
Malware in Motion

Robert Choudhury 1 a, Zhiyuan Luo 1 b and Khuong An Nguyen2 c

1Royal Holloway University of London, Surrey, TW20 0EX, United Kingdom
2University of Brighton, East Sussex BN2 4GJ, United Kingdom

Robert.Choudhury.2015@live.rhul.ac.uk, Zhiyuan.Luo@rhul.ac.uk, K.A.Nguyen@brighton.ac.uk

Keywords: Dynamic Analysis, Mobile Security, Reverse Turing.

Abstract: Malicious software (malware) is designed to circumvent the security policy of the host device. Smartphones
represent an attractive target to malware authors as they are often a rich source of sensitive information.
Attractive targets for attackers are sensors (such as cameras or microphones) which allow observation of the
victims in real time. To counteract this threat, there has been a tightening of privileges on mobile devices with
respect to sensors, with app developers being required to declare which sensors they need access to, as well
as the users needing to give consent. We demonstrate by conducting a survey of publicly accessible malware
analysis platforms that there are still implementations of sensors which are trivial to detect without exposing
the malicious intent of a program. We also show how that, despite changes to the permission model, it is still
possible to fingerprint an analysis environment even when the analysis is carried using a physical device with
the novel use of Android’s Activity Recognition API.

1 INTRODUCTION

Within Security the practice of misinformation is
utilised by both malware authors (who try to make
their creations’ purpose appear benign) and by secu-
rity analysts who wish to observe the behaviour of the
malware and therefore try to make their analysis envi-
ronment transparent to the malware. The technique of
hiding the intention of malware is known as evasion
and the technique of making an analysis environment
such as a sandbox appear to be a legitimate target is
known as hardening (Ferrand, 2015).

Because the process of finding exploits to elevate
privilege on the target machine or inventing a means
of propagation is an expense, malware authors will
seek to hide these techniques by evading analysis.
Evasion in malware can be achieved by using meth-
ods such as detecting the threat of analysis and then
changing behaviour to benign or by stalling malicious
execution until the malware is no longer under analy-
sis.

Another motivation of the malware author is that
they may wish to avoid detection so as not to alert a
high value target who may develop countermeasures.

a https://orcid.org/0000-0003-0974-7920
b https://orcid.org/0000-0002-3336-3751
c https://orcid.org/0000-0001-6198-9295

Therefore, in order to maximise the impact of the mal-
ware created it is important that it evades analysis un-
til it has achieved its objective. For example, in the
case of Ransomware this would be the successful en-
cryption of files and the delivery of the ransom mes-
sage to the victim. Conversely, the hardening strategy
of the analysis environment involves anticipating the
request of the executing malware and sending an an-
swer that the malware “expects” to see when running
on a target machine. If successful, the malware does
not hide its malicious routines thereby allowing an-
alysts to observe unaltered behaviour. This leads to
a race where both malware authors and analysts re-
quire intelligence so they can understand the nature
of the strategies the other party will employ. For
example, there has been research successfully con-
ducted using submitted apps to discover the nature of
‘Bouncer’ which is a sandbox designed to prevent ma-
licious apps appearing on the Google Play Store.

Information leaks using low powered sensors It
is possible for a malicious actor to circumvent the
security policy of a phone and gain access to sen-
sitive information using low powered sensors such
as accelerometers. Nguyen et al demonstrated this
by using magnetometer and accelerometer traces to
track the movement of a target’s smartphone (Nguyen
et al., 2019). In the paper “Sensor Calibration Fin-



gerprinting for Smartphones” it was demonstrated
that JavaScript and a locally installed app could with
only 100 sensor samples infer the device factory cali-
bration and allow fingerprinting of a specific device
across multiple platforms. This fingerprint is im-
mutable by the device’s end user (Zhang et al., 2019).

1.1 Paper’s Contributions

This work makes the following contributions:

• An app was created and customised to each plat-
form in order to establish the state of sensor im-
plementations across publicly accessible malware
analysis platforms

• The network traffic that forms the responses is
analysed provided a novel way distinguish prop-
erties that can aid an attacker in fingerprinting or
evading analysis.

• Sensor readings are reviewed and are rated from
the perspective of an attacker looking to evade
analysis.

• A novel use of activity recognition is proposed to
produce a Reverse Turing test that can be used to
identify a lack of human-generated motion on a
physical phone which can be used to fingerprint
analysis.

