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1. Introduction 

In the last three decades, worldwide issues such as global warming and depletion of 

natural resources have prompted scientists from all fields to redirect their focus on 

developing greener and more sustainable methods for industrial productions. This has 

indeed influenced a great number of efforts on revolutionizing the way synthetic 

organic chemistry is conducted. The goal to create novel, sustainable and practical 

synthetic protocols to improve, inter alia, synthetic utility and minimizing chemical 

waste have been in the hearts of many chemists. Thus, 12 guiding principles of green 

chemistry[1] were suggested in 1988 by Paul T. Anastas and John C. Warner as the 

most fundamental code for chemist striving to reduce the amount of detrimental 

environmental and health impact of chemical production. Organic chemistry arguably 

represents a vital role for the bottom-up assembly and late-stage diversification of 

molecular compounds with life-changing applications to such as, inter alia, drug 

development[2] and crop protection.[3] Hence, there is a great desire to introduce and 

discover greener synthetic methods right from the micro-stage to elevate the quality of 

chemical research for further utilization. 

1.1 Transition Metal-Catalyzed Cross-Coupling Reactions  

In the most recent decades, transition metal-catalyzed cross-coupling reactions[4] have 

dominated the field of synthetic organic chemistry, as they are highly versatile and 

widely used due to their simplicity. Such developments awed chemists and scientists 

alike which were exemplified by the award of the Nobel Prize in Chemistry in 2010 to 

Richard F. Heck, Ei-ichi Negishi and Akira Suzuki.[5] Precious transition metal, such as 

palladium, was used predominantly in these advancements and the reaction protocols 

were named, e.g. Mizoroki‒Heck,[6] Kumada‒Corriu,[7] Sonogashira‒Hagihara,[8] 

Negishi,[9] Migita‒Stille,[10] Suzuki‒Miyaura[11] and Hiyama[12] coupling reactions 

(Figure 1.1.1a). These established cross-coupling methods for the C–C bond 

formation have been acknowledged by a variety of applications to material sciences, 

pharmaceuticals and chemical industries.[13] In relation to these considerable advances, 
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immense efforts were also directed to the formation of C–Het bonds, since they exist 

in countless natural products and drug molecular scaffolds. They are namely, Ullman‒

Goldberg,[14] Buchwald‒Hartwig[15] and Chan‒Evans‒Lam[16] reactions (Figure 1.1.1b). 

Since the 1900s, the first report of the synthesis of symmetrical biaryls using 

stoichiometric amount of copper by Ullman and co-worker led to a series of discovery 

that aided the research on the C‒Het bond formation.[17] These pioneering works by 

Ullman, Hurtley and Goldberg paved significant impact in cross-coupling reactions, 

particularly copper-mediated protocols.[14] 

 

Figure 1.1.1. Transition metal-catalyzed cross-coupling reactions. 
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The majority of traditional palladium-catalyzed cross-coupling reactions follow a 

generally accepted reaction mechanism (Figure 1.1.2). First an oxidative addition of 

the electrophile occurs onto the active palladium(0) catalyst I forming a palladium(II) 

complex II. Second, transmetallation of the organometallic reagent or nucleophile 

leads to the formation of the palladium(II) intermediate III bearing both substrate 

fragments. Finally, reductive elimination of the intermediate III gives rise to the cross-

coupled product and to the regeneration of the active palladium(0) catalyst I. 

 

Figure 1.1.2. Traditional palladium-catalyzed cross-coupling reaction mechanism. 

Despite all the significant advances in traditional cross-coupling reactions, the major 

intrinsic drawbacks in association with the reagents involved in these transformations 

highly compromises their usage in the modern scientific world. This includes the need 

to pre-functionalize the starting materials, such as organo(pseudo)halides and 

organometallic coupling partners, e.g. Grignard reagents, organolithium, 

organostannanes and organozinc compounds. The latter are highly air- and moisture- 

sensitive reagents, which require multiple step synthesis, that only those who are 

trained can perform.[18] Notwithstanding, these procedures often produce 
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stoichiometric amounts of often toxic metallic by-products, which cause chemical 

waste and hazardous environmental pollution. 

1.2 Transition Metal-Catalyzed C‒H Activation 

Since the impeccable evolution of synthetic organic chemistry with the aid of transition 

metal-catalyzed cross-coupling reactions (Figure 1.2.1a), there is a substantial desire 

to introduce more atom- and step-economical processes that require lesser pre-

functionalization and to minimise the formation of unwanted by-products.[19] Therefore, 

transition metal-catalyzed site-selective C‒H functionalization transformations[20] are 

extensively more resource economical by a large margin, since pre-functionalization 

of C‒C and C‒Het bonds are skipped.[21]  

 

Figure 1.2.1. Contrast between conventional cross-coupling reaction with contemporary oxidative C‒H 

activation and dual oxidative C‒H/C‒H activation reactions. 

Most commonly adopted C‒H activation reactions would require one pre-

functionalized substrate, as the electrophile typically contain halogen as organic halide 

or a phenol derivative, which are widely available through industrial synthetical 

protocols (Figure 1.2.1b).[22] The use of direct C‒H functionalization eliminates the 

necessity to use expensive and toxic chemical oxidants, which would otherwise be 

needed to realize the perfect dual oxidative C‒H/C‒H activation reactions. Two-fold 

oxidative C‒H activation is one of the most environmentally sustainable mode of 

reaction (Figure 1.2.1c), since molecular hydrogen gas is formed as the sole by-

product of the synthesis regime, which is primarily attractive even though costly silver 

and copper salts are usually employed to facilitate the formation of the product.[23] 
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The extensive growth of utilizing C‒H activation as a sustainable method to achieve 

shorter synthetic route with little environmental impact relies mainly on the elucidation 

of its reaction mechanism. Generally, the reaction catalytic cycle (Figure 1.2.2) can be 

described concisely as four elementary steps, first (i) C‒H activation of the substrate 

molecule, second (ii) functionalization of organometallic intermediate, third (iii) 

reductive elimination of the desired product and lastly (iv) regeneration of the active 

catalyst. 

 

Figure 1.2.2. General catalytic cycle for transition metal-catalyzed C‒H activation reactions. 

Vast resources have been placed in these studies and a couple of distinctive features 

on the key C‒H activation step were mechanistically identified. The nature of the metal 

catalyst used and its electronics should also be considered but in general, five main 

modes of action were proposed.[22c] These excludes examining outer-sphere/radical-

type mechanism.[24] Electron-rich late transition metals with low oxidation states 

frequently adhere to oxidative addition of the C‒H bond to the metal centre 

(Figure 1.2.3a).[25] This is not the case for late transition metals with higher oxidation 

states, as they are more susceptible for electrophilic substitution via electrophilic attack 

of the transition metal center to the carbon (Figure 1.2.3b).[26] 
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Figure 1.2.3. Mechanistic pathways for the C–H activation step. 

Early transition metals, as well as lanthanides and actinides which are difficult to 

change oxidation states commonly react through σ-bond metathesis (Figure 1.2.3c).[27] 

Complexes with unsaturated M=X bonds, such as group IV metal imido complexes 

usually undergo 1,2-addition of the C‒H bond (Figure 1.2.3d).[28] A base-assisted C‒

H activation process has also been proposed, wherein the cleavage of the C‒H bond, 

as well as the formation of C‒M bond occurs almost simultaneously (Figure 1.2.3e).[29] 

The event is known to occur through an electrophilic attack of the metal and 

deprotonation by carboxylate or carbonate ligands, this is especially prominent in 

ruthenium-carboxylate complexes.[22c, 30]  

More recently, base-assisted C‒H activation mechanism has thoroughly unravelled to 

detail the importance of an internal base for the C‒H cleavage step. Within the class 
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of base-assisted C‒H metalation, multiple distinct mechanistic scenarios have been 

further classified. As a result, four distinctive types of transition states have been mainly 

described (Figure 1.2.4). The first being the concerted metalation-deprotonation 

(CMD)[31] or ambiphilic metal-ligand activation (AMLA).[32] This proceeds with 

metalation and deprotonation through a six-membered ring transition state. These are 

usually found in electron-deficient substrates with significant kinetic C‒H acidity. While 

the last type, base-assisted internal electrophilic substitution (BIES) mechanism 

proceeds in similar manner via an electrophilic substitution-like pathway, but leans 

more towards electron-rich acetates or carboxylates ligands.[33] 

 

Figure 1.2.4. Transition state models for the C‒H cleavage step in base-assisted C‒H metalation. 

As one of the most step-economical synthesis methods for organic synthesis, C‒H 

activation offers a large avenue of possibilities for greener and more sustainable 

approach to chemical synthesis. However, its use has been impeded by the abundance 

of ubiquitous and ambiguous C‒H bonds that exist in every organic molecule.[34] 

Moreover, it is further complicated by similar bond dissociation energies (BDEs) of C–

H bonds.[35] The effective discrimination between the C‒H bonds is vital for a selective 

functionalization. Hence, a large part of research is to utilize C‒H activation while 

tackling this challenge. A few strategies have been established that can be employed 

to circumvent the issue with site selectivity (Figure 1.2.5). First, through inherent 

electronic bias of the chosen substrates, by targeting the lowest pKa or the most acidic 

C‒H provides an efficient way to control site-selectivity (Figure 1.2.5a).[22f, 36] The 

second method (Figure 1.2.5b) would be manipulating the steric bias using bulky 

substituents to effectively block the space adjacent to the C‒H bond of interest. 
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Figure 1.2.5. Several unique strategies for site-selective C‒H activation. 

It is worth noting that both approaches are inherently limited in terms of applications 

since they require a specific substrate in order to achieve particular results. This leads 

to heavily diminished substrate scope and its general applicability. An invested and 

highly robust approach is the use of directing-groups to control the site selectivity 

based on the Lewis basic substituents, that binds to the metal centre for facile C‒H 

metalation (Figure 1.2.5c).[37] This greatly enhances its usability for a wide range of 

transformations, restricting the formation of possible side products. Cycloruthenation 

used specifically with ruthenium catalyst creates an opportunity for σ-activation which 

provides remote meta-selective C‒H activation (Figure 1.2.5d). This exploits the 

influence of the electronic properties from the ortho-bonded ruthenacycle to the 

aromatic ring.[35g, 37a] Another particular method is the use of reversible transient 
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directing group that is bonded with external ligand in situ upon catalytic reaction. It 

coordinates to the metal centre during the reaction, which releases after site-selective 

C‒H activation (Figure 1.2.5e).[35e] Traceless directing group, such as carboxylic acid, 

allows chelation of the metal centre for meta-C‒H activation and can be removed 

subsequently after the reaction (Figure 1.2.5f). [35h, 38] The merger of norbornene with 

palladium catalysis creates an avenue for remote meta-selective C‒H activation by 

first achieving the ortho-C‒H activation with norbornene, and then subsequently 

prompt the adjacent C‒H bond in the meta position to undergo C‒H activation as well 

(Figure 1.2.5g).[35a] 

1.3 Cobalt-Catalyzed C‒H Activation 

One of the Earth-abundant 3d transition metals — cobalt — has gained notable 

momentum as the transition metal of choice for selective C‒H activation reactions.[21b] 

Due to its relative abundance in the Earth crust and low toxicity, the beginning of its 

use has propelled vast amount of research on cobalt-catalyzed protocols instead of 

depending on precious metals such as palladium, rhodium or iridium which are highly 

expensive and toxic. A myriad of industrial applications have utilized cobalt complexes 

as their main catalyst since the 1930s, and these include the Fischer‒Tropsch process 

whereby a cobalt complex [CoH(CO)4] was used in the hydrocarbonylation of ethylene 

to give propanal.[39] Then, cobalt(II) salts were also found to be catalytically feasible for 

the synthesis of biphenyls from homocoupling reactions of phenylmagnesium 

bromides.[40] Several years later into the late 1940s, vitamin B12 was isolated for the 

first time, which is essential in biocatalytic processes, such as dehalogenation and 

methylation transformations in living organisms.[41] Cobalt catalysts have also been 

found to be extremely versatile and efficient for transformations of π-bond containing 

substrates, for instances alkynes, allenes or alkenes and this is showcased in various 

cycloaddition reactions,[42] the Pauson‒Khand reaction[43] and the Nicholas reaction.[44] 

Moreover, cobalt catalysts displayed remarkable catalytic reactivity for cross-coupling 

reactions that could serve as an alternative to expensive precious metal catalysts.[45]  
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Regardless, there is a surge on the number of studies that focuses on novel and 

greener approaches employing cobalt catalytically, such as the aforementioned 

oxidative C‒H activation reaction. Even though progresses in C‒H activation started 

in the last few decades, they were highly limited to precious metals.[24a, 35g, 46] The 

developments with more sustainable and Earth-abundant 3d metals, such as cobalt 

were scarce. The nascent report by Kharasch which shed light to the ensuing vast 

expansion of cobalt-mediated domain in C‒H activation reactions illustrating the 

capability of cobalt catalysis beyond conventional limitations.[40] Needless to say, 

cobalt-catalyzed C‒H activation have tremendously improved and enhanced site-

selective C‒H transformations, such as annulation reactions, which will be examined 

into detail in the following section. Broader discussions on cobalt-catalyzed C‒H 

activation developments have been reviewed more comprehensively in reviews 

articles by Ackermann,[47] Yoshikai,[48] Matsunaga,[49] Ribas[50] and Chatani,[51] among 

others[52]. 

1.3.1 Oxidative Cobalt-Catalyzed C‒H/N‒H Alkyne or Allene Annulations 

Oxidative annulation reactions are particularly attractive as cycloaddition reactions 

provide a wide array of molecules that could be useful in pharmaceuticals and drug 

developments. In 2014, Daugulis reported the oxidative C‒H/N‒H annulation reaction 

of benzamides 1 catalyzed by inexpensive cobalt(II) salts with alkynes 2 

(Figure 1.3.1.1a).[53] A commonly used directing group, 8-aminoquinoline served as an 

extra stabiliser for the high-valent cobalt(III) intermediate for the successful annulation 

to take place. The optimisation of the reaction found that oxygen in the air in 

conjunction with the use of stoichiometric amount of metal oxidants, such as Mn(OAc)2, 

efficiently provided the annulated product 3. Super stoichiometric amounts of 

carboxylate additives,[22c] like NaOPiv, were reported to be necessary for the C‒H/N‒

H annulation to occur. In addition, the authors were able to synthesize a cyclometalated 

cobalt(III) complex intermediate 4 with which they were able to prove that it is indeed 

catalytically involved in the C‒H metalation step for the annulation reaction 

(Figure 1.3.1.1b). A plausible reaction pathway of a cobalt(II)/(III)/(I) catalytic manifold 
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was proposed, based on their first mechanistic investigations (Figure 1.3.1.1c). First, 

an oxidative C‒H activation of the benzamide 1 with Co(OAc)2 salt occurs to give the 

cyclometalated cobalt(III) complex 5. Second, the insertion of the alkyne 2 to form a 

seven-membered ring complex intermediate 6. Last, reductive elimination of the 

intermediate 6 to generate the desired product 3 and the reduced cobalt(I) complex 7. 

Yet, no further studies were performed with regards to the generation of active cobalt(III) 

species, the nature of the oxidation or the mechanism of the C‒H activation step. 

 
Figure 1.3.1.1. Cobalt-catalyzed C‒H/N‒H annulation of alkynes 2 with benzamides 1. 

Since the initial success of Daugulis, there have been a myriad of oxidative C‒H/N‒H 

annulation reactions with various substrates throughout the years, which demonstrated 

the catalytic power of cobalt salts for similar transformation.[47a, 50, 54] This is especially 

the case for cobalt-catalyzed C‒H/N‒H annulation reactions with alkynes and allenes 

which will be further focused upon.[52c, 55] Despite of the major impact of the work of 
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Daugulis in 2014, stoichiometric amounts of metal oxidants were required, which 

significantly diminished the usability. On the contrary, Ackermann later developed the 

aerobic cobalt-catalyzed C‒H annulation with alkynes for the synthesis of 

pharmaceutically relevant isoquinolones 9 (Figure 1.3.1.2a).[56] This method 

showcases 2-pyridyl-N-oxide as a bidentate directing group with oxygen as the sole 

oxidant.[57]  

 

Figure 1.3.1.2. Cobalt-catalyzed C‒H/N‒H annulation reactions. 

The reaction proceeded under mild conditions with TFE as the preferred solvent at 

60 ℃ to achieve a wide substrate scope of differently substituted isoquinolones 9. This 

is further pronounced by the successful synthesis of rosettacin derivative 10, a class 

of aromathecin alkaloids.[58] Detailed mechanistic investigations including DFT 
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calculations indicated a cobalt(II)/(III)/(I) catalytic manifold for this transformation. In 

contrast, Niu and Song reported a similar work also using the bidentate 2-pyridyl-N-

oxide for the cobalt-catalyzed decarboxylative C‒H/N‒H annulation reaction with 

alkynyl carboxylic acids to obtain either isoindolinones or isoquinolones derivatives 

(Figure 1.3.1.2b).[59] The aerobic cobalt catalysis reported earlier did not require the 

use of silver salt as terminal oxidant as opposed to this work. A silver-acetylide 

intermediate 14 was proposed by the authors that resulted in the difference in 

selectivity. This is formed through the decarboxylation of the alkynyl carboxylic acid 11 

to form the silver acetylide 14, which subsequently undergoes homolytic cleavage to 

give a terminal alkyne radical that facilitate the formation of isoindolinones 12. 

