, 1997).

On an international level a number of design standards exists of which an overview is given in
Table 2.1 with brief reference to their main scope of application.
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2.3 Deterministic revetment design
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Figure 2.3: Deterministic design model, input variables and uncertainties. The grey highlighted boxes indicate hydraulic loads; white boxes indicate material parameters.
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2 Addressing uncertainty: Reliability-based revetment design

Table 2.1: Summary of international (English) design guidelines for bottom and bank revetments and their main

scope.
Design code Editor Year  Coun-  Scope Source
try
BAW Code of Practice: Principles Bundesanstalt fiir 2010 Ger- Design of rip-rap re- GBB
for the Design of Bank and Bot- Wasserbau many vetments for inland (2010)
tom Protection for Inland Water- (BAW) waterways
ways (GBB)
BAW Code of Practice: Use of Bundesanstaltfiir 2008 Ger-  Design of rip-rap re- MAR
Standard Construction Methods for ~ Wasserbau many vetments for inland (2008)
Bank and Bottom Protection on In- (BAW) waterways for stand-
land Waterways (MAR) ard canal geometries
The Rock Manual. The use of rock CIRIA, CUR, 2007 UK, Design and construc- Rock
in hydraulic engineering CETMEF France, tion of coastal, inland =~ Manual
Neth-  waterway and clos- (2007)
er- ure structures made
lands  of rock
Coastal Engineering Manual US Army Corps 2002 USA  Design and expec- us
of Engineers ted performance of Army
a broad variety of Corps of
coastal projects such  Engin-
as harbours, flood eers
protection or beach (2002)
erosion control
Design of Coastal Revetments, Sea- US Army Corps 1997 USA  Design of coastal USACE
walls, and Bulkheads of Engineers revetments, seawalls, (1997)
and bulkheads
Report of Working Group II-21: Permanent 1992 Inter-  Design and construc- PIANC
Guidelines for the design and con- International na- tion of flexible revet-  (1992b)
struction of flexible revetments in-  Association of tional  ments for a maritime
corporating geotextiles in marine Navigation environment with an
environment Congresses emphasis on geotex-
(PIANC) tile as filter layer
Design of Riprap Revetments U.S. Department 1989 USA  Design of revetments  PIANC
of Transportation for canals and rivers (1989)
with emphasis on rip-
rap revetments
Risk consideration when determin- Permanent 1987  Inter-  Application of risk PIANC
ing bank protection requirements International na- analysis for the (1987b)
Association of tional  design of bottom and
Navigation bank revetments of
Congresses inland waterways
(PIANC)
Report of Working Group I-4: Permanent 1987  Inter-  Design and construc- PIANC
Guidelines for the design and International na- tion of flexible revet-  (1987a)
construction of flexible revetments Association of tional  ments for inland wa-
incorporating geotextiles for inland Navigation terways with an em-
waterways Congresses phasis on geotextile
(PIANC) as filter layer
Shore Protection Manual. VolumeI US Army Corps 1984 USA  Design and construc-  USACE
and II of Engineers tion of coastal struc- (1984a,b)
tures, small section
on design of canals
revetments
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2.3 Deterministic revetment design

2.3.2 Ship-induced loads

Ship-induced loads in a limited cross-section comprise waves, currents and a rapid lowering of
the water level, which is subsequently referred to as drawdown, see Figure 2.4. During man-
oeuvring, propulsion caused by the propeller jet may act on the bank (GBB, 2010). The mag-
nitude of the hydraulic e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>