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Abstract 
 
A cellular automaton (CA) is a set of rules which 
determines the state of individual cells on a grid, 
based on neighbourhood relations. CAs have been 
used by researchers to model a wide range of systems 
from cell growth to cosmology to universal 
computation. However nearly all such models have 
been on one or two dimensional grids. This article 
provides a brief history of the development of CAs and 
then extends the models to three dimensions using 
open source software; Blender and Python. New 3D 
rules are examined and the development of 3D cell 
configurations explored and visualized.  
Keywords – Cellular Automaton, Game of Life, 3D 

I. INTRODUCTION AND BRIEF HISTORY 

Cellular Automata were invented in 1947 by John von 
Neumann who began by asking the question, “What 
kind of logical organization is sufficient for a system to 
be able to reproduce itself?” [1] 

Von Neumann constructed a two-dimensional square 
grid of cells where each cell had one of 29 possible 
states. A set of rules (state-transition function) 
determined how the states transform into other states. 
According to the set of rules, one cell changes its state 
depending on the state of its neighbouring cells. All 
cells undergo transition synchronously, in step with a 
universal "clock" which determines the passing 
generations. 

With this simple grid of cells, and some state-transition 
rules von Neumann was able to create a Universal 
Constructor that was the first self-reproducing system. 

Improvements followed in 1968 when Edgar Codd, of 
relational database fame, showed that it was possible 
to make a self-reproducing machine with fewer states. 
In his CA only 8 states were required instead of 29 
[2].This was further improved in 1972 when Edwin 
Roger Banks produced a 4-state CA. [3] 

In 1974 John Conway introduced a new two-state, 
two-dimensional cellular automaton which he called 
the Game of Life and which became the most widely 

known of all the cellular automata through its 
publication by Martin Gardner in Scientific American. 
We will return to this version shortly. 

In 1984, Christopher Langton extended Codd's cellular 
automaton and created what was called Langton's 
Loops[4], which used only a small number of cells 
compared to previous attempts. 

However, the signs were evident some years earlier 
that cellular automata were being taken more seriously 
by the physics community and considered as more 
than just a mere computational amusement. In 1969, 
the German computer pioneer Konrad Zuse published 
the first book on digital physics with his work on 
Calculating Space, which proposed for the first time 
that the physical laws of the universe are discrete by 
nature, and could be modelled as the output of a giant 
cellular automaton 

This was followed in 1983 by Stephen Wolfram, the 
author of Mathematica, who published the first of a 
series of papers systematically investigating the most 
basic class of all cellular automata – one dimensional 
arrays. Despite the simplification of operating in one 
dimension, Wolfram showed that even this space 
demonstrated evidence of unexpected complexity. 
Wolfram followed this up in 2002 with a vast 1280-
page book called “A New Kind of Science” in which he 
painstakingly catalogues the behaviour of one and two 
dimensional cellular automata and seeks to draw 
inferences and analogies with physics, biology 
chemistry and other sciences. He argues that the 
study of cellular automata is rich enough to merit its 
own discipline of science where the complexities found 
in nature may be due more to these mechanisms and 
modelled better by CA than by differential equations in 
some instances.  

Cellular Automata continue to be explored and it even 
has its own Journal of Cellular Automata. Here we 
seek to add to the growing body of knowledge on 
Cellular automata by extending the work into three 
dimensions – a realm which has had very little 
exploration, possibly because of the vastness of the 
subject area.  
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The structure of this paper is as follows: Section 2 
examines in more detail one particular cellular 
automata, Conway‟s Game of Life as this has proved 
the most investigated system in two dimensions. In 
Section 3, we show how this can be extended into 
three dimensions and the system visualised using open 
source software Blender and Python. In Section 4, we 
start to engage in a simple classification of some of the 
most primitive component in the 3D system. Section 5 
is a conclusion and discussion of future work. 

II. CONWAY‟S GAME OF LIFE 

It might be justly argued that the most significant step 
forward in cellular automata came in 1974 when John 
Conway introduced a new two-state, two-dimensional 
system which he called the Game of Life and which 
became widely know through its popularization by 
Martin Gardner in his Scientific American column. 