Since then, several directing groups were used to achieve cobalt-catalyzed C‒H/N‒H 

annulation reactions (Figure 1.3.1.3). This expansion includes outstanding strategies 

of using the picolinamide directing group by Carretero for the cobalt-catalyzed C‒H/N‒

H activation reaction of benzylamine derivatives 15 to give dihydroisoquinolines 18 

(Figure 1.3.1.3a).[60] Removable auxiliary directing groups, provide an ample 

opportunity for further functionalization with improved step-economy of the reaction 

protocol. Hence, the possibility of using traceless, yet similar picolinamide auxiliary 

directing group was reported by Cui for the alkyne annulations for the formation of 

isoquinoline derivatives 19 (Figure 1.3.1.3b).[61] The use of a facile removable N-2-

pyridylhydrazide, an N,N’-bidentate auxiliary directing group that can be easily 

eliminated via mild traceless reductive nitrogen-nitrogen cleavage was realized by Zhai 

for the annulation reaction, to achieve the synthesis of isoquinolones 20 

(Figure 1.3.1.3c).[62] Subsequently, Zhai continued using the same approach with 

benzamides 16 for the spirocyclisation cascade with maleimides.[63] Later Daugulis 

showcased alkyne annulations with a peculiar Co(hfacac)2 catalyst using widely 

available carboxylic acid as an useful directing group to achieve the production of 

isocoumarins 21 (Figure 1.3.1.3d).[64] The authors commented that it goes through a 

cobalt(II)/(III)/(I) catalytic cycle as well.  
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Figure 1.3.1.3. Cobalt-catalyzed C‒H/N‒H annulation reactions with several different directing groups. 

The cobalt-catalyzed C‒H/N‒H activation for annulation reactions were not limited to 

alkynes as coupling partner. Nicholls reported a regioselective cobalt-catalyzed 

annulation process utilizing 1,3-diynes 22 instead and this resulted in the synthesis of 

non-symmetrical alkynylated isoquinolones 23 (Figure 1.3.1.4a).[65] Moreover, this 

transformation has also been done with C(sp3)‒H bond activation even though most 

annulation reactions focused on C(sp2)‒H activation. Zhang managed to demonstrate 
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the useful synthesis of γ-lactams 25 with cobalt-catalyzed C(sp3)‒H annulations with 

alkynes 13, albeit under relatively harsh reaction conditions (Figure 1.3.1.4b).[66] 

According to the authors, the combination of additives was essential for the reaction to 

proceed, this was especially crucial regarding the addition of ammonium salts and 

pyridine into the reaction mixture to achieve the optimised result. This was supported 

by the detection of the cyclometallated cobaltacycle 26 using MALDI-TOF mass 

spectrometry analysis, which identified the coordination of two pyridine molecules and 

the aromatic solvent. 

 
Figure 1.3.1.4. Peculiar 1,3-diynes as substrates and C(sp3)‒H activation. 

The development of annulation reactions has also been extended to unsaturated 

coupling partners, such as allenes, which offer a broad substitution pattern depending 
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on the substituents.[67] The first report for the cobalt-catalyzed C‒H/N‒H allene 

annulation was in 2016 by Volla using bench-stable Co(acac)2 as catalyst 

(Figure 1.3.1.5a).[68] The reaction protocol proceeded under a relatively mild condition 

that requires both oxygen and Mn(OAc)2•2H2O as oxidants. Notably, they were able to 

obtain two different substitution patterns based on the steric and electronic properties 

of the allenes used. However, based on precedents for transition metal-catalyzed 

allene annulation reactions, the regioselectivity and stereoselectivity remains 

challenging to control.[69]  

 

Figure 1.3.1.5. Cobalt-catalyzed C‒H/N‒H allene annulation. 

With relevance to the observed regioselectivity, sterically hindered or electron-deficient 

allenyl(diphenyl)phosphine oxide 27 gave unsaturated isoquinolone-type products 29. 

Whereas, when electron-rich phenylallenes 28 were used, dihydroisoquinolin-1(2H)-

ones 30 was obtained instead. In addition, the authors were able to synthesize and 
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characterize the cyclometallated cobaltacycle complex 31 by X-ray crystallography to 

further elucidate the reaction mechanism (Figure 1.3.1.5b). Furthermore, several 

additional mechanistic results were obtained, such as a low KIE of 1.1 which illustrated 

a facile C‒H cleavage and the preference of electron-rich substrates over electron-

poor benzamides 1 was confirmed through competition experiments. Consequently, a 

catalytic cycle (Figure 1.3.1.6) was proposed by the authors in accordance to the 

obtained mechanistic investigations to further elaborate the change in regioselectivity 

between the two types of allenes with different electronic properties. 

 

Figure 1.3.1.6. Proposed catalytic cycle. 

The authors stated that the catalytic cycle proceeds with an active cobalt(III) catalyst 

after the oxidation of the bench stable cobalt(II) salt. Subsequently, the coordination of 
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the cobalt(III) catalyst with benzamide 1a gives complex intermediate 32 that will 

further undergo C‒H metalation with the aid of NaOPiv base to form the cobalt(III) 

intermediate 33. Thereafter, coordination of allene 34 on to the complex 33 leads to 

the formation of intermediate 35. From here, migratory insertion occurs giving a seven-

membered ring complex intermediate 36 or 37 according to the electronic properties 

of the subjected allene substrates. Then, a π-allyl-cobalt complex can be formed 

through the addition of the aryl to the central carbon atom of the allene by 

carbocobaltation. When electron-rich phenylallene 28 is used, the nature of this 

substrate favours the formation of σ-allylcobaltacycle complex 36. Then, the ensuing 

reductive elimination will result in the formation of the exocyclic product 30. On the 

contrary, when electron-poor allenyl(diphenyl)phosphine oxide 27 or sterically 

hindered substrate are used, a different pathway ensues to give intermediate 37. 

Reductive elimination will give compound 38 which undergoes 1,3-hydrogen-shift 

forming the final endocyclic product 29. The generated cobalt(I) from both reductive 

eliminations will be reoxidized to regenerate the catalytically active cobalt(III) catalyst. 

Major developments were conceived for cobalt-catalyzed C‒H/N‒H allene annulation 

in 2017 and 2018, where it was possible to utilize several interesting directing groups 

for the formation of both endo- and exocyclic isoquinolones. Cheng reported a 

regioselective allene annulation of 8-aminoquinoline substituted benzamides 1 with 

1,3-disubstituted internal allenes to selectively give the endocyclic product 41 with 

moderate yield (Figure 1.3.1.7a).[70] Concurrently, Rao also devised a similar route, 

where they remarkably obtained both the endocyclic 45 and exocyclic 46 products 

solely by changing the bases involved in the reaction protocol (Figure 1.3.1.7e).[71] 

This considerable finding supplements the original data (vide supra) from Volla 

regarding the electronic nature of the substituents on the allenes. Subsequently, Rao 

developed a regioselective oxidative allene annulation with phosphinamides 39 

through a cobalt-promoted C‒H activation for the synthesis of phosphaisoquinolin-1-

ones 42 with possible applications in drug discovery (Figure 1.3.1.7b).[72]  
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Figure 1.3.1.7. Various reported cobalt-catalyzed C‒H/N‒H allene annulation strategies. 
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More recently, Zhai developed a trifunctionalization of allenes to form 3-acylquinoline 

derivatives 43 with broad functional group tolerance by the inclusion of molecular 

oxygen (Figure 1.3.1.7c).[73] The hydrazide directing group could be easily removed 

by reductive nitrogen-nitrogen cleavage. Volla and Rao independently reported 

sulfonamide containing substrates for cobalt-catalyzed allene annulations with 

moderate to good yields of endocyclic sultam derivatives 44.[74] This approach is an 

extremely useful protocol, given the wide sultam scaffolds in drug molecules and 

biologically active compounds.[75] The mechanistic investigations from previous studies 

and additional findings from both reports agreed with a cobalt(II)/(III)/(I) catalytic 

manifold as the general mode of action of this annulation reaction.  
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1.4 Metalla-Electrocatalysis 

Molecular syntheses are conventionally dominated by thermal conditions, and within 

the last few decades, significant number of more sustainable developments in 

synthetic organic chemistry have been directed towards the use of other forms of 

energy source. Intriguing yet innovative platforms, such as photochemistry,[76] 

mechanochemistry[77] or flow technology,[78] have allowed compelling advancements in 

organic synthesis. The use of artificial intelligence or machine learning for enhancing 

productivity of state-of-the-art synthetical protocols and perhaps discovering new 

reactivity have additionally thrusted the world forward.[79] Yet electroorganic synthesis 

has considerably rose only in the last decade as it conquers its early limitations as a 

niche technique only for the specialists.[80] Pioneering works since the 19th century by 

Volta,[81] Faraday[82] and Kolbe[83] set the stage for the viability of utilizing electricity in 

organic synthesis. Potentiostatic reactions as hinted first by Hickling were then sought 

after, since they allow a complete control of the potential minimising the decomposition 

of substrates involved in the electrolysis.[84] Moreover, electroanalytical tools were 

subsequently developed, such as cyclic voltammetry, for elucidating transient species 

or analysing minute changes in oxidation/reduction potential by the relation between 

current as a function of applied potential.[85] With the aid of this green energy as an 

indispensable resource, many chemical industries were awed by its simplicity yet 

innovative and inexpensive nature for large scale synthesis of chemicals, e.g. the 

Simons fluorination process,[86] the Monsanto adiponitrile processes[87] and the BASF 

Lysmeral® Lilial synthesis for the fragrance industry.[88] Subsequently, the approach of 

electroauxiliaries were introduced by Yoshida for reducing the electrochemical 

potential of molecules of interest.[89] Additionally, there is a rising use of redox 

mediators which can efficiently aid the electron-transfer by acting as an electron-

transfer-shuttle from electrode surfaces to the reaction mixture.[90] Ever since, a vast 

amount of efforts have been directed to electroorganic synthesis, where these 

exploitations revolutionised the usefulness of this technique which were advanced by 

Amatore,[91] Jutand,[92] Schäfer,[93] Little,[90b, 94] Yoshida,[95] Lund[96] and Moeller.[97] 
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Electrosynthesis for organic chemistry has been recently facing a renaissance owing 

to the contributions mentioned above, but also due to the need for greener and 

sustainable synthetic methods to reduce chemical waste and carbon footprints. In this 

aspect, electrochemistry has emerged as a powerful alternative, since the electrons 

supplied are considered as traceless redox equivalents, which removes the need to 

have super-stoichiometric amounts of redox chemicals reducing the generation of by-

products.[21a] The resurgence of this technique has also been driven by the vast 

development of user-friendly electrochemical cells and equipment that are 

commercially available.[98] Hence, the set-ups are easily accessible and the whole 

electrolysis process is much more simplified than conventional set-ups. Because of 

the nature of being able to fine tune the reaction potential under potentiostatic 

conditions, electrosynthesis provides an exceedingly mild approach, that could 

improve the overall synthetic utility with increased chemoselectivity as compared to 

the use of conventional chemical redox reagents.[99] 

The aforementioned directed oxidative transition metal-catalyzed C‒H activation 

reactions (vide supra) are advantageous for their atom- and step-economy nature. 

Meanwhile, electrochemistry provides an endless supply of renewable and resource-

efficient energy source. As a consequence, the combination of both creates an 

unparalleled yet innovative method for the continuous development of greener 

synthetic organic chemistry for the future generations (Figure 1.4.1).  

 
Figure 1.4.1. The merger of electrosynthesis and directed oxidative C‒H activation. 
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Indeed, electrosynthesis has been used with oxidative C‒H activation in the last few 

decades, including the early work by Amatore and Jutand using palladium-catalyzed 

alkenylation[90d] with the use of benzoquinone redox mediator. With relevance, the 

electro-modified Fujiwara‒Moritani alkenylation was thus accomplished.[100] Even 

though most of the works were conducted with a palladium catalyst,[101] this 

groundwork showcased the synergistic combination of the two methods and brought 

forth opportunities for the expansion of electrocatalyzed C‒H activation with Earth-

abundant transition metals.[102] Several key contributions have been made to achieve 

site-selective C‒H activation transformations with electrocatalysis, which opens up a 

new avenue for the development of novel and innovative synthetical protocols, by for 

example Ackermann,[21a, 21b, 47a, 103] Lei,[104] Xu,[105] and Mei,[106] among others.[107]  

1.4.1 Oxidative Cobaltaelectro-Catalysis for C‒H Activation 

In light of the extensive amount of transition metal-catalyzed electro-oxidative C‒H 

activation reactions, it has been until recently limited to 4d and 5d transition metals. 

Thus, it is crucial to note that the first cobaltaelectro-catalyzed C‒H activation was 

unravelled in 2017 by Ackermann, an electro-oxidative C‒H oxygenation with primary 

alcohol 47 activated by Co(OAc)2•4H2O salts was described (Figure 1.4.1.1). The 

main highlight was the exceedingly mild reaction conditions with the exclusion of 

silver(I) or copper(II) salts as chemical oxidants at ambient conditions. As a result, the 

sole by-product of the reaction is molecular hydrogen. The broad substrate scope 

showcased the robustness of the cobaltelectro-catalyzed C‒H oxygenation. 

Subsequently, the success of utilizing cobalt(II) salts as catalysts were extended to 

many other C‒H activation transformations such as C‒C[108] and C‒Het bond formation 

(Figure 1.4.1.2).[109] Notwithstanding the fact that cobaltaelectro-catalysis works 

remarkably well for C‒H/N‒H annulation reactions that takes the pioneering works 

(vide supra) a step further in terms of sustainability. Whether it is for alkynes,[108d, 108f, 

108h] alkenes[108g] or more peculiar coupling partners, such as carbon monoxide or 

isocyanides,[108c, 108e] this methodology was applied in the synthesis of heterocyclic 
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scaffolds that could be useful for drug development or natural product synthesis 

(Figure 1.4.1.2A‒B, D‒E, G, J). 

 

Figure 1.4.1.1. Cobaltaelectro-catalyzed oxidative C‒H oxygenation of benzamides 8. 

Most of the successes on cobaltaelectro-catalysis required a bidentate chelation 

assistance by the directing group. Electrochemically enabled C‒H aminations were 

proven to be viable as well for the C‒Het bond formation to give aminated products 52 

or 56 with the aid of cobalt catalysis by Ackermann and Lei independently 

(Figure 1.4.1.2C, F).[109b, 109c] These studies provided mechanistic insights into its 

reaction mechanism. With regard to the formation of C‒Het bonds, Ackermann 

reported the acyloxylation reaction promoted by cobaltaelectro-catalysis in γ-

valerolactone (GVL), a biomass-derived solvent, showcasing the capability of cobalt 

catalysis in more sustainable solvents (Figure 1.4.1.2I).[109a] In 2020, cobaltaelectro-

catalyzed C‒H allylation with unactivated alkenes was also realized by Ackermann with 

high chemo- and regioselectivity for the formation of products 57 (Figure 1.4.1.2H).[108b] 
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Figure 1.4.1.2. Compilation of cobaltaelectro-catalyzed oxidative C‒H activation transformations. 
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1.5 Reductive Cross-Electrophile Coupling Reactions 

The road to minimizing chemical waste and greener approaches in synthetic organic 

chemistry was simplified by the discovery of cross-coupling reactions and practical C‒

H activation reactions.[4, 47b] However, carbon nucleophiles are generally far less 

commercially available than are carbon electrophiles and this affects the step-economy 

to a certain extent, since preformation of carbon nucleophiles will be essentially 

needed before the said coupling could happen. Consequently, there is a great desire 

to streamline synthesis protocols for organometallic reagents and cross-coupling 

reactions. One of this method is to combine two different carbon electrophiles — or in 

general two different electrophiles — to achieve the desired cross-coupled product 

termed as cross-electrophile coupling (Figure 1.5.1).[110]  

 

Figure 1.5.1. Cross-electrophile coupling. 

The most distinct advantage is that most electrophiles are widely available with a 

diverse range of substituents, and they are often inherently more stable than are their 

organometallic counterparts.[111] In addition, most electrophilic reagents such as 

organohalides, carboxylates and sulfonates, are easily handled and stored in large 

quantities under moist and aerobic ambient conditions without significant hazardous 

risks. Whereas, the organometallic derivatives are highly reactive and they often react 

spontaneously with air and moisture, therefore the handling requirements are more 

tedious and laborious.[112] As a consequence, more time is required for the pre-

formation of the organometallic reagents than is for the actual cross-coupling 

reaction.[110c] 

One of the pioneering studies was the Wurtz reaction, involving the manipulation of Na 

metal for the reductive dimerization of electrophiles using alkyl halides to achieve 

longer alkane chain (Figure 1.5.2a).[113] The aforementioned Ullman reaction for the 

synthesis of biaryls by copper and two aryl halides also depicted a cross-electrophile 
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reaction (Figure 1.5.2b).[17] In contrast with its predecessor, the Wurtz‒Fittig reaction 

for making substituted aromatic compounds with Na metal was the first cross-

electrophile coupling in which two different electrophiles were utilized, an aryl halide 

and alkyl halide (Figure 1.5.2c).[114] It is noteworthy that the cross-selectivity improves 

whenever the alkyl halide is more reactive, to form the organosodium bond first and 

thus act more effectively as a nucleophile towards the aryl halide. 

 

Figure 1.5.2. First reported cross-electrophile systems. 

These reactions are heavily limited by the functional group tolerance and the need to 

use stoichiometric amounts of metallic reagent. Moreover, high loadings of ligands are 

eventually needed for selectivity and reactivity control, making these methods often 

impractical for contemporary usage. In the last decade, developments were made 

possible with catalytic electrochemical method to remove the need of stoichiometric 

amounts of Na.[92a, 115] However, three main problems persisted which are the 

imbalanced stoichiometry, high catalyst loadings and the need for a slow addition to 

suppress dimerization of one substrate. In general, cross-electrophile coupling 

reactions fail to pick up its momentum through the century to a great extent that it is 

far behind cross-coupling reactions and C‒H functionalizations. 

As mentioned before, one of the biggest challenges that impeded the growth of general 

cross-electrophile coupling is the dimerization of the individual electrophiles. Unlike 

traditional cross-coupling reactions, the two electrophiles have to compete with each 

other for the oxidative addition step onto the transition metal catalyst. For structurally 

akin substrates, the chances of obtaining cross-product are greatly diminished 
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(Figure 1.5.3a). Furthermore, in cases where one electrophile is significantly more 

reactive than the other electrophile, the first will rapidly undergo symmetrical 

dimerization with itself and then the latter too, albeit at a much lower rate 

(Figure 1.5.3b). 