1.2 Structure of the Paper

The rest of this paper is structured as follows:

• In Section 2 we discuss the background of this
work and why it is important as well as highlight
the difference between this work and other related
work in this field.

• In Section 3 we describe how we obtained the data
required to perform our analysis

• In Section 4 we carry out analysis of the obtained
sensor values

• Section 5 discusses the values returned by the app
and demonstrate how a reverse Turing test could
be implemented.

• Section 6 concludes our work and discusses future
work

2 BACKGROUND AND RELATED
WORK

2.1 What is a Sandbox?

With large amounts of malware being generated every
day, efficient ways to identify malware and classify it
correctly are required to keep up with demand. The
problem is that with limited resources, security ana-
lysts must prioritise how best to minimise the risk to
the systems they defend whilst maximising the detec-
tion of malware. This is typically achieved through
the automation of analysis using a dynamic analy-
sis tool known as a sandbox. Sandboxes are isolated
environments where an unclassified sample program
can be executed and its behaviour observed and then
identified as either malicious or non-malicious. Sand-
boxes are used by organisations and malware analy-
sis companies to provide precise feedback on the be-
haviour of suspect files such as email attachments.
This allows a company to quickly see if the attach-
ment is legitimate or if it needs to be quarantined.

The prime advantage of a sandbox over a tradi-
tional antivirus is that it is based on behaviour and
can highlight suspicious activities of a sample with-
out the need for a signature that has been generated
on previously seen malware. This allows proactive
monitoring of incoming files to a protected network
rather than just reacting to an infection and also helps
protect against zero-day attacks.

A sandbox can also be used in post incident foren-
sics, for example by analysts identifying the impact
of an infection. This is because a sandbox can reveal
which files have been changed by the sample along
with any registry entries modified and new malware
files downloaded. Therefore, it can aid in prioritising
remedial efforts as well as judging the extent of the
realised threat.

Sandboxes like Bouncer execute code and are re-
ferred to as dynamic analysis tools. Conversely static
analysis is conducted without executing the sample.
These are the two principal ways of analysing a mal-
ware sample. The problem with conducting just static
analysis is that malware authors use techniques to
make static analysis difficult such as obfuscating the
code or encryption (Bashari Rad et al., 2012; Moser
et al., 2007). Encryption is used by malware authors
to disguise suspicious code and internal strings that
would otherwise give analysts an indication of mali-
cious intent when statically analysed. These strings
can contain items such as URLs used by the malware
author or IP addresses. By executing the malware, an-
alysts can observe the interactions between the mal-
ware and the operating system as well as external re-



sources that can indicate if the nature of the program
is benign or hostile.

2.2 Related Works

An Empirical study to fingerprint public malware
analysis services was conducted in (Botas et al.,
2018). The researchers focused on fingerprinting mal-
ware analysis platforms that are publicly available
which is often a prelude to evasion. This is achieved
by sending a sample to each platform and retrieving
artefacts such as the version of the operating system,
the current username, the mac address and so on. As
many of these values are shown to be similar or the
same on various analysis platforms, the authors show
it is possible to fingerprint analysis environments us-
ing these values. The authors proposed a method to
help prevent fingerprinting by generating a random
value for each of these artefacts which was then fixed
and returned to the querying sample. This differs from
our work which is focused on the mobile operating
system Android and more specifically the returned
values from sensors. We extend their work by propos-
ing an attack that would defeat the random artefacts
framework if applied to sensor readings produced by
mobile devices.

In the paper “Tap Wave Rub” (Shrestha et al.,
2015) the researchers produced a Reverse Turing test
based around the sensor readings recorded when the
user was prompted to perform a sequence of uncom-
mon gestures to ensure that near field communica-
tions (NFC) were correctly triggered by the human
user and not by malicious software installed on the
device. This work has the benefit of being able to de-
tect an attack in real time and not posteriori.