The rules of The Game of Life were as follows: The 
two states of a cell were conveniently depicted as 
black and white. There are three state rules 

1. If a black cell has 2 or 3 black neighbours, it 
stays black.  

2. If a black cell has less than 2 or more than 3 
black neighbours it becomes white.  

3. If a white cell has 3 black neighbours, it 
becomes black.  

Despite the simplicity and strict determinism of the 
rules, the system is able to demonstrate a remarkable 
variety of behaviours which range from apparent 
randomness to strict order.  

A tabulation of life forms and terms has been 
constructed. 

Figure 1: Basic Game of Life shapes (from Wolfram 
http://mathworld.wolfram.com/Life.html) 

One of the most significant features of the Game of 
Life in particular and CAs in general is the generation 
of seemingly independent structures that have an 
existence and permanence and which exhibit a set of 
unexpected and unpredictable behaviours. Five types 
of pattern are evident: 

1. A pattern which does not change from one 
generation to the next is called „still life‟ 

2. A pattern that flips or oscillates between one state 
and another is called an oscillator. 

3. A pattern which expands and then dies out after a 
finite number of generations is a transient 

4. A pattern which expands forever and produces an 
infinite number of cells is called a garden of Eden  

5. Finally, and possibly most interestingly a pattern 
may show a kinematic permanence and move 
across the grid. One such configuration being the 
Glider.  

Group 5 which shows kinematic permanence provides 
entrance to a new level of description. At this 
„configuration level‟, new rules of behaviour identified 
with each configuration are found. Gliders and other 
similar patterns can be arranged so that dynamic 
physical principles can be modelled. Furthermore, it 
has been shown that the gliders can be made to 
interact in such a way as to perform computations. 
More recently, it has been shown that the Game of Life 
can emulate a universal Turing machine which means 
that it can model any computation on any computer. 

III. EXTENSION TO THREE DIMENSIONS 

With this universality in mind, the Conway Game of 
Life has, in this paper, been taken as the starting point 
for the extension into three dimensions. Exactly the 
same rules as the two dimensional case have been 
adopted and using the Python scripting language have 
been developed for visualization using the open 
source 3D modelling application Blender. This 
provides the means to explore the development of 3D 
patterns in a powerfully visual way with full 3D access 
to the structures created. What is does not do is 
provide a fully dynamic system since each generation 
needs to be run separately. The grid was limited to 
50x50x50 cells as larger grids were not easily 
computable within Blender which could not cope with 
larger cell groups. 

http://en.wikipedia.org/wiki/Turing_machine


 
Random population 
The first run began by populating the 50x50x50 grid 
with 1% random scattering of cells. This was then run 
through a number of iterations or generations with 
snapshots taken at appropriate points. A maximum of 
20 generations was run as an apparent equilibrium 
was reached before that point. Figures 2 to 6 show 
significant generation points with the last figure 
showing an internal view of the structure of the cells. 
The figures show a characteristic development of 
random distribution moving into a sparse but „clumpy‟ 
arrangement which then generates outward until it fills 
the whole space to an equilibrium density of around 
20%. After this although there is continual local 
fluctuation, there is no global change evident. A further 
run of 0.5% population seen in appendix 1 reaches the 
same position but simply takes longer to do so. 
 

 
Figure 2: Random cells (50x50x50 grid) 

 
Figure 3: 1st Iteration (50x50x50 grid) 
 

 
Figure 4: 2nd Iteration (50x50x50 grid) 
 

 
Figure 5: 20th Iteration (50x50x50 grid) 
 

 
Figure 6: 20th Iteration - Internal (50x50x50 grid) 

 



IV. CATALOGUING SIMPLE STRUCTURES 

The evolution of basic structures within the system 
was examined. A simple column of cells of varying 
length from 1 to 10 cells was systematically examined. 
All sets of cells showed transience from 3 to 24 
generations. Columns of 1 and 2 cells respectively last 
only one generation by definition. Figures 7 to 14 show 
the evolutionary stages of each primitive shape. 
 