 

Figure 1.5.3. Outcome of cross-electrophile coupling reactions based on individual reactivities. 

In case of similar reactivities of the two electrophiles, increasing the stoichiometry of 

one substrate can tremendously improve the yield of the cross-coupled product. 

Needless to say, this method is certainly not economical although feasible on smaller 

scale. One example is the cross-Ullman-type coupling reaction whereby two different 

aryl halides react together to give unsymmetrical biaryls (Figure 1.5.4).[116] However, a 

major disadvantage co-exists, since it is obtained as the second yielding product as 

the excess monomers will combine and give the symmetrical biaryl side-product. 

 

Figure 1.5.4. Cross-Ullman-type coupling reaction.  

Ultimately, there is a need to conceive more reaction pathways for cross-electrophile 

coupling, as it opens up a greener avenue for synthetical usage. Cross-electrophile 

coupling reactions are thus far termed more for C‒C bond formation between two 

alkyl/aryl halides. Nonetheless, electrophiles, such as CO2 and heteroatom-containing 

thiosulfonates, will be considered here (vide infra) more in the later discussions.  
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1.6 Utilization of CO2 as C-1 Building Block  

The tremendous surge in greenhouse gases especially carbon dioxide (CO2) in the 

atmosphere is mainly due to combustion of fossil fuels,[117] industrialization of raw 

material productions,[118] respiration of living organisms and the fermentation of 

sugars.[119] As such, carbon dioxide, an inert and unconsumed reserve is causing a 

detrimental effect in global climate change as the adverse rise of atmospheric 

temperature imbued a semi-permanent note on Earth.[120] It is indisputable that there 

is an urgent need to address CO2 emission and construct or invest in competent and 

dynamic carbon capture and utilization (CCU) systems.[121] Carbon dioxide alongside 

biomass-derived resources could offer an astounding magnitude of opportunity as 

opposed to the bulk conventional used carbon resources such as coal, natural gas and 

crude oil. It is indeed an excellent one-carbon C1 synthon/building block[122] in synthetic 

organic chemistry through its non-toxicity, availability and abundance nature which 

illustrated the possibility of manipulating CO2. Because of this, there have been a 

substantial number of researches brainstorming on valorisation approaches of CO2 

into value-added synthetical raw materials,[122e, 123] as well as the discovery of CO2-

promoted transformations.[124] Complication arises during the utilization of CO2 since it 

is the most oxidized form of carbon which translate into its natural stability as a 

molecule. CO2 is thermodynamically stable and kinetically inert, requiring the use of 

highly reactive species or harsh reaction conditions for the utilization of CO2.[125] This 

includes the use of strongly reactive nucleophiles for the formation of C‒C bonds with 

CO2, such as Grignard or organolithium reagents, which have been exemplified by the 

rapid advancement of organometallic chemistry.[126] Thus, more efficient and 

functional-group tolerant protocols that are benign to the environment, which allows 

transformation of less-activated substrates must be developed for the utilization of CO2 

in organic synthesis. Because effective energy consumed for the fixation of CO2 should 

be lower than its production, it is impractical if high energy is consumed for the 

transformation. In this context, the use of metal catalyst has exceptionally aided 

approaches using CO2 as C1 synthon by lowering the activation energy needed.[127] 
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The key fundamental is to understand the role of the metal catalyst and its interaction 

with CO2 in order to efficiently design a feasible synthesis protocol for the inclusion of 

CO2 in catalytic processes.  

These coordination modes between CO2 and transition metal centres in general have 

been extensively investigated through stoichiometric mechanistic studies.[127] CO2 is 

known to have two different coordinating atoms, the carbon centre is Lewis-acidic and 

electrophilic in nature, while the two oxygen atoms are Lewis-basic and weak 

nucleophiles. This allows various modes of coordination depending also on the specific 

electronic properties of the transition metal. Ideally speaking, when one molecule of 

CO2 reacts with a transition metal centre, five different complexes can exist 

independently (Figure 1.6.1).[128] 

 

Figure 1.6.1. Different modes of CO2 coordination with transition metals.  

Electron-rich metal centres prefer to coordinate to the electrophilic carbon centre of 

CO2 towards electron transfer from the metal centre to the carbon atom to form 

complex I, termed as metallacarboxylate. Coordination from the weakly nucleophilic 

oxygen atom by one lone pair of electrons to the metal centre to give type II adducts 

is less generally feasible. For electron-poor transition metals, CO2 can become a 

bidentate ligand in which both the oxygen atoms donate to the metal centre forming a 

stable and favourable complex III as opposed to adduct II. Complex IV can also form 

as an intermediate when electron transfer from the metal centre to the carbon atom 
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and this causes a follow-up electron donation by one of the oxygen atoms to the 

electron-spent metal centre. In addition, coordination of CO2 through the electron-rich 

unsaturated C‒O bond by the metal centre allows the formation of a π-complex V. All 

of these above-mentioned coordination modes can have significant impact on the 

energy requirement of utilizing CO2 that can fundamentally improve reactivity and give 

a better selectivity control during the incorporation of CO2 in synthetic organic 

chemistry.[125b] 

1.6.1 An Overview of Synthetical Conversions with CO2 

Various synthetic transformations of CO2 have been developed in the last few decades 

(Figure 1.6.1.1). The most successful transformation utilizing CO2 as an inexpensive 

coupling partner is the formation of cyclic carbonates 63 by the insertion of CO2 into 

epoxides 62 and the production of polycarbonates 65 through polymerisation of 

epoxides 62 with CO2 (Figure 1.6.1.1a).[129] These processes have also been 

industrialised due to their simplicity and high turnover numbers (TONs).[130] Moreover, 

100% atom economy have been achieved on ethylene and propylene carbonate 

synthesis with CO2 and this feat has a major impact on the fixation of CO2 which 

encourages more synthetic routes to be discovered that can be utilized in large 

scale.[131] Although not industrialised yet, many methods of CO2 fixation on aziridines 

66 have also been devised with good TONs and the mechanistic insights could aid the 

synthesis of oxazolidinone compounds 67 (Figure 1.6.1.1a).[132] Reductive methylation 

and formylations of amines with CO2 have also been accomplished to give 70 or 72, 

respectively,[133] which depicted the possibility of activating CO2 by coordinating 

nitrogen atom to the carbon atom in CO2 to reduce the energy barrier for the reductive 

deoxygenation step of CO2 (Figure 1.6.1.1b).[134] It is also proposed that the amine 

could increase the CO2 concentration since Lewis bases act by decreasing the hydride 

affinity which then allows more CO2 to be freed for a possibly faster rate of reaction.[135] 

The merger of the C‒N bond formation and CO2 set the stage for the valorisation of 

CO2 in a diagonal approach which improves the step-economy and for making useful 

ingredients.[136]  
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Figure 1.6.1.1. An overview of the utilization of CO2 as building block. A few transformations have been 

industrialised which are green starred.  

These methodologies for the methylation of amines via a six-electron reduction 

process of CO2 were greatly improved in terms of sustainability and greener chemistry 

by the realisation of catalytic methylations with CO2 and H2 instead of using 

hydrosilanes[137] which would in return produce substantial siloxanes waste 

(Figure 1.6.1.1b).[136c, 138]  

Transition metals have revolutionised the fixation of CO2 due to their unique properties. 

The discovery of low-valent palladium or nickel was pivotal on oxidative coupling 

reactions of CO2 as exemplified by the first synthesis of Aresta’s complex 

[Ni(CO2)(PCy3)2] 79 (Figure 1.6.1.1c), which was the pioneering metallacycle complex 
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bound to CO2.[139] This has indeed allowed a myriad of developments to spawn in the 

area of oxidative cyclometallation including cross-coupling reactions of CO2 and 

organozinc with Aresta’s complex as catalyst (Figure 1.6.1.1c).[140] Although it has 

brought forth great advancement, stoichiometric amounts of the transition metals are 

needed for the generation of distinct metallacycle complexes. In 1983, allylic 

carboxylate complex intermediate with palladium metal was first observed and 

reported by Behr which have an extremely important mechanistic impact in allylic 

carboxylation reactions (vide infra). This gave rise to later discoveries of novel and 

step-economical synthetic protocols.[141] 

Due to the odourless, colourless, and toxic nature of carbon monoxide (CO), it is often 

challenging to handle and to use CO as a carbonylating agent. In addition, even though 

the valorisation of CO2 as C1 synthon have been researched upon for various other 

transformations, its use for the in situ generation of CO for carbonylation is still lagging 

behind. Therefore, copious developments throughout recent years focused more on 

using CO2 as CO surrogate for carbonylation reactions because of its practicality and 

environmentally conscious approach (Figure 1.6.1.1d). For many decades, the use of 

CO as carbonylating agent has a great significance in the large-scale manufacturing 

of bulk and fine chemicals from widely available feedstocks. For example, the 

hydroformylation and similar tandem reactions of alkenes produces oxo-products of 

over 10 million tons every year.[142] Therefore, it is an important quest to utilize massive 

amount of CO2 in lieu of CO in order to decrease the concentration of CO2 in the 

atmosphere. Furthermore, the large-scale generation of methyl propionate from 

ethylene through methoxycarbonylation catalyzed by palladium complexes produces 

more than 3 million tons a year to feed its demand as a key intermediate for the 

synthesis of methyl methacrylate.[143] As already mentioned regarding the limitations of 

using CO for carbonylation reactions, the transportation of CO poses a certain 

hazardous danger making it extremely difficult for large-scale movement of such toxic 

gaseous substance. Consequently, the in situ reduction of CO2 to CO using the 

knowledge of reverse water-gas shift (RWGS) reaction (Figure 1.6.1.2) could help 

transit CO2 into a C1 feedstock for carbonylation reactions. 
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Figure 1.6.1.2. ‘Reverse’ water-gas shift reaction. Increasing concentration of CO2 will shift the equilibrium. 

In this regard, the seminal work in 2000 reported by Tominaga and Sasaki was pivotal 

in the quest for CO2 fixation through hydroformylation reactions and the reduction of 

alkenes with the ruthenium H4Ru4(CO)12 complex as the catalyst (Figure 1.6.1.3).[144] 

Despite the harsh conditions and the low efficiency, this work gave start to solve the 

problem of CO usage and the reduction of CO2. The application of hydrogen gas as 

an efficient reducing agent for CO2 poses another pitfall for the hydroformylation and 

hydrocarboxylation of alkenes with CO2 and H2 reactions[145] since many of the 

subsequent carbonylation reactions cannot proceed due to the possible hydrogenation 

of the substrates. 

 

Figure 1.6.1.3. Ruthenium-catalyzed hydroformylation of alkenes with CO2. 

Photocatalysis[146] was subsequently introduced to tackle the reduction of CO2 more 

efficiently to, for instance, formic acid.[147] However, since CO2 is unable to absorb UV-

vis light radiation itself, this could be addressed by the addition of a suitable 

photosensitiser wherein the excited state photosensitiser after absorbance of far-UV 

and visible light directs an electron to the ligands from the metal centre termed as 

metal-ligand charge transfer (MLCT). Upon emission from the excited state, the 

photosensitiser does a single-electron transfer (SET) to the CO2 molecule for further 

transformations.[148] The use of photocatalysis in the reduction of CO2 to CO has 

evolved based on initial studies by Lehn.[149] Despite of the lack of powerful 

photocatalyst alternatives that could easily absorb visible light, the advances made 
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were significant.[150] Several reports that focused on photocatalytic reduction of CO2 

required the use of stoichiometric amount of sacrificial electron donors.[151] 

Notwithstanding, the possibility of engaging CO2 as CO surrogate could potentially 

fundamentally change synthetical protocols for carbonylation reactions for a greener 

and more sustainable approach. 

1.6.2 Carboxylation Reactions with CO2 

In the past few decades, carboxylation reactions were vastly studied, because the 

formation of thermodynamically and kinetically stable C–C bond is highly desirable. 

Furthermore, increased utility of value-added compounds, such as carboxylic acid 

derivatives, are indispensable for bottom-up synthesis approaches, and it is one of the 

most fundamental building blocks for late-stage diversification. As already mentioned, 

CO2 is highly stable and its performance as an electrophile often requires highly 

reactive nucleophilic reagents, such as organolithium or Grignard compounds 86, as 

the coupling partners to furnish the desired carboxylic acid derivatives 88. The 

utilization of CO2 with carbon nucleophiles constitute a major demand in the field of 

organic synthesis.[127a] The Kolbe-Schmitt carboxylation reaction allows the large-scale 

synthesis of salicylic acid 90, which showcases the potential of CO2 fixation through 

the formation of C–C bond using carboxylation reaction (Figure 1.6.2.1).[152]  

 

Figure 1.6.2.1. Various carboxylation reactions. Large-scale industrial synthesis of salicylic acid 90 is 

green starred. 
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The use of transition metals can significantly lower the activation barrier and promote 

the C–C bond formation step as a result the strength of the formed carboxylate-

complexes by the insertion of CO2 molecule into C–Metal bonds.[127b] This allows less-

nucleophilic reagents, like organo(pseudo)halides 87, organoborons 85, unsaturated 

compounds 2 or 81 and substrates with activated C–H bonds 92 to undergo 

carboxylation transformations with CO2. They are often formed through the C–Metal 

bond intermediate, which is somewhat analogous to conventional transition metal-

catalyzed cross-coupling reactions (vide supra).[4, 153] Moreover, the carboxylate 

intermediate can be captured by transition metal and consequently quenched easily to 

regenerate the catalyst to close a catalytic cycle. Several modern illustrated catalytic 

methods (Figure 1.6.2.1) have been developed for the transition metal-catalyzed 

carboxylations with CO2, but more importantly, these pioneering works granted an 

influx of future greener discoveries for CO2 fixation by carboxylation.[122d, 145f, 154] 

Catalysis with milder nucleophilic organoboron reagents for the carboxylation reaction 

with CO2 using organoboron reagents was started by Iwasawa (Figure 1.6.2.2),[155] 

which displayed the enormous potential for replacing the use of organometallic 

reagents for better functional group tolerance and less demanding ambient 

requirements. Rhodium was employed in this case catalytically for the first time which 

was typically used stoichiometrically many decades prior to this discovery.[156] It was 

proposed that the catalytic use of rhodium is only possible if the active catalyst 98 can 

be regenerated from the rhodium carboxylates 99. This is through the high oxophilicity 

of boron substrates by stimulating the transmetalation step between the rhodium 

carboxylates 99 and boron carboxylates 101 (Figure 1.6.2.2). Notably, subsequent 

researches for this carboxylation transformation found effectiveness with copper[157] 

and silver catalysts.[158] Besides organoboron reagents, step-economical direct C‒H 

carboxylation have also been devised for more acidic C‒H bonds by the aid of a strong 

base to give C‒Metal bonded complexes via deprotonative metalation. This 

transformation is especially efficient for terminal alkynes.[159] 
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Figure 1.6.2.2. Carboxylation of organoboron substrates with CO2. 

Pioneering studies independently reported by both Gooßen[159d] (Figure 1.6.2.3a) and 

Zhang[159c] (Figure 1.6.2.3b) used copper(I) catalysts for the direct C‒H carboxylation 

on terminal alkynes 13. While Gooßen rather focused on phenanthroline-type copper 

complex for the successful transformation, the latter used TMEDA or poly-NHC-type 

ligands. A cooperation between the copper-NHC complex and a free carbene ligand 

was proposed for the activation of CO2 to an NHC carboxylate-type intermediate. In 

2011, Zhang then developed a metal-free regime utilizing only strong base like Cs2CO3 

and KOtBu for similar transformations on terminal alkynes with higher CO2 pressure to 

achieve carboxylated products with relatively good yield (Figure 1.6.2.3c).[159b] 
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Figure 1.6.2.3. Direct C‒H carboxylation of terminal alkynes 13. 

While copper complexes have been mostly employed in the carboxylation of terminal 

alkynes 13, silver(I) as well was also exploited by Lu (Figure 1.6.2.3d).[159a] Wherein, 

they reported a ligand-free process with silver(I) as the active catalyst and a low 

catalytic loading of silver reflects the effectiveness of this transformation. Based on 

these concurrent progresses on direct C‒H carboxylation of terminal alkynes, 

numerous carboxylation of heteroarenes with relatively acidic C‒H bonds utilizing CO2 

have also been developed in which the key essential role of strong bases was 

amplified.[160] 
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Seminal work by Iwasawa displayed the possibility of a directing group-aided C‒H 

activation method that could form the C‒Metal bond in close proximity for the 

subsequent carboxylation to happen with CO2 catalyzed by rhodium complexes 

(Figure 1.6.2.4).[161] Even though this C‒H activation regime for carboxylation with CO2 

on arenes requires the use of pyrophoric methylaluminium-based reagents, this 

concept could be indispensable for a green and step-economical method to make 

relatively useful aryl carboxylic acid (Figure 1.6.2.4a). This approach has also been 

recently applied to alkenyl C‒H bonds by the same group to achieve highly 

regioselective carboxylations with (Z)-selectivities (Figure 1.6.2.4b).[161a] The authors 

have proposed a plausible reaction mechanism with key intermediates on their 

mechanistic investigations for directed C‒H carboxylation transformations 

(Figure 1.6.2.4). First the rhodium(I) chloride reacts with the methylaluminium reagent 

109 giving the active methylrhodium(I) catalyst 110. Subsequently, chelation-assisted 

C‒H bond activation through oxidative addition of the substrate 111 by the active 

catalyst 110 gives arylrhodium(III) species 112. Methane is then excluded through 

reductive elimination to give the key arylrhodium(I) intermediate 113. This undergoes 

nucleophilic addition to give rhodium carboxylate 114 with CO2. Transmetalation of 

intermediate 114 with another molecule of methylaluminium reagent 109 gives the 

aluminium carboxylate 115 and regenerates the active methylrhodium(I) catalyst 110. 