In the paper “Evading Android Runtime Analysis
via Sandbox Detection” (Vidas and Christin, 2014),
the authors used a number of artefacts including fin-
gerprinting some prominent Android malware anal-
ysis systems that are based on Virtualisation. This
work is related to ours due to the survey of available
sensors. At the time of publishing, only Copperdroid
(no longer publicly accessible) handled sensor events
and this was limited to just the accelerometer. Our
work follows this paper by working with the current
state of the art publicly accessible malware analysis
platforms and extends this work by investigating how
it is possible to fingerprint analysis even if a ’real’
mobile device is being used to execute the samples.
Owusu et al conducted research in the paper “ACCes-
sory using accelerometer to detect the motion of the
local device’s loudspeaker”(Owusu et al., 2012). The
researchers then used this data to infer what the user
was hearing in their loudspeaker. In 2019 TrendMi-

cro detected two apps Batterysavermobi and Currency
Convertor which use a threshold of the accelerometer
value as means to detect if the malicious app is under
investigation (Sun, 2019).

3 Methodology/Design

Two apps were developed for this project. The first
was designed to survey the available sensors on pub-
licly accessible malware analysis platforms. It was
then modified to collect accelerometer readings. The
second app utilised Google Play services to imple-
ment a Reverse Turing test to exploit the vulnerability
highlighted from the earlier survey of sensor data.

3.1 Information Gathering

Accessible Android sandboxes were identified from
sources such as research papers and online searches.
Initially seventy online platforms were identified and
then filtered, firstly to remove those that were not
available and secondly, as we are interested in the dy-
namic sensor values returned, sandboxes that focused
solely on static analysis or other file types were dis-
carded.

Figure 1 shows how a customised APK file was
developed for each sandbox and delivered through its
corresponding web portal or via email. The APK file
was unique to each targeted platform to allow us to
determine the source of any responses (even multi-
ple responses were received simultaneously). Each
execution of the file was also uniquely identified en-
abling us to determine if a platform had executed the
file more than once.

Workflow of APK data collection
1. Choose a target and customise the APK file
2. Deliver the APK file to the target
3. Depending on the type of target platform, the

APK file was then either:
(a) Queued and then executed on the platform
(b) Forwarded onto third party services in which

case multiple responses were received with the
same target identifier.

4. If the analysis environment allowed access to the
internet, packets were sent back to a server under
our control. The IP address, identifier and sensor
values were logged along with a session ID to see
if the same platform was executing the sample in
parallel.

5. The data was parsed and analysed.



Figure 1: Data collection and analysis process

3.2 App Design

The app was designed to query the execution platform
in two stages and return the findings to the server.
Firstly the array of available sensors was surveyed and
checked for the presence of the required accelerom-
eter. The accelerometer values were then extracted
for the length of the execution. A two stage process
was required because some of the surveyed analysis
platforms had not implemented all of the sensors ex-
pected from a physical device (some had not imple-
mented any). If we did not check for the presence of
a required sensor before creating a listener to access
its readings an exception would be generated that, if
not handled, would cause the execution to cease. This
could be a crude way to prevent analysis on a virtual
implementation of Android where all the typical sen-
sors are not implemented.

4 RESULTS

In this section we present the data gathered from
seventeen publicly accessible app analysis platforms.
The app was unique to each platform to allow for at-
tribution of the results and to see if the platforms were
executing the app multiple times per delivery.

4.1 Analysis of the Network Traffic
Received.

We define a ‘valid unique response’ as a host re-
sponding with a correctly formatted unique identifier
and a list of sensors (including an empty sensor list).
Seventy-three unique IP addresses responded to our
server once the app was delivered. Most of the re-
sponses were from the apps delivered to Virus Total
and Hybrid Analysis. The reason for this multiplier
effect is that Virus Total and Hybrid Analysis are for-
warding received samples to third parties, therefore
they are defined as meta services where a single sam-
ple can be tested against multiple antivirus products.

4.1.1 Attribution of the Responses

Because of the low number of direct responses we
combined the use of a session ID and reverse DNS
lookup as well as network tools to find the au-
tonomous system number. This also aided us in deter-
mining if the sample was potentially being executed
multiple times by different hosts belonging the same
vendor.

Table 1 shows that 74.5% (Seventy-three out of
ninety-eight responses including duplicates generated
by overlap in meta services) of responses originated
from the Amazons elastic compute cloud (EC2). The
EC2 provides the customer with an ability to allocate



Table 1: Responses from hosts after the app is delivered to
each target

Source of response Number of
responses

OVH SSS 3

Trustwave Holdings, Inc. 2

China Mobile 1

Forcepoint Cloud 2

Orange Polska Spolka Akcyjna 6

Amazon.com, Inc 73

M247 Ltd 1

Serbia BroadBand-Srpske
Kablovske mreze d.o.o.