 
Figure 7:Three Column Evolution 
 

Figure 8: Four Column Evolution 
 

Figure 9: Five Column Evolution 
 

 
Figure 10: Six Column Evolution 
 

 
Figure 11: Seven Column Evolution 
 

Figure 12: Eight column evolution 
 

Figure 13: Nine Column Evolution 
 



Figure 14: Ten Column Evolution 
 
There are some interesting formations. A simple three 
column block has a lifespan of 24 iterations after which 
it self-destructs as seen in figure 7. Whereas a simple 
4 column block has an even shorter lifespan of only 3 
iterations. And a 5 column block has a lifespan of 4 
iterations as seen in figure 9 and a six column also has 
a lifespan of 4 iterations. The full results are tabulated 
in Table 1 
 

Column length Lifetime (iterations) 

1 1 

2 1 

3 24 

4 3 

5 4 

6 4 

7 9 

8 5 

9 6 

10 6 

Table 1: Lifetime of primitive column formations 
 
Significantly a column of three cells has by far the 
longest transient life of 24 generations, which 
compares starkly with a column of 4 cells that only has 
a 3 generation life. 

V. ALTERNATIVE RULES 

The rules which we have used so far are the same as 
2D life and it is likely that these rules lead to an over 
population in 3D as many more neighbours are 
available, 26, in 3D compared to 8 in 2D. This means 
that nearly all configurations are „Garden of Eden‟ 
types and lead to a maximal density as depicted in 
figure 6.  
 
The original rules specify minimum of 2 cell and 
maximum of 3 to sustain life while a minimum of 3 and 
maximum of 3 are required to create life. Using these 
numbers in this order, this rule can be conveniently 
categorized as the (2333) rule. A particular rule was 
chosen out of the infinite number which are available. 

The (5766) rule was chosen as being closest in 
neighbourhood ratio for 3D to the (2333) rule in 2D. In 
other words (2333):8 corresponds to (5766):26. A 
simple 1% random distribution grid was used to enable 
a comparison with the results of the same distribution 
under the (2333) rule. The results of the run are seen 
in appendix 2. It was found that this rule did not 
generate exponentially and reach a limit. Instead this 
distribution came to a simple scattering of still life and 
oscillator patterns which more closely matched the 
results expected in the normal 2D Game of Life. 

VI. CONCLUSIONS AND FUTURE WORK 

The techniques and technologies needed to create a 
3D visualization using open source software has been 
established and explored. Research issues opened 
with this line of enquiry are extensive and would 
require detailed work before they could be fully 
explored. Initial findings suggest a useful architecture 
can be initially developed making use of 3D Cellular 
Automata and that this is a system worth further 
investigation. However the question of whether the 
non-dynamic use of blender is the best vehicle for this 
remains open. The biggest drawback of this software 
is that it cannot be run in real time. It also has serious 
limitations of grid-size and is not scalable.  
 
For the future, a number of promising research 
directions in addition to those in this work is under 
scrutiny. There are a large number of unanswered 
questions raised by this paper. How do the evolution of 
patters compare from one rule set to another? Are 
gliders present in the 3D (5766) domain as they are in 
the 2D (2333) domain? And consequently can this 
system also be shown to be equivalent to a Universal 
computation machine. At present these and other 
questions must remain open.  
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APPENDIX 2 
The (5766) Rule on a 1% random distribution



 

Figure 8: random 0.005 (50x50x50) 0 iteration 

Figure 7:random 0.005 (50x50x50) 1 iteration 

Figure 6: random 0.005 (50x50x50) 2 iteration 

Figure 5:random 0.005 (50x50x50) 4 iteration 

Figure 4: random 0.005 (50x50x50) 5 iteration 

Figure 3:random 0.005 (50x50x50) 10 iteration 

Figure 2:random 0.005 (50x50x50) 20 iteration 

Figure 1:random 0.005 (50x50x50) 50 iteration 

Appendix 1 