The final product is obtained through the methylation step by adding TMSCHN2 to give 

the ester product. The authors observed the methylated side product 116 in both their 

studies, and this can be accounted for through a C‒C forming reductive elimination of 

the arylrhodium(III) intermediate 112.  
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Figure 1.6.2.4. Directing group-assisted C‒H carboxylation. 
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The carboxylation reactions utilizing CO2 on electrophilic organo(pseudo)halides[162] 

have been vastly investigated in the last half a century especially in combination with 

electrochemistry (vide infra). The oxidative addition of such organo(pseudo)halides 

with low-valent transition metals creates a platform for the formation of C‒Metal bonds 

as well. This would then render cross-electrophile coupling (vide supra) with CO2 

possible and one such carboxylation reaction with electrophiles instead of the usual 

nucleophiles was reported by Martin (Figure 1.6.2.5a).[163]  

 

Figure 1.6.2.5. Carboxylation reactions of electrophilic organo(pseudo)halides. 
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They found that palladium catalysts were capable of the carboxylation of aryl bromides 

117 with CO2 only with the aid of a chemical reductant and in this case, pyrophoric 

Et2Zn was utilized. The reductant is essential for the regeneration of the active low-

valent palladium(0) catalyst. Thereafter, progresses have been made for using more 

Earth-abundant transition metals, such as nickel by Tsuji and Fujihara, and Martin 

independently on carboxylations with aryl chlorides 118 and vinyl chlorides 119 

(Figure 1.6.2.5b),[164] and primary, secondary and tertiary benzyl halides 122 

(Figure 1.6.2.5c) respectively.[165]  

Among all the carboxylation reactions with organo(pseudo)halides, allylic-containing 

substrates are especially interesting as they can be further functionalized. Moreover, 

one can possibly selectively access a stereogenic centre with the right reaction 

condition.[166] The precise control of the allyl-metal intermediate generated during the 

course of the reaction defines the regioselectivity of the final carboxylation product. In 

many cases, the challenge remains for the complete control of one regioisomer. In this 

aspect, Mita and Sato devised an attractive carboxylation with allylic alcohols 124 or 

125, using a palladium catalyst with Et2Zn as the reducing agent (Figure 1.6.2.6a).[167] 

The allylic alcohols are activated via pyrophoric Et2Zn metal reductant or possibly 

through the formation of carbonate with CO2. The transformation is highly 

regioselective for the branched product 126, which makes it valuable. Subsequently, 

Martin reported site-selective and regio-divergent carboxylation catalyzed by nickel in 

the expense of high amount of zinc metal reductant (Figure 1.6.2.6b).[168] This elegant 

work switches the regioselective based on the ligand employed. Shortly after, Mei 

realized a nickel-catalyzed reductive carboxylation with CO2 using allylic alcohols 129 

and propargylic alcohols 60 as coupling partners with the aid of super-stoichiometric 

amount of manganese metal reductant (Figure 1.6.2.6c).[169] This synthesis method 

paved the way into the synthesis of linear β,γ-unsaturated carboxylic acids 130 with 

good E/Z stereoselectivity. Thus, all three synthesis developments granted remarkable 

control of regioselectivity. These exceptional studies provided the ability to have explicit 

control over the regioselectivity of the final product but in the heavy expense of utilizing 

super-stoichiometric metal reductants, which are often pyrophoric and requires 
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rigorous training for safe handling. 

 

Figure 1.6.2.6. Reductive carboxylation with chemical reductants. 

In general, the progress for transition metal-catalyzed carboxylation reactions 

developed by Yamamoto,[170] Martin,[154a, 163, 168, 171] Tsuji and Fujihara,[172] Daugulis,[173] 
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He,[174] Sato,[167, 175] Mei[97d, 154b, 169] is considered to be important for future prospects. 

These examples have aided the evolution of conventional carboxylation of 

organo(pseudo)halides in the last few decades.[154a, 154b, 154d] Principally, these 

contemporary usages of CO2 for carboxylation reactions definitely enhances the 

functional group tolerance due their milder reaction conditions. However, a major 

drawback of cross-electrophile coupling with CO2 is the use of super-stoichiometric 

amount of metal reductants, some of which are highly pyrophoric that disfavours large-

scale synthetical use. 

1.6.3 Electro-Reductive Carboxylation 

Metalla-electrocatalysis is an important and powerful methodology of providing 

efficient energy from renewable sources (vide supra). It has also been heavily utilized 

for carboxylation reactions, since the single electron reduction of CO2 to the radical 

anion CO2
•− is relatively difficult at E = − 2.21 V vs. SCE in DMF[176] and the process is 

usually irreversible.[177] Transition metal-catalyzed electrocarboxylation using CO2 

provides a promising platform for the synthesis of arenecarboxylic acids from aryl 

halides.[178] Hence, electrochemical reduction of CO2 for carboxylation reactions on 

organo(pseudo)halides were one of the earliest reported successful cross-electrophile 

coupling reactions with CO2 in the 1980s, by Perichon and Fauvarque 

(Figure 1.6.3.1).[179] Wherein, a nickel catalyst was able to catalyze the electro-

reductive carboxylation of aryl halides with CO2. The proposed reaction mechanism 

starts with the oxidative addition of aryl bromide 117 onto the active nickel(0) catalyst 

131 to give a nickel(II) complex 132. This complex would undergo a single electron 

reduction (SET) to the nickel(I) intermediate 133 and carboxylation with CO2 to give a 

nickel(I) arenecarboxylate 134. Another one-electron reduction regenerates the active 

nickel(0) catalyst and give the carboxylate 135. A nickel(III) intermediate has also been 

proposed by Amatore and Jutand, that can be formed prior to the formation of nickel(I) 

arenecarboxylate complex 134.[180] 
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Figure 1.6.3.1. Nickel-catalyzed electrocarboxylation of aryl halides. 

Then, Torii and Fauvarque devised a similar carboxylation route with palladium as the 

catalyst, which have a broader substrate scope than its nickel counterpart 

(Figure 1.6.3.2).[181] They also include the possibility of di-carboxylation on vinyl 

bromide 136 (Figure 1.6.3.2b). Biaryls were not observed as by-products in this case 

as opposed to metal-free electroreductive carboxylation methods.[182] Subsequently, 

Jutand showcased the feasibility of using vinyl triflates 139 instead of the usual halogen 
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leaving groups as coupling partners with CO2 in a palladium-catalyzed electro-

reductive carboxylation (Figure 1.6.3.2c).[183] 

 

Figure 1.6.3.2. Palladium-catalyzed electro-reductive carboxylation reactions. 

One of the earliest well-documented carboxylations on allylic medium with CO2 was 

reported by Inoue in 1976 where allylic palladium intermediate was first proposed 

(Figure 1.6.3.3a).[184] First, the formation of π-allylic complex 141 from butadiene 73 

with palladium catalyst. Then the insertion of CO2 to give the carboxylate complex 142. 

This would collapse after an intramolecular hydrogen transfer to give carboxylic acid 

143a, which isomerises to compound 143b. Last, an intramolecular 1,4-addition gives 

the final five-membered lactone product 140. 



1. Introduction  

47 
 

 

Figure 1.6.3.3. Electro-reductive carboxylations on allylic substrates. 

The discovery of the reversible adduct of Co(salen) and CO2 displayed an intrinsic 

capability of plausibly delivering the reduced formed of CO2 through reversible 

binding.[185] This was exploited by Perichon for the cobalt-catalyzed electro-reductive 

carboxylation of benzyl chlorides and allylic chloride 144a but its reaction mechanism 
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was still underexplored (Figure 1.6.3.3b).[186] In the previous report by Torii and 

Fauvarque, linear allylic acetate 145a as well as branched allylic acetate 146a were 

used with moderate yield for both the regioisomers, showing no significant 

regioselectivity (Figure 1.6.3.3c).[181]  

Then, Mei recently reported the reductive electrocarboxylation of allyl esters 145 to 

give useful carboxylic acids 130’ with moderately good regioselectivity, albeit with 

precious palladium catalyst (Figure 1.6.3.4).[187]  

 

Figure 1.6.3.4. Palladium-catalyzed reductive electrocarboxylation of allyl esters 145. 
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A feasible reaction mechanism was proposed by the authors as well. First, oxidative 

addition of the active palladium(0) catalyst 147 with the allyl ester substrate 145 gives 

a cationic π-allylpalladium(II) complex 148, which is in equilibrium with η1-

allylpalladium species 149 and 152. The branched complex 152 is highly disfavoured 

due to the significant steric hindrance. Thus, the linear isomer 149 will undergo the 

ensuing cathodic reduction to anionic η1-allylpalladium intermediate 150 by an overall 

two-electron reduction analogous to the studies by Amatore and Jutand on 

carboxylation of aryl halides.[92a, 178] This intermediate goes through carboxylation with 

CO2 at the γ-position to furnish the carboxylate product 151 and regenerate the 

palladium(0) active catalyst.  
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1.7 Synthetical Methods for C‒S Formation  

Sulfur-containing compounds are often perceived as possible therapeutics and they 

are extensively explored for clinical trials. They are no doubt of utmost contemporary 

importance towards the dynamic and effective developments of pharmaceuticals and 

functional materials.[188] As a consequence, an enormous number of resources has 

been focused on approaches for the formation of C‒S bonds in synthetic organic 

chemistry, which allows simple molecules to be transformed into highly valuable 

compounds (Figure 1.7.1).  

 

Figure 1.7.1. Selected examples of important therapeutic sulfur-containing compounds. 

For example, historically significant and life changing penicillin is one of the most 

effective sulfur-containing antibiotics for the treatment of syphilis and infections caused 

by streptococci and staphylococci.[189] Proton-pump inhibitors (PPI) ,such as Prevacid, 

work efficiently in restricting the production of gastric acid in the stomach.[190] Seroquel, 

that was approved for the treatment of schizophrenia and bipolar disorder, acts as an 

atypical antipsychotic drug.[191] This has also since evolved to Seroquel XR which 

alongside a selective serotonin reuptake inhibitor (SSRI) prove adequate for tackling 

major depressive disorders.[192] Epipolythiodiketopiperazine alkaloids, like (-)-

acetylaranotin, also exhibit many biologically therapeutic properties, e.g. antiviral, 

antibacterial, antimalarial, antiallergic and cytotoxic characteristics.[193] These 
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alongside many other medications are important to further improve the efficacy of 

current and future drugs against strongly-resistant viral or bacterial infections.[194] 

Hence, there is a need to discover greener and more sustainable methods for the 

synthesis of sulfur-containing compounds through efficient C‒S bond formation. 

1.7.1 Conventional Methods for C‒S Bond Formation 

One of the earliest and most classical protocols for the formation of C‒S bonds in alkyl 

sulfides largely requires harsh alkaline conditions for the substitution reaction of alkyl 

halides with mercaptans.[195] They suffer, however, from poor yielding reactions and 

limited substrate scope. The strong and unpleasant odour of mercaptans made the 

method highly impractical for large-scale synthetic use. Thus, it is highly desirable to 

develop facile and efficient approaches for the C‒S bond formation without 

compromising the robustness. In the last half a century, transition metal-catalyzed 

reactions have undoubtedly eased the synthesis of alkyl sulfides akin to many cross-

coupling reactions developed through the years (vide supra).[196] The traditional cross-

coupling reactions of aryl halides or boronic acids with thiols have been well examined, 

which have been dominated by precious metals, such as palladium and rhodium.[196c, 

197]  

 

Figure 1.7.1.1. Palladium-catalyzed cross-coupling of aryl halides and thiols. 
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The first palladium-catalyzed cross-coupling reaction of aryl halides 87 and thiols 152 

were presented in 1978 by Migita, where a series of diaryl and arylalkyl sulfides 153 

were obtained in good yield (Figure 1.7.1.1a).[198] Subsequently, they improved the 

protocol to obtain higher yields using thiolate anions in EtOH or DMSO solvents.[199] 

Many years later, Hartwig was able to develop a long-lived catalyst for the palladium-

catalyzed coupling of aryl halides 118 and thiols 152 which significantly improved the 

efficacy from its predecessor (Figure 1.7.1.1b).[200] Most of these transformations 

catalyzed by palladium requires high elevated temperature to ensure efficient 

transformation. Hence in 2011, Organ reported a low temperature mild palladium-

catalyzed C‒S bond formation using bulky ligands that encompasses the palladium 

center (Figure 1.7.1.2a).[201] More recently, Morandi reported the C‒S formation by 

single-bond metathesis through reversible arylation, this creates a new pathway of 

synthesising alkyl sulfides 156 (Figure 1.7.1.2b).[202] This was achieved with a 

palladium-NHC type complex catalyst that promotes the essential C‒S metathesis. 

 

Figure 1.7.1.2. Key developments into palladium-catalyzed C‒S bond formation. 
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The use of rhodium catalysts also expedites the formation of C‒S bonds through cross-

coupling reactions. In 2008, Yamaguchi was able to show the successful coupling 

reaction of aryl fluorides 157 and disulfides 158 catalyzed by simple rhodium catalyst 

(Figure 1.7.1.3a).[197c] Subsequently, Lee devised a general rhodium-catalyzed cross-

coupling reaction of aryl iodides 159 with thiols 152 using simple triphenylphosphine 

as the ligand to give diaryl sulfides 153 in good yield (Figure 1.7.1.3b).[197b] The C‒S 

cross-coupling reaction was also promoted via a well-defined pincer-type rhodium 

catalyst reported by Ozerov to give diaryl and aryl-alkyl sulfides 153 (Figure 

1.7.1.3c).[197a] 

 

Figure 1.7.1.3. Rhodium-catalyzed C‒S formation. 

Besides these examples for both palladium and rhodium, gold[203] and silver[204] were 

also employed as catalysts in several other successful attempts on C(sp2)‒S formation. 

The use of inexpensive and Earth-abundant 3d transition metals are rising through the 
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years because of their wide availability as opposed to their precious metal counterparts. 

In this regard, many synthesis routes for C‒S formation were developed with iron,[205] 

copper,[206] cobalt[207] and manganese.[208] In addition, significant advances were made 

mostly with nickel as the catalyst which gave impetus and prompted further 

investigations on the utilization of nickel for C‒S bond forming catalysis 

(Figure 1.7.1.4).[209] 

 

Figure 1.7.1.4. Nickel-catalyzed C‒S bond forming reactions. 

1.7.2 Contemporary Protocols for C‒S Formation 

Even though thiols and their oxidized derivatives are commonly used as coupling 

partners in traditional transition metal-catalyzed C‒S forming reactions, they are 

impractical for large-scale synthesis protocols, since thiols 152 are known to be highly 
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toxic with foul-smelling odour. This heavily impedes its utilization in modern synthetic 

organic chemistry. In addition, there is also a lack of availability for alkyl thiols and 

disulfides which hinders the application and substrate scope. There have been studies 

on ways to circumvent such limitations, including the use of sulfuration agents, such 

as KSAc or KSCN, for the synthesis of both symmetrical and unsymmetrical 

sulfides.[210] Besides these, sulfur powder and Na2S2O3 were also successfully 

employed for the synthesis of aryl and alkyl sulfides which allows alternatives to avoid 

the use of thiols 152.[211] The use of electrophilic substrates accentuate the feasibility 

of cross-electrophile coupling reactions (vide infra) for C‒S formation, which involves 

the application of electrophilic benzenesulfonothioates or thiosulfonates. These 

substrates could be activated by organometallic reagents such as Grignard as reported 

by Knochel[212] or organolithium compounds (Figure 1.7.2.1a).[213] The substrate scope 

and chemoselectivity are, however, heavily limited due to the harsh reaction conditions.  

 

Figure 1.7.2.1. Use of electrophilic thiosulfonates for C‒S formation. 

Hence, seminal work by Ruijter, Orru and Mae reported a multi-component synthesis 

of isothioureas 165 using isocyanides 164, electrophilic thiosulfonates 163 and amines 
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162 under copper catalysis (Figure 1.7.2.1b).[214] Later, Xu devised an elegant multi-

component route for making 5-hetero-functionalized triazoles 167 by a copper(I)-

catalyzed “interrupted click” reaction using various terminal alkynes 13, azides 166 and 

thiosulfonates 160 (Figure 1.7.2.1c).[215] More recently, Wang and Ji developed a one-

pot multi-component copper-catalyzed reaction for the synthesis of sulfur-containing 

trisubstituted imidazoles. The use of S-aryl benzenesulfonothioate simplified the 

protocol for a diverse range of substituted imidazoles 170 to be obtained 

(Figure 1.7.2.2a).[216] Around the same time, Wang and Ji also reported a nickel-

catalyzed defluorinative reductive cross-electrophile coupling reaction of gem-

difluoroalkanes 171 with electrophilic thiosulfonates 160 or with selenium sulfonates, 

which gave access to monofluoroalkanes 172 that could be useful in medicinal 

chemistry or for drug discovery (Figure 1.7.2.2b).[217]  

 

Figure 1.7.2.2. Progress in the utilization of electrophilic thiosulfonates 160. 
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In the same context, the reductive thiolation and selenylation of cycloketone oxime 173 

catalyzed by nickel were showcased by Wang and Ji as well. The final alkyl sulfide 

products 174 were obtained through a C‒C bond cleavage of cycloketone oxime and 

then C(sp3)‒S bond formation with the aid of thiosulfonates (Figure 1.7.2.2c).[218] Both 

the above reductive cross-coupling reactions required the undesirable use of super-

stoichiometric amount of manganese reductant. A remarkable nickel-catalyzed 

reductive thiolation and selenylation for the C(sp3)‒S formation with unactivated 

bromides 175 was first reported by Ackermann, Wang and Ji (Figure 1.7.2.3).[219]  

 

Figure 1.7.2.3. Nickel-catalyzed reductive thiolation with thiosulfonates 160. 
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They were able to achieve thiolation on primary and secondary alkyl bromides to 

access many unsymmetrical aryl-alkyl and alkyl-alkyl sulfides/selenides with excellent 

chemoselectivity utilizing a simple nickel catalytic regime, though super-stoichiometric 

amount of chemical metal reductant was still essentially needed. The authors proposed 

a possible reaction mechanism based on their detailed mechanistic and kinetic 

investigations (Figure 1.7.2.3). First, the in situ reduction of nickel(II) 177 to active 

nickel(0) catalyst 178 by the manganese reductant occurred. Then the oxidative 

addition of thiosulfonates 160 onto the active nickel(0) catalyst 178 happens 

generating a nickel(II) intermediate 179. This would react with an alkyl radical 182 to 

give a nickel(III) intermediate 180. Then reductive elimination of this intermediate gave 

the desired sulfide product 176 and regenerates the nickel(I) complex intermediate 181, 

which further reacts with the alkyl bromide 175 to give the alkyl radical 182 and nickel(II) 

complex 183. Subsequent reduction of nickel(II) complex 183 regenerates the active 

nickel(0) catalyst 178 and, thus, closing the catalytic cycle. Most of the examples for 

C‒S formation thus far required large amounts of chemical reductants, which produced 

major amounts of chemical waste, and, therefore, impeded their usage in large-scale 

synthesis.  