2

Trend Micro Incorporated 2

Bitdefender SRL 2

Unknown (Joe Sandbox) 2

The Calyx Institute 1

China Mobile 1

resources dynamically and scale up resources such as
virtual instances on demand. This may make it ideal
for executing a program multiple times in different
environments in order to maximise code coverage.
Code coverage is important in the field of malware
analysis as greater coverage decreases the chance that
a malware author has successfully hidden the mali-
cious intent of their program.

4.2 Initial Survey of Available Sensors

Initially we investigated which sensors are imple-
mented on malware analysis platforms. Table 2 shows
the sandboxes that responded to queries from our cus-
tom app.

We observed three different sensor lists as shown
in Table 2. The first being a complete list of emu-
lated values with the name Goldfish which refers to
the name of the CPU emulator. The second being be-
ing just the accelerometer also including a reference
to Goldfish and the third being the Kbd Orientation
Sensor.

4.3 Accelerometer Values Received

In this section we analyse the values returned by sand-
boxes for the accelerometer x,y and z axis.

Why was the accelerometer sensor specifically cho-
sen for this study? The accelerometer is known as
a low power sensor. It does not require human inter-
action with the smartphone to enable it and its read-
ings are readily available to any Android app. Dur-
ing the initial survey of sensors the accelerometer was
the most ubiquitous of the sensors implemented on
the analysis platforms, meaning that attacks using this
sensor will have the greatest impact. This is because
if you register a listener to other sensors such as the
gyroscope and they are not present, an exception will
be generated which can lead to the program exiting.
A program crashing may lead to investigation or stop
an attacker from being able to launch their malicious
routines on a valid target.

Of the platforms the responded only Sandroid and
Joe sandbox returned values from an app that was de-
livered directly all other responses were from apps de-
livered to vendors via the meta services virus total and
hybrid analysis.

Joe sandbox allows the user to set the properties of
the firewall to allow access to the Internet and thus en-
sured a response whereas Sandroid allowed the traffic
to exit the network by default.

4.3.1 Timing the Responses

For the sandboxes that returned sensor values we ob-
served that the period of time values were returned for
varied depending on the platform.

Sandroid returned accelerometer values for 185
seconds which was the longest period observed. We
noticed that trendmicros length of responses varied
depending on where the file was originally delivered
to with the time being between 30 and 28 seconds
from hybrid analysis and 62 seconds when the file was
delivered via Virus total.

4.3.2 Analysis of the Values Returned by the
Malware Analysis Platforms
Accelerometer

The accelerometer values were gathered by a sepa-
rate process and were dependent on the presence of
the required accelerometer sensor. These values were
stored with an additional session identifier to help dif-
ferentiate between multiple instances of the same app
if they are being executed in parallel from the same
network.

Table 3 shows the different sets of static values
returned by the accelerometers of the platforms sur-
veyed. Any reoccurring accelerometer value is evi-
dence of a virtual environment and in effect an arte-
fact. In turn this is vulnerable to a malicious app



Table 2: List of available sensors

Sensor list received Comments

Goldfish 3-axis Accelerometer, Goldfish 3-axis Gyroscope, Goldfish
3-axis Magnetic field sensor, Goldfish Orientation sensor, Goldfish
Temperature sensor, Goldfish Proximity sensor, Goldfish Light sensor,
Goldfish Pressure sensor, Goldfish Humidity sensor, Goldfish 3-axis
Magnetic field sensor (uncalibrated), Game Rotation Vector Sensor, Ge-
oMag Rotation Vector Sensor-Gravity Sensor, Linear Acceleration Sen-
sor, Rotation Vector Sensor, Orientation Sensor

A list from a virtual platform
with the low power sensors im-
plemented. It is possible to get
sensor values returned such a plat-
form. The term ’Goldfish’ refers to
the specific virtual hardware imple-
mentation of these sensors.

Goldfish 3-axis Accelerometer A platform with only the ac-
celerometer implemented.

Kbd Orientation Sensor Virtual device with only a depre-
cated orientation sensor.

either checking for this precise value or detecting a
threshold in the change of accelerometer values.

4.3.3 The Expected Noise Generated from a
Physical Phone

Sensors such as the accelerometer produce varying
levels of ‘noise’. This noise is generated by electri-
cal signals and low amplitude motion that is detected
by the highly sensitive accelerometer.