 

Figure 1.7.2.4. Electrochemical nickel-catalyzed thiolation reactions. 
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The merger of electrochemistry with 3d transition metal catalysis has brought forth a 

plethora of opportunities (vide supra) and C‒S formation with the aid of 

electrosynthesis was recently explored. Recent studies for electrochemical thiolation 

feature independent concurrent reports by Mei (Figure 1.7.2.4a) as well as Wang and 

Pan (Figure 1.7.2.4b) which both showcased the feasibility of merging sustainable 

electrochemistry with challenging C‒S formation.[220] These electrochemical nickel-

catalyzed thiolations of aryl halides with aryl thiols gave rise to diaryl sulfides 161 with 

moderate to good yield in both reports, yet they represented a major step forward in 

terms of such innovative and environmentally friendly synthetical protocols. This also 

showed that the search for more renewable synthesis methods is crucial due to a lack 

of better alternatives for cross-electrophile couplings. 
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2. Objectives 

In the last few decades, immense progress has been made with transition metal-

catalyzed C‒H activation[20] as an effective tool for the functionalization of inert C‒H 

bonds in organic molecule. In addition, this exceptional atom-[19c, 19d] and step-

economical[19a, 19b] methodology is very potent for the construction of C‒C and C‒Het 

bonds. However, most developed C‒H activation methods required rather harsh 

reaction conditions, use of expensive precious metals and generate stoichiometric 

amount of undesirable chemical waste. Thus, it is important to expand the arsenal of 

C‒H activation reactions in synthetic organic chemistry to realize more efficient and 

sustainable protocols. The utilization of metalla-electrocatalysis for C‒H activation 

provided a phenomenal step forward in terms of renewability and intellectual 

discoveries.[102] 

In this context, the application of Earth-abundant and inexpensive cobalt salts as 

catalyst further promotes the green concept without compromising the efficacy, 

showcasing its viability for oxidative C‒H activation reactions.[47] Despite that, many of 

these transformations requires the indispensable need for stoichiometric amount of 

toxic metal-based oxidants. These limitations should be addressed with a hypothesis 

of an innovative strategy encompassing electrochemical cobalt-catalyzed C‒H/N‒H 

coupling with unsaturated compounds (Figure 2.1). This would allow the manipulation 

of anodic oxidation to regenerate the active catalyst within the catalytic cycle and 

furthermore, cathodic reduction to generate molecular hydrogen bypassing the need 

to use sacrificial oxidants. Thus, a more sustainable synthesis strategy could be 

realized. 

 

Figure 2.1. Electrochemical cobalt-catalyzed C‒H/N‒H activation for annulations of allenes 185. 



2. Objectives  

61 
 

The alarming proliferation of CO2 levels in the atmosphere prompted the 

advancements of CO2 fixation methodologies.[117, 120] The investments in carbon 

capture and utilization (CCU) strategies have moved towards using CO2 as an 

excellent C1 building block despite its inert nature.[121b, 122] Many transition metal-

catalyzed reactions with CO2 are indeed effective in the valorisation of CO2 but only 

few selected ones have been industrialised which allows large-scale consumption of 

atmospheric CO2. These includes the synthesis of cyclic and polycarbonates, as well 

as salicylic acid.[129-131, 152] Hence, there is a strong need to develop efficient and 

sustainable methodologies for the large-scale fixation of CO2 into simple valuable 

compounds. 

With utmost relevance, the formation of a stable C‒C bond through carboxylation 

reaction with CO2 offers value-added carboxylic acid moiety on any substrate which 

could be further functionalized easily.[127a] Transition metal-catalyzed carboxylation 

reactions have been performed with organoboron reagents, direct C‒H carboxylation 

of acidic C‒H bonds, directing group aided C‒H carboxylation and 

organo(pseudo)halides.[125b] However, harsh reaction conditions were required for the 

activation of CO2 and in most cases, the usage of precious metals cannot be bypassed. 

The renaissance of electrosynthesis allows vast exploration for new sustainable 

carboxylation protocols.[102a] Therefore, traditional impediment should be countered 

with a hypothesis of a merger between Earth-abundant 3d metal electrocatalysis and 

cross-electrophile carboxylation of allylic halides 187 with atmospheric CO2 (Figure 

2.2). Fundamentally, the conventional use of super-stoichiometric amount of chemical 

metal reductant which are frequently pyrophoric in nature can be avoided by the 

utilization of cathodic reduction. 

 

Figure 2.2. Electro-reductive cobalt-catalyzed carboxylation of allylic halides 187. 
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Sulfur-containing moieties are frequently found in pharmaceuticals or functional 

materials.[188] The constant race to discover new drugs with high efficiency and efficacy 

yet minimal toxicity calls for a high magnitude of innovation with regards to synthetical 

protocols. In this context, the formation of C‒S bonds in the synthesis of diverse 

compounds from simple molecules is particularly crucial for medicinal chemistry. 

Hence, great interest exists in simplifying the synthesis of sulfur-containing compounds. 

Transition metal catalysis have revolutionised C‒S formation but in most cases, thiols 

were used as coupling partners which are highly toxic with foul-smelling odour. As such, 

they are relatively impractical as large-scale applications. In this circumstances, 

electrophilic thiosulfonates have been recently included in contemporary 

methodologies for C‒S formation.[212-219] This class of substrates are bench-stable, 

odourless and easily synthesized under mild reaction conditions ensuring high 

conversions and functional group tolerance. Even though, there have been reports 

utilizing thiosulfonates in cross-electrophile coupling for C‒S formation, they are 

relying heavily on super-stoichiometric amounts of chemical metal reductants. Thus, a 

hypothesis that the C‒S formation could be simplified to a more viable method by 

combining cross-electrophile coupling and the recent success of Earth-abundant 3d 

metal electrocatalysis should be thoroughly explored (Figure 2.3). As aforementioned, 

electrochemical reduction not only facilitates the cathodic reduction of the catalytic 

intermediates, but also often provides milder reaction conditions. 

 

Figure 2.3. Electro-reductive nickel-catalyzed thiolation of alkyl bromides 175. 
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3. Results and Discussion 

3.1 Cobaltaelectro-Catalyzed C‒H/N‒H Annulations 

Allenes are known to be reactive and versatile unsaturated building blocks for organic 

syntheses.[67a-e] The use of oxidative C‒H activations has shown to be highly effective 

for annulation reactions with unsaturated compounds within a one-pot fashion.[221] In 

this regard, allenes offer a unique and exciting reactivity as compared to their alkenyl 

or alkynyl counterparts[67c] for intermolecular C‒H annulation reactions.[52c] Most of the 

reported C‒H annulation reactions with allenes either required precious metal catalyst 

or expensive and unsustainable silver(I) or copper salts as sacrificial oxidants.[67a, 67b, 

69, 222] Nonetheless, great advancements were made for oxidative C‒H annulation with 

allenes but rarely presented with electrochemistry[223] and the inclusion of renewable 

metalla-electrocatalysis was not conceived until this report.[224] The hypothesis that an 

electro-oxidative cobalt-catalyzed C‒H/N‒H annulation protocol could be made 

feasible based on precedent by Ackermann in electrochemical cobalt-catalyzed C‒H 

oxygenation[225] and subsequent alkyne annulation.[108f] 

3.1.1 Optimisation and Substrate Scope of C‒H/N‒H Annulation Reaction 

Optimisation studies on the electro-oxidative allene annulations by mild cobalt-

catalyzed C‒H activation were done by Dr. T. H. Meyer.[224] The optimisation 

investigations included the efficacy test of different cobalt salts as catalysts and the 

choice of solvent. In addition, several different additives, which are mainly carboxylate 

salts, were tested and control experiments for optimising the catalyst loading, current 

applied and reaction time. As a result, the use of Co(OAc)2•4H2O (20 mol %), NaOPiv 

(2.0 equiv.) in MeOH at 40 °C for 15 h under a constant current electrolysis of 2.0 mA 

were identified as optimal. Reticulated vitreous carbon (RVC) and platinum plate were 

chosen as the best choice for the anode and the cathode, respectively.   
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With the optimised reaction condition in hand, the robustness of this electro-oxidative 

allene annulation by cobalt catalysis was investigated with benzamides 8 bearing a 2-

pyridyl-N-oxide bidentate directing group together with various 1,3-disubstituted 

internal allenes 185 (Figure 3.1.1.1). The electrochemical C–H activation interestingly 

furnished the corresponding exo-methylene isoquinolones 186 with moderate to good 

yield. 1,3-Disubstituted internal allenes containing esters 185a-185d were tolerated as 

well as the use of electron-donating p-methoxy-containing benzamide proved viable 

under the mild regime. Consequently, the regioselectivity was especially intriguing as 

1-substituted or 1,1-disubstituted allenes gave the endo-methylene isoquinolone 

products.[224] 

  
Figure 3.1.1.1. Substrate scope of electro-oxidative allene annulation by cobalt catalysis of benzamides 

8 with 1,3-disubstituted internal allenes 185. 

The 1H NMR analysis of the exo-methylene products 186 obtained proved to be 

challenging as they exist apparently as rotamers,[226] since a set of conformers were 
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formed due to the restricted rotation about the single bond of the 2-pyridyl-N-oxide 

bidentate directing group. Hence, attempts were made to cleave off the oxygen atom 

of 2-pyridyl-N-oxide directing group since it was the main cause of the constraint on 

the rotation about the single bond. To our delight, the exposure of exo-methylene 

isoquinolones 186 to stoichiometric amount of PCl3 conducted under inert atmosphere 

allowed the deoxygenation to occur to obtain both exo- 188 and endo-methylene 

deoxygenated products 188’ quantitatively, albeit with partial double bond 

isomerization (Figure 3.1.1.2).  

 

Figure 3.1.1.2. Resolving rotamers through deoxygenation of 2-pyridyl-N-oxide. 

In the course of the deoxygenation process, the harsh environment causes the 

isomerisation. Hence, the endo-methylene products 188’ were thermodynamically 

more stable, since they were obtained in a higher yield than the exo-form 188.  
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3.1.2 Mechanistic Studies 

Selected mechanistic investigations were done to elucidate the mode of action for this 

electro-oxidative cobalt-catalyzed allene annulation reaction. H/D exchange 

experiments were performed under the standard reaction conditions in isotopically-

labelled solvent d3-MeOH, but no deuterium incorporation was observed in the isolated 

product 189a (Figure 3.1.2.1).  

 

Figure 3.1.2.1. Attempted H/D exchange studies. 
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3.1.3 Proposed Catalytic Cycle 

A minor KIE value of 1.2 was obtained by Dr. T. H. Meyer[224] through the comparison 

of the initial reaction rates of two independent reactions which suggested that the C‒

H cleavage step is not the rate-determining step, being analogous to previous 

studies.[108f, 225] Furthermore, other mechanistic investigations including CV studies 

were also performed to allow a plausible reaction mechanism to be proposed 

(Figure 3.1.3.1). 

 

Figure 3.1.3.1. Proposed catalytic cycle for the cobaltaelectro-catalyzed C–H/N–H annulation. 

The electrochemical C‒H/N‒H activation reaction starts with anodic oxidation of the 

cobalt(II) precatalyst to the active cobalt(III) intermediate 190. Then, an efficient BIES-



3. Results and Discussion  

68 
 

type C‒H scission assisted by the carboxylates occurs to give cobaltacycle complex 

192. Subsequent migratory insertion of allene 34 results to deliver a seven-membered 

cobaltacycle intermediate 193 with the new C‒C bond formed. Furthermore, DFT 

studies by Dr. J. C. A. Oliveira displayed that the insertion of allene 34 distal to the 

substituent is more preferable by 2.2 kcal mol−1 over the insertion pathway proximal to 

the substituent which allows high regioselectivity to be achieved.[224] The ensuing 

reductive elimination step provides the exo-methylene isoquinolone 186 and the 

reduced cobalt(I) species 194. For 1-substituted and 1,1-disubstituted allenes, the exo-

methylene isoquinolone undergoes an irreversible isomerisation in the presence of 

base to the endo-form 186’ as it is more favoured thermodynamically. Anodic oxidation 

of the reduced cobalt(I) rejuvenates the active cobalt(III) catalyst 190 with a counter 

cathodic reduction of the protons to molecular hydrogen gas which closes the catalytic 

cycle. 
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3.2 Electro-Reductive Cobalt-Catalyzed Carboxylation with CO2 

Introducing carbon capture and utilization (CCU) protocols in synthetic organic 

chemistry help to potentially resolve the worldly problem of global warming and climate 

change.[121b] There are a remarkable number of methodologies and carboxylation is 

one of the most attractive method as it allows the synthesis of carboxylic acids using 

CO2 as an effective and inexpensive C1 synthon.[122e, 123] The value-added products 

could be further functionalized easily, and, hence, carboxylation is a highly sought-after 

technique, especially after the successful industrialisation of the synthesis of salicylic 

acid.[152] Transition metal-catalyzed carboxylation have created facile reductive 

carboxylation protocols but they were largely dominated by precious metals, such as 

palladium and rhodium.[227] In addition, the use of super-stoichiometric amounts of 

metal reductant, which are often pyrophoric, for cross-electrophile coupling reaction 

impedes the practicality of the transformation. Electrochemical reductive carboxylation 

reactions were one of the first conceived protocols in the 1980s but the choice of 

electrodes and the harsh reaction conditions often hinder the scope and feasibility.[154b] 

Moreover, electrochemical set-ups were tedious and electrosynthesis was not 

popularly adopted until recent decades. However, the resurgence of this green and 

sustainable strategy stems from, among many other factors discussed in Chapter 1.4 

(vide supra), the development of commercially available electrochemical equipment 

which are highly user-friendly and easily applicable.[102a] Based on precedents,[186-187] 

the hypothesis of an electro-reductive cobalt-catalyzed carboxylation of allylic 

chlorides could be made plausible with atmospheric CO2, which is devoid of using 

chemical metal reductant.[228] In addition, it should also feature Earth-abundant cobalt 

catalysis for the synthesis of styrylacetic acids, which are particularly useful as key 

synthons of numerous γ-arylbutyrolactones which are structural motifs found in various 

natural products.[229] 
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3.2.1 Optimisation Studies 

The optimisation investigations were commenced by testing a series of cobalt salts as 

the pre-catalyst and the search for a suitable ligand for the envisioned electro-reductive 

cobalt-catalyzed carboxylation system with cinnamyl chloride 144a as model substrate 

(Table 3.2.1.1). In particular, Co(salen) did not perform well even at higher catalytic 

loading of 10 mol % (entries 1‒2). Simple Co(OAc)2 provided the best results (entry 3), 

alongside CoCl2 which gave a slightly lower yield (entry 22). A variety of ligands was 

also tested, which included mono- and bidentate phosphine-based ligands and 

bidentate nitrogen-based ligands (entries 3‒21). However, simple and cost-effective 

triphenylphosphine gave the best results. In addition, the regioselectivity proved to be 

a challenge to control and substituted phenathroline ligands gave higher selectivity for 

the branched product 130a’ (entries 18 and 19). Whereas, phosphine-based ligands 

did not provide high regioselectivity, although a vast number of secondary phosphine 

oxides (SPO) remained to be investigated.[230] The synthesized mechanistically 

relevant cobalt(I) complex 195 (vide infra) proved to be effective as the reaction 

reached completion already after 2 hours of reaction time. 

Subsequently, additives and electrolytes were tested (Table 3.2.1.2) to probe if the 

efficacy of the electro-reductive cobalt-catalyzed carboxylation could be increased. 

Both nBu4NPF6 and nBu4NI (entries 2 and 5) gave comparable yield and no change in 

the regioselectivity. Notably, the stoichiometrically use of both electrolytes gave yield 

similar to the use of higher equivalents of Et4NOTs. Furthermore, the addition of EtOH 

or CsF (entries 3‒4) did not attribute to any positive effect observed by previous 

reports.[175, 187] It was thought that EtOH may be useful for the activation of CO2, while 

CsF was proposed to allow a better dissolution of CO2 into the solution. The addition 

of NaI without electrolyte (entry 6) did not give any conversion highlighting the essential 

need for the electrolyte. 
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Table 3.2.1.1. Optimisation of catalysts and ligands.[a] 

 

Entry [Co] Ligand Yield (130a/130a’)[b,c] 

1 Co(salen) --- 17% (1:1)[d] 

2 Co(salen) --- 25% (1:1) 

3 Co(OAc)2 PPh3 57% (1:1) 

4 Co(OAc)2 dppe 25% (1:1) 

5 Co(OAc)2 xantphos 49% (1.1:1) 

6 Co(OAc)2 DPEphos 57% (1.1:1) 

7 Co(OAc)2 bipyridine 12% (1:2) 

8 Co(OAc)2 1,10-phenanthroline 8% (1:1.2) 

9 Co(OAc)2 rac-BINAP 60% (1:2.1) 

10 Co(OAc)2 (S)-(−)-Cl-MeO-BIPHEP 57% (1:1.1) 

11 Co(OAc)2 CyJohnPhos 37% (1.3:1) 

12 Co(OAc)2 PCy3 32% (1:1.1) 

13 Co(acac)2 DPEphos 57% (1:1) 

14 Co(OAc)2 neocuproine 25% (1:1.4) 

15 Co(OAc)2 tri(tBu)terpy 5% (1:1.4) 

16 Co(OAc)2 dppf 50% (1:1.2) 

17 Co(OAc)2 2,9-di-anisyl-1,10-phen 48% (1:1.2) 

18 Co(OAc)2 bathocuproine 5% (1:1.5) 

19 Co(OAc)2 4,7-diphenyl-1,10-phen 14% (1:1.9) 

20 Co(acac)2 DavePhos 44% (1:1.4) 

21 Co(acac)2 dppf 50% (1:1.2) 

22 CoCl2 PPh3 54% (1:1) 

23 CoCl(PPh3)3 195 --- 58% (1:1)[e] 

[a] Reaction conditions: 144a (0.25 mmol), [Co] (10 mol % unless otherwise stated), ligand (20 mol %), 

Et4NOTs (0.38 mmol), DMF (5.0 mL), CCE = 10 mA, 6 h, 25 °C, Mg anode, nickel-foam cathode. [b] Isolated 

yield (130a/130a’). [c] Selectivity determined by 1H NMR. [d] Co(salen) (5.0 mol %). [e] 2 h reaction time. 
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Table 3.2.1.2. Optimisation of additives.[a] 

 

Entry Additive 1 Additive 2 Yield (130a/130a’)[b,c] 

1 --- Et4NOTs (1.5 equiv) 57% (1:1) 

2 --- nBu4NPF6 (1.0 equiv) 59% (1:1) 

3 EtOH Et4NOTs (1.5 equiv) 42% (1:1) 

4 CsF Et4NOTs (1.5 equiv) 27% (1.2:1)[d] 

5 --- nBu4NI (1.0 equiv) 58% (1:1) 

6 NaI --- traces 

[a] Reaction conditions: 144a (0.25 mmol), Co(OAc)2 (10 mol %), PPh3 (20 mol %), additives (0.25 mmol 

unless otherwise stated), DMF (5.0 mL), CCE = 10 mA, 6 h, 25 °C, Mg anode, nickel-foam cathode. [b] 

Isolated yield (130a/130a’). [c] Selectivity determined by 1H NMR. [d] 16 h reaction time. 

Different concentrations and temperatures were also tested to showcase that the 

reaction worked optimally at low to ambient temperature (Table 3.2.1.3). Higher 

concentration of cinnamyl chloride 144a also provided a lower yield (entry 4). 

Table 3.2.1.3. Optimisation of temperature and concentration.[a] 

 

Entry T (°C) Conc. of 144a Yield (130a/130a’)[b,c] 

1 25 0.05 M 57% (1:1) 

2 60 0.05 M 42% (1:1) 

3 0 0.05 M 59% (1:1) 

4 25 0.10 M 44% (1:1) 

[a] Reaction conditions: 144a (as specified), Co(OAc)2 (10 mol %), PPh3 (20 mol %), Et4NOTs (0.38 mmol), 

DMF (5.0 mL), CCE = 10 mA, 6 h, T °C (as specified), Mg anode, nickel-foam cathode. [b] Isolated yield 

(130a/130a’). [c] Selectivity determined by 1H NMR. 
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Different solvents were next screened (Table 3.2.1.4) as they are highly important for 

a good dissolution of CO2 and have high level of conductivity for the electrolysis to take 

place. It was found that polar aprotic solvents, such as DMF and DMSO (entries 1‒3), 

worked well for the cobaltaelectro-catalyzed carboxylation which is in agreement with 

preceding investigations.[231] THF was also tested as solvent (entry 4) which gave a 

lower yield. The combination of the solvent THF and DMPU or DMSO (entries 5‒6) did 

not give any desired product when using [Co(salen)] as the catalyst. 

Table 3.2.1.4. Optimisation of solvents.[a] 

 

Entry [Co] Solvent Yield (130a/130a’)[b,c] 

1 Co(OAc)2 DMF 59% (1:1) 

2 Co(OAc)2 DMSO 42% (1:1) 

3 Co(OAc)2 DMA 37% (1:1) 

4 Co(OAc)2 THF 31% (1:1) 

5 [Co(salen)] THF/DMSO (1:1) --- 

6 [Co(salen)] THF/DMPU (1:1) --- 

[a] Reaction conditions: 144a (0.25 mmol), Co(OAc)2 (10 mol %), PPh3 (20 mol %), nBu4NPF6 (0.25 mmol), 

solvent (5.0 mL), CCE = 10 mA, 6 h, 25 °C, Mg anode, nickel-foam cathode. [b] Isolated yield (130a/130a’). 

[c] Selectivity determined by 1H NMR. 

Another important factor which was examined during the optimisation studies was the 

choice of electrodes as they influenced the reaction most fundamentally owing to the 

potential window required for the transformation to take place (Table 3.2.1.5). Several 

different combinations of anodes and cathodes showed moderate to good response to 

give the desired product (entries 1‒9). In accordance to the electrochemical series, 

magnesium has one of the lowest reduction potentials and can be easily oxidised 

among the listed trials of anode materials, which translate to its performance in this 

electro-reductive cobalt-catalyzed carboxylation. The successful use of an expensive 
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samarium rod electrode for CO2 reduction reported by Mellah allowed an in situ 

electrogenerated Kagan-type reductant for the carboxylation reaction of aryl halides 

prompted the trial with samarium plate anode (entries 6 and 8).[232] However, it did not 

give the envisioned efficacy. In addition, the change in cathode from nickel-foam to 

platinum (entry 7) had no apparent difference. Carbon-based material was also 

attempted (entry 10) as anodes, but to no avail, as there were no sufficient effective 

reductants present in the system. 

Table 3.2.1.5. Optimisation of electrode materials.[a] 

 

Entry [TM] Anode Cathode Yield (130a/130a’)[b,c] 

1 Co(OAc)2 Mg Ni-Foam 59% (1:1) 

2 Co(OAc)2 Al Ni-Foam 46% (1:1) 

3 Co(OAc)2 Fe Ni-Foam 37% (1:1) 

4 Co(OAc)2 Cu Ni-Foam 10% (1:1) 

5 Co(OAc)2 Zn Ni-Foam 38% (1:1) 

6 Co(OAc)2 Sm Ni-Foam 25% (1:1) 

7 Co(OAc)2 Steel Pt 42% (1:1) 

8 NiBr2·diglyme Sm Plate Ni-Foam 37% (1:1) 

9 NiBr2·diglyme Fe Ni-Foam 45% (1:1) 

10 Co(OAc)2 Graphite Ni-Foam traces 

11 Co(OAc)2 Ni Rod Ni-Foam --- 

[a] Reaction conditions: 144a (0.25 mmol), [TM] (10 mol %), PPh3 (20 mol %), nBu4NPF6 (0.25 mmol), 

DMF (5.0 mL), CCE = 10 mA, 6 h, 25 °C, electrodes as specified. [b] Isolated yield (130a/130a’). [c] 

Selectivity determined by 1H NMR. 
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Control experiments (Table 3.2.1.6) were done to verify the essential role of the 

electricity and of the cobalt pre-catalyst (entries 2‒3). Constant current electrolysis was 

performed at lower current with the same reaction time (entry 4) and the yield 

decreased. Instead, with longer reaction time of 16 hours, the yield was comparable to 

the optimised reaction condition (entry 5). 

Table 3.2.1.6. Control experiments.[a] 

 

Entry Variations from the standard conditions Yield (130a/130a’)[b,c] 

1 --- 59% (1:1) 

2 Without catalyst 13% (1:1) 

3 Without current --- 

4 5.0 mA 42% (1:1) 

5 5.0 mA for 16 h 52% (1:1) 

[a] Reaction conditions: 144a (0.25 mmol), Co(OAc)2 (10 mol %), PPh3 (20 mol %), nBu4NPF6 (0.25 mmol), 

DMF (5.0 mL), CCE = 10 mA, 6 h, 25 °C. [b] Isolated yield (130a/130a’). [c] Selectivity determined by 1H 

NMR. 

Noteworthy, common chemical metal reductants were tested (Table 3.2.1.7) under the 

mild optimised reaction conditions. Super-stoichiometric amounts of metal reductants 

were subjected (entries 2‒4) and only traces of product 130a were observed. Elevated 

reaction temperatures (entries 5‒9) failed to produce the desired product and 

additional trials were made with additives (entries 8‒9) known to be beneficial 

(vide supra) for chemically-induced carboxylation reactions, albeit with minor amounts 

of the product found. 
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Table 3.2.1.7. Electrochemical versus chemical reductants.[a] 

 

Entry Variations from the standard conditions Yield (130a/130a’)[b,c] 

1 --- 59% (1:1) 

2 Mn[d] n.d. 

3 Zn[d] n.d. 

4 Mg[e] traces 

5 Mg[e] at 60 ℃ 5% (1:1) 

6 Mn[e] at 60 ℃ traces 

7 Zn[e] at 60 ℃ traces 

8 Mn[e] and MgCl2[d] at 60 ℃ 7% (1:1) 

9 Zn[e] and Na2CO3
[d] at 60 ℃ traces 

[a] Reaction conditions: 144a (0.25 mmol), Co(OAc)2 (10 mol %), PPh3 (20 mol %), nBu4NPF6 (0.25 mmol), 

reductant (1.50 or 3.00 equiv.), DMF (5.0 mL), CCE = 10 mA, 6 h, 25 °C, electrodes as specified. [b] 

Isolated yield (130a/130a’). [c] Selectivity determined by 1H NMR. [d] 1.50 equivalents used and without 

electricity. [e] 3.00 equivalents used and without electricity. 

3.2.2 Scope of Electro-Reductive Cobalt-Catalyzed Carboxylation 

With the optimised reaction conditions in hand, the investigation of the robustness of 

the cobaltaelectro-reductive carboxylation reaction with atmospheric CO2 was initiated 

(Figure 3.2.2.1). Alkyl substituted in the ortho or para position of the cinnamyl chlorides 

(144b‒144d) were well accepted to furnish the products 130b‒130d. Furthermore, 

substrates containing para-substituted phenyl groups such as 130e’ and polycyclic 

rings such as naphthalene 130f’ gave moderate yield with a preference for the 

branched product. Electron-donating groups, such as benzodioxole (130g’), thioether 

(130h’), and methoxy (130i), were well tolerated in this mild reaction. The 

regioselectivity, however, differed as 144h provided by a higher margin the branched 



3. Results and Discussion  

77 
 

product 130h’, while substrate 144i reacted with higher preference for the linear 

product. 

 

Figure 3.2.2.1. Cobalt-catalyzed electro-reductive carboxylation of cinnamyl chlorides 144. 

Regioselectivity 130/130’ given in parentheses, only major products are shown. [a] A mixture with 5% 

dehalogenated product. 

Substrates with electron-withdrawing substituents, such as trifluoromethyl (130j’) 

resulted in good yield with improved branched regioselectivity. Halogen-containing 
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substrates 144k-144m displayed good yields of the carboxylated product 130k-130m, 

with fluoro (130k) and chloro (130l) giving higher selectivity for the linear product. The 

product 130m’ gave an indication that halogens are only tolerated to a certain extent 

as 5‒10% of the product was dehalogenated, giving rise to a small amount of 130a in 

the product mixture. This was explicitly shown when para-iodo-containing substrate 

was subjected into the optimised reaction condition and the dehalogenated product 

was isolated in 40% yield.  

3.2.3 Scope Limitations 

Under otherwise identical standard reaction conditions, the application to alkyl-

substituted and heterocycle-containing substrates 130n-130s, 196-206 proved to be 

challenging and unsatisfactory results to date (Figure 3.2.3.1). 

 

Figure 3.2.3.1. Unsuccessful examples for the cobaltaelectro-reductive carboxylation. 
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3.2.4 Mechanistic Investigations 

Various mechanistic studies were performed in order to elucidate the modus operandi 

of the electro-reductive cobalt-catalyzed carboxylation with CO2. Thus, DFT 

calculations were carried out by Dr. J. C. A. Oliveira at the PW6B95 D4/def2 TZVPP+ 

SMD(DMF)//TPSS-D3(BJ)/def2-SVP level of theory (Figure 3.2.4.1).[228] The 

isomerisation step of η3-allyl complex to the η1-allyl complex was shown not to be the 

rate-determining step due to the minimal energy barrier of 16.1 kcal mol−1 for the 

product 130l (Figure 3.2.4.1a). 

  

Figure 3.2.4.1. Computed relative Gibbs free energies in kcal mol−1 for the a) isomerisation of η3-allyl 

complex to η1-allyl, and b) allylic C–C bond formation at the PW6B95-D4/def2-

TZVPP+SMD(DMF)//TPSS-D3(BJ)/def2-SVP level of theory. Hydrogen in the computed transition state 

structures were omitted for clarity. Performed by Dr. J. C. A. Oliveira. 
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Given that the reductive electrocatalysis of the cross-electrophiles was performed at 

substantially high current at 1 atm of CO2 partial pressure, we directed our focus to the 

allylic C‒C bond formation (Figure 3.2.4.1b). The latter is preferred for the chlorinated 

substrate over the brominated substrate by 1.5 kcal mol−1. Hence, DFT studies have 

been shown to be in agreement with the experimentally observed regioselectivity of 

130l by Dr. J. C. A. Oliveira. 
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Figure 3.2.4.2. In-operando infrared spectroscopy including the 3D surface heat plot at 685 cm−1. 

In order to further understand the mechanism of this electro-reductive cobalt-catalyzed 

carboxylation reaction, the mode of action was investigated. First, the kinetic profile of 

the standard electrocatalytic reaction condition was elucidated (Figure 3.2.4.2) 

alongside with the use of different simple cobalt salts as pre-catalyst for comparison in 

terms of reaction rates. An in-operando infrared (IR) spectroscopy was adopted in this 

case to better illustrate the differences. As was previously observed, simple Co(OAc)2 

and the halide salts operated in a superior fashion as compared to their counterparts 

(Figure 3.2.4.3). In contrast, a higher catalytic loading of Co(salen) was attempted but 

it did not improve the yield.[233] 
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Figure 3.2.4.3. Comparison of the different cobalt pre-catalyst in terms of reaction rates. 

Second, the pre-formed cobalt(I) intermediate (vide infra) could be of interest as this 

might suggest whether it has indeed participated in the rate-determining step of this 

particular reaction system. One such low-valent cobalt(I) intermediate CoCl(PPh3)3 

195 has been reported in the past for its use in an amination reaction of inactivated 

aryl iodides[234] and also other cobalt(I) complexes in C‒H activation reactions which 

could help to shed light into the reaction mechanism of this carboxylation protocol.[47c, 

235] 

Detailed mechanistic investigations performed by means of cyclic voltammetry (CV) 

revealed that simple cobalt(II) complexes did not interact with the allylic chloride 144a 

(Figure 3.2.4.4). The reduction potential of the parent cinnamyl chloride was analysed 

to be irreversible at Ep = − 1.90 V vs. SCE. Interestingly, the cobalt(I) complex 195 of 

interest showed one irreversible reduction at Ep = − 1.82 V vs. SCE which could 

correspond to the reduction of cobalt(I) to cobalt(0) (Figure 3.2.4.5).[236]  
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Figure 3.2.4.4. Cyclic voltammograms of individual components under CO2 and their mixtures. Cyclic 

voltammograms at 100 mVs−1 using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working 

electrode. Co(OAc)2 (2.0 mM), PPh3 (2.0 mM) and cinnamyl chloride 144a (2.0 mM). CO2 gas (1 atm). 

However, the addition of cinnamyl chloride 144a into the system resulted in an 

oxidative addition of the substrate onto the cobalt(I) complex 195 to give a cobalt(III) 

intermediate which could showcase a possible cobalt(I)/(III)/(I) catalytic manifold. This 

inference could be held true as there are two reduction peaks and they are possibly 

assigned as Ep = − 1.70 V vs. SCE for the reduction of cobalt(II) to cobalt(I) and 

Ep = − 1.95 V vs. SCE for the reduction of cobalt(I) to cobalt(0) (Figure 3.2.4.5).[237] In 

this case, the reduction of cobalt(III) to cobalt(II) was not easily observed as it has a 

much higher reduction potential and they are usually in the positive window.[238] 

Consequently, these results indicated that the oxidative addition of the substrate onto 

the active cobalt catalyst is plausibly not involved in the rate-determining step. In 

addition, stoichiometric reactions were performed with the synthesized cobalt(I) 

complex 195 without the supply of electricity to dismiss the possibility that an in situ 

formed cobalt(III) intermediate could be in the CO2 activation step. Hence, cathodic 

reduction of cobalt(III) intermediate to cobalt(I) is required to facilitate the formation of 

the carboxylated products 130. 
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Figure 3.2.4.5. Cyclic voltammograms of Co(I) catalyst and mixtures. Cyclic voltammograms at 100 mVs−1 

using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working electrode. CoCl(PPh3)3 195 (2.0 mM) 

and cinnamyl chloride 144a (2.0 mM). CO2 gas (1 atm). 

3.2.5 Proposed Catalytic Cycle 

Based on the mechanistic insights obtained including the DFT studies by Dr. J. C. A. 