We demonstrate the expected behaviour of a phys-
ical device by using our app to collect samples
from the accelerometer of a stationary Android smart
phone.The phone was orientated resting face upwards
on a flat surface.

Figures 2, 3 and 4 show a normal distribution of
accelerometer value on each axis. The mean value for
each sample set is subtracted in order to filter the data
of constant values such as the components of gravity
and leave the noise. This method has previously used
in the preprocessing of datasets where human activity
recognition is to be performed (Anguita et al., 2013).

Figure 2: X axis taken from a real phones’ accelerometer

Figure 3: Y axis taken from a real phones’ accelerometer

Figure 4: Z axis taken from a real phones’ accelerometer

5 DISCUSSION

In this section any received data is further analysed,
and possible attacks are identified leading to the for-
mation of the app that conducts the Reverse Turing
test.

Relative quality of the sensor list and values re-
turned. In Table 4 the increasing quality of the ac-
celerometer values and lists received is examined to



Table 3: Values received from accelerometers

Values received (X,Y,Z)/ m/s2 Comments

0.0,9.776,0.813 Constant Default values for an emulator with the phone standing on its bottom
edge but leaning slight forward on its x axis (4.4 degrees).

0.0,0.0,0.0 Constant No sensor values being generated and gravity has not been included.

0.0,9.81,0.0 Constant Artificially set to have the accepted three decimal place value for grav-
ity. The phone is orientated as standing on its bottom edge.

show that it represents the difficulty that a malware
author will have in detecting if their app is under anal-
ysis. Quality in this table represents the relative effort
that that it will take for malware to recognise that the
platform is virtual.

For instance the Lowest is that there are no sensors
implemented because simply attempting to access the
sensor will lead to the program to stop and therefore
act differently in the emulated environment.

Running the samples on a physical device We did
not observe a sensor list and therefore sensor values
that corresponded with a physical device during the
survey. It is however the best solution currently and
noise will be generated and the sensors will all be
present. However such a device will need to be sta-
tioned for malware deployment and this lack of ’hu-
man generated motion’ maybe detected via a simple
threshold test or a more sophisticated attack as dis-
cussed in Section 5.1.

5.1 Using a Reverse Turing Test to
Detect Analysis

An app was designed to demonstrate how human ac-
tivity recognition could be used against publicly ac-
cessible Android analysis environments. Due to the
lack of dynamic accelerometer values returned in our
survey of sensor values, we implemented a local test
this allowed us to increase the difficulty of the tests
beyond the static sensor values encountered from the
survey.

To achieve this the activity recognition app was
run on a physical device as this is the most difficult
scenario to conduct the reverse Turing test because
due to noise and vibration the sensor values will be
dynamic.

5.1.1 Implmentation

Google Play services provide the ActivityRecogni-
tionApi to allow an app to recognise what a user is
doing. This allows an app to behave dynamically

based on human behaviour such as “In Vehicle”, “On
Bicycle”, “Walking”, “Running”, “Tilting”, “Still”
and “Unknown”. The activities Walking and Running
were used by the app to indicate that a human user
is present (and therefore passes the Reverse Turing
test). Activity recognition has a small foot print in
the manifest file only requiring one entry and is a
completely legitimate API for apps that are used for
maps or exercise giving an attacker the ability to hide
the app amongst legitimate apps.

Diagram 5 shows how we used Google Play ser-
vices to conduct a Reverse Turing test.

1. The app is launched on the chosen testing plat-
form

2. Sensor values are gathered and delivered to the
model

3. The group of sensor values is compared to mod-
elled activities and a corresponding confidence
value is returned.

4. If the value exceeds the threshold of a target hu-
man activity such as walking then the reverse tur-
ing test else continue to monitor.

In our test enviroments the ActivityRecognition-
Api is used to take sensor values from the phone and
return confidence value based on the presumed activ-
ity which would be displayed on the screen and a re-
port was sent to a server under our control where it
could be analysed. This forms the basis of a thresh-
old which unless exceeded the app will conclude that
the Android environment is not being used and the
reverse turing test is failed.