Oliveira, a feasible reaction mechanism is proposed in which the most likely catalytic 

occurrence is shown here (Figure 3.2.5.1). Initially, the coordination of allylic chlorides 

144 onto the active cobalt(I) 207 occurs. This subsequently promotes the cleavage of 

the adjacent allylic C‒H bond, resulting in an oxidative addition of substrate 144 to 

form an η3-allylcobalt(III) intermediate 208. At this stage, the cobalt(III) intermediate 

208 can undergo rearrangement to either η1-allylcobalt(III) complexes 209-A or 209-B 

depending on the different ligand effects. For instance, heteroatom-containing ligands, 

such as O atoms are known to promote the change from η3- to η1-allyl intermediates 

in similar cobalt complexes reported previously.[175] Then, there are two different 

pathways from intermediate 209, they can both undergo cathodic reductions to give 

the corresponding low-valent η1-allylcobalt(I) species 210, which could be stabilised by 

an aryl or alkenyl ligand.[239] This determines the regioselectivity of the final product 

which is highly dependent on the ligand employed. Here the linear product is generated 
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through C‒C bond formation with CO2 at the γ-position[140b, 240] to form the carboxylated 

product 211 and 211’ trapped by the Mg2+ ions in the solution.  

 

Figure 3.2.5.1. Proposed catalytic cycle based on mechanistic insights. 

A second scenario has been proposed as well for this cobaltaelectro-reductive 

carboxylation with atmospheric CO2 which will not be shown here. The essential 

difference depicts that the η3-allylcobalt(III) intermediate 208 would actually first 

undergo cathodic reduction to η3-allylcobalt(I) complex before the reversible change of 

η3- to either linear or branched η1-allylcobalt(I) complex 210 similar to the ones 

displayed here (Figure 3.2.5.1).[228]  
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3.3 Electro-Reductive Nickel-Catalyzed Thiolation 

The formation of C‒S bonds have led to extensive advancement and expansion of the 

medical realm as a huge number of pharmaceutical drugs and natural materials 

features the importance of sulfur.[241] Hence, the search for simple and mild 

transformations for C‒S formations continues to this date. The use of electrophilic 

thiosulfonates have revolutionised thiolation protocols as they are bench-stable and 

odourless as opposed to the toxic and foul-smelling use of thiols which are commonly 

used as coupling partners. One other huge disadvantage of the use of thiols is that 

they are unfavorable for large-scale synthesis as per its physical nature. Thus, an 

effective replacement such as thiosulfonates provide vast opportunities for more 

practical approaches.[242] A unique method to activate and efficiently utilize 

thiosulfonates as coupling partners for C‒S formation is the application of cross-

electrophile coupling reactions with organohalides. As aforementioned (vide supra), 

cross-electrophile couplings are step-economical and there are wide variety of stable 

electrophiles easily available which translates into possible broad expandable scope. 

Many recent developments have successfully included the use of thiosulfonates in 

cross-electrophile coupling reactions, but they often suffer from the utilization of super-

stoichiometric amounts of chemical metal reductants.[217-219] Thus, the introduction of 

the far-reaching strategy of electrocatalysis[102a] could mitigate this impediment 

efficiently and improve the quality of the synthetic protocol for C‒S formation. The 

supposition that an electrochemically-induced reductive thiolation of alkyl bromides 

catalytic design by means of nickel catalysis could be implemented which is naturally 

free from toxic chemical reductant.[243] It should feature electricity as an economical 

mediator to access alkyl sulfides, which are common structural motifs in numerous 

drug scaffolds through versatile C‒S formation.[244]  
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3.3.1 Optimisation Studies 

The investigations began by probing a suitable optimised reaction condition for the 

envisioned electro-reductive nickel-catalyzed thiolation of alkyl bromides 175 with 

thiosulfonates 160 (Table 3.3.1.1). 

Table 3.3.1.1. Optimisation of nickel catalysts and ligands.[a] 

 

Entry [Ni] Ligand Time (h) Yield[b] 

1 NiBr2•diglyme neocuproine 6 32% 

2 NiBr2•diglyme neocuproine 6 44%[c]  

3 NiBr2•diglyme bathocuproine 3 82% 

4 NiBr2•diglyme 2,2’-bipyridine 3 86% 

5 NiBr2•diglyme 2,2’-bipyridine 6 ---[d,e] 

6 NiBr2•diglyme bathocuproine 6 ---[d,e] 

7 NiBr2•diglyme neocuproine 16 11%[f] 

8 NiBr2•diglyme neocuproine 6 43%[g] 

9 NiBr2•diglyme neocuproine 6 ---[c,d,e] 

10 NiBr2•diglyme bathocuproine 6 28%[c] 

11 NiBr2•diglyme neocuproine 3 67%[c] 

12 NiCl2 2,2’-bipyridine 6 47%[c] 

13 NiBr2•diglyme bathocuproine 3 75%[c] 

14 NiBr2•diglyme neocuproine 3 77% 

[a] Reaction conditions: 175a (0.250 mmol), 160a (0.275 mmol), [Ni] (5.0 mol %), ligand (7.5 mol %), DMF 

(5.0 mL), CCE = 5.0 mA, 3 h, 25 °C, Mg anode, nickel-foam cathode. [b] Isolated yield. [c] Et4NOTs 

(0.50 equiv.) added as electrolyte. [d] CCE = 10 mA. [e] Diphenyldisulphide formed as side product. 

[f] CCE = 3.0 mA. [g] nBu4NPF6 (0.50 equiv) added as electrolyte. 

Several bidentate nitrogen-containing ligands, such as neocuproine, were exposed to 

the envisioned reaction but failed to give satisfactory results even with longer reaction 

time (entries 1‒2). The relatively inexpensive 2,2’-bipyridine ligand outperformed 
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marginally bathocuproine within the same reaction time (entries 3‒4). The outstanding 

performance vanished when the reaction time was prolonged to 6 hours and at higher 

constant current electrolysis of 10 mA (entries 5‒6), which resulted in the formation of 

diphenyldisulfides instead. It became clear that longer reaction times had a detrimental 

effect on the reaction (vide infra), which resulted in the low yield of the product no 

matter the ligand or nickel catalyst used (entries 5‒10 and 12). It was also observed 

that adding electrolyte, such as Et4NOTs, decreased the yield (entry 13). 

Table 3.3.1.2. Control experiments.[a] 

 

Entry Variations from the standard conditions Yield[b] 

1 --- 86% 

2 Without catalyst 37%[c] 

3 Without current --- 

4 With Et4NOTs (0.50 equiv) as electrolyte 51% 

5 5.0 mA for 6 h 48% 

6 With IKA ElectraSyn 2.0® 79% 

7 With diphenyldisulfide instead of 160a --- 

[a] Reaction conditions: 175a (0.250 mmol), 160a (0.275 mmol), NiBr2•diglyme (5.0 mol %), 2,2’-bipyridine 

(7.5 mol %), DMF (5.0 mL), CCE = 5.0 mA, 3 h, 25 °C, Mg anode, nickel-foam cathode. [b] Isolated yield. 

[c] High and unstable potential. 

Control experiments were next performed (Table 3.3.1.2), which substantiated the 

importance of electricity and of the nickel catalyst (entries 1‒3). Extending the reaction 

time to 6 hours at the same subjected constant current electrolysis drastically lowered 

the yield (entry 5). Notably, the electro-thiolation is compatible with the commercially 

available IKA Electrosyn 2.0® electrochemical system, which exhibited the simplicity 

of the transformation, furnishing alkyl sulfide product 176aa with a comparable yield 

(entry 6). Disulfides, such as diphenyldisulfides, obtained in some cases as side-
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product did not provide the formation of the desired product 176aa, when subjected to 

the standard reaction condition as the coupling partner (entry 7). 

Table 3.3.1.3. Optimisation of electrode materials and solvents.[a] 

 

Entry [Ni] Anode Cathode Solvent Yield[b] 

1 NiBr2·diglyme Mg Ni Foam DMF 86% 

2 NiBr2·diglyme Fe Ni Foam DMF ---[c] 

3 NiBr2·diglyme Zn Ni Foam DMF ---[c] 

4 NiBr2·diglyme Cu Ni Foam DMF ---[c] 

5 NiBr2·diglyme Mg Ni Foam DMA 54% 

6 NiBr2·diglyme Mg Ni Foam NMP 68% 

7 NiBr2·diglyme Mg Ni Foam DMSO 12% 

8 NiBr2·diglyme Mg Ni Foam DME --- 

9 NiBr2·diglyme Mg Ni Foam GVL 7% 

10 NiBr2·diglyme Ni Foam Pt DMF ---[d] 

11 NiBr2·diglyme Mg Ni Foam THF --- 

12 NiBr2·diglyme Mg Ni Foam tAmyl-OH --- 

13 NiBr2·diglyme Mg Pt DMF 70% 

14 --- Mg Pt DMF 33%[e] 

15 --- Al Pt DMF --- 

16 --- Fe Pt DMF --- 

17 --- Al Ni Foam DMF ---[c] 

[a] Reaction conditions: 175a (0.250 mmol), 160a (0.275 mmol), [Ni] (5.0 mol %), 2,2’-bipyridine 

(7.5 mol %), solvent (5.0 mL), CCE = 5.0 mA, 3 h, 25 °C, electrodes as specified. [b] Isolated yield. [c] 

Diphenyldisulphide formed as side product. [d] Starting material (70 %) recovered. [e] High and unstable 

potential. 

The electrode materials and solvents were subsequently tested as well (Table 3.3.1.3). 

Polar aprotic solvents, such as DMF and DMA, worked decently for the nickela-electro-
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reductive thiolation reaction (entries 1, 5‒6), whereas solvents like THF, GVL, and 

tAmyl-OH performed sluggishly. Various anodes and cathodes were tested but they 

did not provide any useful yield other than the use of magnesium anode with nickel 

foam cathode (entries 1‒4, 15‒17). A platinum cathode was also attempted, but gave 

the desired product with a lower yield (entries 10, 13‒16).  

Table 3.3.1.4. Electrochemical versus chemical reductants.[a] 

 

Entry Variations from the standard conditions Yield[b] 

1 --- 86% 

2 Without catalyst and with Mn[c] --- 

3 Without catalyst and with Mg[c] --- 

4 Mg[c] --- 

5 Zn[c] 33% 

6 Mn[c] 65% 

[a] Reaction conditions: 175a (0.250 mmol), 160a (0.275 mmol), NiBr2•diglyme (5.0 mol %), 2,2’-bipyridine 

(7.5 mol %), DMF (5.0 mL), CCE = 5.0 mA, 3 h, 25 °C, Mg anode, nickel-foam cathode. [b] Isolated yield. 

[c] 1.50 equivalents used and without electricity. 

Subsequently, several commonly used chemical metal reductants were tested 

(Table 3.3.1.4) and they gave lower yields in this reaction. The use of chemical 

reductant without catalyst did not convert any starting material 175a to the desired 

product 176aa (entries 2‒3). Moreover, the use of magnesium as chemical reductant 

gave no detectable product (entry 4), whereas zinc dust and manganese provided 

useful yields of the alkyl sulfide product 176aa (entries 5‒6). 
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3.3.2 Scope of Electro-Reductive Nickel-Catalyzed Thiolation 

Having the optimised reaction condition in hand, the robustness and substrate scope 

of the nickela-electro-reductive thiolation reaction were of interest. The robustness was 

mainly tested with various substituted bench-stable thiosulfonates 160 (Figure 3.3.2.1). 

Electron-rich groups, such as methyl- 160b and methoxy- 160c para-substituents, 

furnished the desired products 176ab-176ac with great efficacy. Halogen-containing 

substrates (160d-160e) resulted in excellent yield of the thiolated products (176ad and 

176ae) without by-product formation from potential C‒X cross-couplings. Furthermore, 

alkyl thiosulfonates, such as benzyl 160f and cyclohexyl 160g, gave the desired 

products 176af and 176ag in high yields. 

 
Figure 3.3.2.1. Nickel-catalyzed electro-reductive thiolation of alkyl bromides 175a with substituted 

thiosulfonates 160. Faradaic yield given in parentheses. 
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Moreover, heterocyclic thiosulfonates (160h-160j) were well tolerated and provided the 

thiolated products with high yields. The noteworthy mild reaction conditions were 

versatile as various thiosulfonates 160 were efficiently converted to the desired alkyl 

sulfide products 176. Thus, we were intrigued to evaluate the performance of the 

catalytic electro-reductive thiolation on differently substituted bromides 

(Figure 3.3.2.2). 

 
Figure 3.3.2.2. Nickel-catalyzed electro-reductive thiolation of bromides 175. Faradaic yield given in 

parentheses. 
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Much to our delight, para-substituted electron-rich groups, such as methyl- 175b and 

methoxy- 175c substituted arenes, both provided the desired alkyl sulfide products 

176ba-176ca with high yields. Electron-withdrawing trifluoromethyl arene 175d also 

furnished the thiolated product 176da with high yield, showcasing no obvious 

preferences in terms of electronic influences. Various halogen-containing bromides 

(175e-175f) gave the desired products (176ea-176fa) in a highly chemoselective 

fashion. Synthetically useful cyclic 1,3-dioxolane substituted bromide 175g also 

underwent facile and efficient thiolation to give exceptional yield of the desired product 

176ga. Moreover, ester-containing substrate 175h furnished the alkyl sulfide product 

(176ha) with great yield showing good tolerance to the reaction condition. Various 

interesting functional groups such as terminal alkene (175i), sterically crowded 2-

cyclohexyl (175j), alkyl chloride (175k), and cyano (175l) were efficiently transformed 

to the desired product 176. The otherwise highly labile boronic ester 175m remained 

intact in this electro-reductive thiolation regime to deliver the alkyl sulfide product 

(176ma). Furthermore, unprotected indole 175n also gave the thiolated product as well 

with high yield. Last but not least, secondary bromides (175o-175p) were also 

successfully thiolated, albeit lower yields were obtained.  

3.3.3 Mechanistic Insights 

In order to understand the actual mode of action for the nickela-electro-catalyzed 

thiolation reaction with alkyl bromides 175, mechanistic investigations were sought 

after in detail.[243] First, radical clock experiments were performed with 6-bromo-1-

hexene 175i to illustrate the formation of primary alkyl radical (Table 3.3.3.1). 
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Table 3.3.3.1. Radical clock experiments.  

 

Entry [Ni] (X mol %) Bpy (Y mol %) Yield (%) 176ia:176ia’ 

1 2.50 3.75 69 14:1 

2 5.00 7.50 96 >20:1  

[a] Yield and ratio determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as internal standard. 

Second, various reduction potentials of the substrates and catalyst were elucidated by 

means of cyclic voltammetry (CV) as disulfides were frequently observed as by-product 

of the reaction system. The cathodic reduction of thiosulfonates was of importance to 

determine the presence of an off-cycle pathway of this electro-reductive thiolation 

reaction. Cyclic voltammetry revealed that the reduction of the 2,2’-bipyridine ligated 

nickel pre-catalyst is more facile than the two-electron-reduction of S-phenyl 

benzenesulfonothioate 160a to the thiolate anion (Figure 3.3.3.1). 
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Figure 3.3.3.1. Cyclic voltammograms comparing the ligated Ni complex and thiosulfonate 160a. Cyclic 

voltammograms at 100 mVs−1 using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working 

electrode. Ni(bpy)Br2 (2.0 mM) and 160a (2.0 mM). 
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The first observed reduction potential of the thiosulfonate 160a was shown to be 

irreversible at Ep = − 0.91 V vs. Ag/AgCl and this could be possibly assigned to the 

formation of the thiyl radical. Thiyl radicals are known to recombine to disulfide due to 

their relative stability.[245] Furthermore, a second reduction potential was shown to be 

reversible at Ep = − 1.62 V vs. Ag/AgCl and this would then be assigned to the thiolate 

anion after a two-electrons transfer process.[246] The nickel pre-catalyst exhibits an 

irreversible reduction potential at Ep = − 1.27 V vs. Ag/AgCl, which is lowered further 

to a reversible reduction potential of Ep = − 1.10 V vs. Ag/AgCl by the successful 

ligation of the 2,2’-bipyridine ligand for the reduction of nickel(II) to nickel(I) analogous 

to previously reported observations.[247] Supplementary observations postulated that 

the ligated nickel catalyst is found to undergo relatively facile two-electrons reduction 

synergistically with the reduction of thiosulfonates.  

Further mechanistic investigations by means of potentiostatic reactions were 

conducted to showcase the generation of thiyl radicals and the subsequent disulfide 

formation through radical recombination (Figure 3.3.3.2). 

 

Figure 3.3.3.2. Potentiostatic studies.  
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The potentiostatic reactions were performed under the otherwise standard reaction 

conditions. As hypothesised, the alkyl sulfide product was not formed during the 

constant potential electrolysis (CPE) = − 0.70 V vs. Ag/AgCl, but the radical rebounded 

disulfide 158a was formed instead with 18% yield. It could be due to the early first 

onset potential of the thiosulfonate 160a at Eonset = − 0.60 V vs. Ag/AgCl. In contrast, 

the thiolated product 176aa was formed at CPE = − 1.00 V vs. Ag/AgCl, albeit with a 

considerable amount of by-product 158a, possibly through radical recombination. This 

particular observation is in good agreement with the CV studies shown indicating 

plausible formation of thiyl radicals by initial reduction of substrate 160a. When the 

potential was higher than the second reduction potential of thiosulfonate substrate 

160a at CPE = − 1.80 V vs. Ag/AgCl, the desired alkyl sulfide product 176aa was 

furnished with 53% yield, while the by-product 158a was formed with 44% yield. 
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3.3.4 Proposed Catalytic Cycle 

Based on the mechanistic studies and literature precedent,[209d, 219, 248] a plausible 

catalytic cycle was proposed (Figure 3.3.4.1). Initially, an oxidative addition of 160 

occurs onto the active nickel(0) catalyst 213 obtained after ligation and reduction of 

the nickel pre-catalyst.[103b, 249] This formed nickel(II) intermediate complex 214 then 

combines with an alkyl radical formed in situ to give a nickel(III) complex 215. 

Subsequently, it undergoes reductive elimination to furnish the desired alkyl sulfide 

product 176 through a C‒S bond formation. The nickel(I) complex 216 generated will 

react with another molecule of alkyl bromide rejuvenating the alkyl radical 182 and 

giving the nickel(II) intermediate 217. Finally, the intermediate 217 undergoes cathodic 

reduction to regenerate the active nickel(0) catalyst 213, thus closing the catalytic 

cycle.[250] 

 

Figure 3.3.4.1. Proposed catalytic cycle.  
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4. Summary and Outlook 

The perpetual demand for advancements in sustainable synthetic organic chemistry is 

largely caused by quasi-irreversible detrimental effects of climate change, this has 

indeed created numerous deliberations especially in recent years in the field of inter 

alia, transition metal catalyzed C‒H activation, cross-electrophile coupling reactions, 

CO2 fixation and the construction of C‒S bonds due to its medicinal importance. 