5.1.2 Preliminary Results of Activity
Recognition App

As previously mentioned the ActivityRecognitionApi
returns confidence values based on the presumed ac-
tivity as an array. We found that in this setting the
app would detect that the phone was “Still” on a real
phone with 100 percent accuracy. The app would re-
turn “Unknown” if random motion such as shaking



Table 4: Relative quality of accelerometer values returned from survey

Quality Implementation Discussion

Lowest No Sensors implemented Accessing sensors may crash the app

Low Virtual sensors returned A sensor list will return however no values will be returned when
called for.

Low Any readings where the ac-
celerometer values remain
static

Any real world sensor will have noise even when still, therefore
looking for a change in the rate of acceleration will work against
any of these values.

Low Virtual sensors are returned
with improbable values

Accelerometer values with 0.0 in all three axes are impossible
due to the constant impact of the earth’sgravitational pull - the
object would need to be in a perfectly steady freefall

Medium
(emulator
with sensors
enabled)

Virtual sensors / default val-
ues returned.

The sensor list may contain the name of the emulation platform
(such as goldfish), the sensor values maybe static.

High Virtual sensors returned and
values provided from a static
dataset. (This behaviour was
not observed in the survey)

Potentially this approach can overcome a simple threshold test
provided the recordings include an activity that generates the
correct type of motion within the analysis time.
If these values are observed, they can be used to as a fingerprint
for the presence of analysis.

High Emulator with USB
passthrough

A full list of sensors will be returned, and the values will vary
according to any noise generated by the physical device. This
can also be expanded to other sensors. This will lack the normal
dynamic range of a device in motion and could be bypassed with
a threshold. A device at rest (such as a mobile device connected
via a USB cable) can be detected using activity recognition.

Proposed
model

Emulator with return values
to low power sensors re-
placed with a probabilistic
model.

Sensor names and sensor values can be adjusted and distributed
at scale. This has the potential to defeat all tests including the
Reverse Turing test provided the correct activities are modelled
in the data.

the phone occured. This would be sufficient to ex-
clude all of the previously surveyed responses as well
as the typical use of a hardware device because hard-
ware analysis devices are often still and connected by
cable to the server responsible for uploading and com-
municating with the app that has been installed on
the device. Even random motion will not trigger the
walking or running state with a high degree of confi-
dence which forms the basis of a threshold measure
by which malicious routines such as Anubis can be
conditionally loaded and then executed.

5.1.3 Countering Evasion by Activity
Recognition

The following methods are proposed to prevent sand-
box fingerprinting by activity recognition: Malware
analysts’ sandboxes would have to replace local sen-

sors values (which are read only by default) with real-
istic values that mirror the activities someone is likely
to be doing such as walking or running. This could
be achieved by using a package such as Frida to ex-
change the return values for the relevant sensors. Al-
ternatively, static analysis methods could be used to
change the flow of execution, but as discussed at the
beginning of the paper there are millions of new mal-
wares instances each year which means that having
a solution that works without manual intervention is
a necessity to keep up with demand otherwise there
would need to be a choice between delaying publica-
tion of apps or publishing apps where their behaviour
has not been examined. One special exception is with
respect to Google Bouncer; if it is possible for Google
Play services to detect that an app is being executed
on Bouncer then the service can be configured to send
confidence values that allow the apps behaviour to be



Figure 5: Implementation of a Reverse Turing test using
activity recognition

explored.

6 CONCLUSION

High numbers of malicious software are being pro-
duced each year meaning that there is a need for auto-
mated analysis to meet the demand. In order to coun-
teract these automations, malicious software authors
seek to evade public analysis by looking for artefacts.

In this paper we conducted a study of the sensors
available from automated Android analysis platforms.
We started by developing an Android app that was
customised to each target to allow us to correctly at-
tribute the data received from each sandbox.

Our first observation was that very few sandboxes
out of the original survey responded directly. This is
either because the platform did not support the app or

that the traffic from the app was not allowed to exit
the sandboxes network.

We found that only three of the surveyed sand-
boxes responded in the correctly formatted manner.
However the server still received responses from sev-
enty - seven hosts.

By analysing the traffic received using a session
ID we were able to see that some platforms would
execute the sample more than once and return differ-
ent session IDs for one submission. Other sandboxes
would return data from multiple IP addresses with the
same Session ID suggesting that this is either the en-
tity rerunning the execution from beyond the point
where the session ID is determined with different in-
put in an attempt to gain more code coverage. The
alternative is that the traffic is being sent out is being
relayed and repeated in order to mask the origin of the
traffic.

The antivirus company Bit defender did not re-
spond directly but when a sample was submitted
through a third party meta service the responses were
obtained. This suggests that samples submitted di-
rectly are treated differently in this instance.

Analysis of the sensor implementations on pub-
licly available sandboxes showed that the accelerom-
eter was the most ubiquitous of the available sensors
and thus formed the basis of the remaining research.
We found that all analysis platforms that returned sen-
sor lists to our server included a clear indication that
they were virtual and thus are trivial to detect. Other
indicators were the presence of just the accelerometer
or no sensors in the list at all.

On the platforms that returned accelerometer val-
ues in their x, y, z dimensional components, all re-
sponses were static and in this paper we modelled
the threat of detection by rating these responses. The
worst being all 0s returned which in the presence of
gravity and noise from the device itself is impossi-
ble. The best current solution is to use a physical de-
vice to obtain real time dynamic values. Due to a lack
of dynamic values observed in the sensor values sur-
vey we captured sensor reading from a local Android
phone to demonstrate that (Figures 2, 3, 4) an Android
device face up but stationary will still produce a de-
tectable accelerometer values. We also noted that the
noise produced was in the pattern of a normal distri-
bution of changes to the accelerometer values across
its axis. Because of this difference between a real
phone and the static values found on the survey a mal-
ware author is able to treat the sensor values as a static
artefact much like a reoccurring MAC (Media access
control) address in VMWare.

As a future work we will aim to implement the
suggested system to increase transparency of publicly



accessible malware analysis platforms by replacing
the locally sourced sensor values. We will also aim
to look at implementing our own model of activity
recognition as the basis of a Reverse Turing test and
compare it to Google Play.

REFERENCES

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz,
J. L., et al. (2013). A public domain dataset for human
activity recognition using smartphones. In Esann, vol-
ume 3, page 3.

Bashari Rad, B., Masrom, M., and Ibrahim, S. (2012). Cam-
ouflage in malware: From encryption to metamor-
phism. International Journal of Computer Science
And Network Security (IJCSNS), 12:74–83.

Botas, Á., Rodrı́guez, R. J., Matellán, V., and Garcı́a, J. F.
(2018). Empirical study to fingerprint public mal-
ware analysis services. In Pérez Garcı́a, H., Alfonso-
Cendón, J., Sánchez González, L., Quintián, H.,
and Corchado, E., editors, International Joint Con-
ference SOCO’17-CISIS’17-ICEUTE’17 León, Spain,
September 6–8, 2017, Proceeding, pages 589–599,
Cham. Springer International Publishing.

Ferrand, O. (2015). How to detect the cuckoo sandbox and
to strengthen it? Journal of Computer Virology and
Hacking Techniques, 11.

Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Twenty-Third
Annual Computer Security Applications Conference
(ACSAC 2007), pages 421–430. IEEE.

Nguyen, K. A., Akram, R. N., Markantonakis, K., Luo,
Z., and Watkins, C. (2019). Location Tracking Us-
ing Smartphone Accelerometer and Magnetometer
Traces. Proceedings of the 14th International Con-
ference on Availability, Reliability and Security, pages
1–9.

Owusu, E., Han, J., Das, S., Perrig, A., and Zhang, J.
(2012). ACCessory: password inference using ac-
celerometers on smartphones. Proceedings of the
Twelfth Workshop on Mobile Computing Systems &
Applications - HotMobile ’12, page 9.

Shrestha, B., Ma, D., Zhu, Y., Li, H., and Saxena, N.
(2015). Tap-wave-rub: Lightweight human interac-
tion approach to curb emerging smartphone malware.
IEEE Transactions on Information Forensics and Se-
curity, 10(11):2270–2283.

Sun, K. (2019). Google Play Apps Drop Anubis, Use
Motion-based Evasion. Example of malware authors
using an accelerometer to detect Googles bouncer and
get their app onto the legitimate Google play store.
The apps were called BatterySaverMobi and Currency
Convertor.

Vidas, T. and Christin, N. (2014). Evading android run-
time analysis via sandbox detection. In Proceedings
of the 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’14, page

447–458, New York, NY, USA. Association for Com-
puting Machinery.

Zhang, J., Beresford, A. R., and Sheret, I. (2019). SEN-
SORID: Sensor Calibration Fingerprinting for Smart-
phones. 2019 IEEE Symposium on Security and Pri-
vacy (SP), 00:638–655.