Electrosynthesis — more than a century-old technique — that have been locked away 

in the abyss has once again resurfaced itself which was predominantly spurred by key 

conceptual developments that are substantially environmentally benign and yet 

prudently attractive transformations.[102a] In particular, the allied cooperation between 

electrosynthesis and Earth-abundant 3d transition metal catalysis have not only 

created remarkable atom- and step-economical approaches synergistically but also 

contain the potential to discover novel mechanistic pathways. Its prime benefit includes 

as well the unique tunability of the applied potential for sensitive transformation which 

allows unmatched chemoselectivity and controlled reactivity. Therefore, the 

combination of green methodologies has granted a viable approach for molecular 

syntheses with exceptionally mild reaction conditions devoid of unwanted chemical 

wastes, which have been mainly touched upon in this thesis. 

In the first part, an electrochemical cobalt-catalyzed C‒H/N‒H annulation reaction 

have been devised which is mild, cost-effective and highly site-, chemo- and 

regioselective for benzamides 184 bearing 2-pyridyl-N-oxide directing group and 

especially interesting internal allenes 185 allowing the molecular assembly of exo-

methylene isoquinolones 186 (Figure 4.1).[224]  
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Figure 4.1. Electrocatalytic C‒H/N‒H activation by mild cobalt catalysis. 

Cross-electrophile coupling with atmospheric CO2 not only addresses the global 

warming issue but also provide value-added compounds which are highly desirable. In 

the second part, a contemporary electro-reductive cobalt-catalyzed carboxylation of 

allylic chlorides 144 with atmospheric CO2 was constructed to give important 

styrylacetic acid derivatives 130[228] which are key synthons to numerous γ-

arylbutyrolactones, structural motif found in several natural products (Figure 4.2). 

Preliminary mechanistic insights including kinetic profiling by means of modern React-

IR spectroscopy and cyclic voltammetry studies provided evidences for a postulated 

catalytic cycle which illustrated a cobalt(I)/(III)/(I) catalytic manifold through π-allyl-

cobalt complexes.  

Thus, electrocarboxylation can provide a myriad of new discoveries. The use of 

electrochemistry for substrate and CO2 reduction supplies a greener and more 

sustainable alternative for cross-electrophile coupling reactions. It is intriguing to 

unravel effective 3d metal catalysts for the carboxylation reactions that are more 

environmentally friendly. Hence, we can expect a rising number of electrosynthesis 

protocols for carboxylation reactions. 
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Figure 4.2. Cobalt catalyzed electro-reductive carboxylation with atmospheric CO2. 

In the third part, cross-electrophile coupling was also applied to electrophilic 

substituted thiosulfonates 160 with alkyl bromides 175 for the exceptionally mild 

formation of C‒S bonds to give alkyl sulfides 176 in excellent yield with great 

chemoselectivity (Figure 4.3).[243] The formation of C‒S bonds are extremely 

appreciated as sulfur-containing structural motifs have tremendous impact in terms of 

pharmaceutical drugs and functional materials. Hence, exceedingly mild and scalable 

protocols for C‒S formations are valuable. Within this powerful thiolation protocol, 

harsh chemical reductants are not needed for the reduction of the nickel catalyst and 

yet a broad and versatile substrate scope with excellent yield was obtained. Detailed 

mechanistic studies, including cyclic voltammetry and potentiostatic studies, gave 

evidences for a proposed catalytic cycle.  

 

Figure 4.3. Electro-reductive nickel-catalyzed cross-electrophile thiolation. 
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5. Experiment Section 

5.1 General Remarks 

Catalysis reactions under an atmosphere of air were conducted in the sealed tubes or 

Schlenk tubes. Unless otherwise noted, other reactions were performed under N2 

atmosphere using pre-dried glassware and standard Schlenk techniques. 

If not otherwise noted, yields refer to isolated compounds, estimated to be >95% pure 

as determined by 1H NMR.  

Vacuum 

The following pressures were measured on the used vacuum pump and were not 

corrected: membrane pump vacuum (MPV): 0.5 mbar, oil pump vacuum (OPV): 0.1 

mbar. 

Melting Points (M.p.) 

Melting points were measured using a Stuart® Melting Point Apparatus SMP3 from 

BARLOWORLD SCIENTIFIC. The reported values are uncorrected. 

Chromatography 

Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60F-

plates (MACHEREY-NAGEL) with 254 nm fluorescent indicator from MERCK. Plates 

were visualized under UV-light. Chromatographic purification of products was 

accomplished by flash column chromatography on MERCK silica gel, grade 60 (0.040–

0.063 mm and 0.063–0.200 mm). 

Gas Chromatography (GC)  

The conversions of the reactions were monitored by applying coupled gas 

chromatography/mass spectrometry using G1760C GCDplus with mass detector HP 

5971, 5890 Series II with mass detector HP 5972 from HEWLETT-PACKARD and 

7890A GC-System with mass detector 5975C (Triplex-Axis-Detector) from AGILENT 

TECHNOLOGIES equipped with HP-5MS columns (30 m × 0.25 mm × 0.25 m). 
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Gel Permeation Chromatography (GPC)  

GPC purifications were performed on a JAI system (JAI-LC-9260 II NEXT) equipped 

with two sequential columns (JAIGEL-2HR, gradient rate: 5.000; JAIGEL-2.5HR, 

gradient rate: 20.000; internal diameter = 20 mm; length = 600 mm; Flush rate = 10.0 

mL/min and chloroform (HPLC-quality with 0.6% ethanol as stabilizer) was used as the 

eluent. 

Infrared Spectroscopy  

Infrared spectra were recorded with a BRUKER Alpha-P ATR FT-IR spectrometer. 

Liquid samples were measured as a film, solid samples neat. The analysis of the 

spectra was carried out using the software from BRUKER OPUS 6. The absorption 

was given in wave numbers (cm−1) and the spectra were recorded in the range of 

4000–400 cm‒1. In situ-IR studies were performed on METTLER TOLEDO ReactIR™ 

15 with an iC IR 4.3 software. 

Mass Spectrometry  

Electron-ionization (EI) mass spectra were recorded on a Jeol AccuTOF instrument at 

70 eV. Electrospray-ionization (ESI) mass spectra were obtained on Bruker micrOTOF 

and maXis instruments. All systems were equipped with time-of-flight (TOF) analyzers. 

The ratios of mass to charge (m/z) were reported and the intensity relative to the base 

peak (I = 100) is given in parenthesis.  

Nuclear Magnetic Resonance Spectroscopy (NMR)  

Nuclear magnetic resonance (NMR) spectra were recorded on VARIAN Inova 500, 600, 

VARIAN Mercury 300, VX 300, VARIAN Avance 300, VARIAN VNMRS 300 and 

BRUKER Avance III 300, 400 and HD 500 spectrometers. All chemical shifts were 

given as δ-values in ppm relative to the residual proton peak of the deuterated solvent 

or its carbon atom, respectively. 1H and 13C NMR spectra were referenced using the 

residual proton or solvent carbon peak (see table), respectively. 13C and 19F NMR were 

measured as proton-decoupled spectra. 
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 1H NMR 13C NMR 

CDCl3 7.26 77.16 

[D]6-DMSO 2.50 39.52 

The observed resonance-multiplicities were described by the following abbreviations: 

s (singlet), d (doublet), t (triplet), q (quartet), hept (heptet), m (multiplet) or analogous 

representations. The coupling constants J were reported in Hertz (Hz). Analysis of the 

recorded spectra was carried out with MestReNova 10 software. 

Electrochemistry 

Nickel foam (Ni) electrodes (10 mm × 15 mm × 1.4 mm, RCM-Ni5763; obtained from 

Recemat BV, Germany) and graphite felt (GF) or reticulous vitreous carbon (RVC) 

electrodes (10 mm × 15 mm × 6 mm, SIGRACELL®GFA 6 EA, obtained from SGL 

Carbon, Wiesbaden, Germany) were connected using stainless steel adapters. 

Electrolysis was conducted using an AXIOMET AX-3003P potentiostat in constant 

current mode, CV studies were performed using a Metrohm Autolab PGSTAT204 

workstation and Nova 2.0 software. Divided cells separated by a P4-glassfrit were 

obtained from Glasgerätebau Ochs Laborfachhandel e. K. (Bovenden, Germany). 

Solvents 

All solvents for reactions involving moisture-sensitive reagents were dried, distilled and 

stored under inert atmosphere (N2) according to the following standard procedures.  

Purified by solvent purification system (SPS-800, M. Braun): CH2Cl2, toluene, 

tetrahydrofuran, dimethylformamide, diethylether. 1,2-dichloroethane, N-

methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMA), dimethylsulfoxide 

(DMSO) and γ-valerolactone (GVL) was dried over CaH2 for 8 h, degassed and 

distilled under reduced pressure. 1,2-dimethoxyethane (DME) was dried over sodium 

and freshly distilled under N2. 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) was distilled 

from 3 Å molecular sieves. 2,2,2-trifluoroethanol (TFE) was stirred over CaSO4 and 

distilled under reduced pressure. Water was degassed by repeated Freeze-Pump-

Thaw degassing procedure. 1,4-dioxane and di-n-butyl-ether (nBu2O) were distilled 
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from sodium benzophenone ketyl. 

Reagents 

Chemicals obtained from commercial sources with purity above 95% were used 

without further purification. The following compounds were known and were 

synthesized according to previously described methods. 

Benzamides 8,[57] allenes 185,[251] allylic chlorides 144,[252] CoCl(PPh3)3 complex 195[234] 

and thiosulfonates 160.[215, 253] 

 

Cooperation Clarification: 

In the project of electroreductive carboxylation with atmospheric CO2, all the DFT 

calculations were performed by Dr. João C. A. Oliveira. 
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5.2 General Procedures 

General Procedure A: Electrochemical C–H/N‒H Annulations of Benzamides 

with 1,3-substituted Allenes: Access to exo-Methylene Isoquinolones 186 

The electrocatalysis was carried out in an undivided cell, with a RVC anode (10 mm × 

15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). Benzamide 8 

(0.250 mmol, 1.00 equiv), allene 185 (0.750 mmol, 3.00 equiv), NaOPiv (62 mg, 

0.500 mmol, 2.00 equiv) and Co(OAc)2∙4H2O (12.7 mg, 0.050 mmol, 20 mol %) were 

placed in a 10 mL cell and dissolved in MeOH (5.0 mL). Electrolysis was performed at 

40 °C with a constant current of 2 mA maintained for 15 h (2.34 F/mol). The reaction 

was stopped by adding H2O (10 mL). The RVC anode was washed with CH2Cl2 (10 mL) 

in an ultrasonic cleaner. The washing was added to the reaction mixture and the 

combined phases were extracted with CH2Cl2 (3 × 10 mL), and then dried over Na2SO4. 

Evaporation of the solvent and subsequent column chromatography on silica gel using 

a mixture of CH2Cl2/acetone as the eluent yielded the desired products 186. 

 

General Procedure B for the Deoxygenation of 1,3-Substituted Allenes 

Annulated Products 186 

For resolving the rotamers and analyzing product 186, deoxygenation of pyridine N-

oxide was performed. A 25 mL oven pre-dried schlenk flask was charged with product 

186 (0.1 mmol, 1.00 equiv.), PCl3 (15.9 mg, 0.12 mmol, 1.20 equiv.) and was dissolved 

in toluene (1.0 mL). The reaction was conducted under N2 atmosphere for 30 minutes 

at 50 °C. The reaction was quenched by adding sat. aqueous NaHCO3 (5.0 mL). The 

organic layer was added additional H2O (5 mL) and extracted with CH2Cl2 (3 x 5.0 mL), 

then dried over Na2SO4. Evaporation of the solvent and subsequent column 

chromatography yielded the desired product 188 and isomerized product 188’. 

 

General Procedure C: Electro-Reductive Cobalt-Catalyzed Carboxylation with 

Atmospheric CO2 
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Under an atmosphere of Ar, the oven-dried undivided electrochemical cell with Mg foil 

anode (3.00 mm x 15.0 mm x 0.02 mm) and Ni foam cathode (10.0 mm x 15.0 mm x 

1.00 mm) was charged with allyl chloride 144 (0.250 mmol, 1.00 equiv), Co(OAc)2 

(4.43 mg, 0.025 mmol, 10 mol %), PPh3 (13.1 mg, 0.050 mmol, 20 mol %), nBu4NPF6 

(96.9 mg, 0.250 mmol, 1.00 equiv) dissolved in DMF (5.0 mL). The reaction vessel was 

first flushed with CO2 gas using a pressure of 1 atm for 30 minutes. Electrocatalysis 

was then performed at 10.0 mA of constant current at ambient temperature for 6 h with 

constant CO2 bubbling. The reaction mixture was subsequently treated with HCl (2 M, 

5.0 mL) at room temperature. Both electrodes were washed and sonicated thoroughly 

with EtOAc (3 x 5 mL). The washings were added into the reaction mixture and the 

combined phases were extracted with EtOAc (3 x 10 mL), the organic phases were 

then washed with aqueous sat. NH4Cl solution (3 x 20 mL), dried over MgSO4. 

Evaporation of the solvents and subsequent column chromatography on silica gel 

afforded the corresponding products 130. 

 

General Procedure D: Electro-Reductive Nickel-Catalyzed Thiolation 

Under an atmosphere of Ar, the oven-dried undivided electrochemical cell with Mg foil 

anode (3.00 mm x 15.0 mm x 0.02 mm) and Ni foam cathode (10.0 mm x 15.0 mm x 

1.00 mm) was charged with bromide 175 (0.250 mmol, 1.00 equiv), thiosulfonate 160 

(0.275 mmol, 1.10 equiv), NiBr2•diglyme (4.41 mg, 0.0125 mmol, 5.0 mol %), 2,2’-

bipyridine (2.93 mg, 0.0188 mmol, 7.5 mol %) dissolved in DMF (5.0 mL). 

Electrocatalysis was then performed at 5.0 mA of constant current at ambient 

temperature for 3 h. The reaction vessel was first diluted with EtOAc (30 mL). Both 

electrodes were washed and sonicated thoroughly with EtOAc (3 x 5.0 mL). The 

washings were added into the reaction mixture and the combined phases were 

extracted with EtOAc (30 mL), the organic phases were then washed with deionized 

H2O (3 x 20 mL), dried over Na2SO4. Evaporation of the solvents and subsequent 

column chromatography on silica gel afforded the corresponding products 176. 
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5.3 Experimental Procedures and Analytical Data 

5.3.1 Electrochemical C–H/N‒H Annulations of Benzamides with 1,3-

substituted Allenes 

5.3.1.1 Characterization Data 

 

(E)-2-[3-[2-(Benzyloxy)-2-oxoethylidene]-4-methyl-1-oxo-3,4-dihydroisoquinolin-

2(1H)-yl]pyridine 1-oxide (186a) 

The general procedure A was followed using benzamide 8 (53.5 mg, 0.25 mmol, 1.00 

equiv.) and allene 185a (141 mg, 0.75 mmol). Purification by column chromatography 

silica gel (CH2Cl2/acetone 4:1) yielded 186a (60.0 mg, 150 µmol, 60%) as a pale yellow 

oil. 1H NMR (500 MHz, CDCl3, 2 rotamers): δ = 8.38 ‒ 8.35 (m, 1H), 8.35 ‒ 8.31 (m, 

1H), 8.14 (dd, J = 7.8, 1.3 Hz, 1H), 8.09 (dd, J = 7.8, 1.3 Hz, 1H), 7.59 (qd, J = 7.6, 1.4 

Hz, 2H), 7.45 ‒ 7.36 (m, 4H), 7.36 ‒ 7.30 (m, 16H), 5.45 (q, 2H), 5.15 ‒ 5.02 (m, 4H), 

4.91 (s, 1H), 4.81 (s, 1H), 1.81 (d, J = 7.1 Hz, 3H), 1.66 (d, J = 7.1 Hz, 3H). 13C NMR 

(125 MHz, CDCl3, 2 rotamers): δ = 165.8 (Cq), 165.8 (Cq), 162.0 (Cq), 161.7 (Cq), 159.0 

(Cq), 158.2 (Cq), 144.8 (Cq), 142.9 (Cq), 142.8 (Cq), 140.9 (CH), 140.6 (CH), 135.9 (Cq), 

135.9 (Cq), 134.2 (CH), 134.2 (CH), 129.0 (CH), 128.6 (CH), 128.6 (CH), 128.6 (CH), 

128.5 (CH), 128.4 (CH), 128.3 (CH), 128.3 (CH), 127.5 (CH), 127.3 (CH), 127.2 (CH), 

127.1 (CH), 126.7 (CH), 126.3 (CH), 126.1 (CH), 125.9 (CH), 125.3 (CH), 124.7 (Cq), 

124.6 (Cq), 99.2 (CH), 99.1 (CH), 66.2 (CH2), 66.1 (CH2), 35.5 (CH), 35.0 (CH), 26.7 

(CH3), 26.7 (CH3). IR (ATR): 3058, 2929, 1693, 1617, 1276, 1128, 756, 697 cm−1. MS 

(EI) m/z (relative intensity): 400 (4) [M]+, 293 (18), 249 (46), 237 (22), 91 (60), 78 (18). 

HR-MS (ESI) m/z calcd for C24H20N2O4 [M]+: 401.1496, found: 401.1499. 
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(E)-2-[3-(2-Ethoxy-2-oxoethylidene)-4-methyl-1-oxo-3,4-dihydroisoquinolin-

2(1H)-yl]pyridine 1-oxide (186b) 

The general procedure A was followed using benzamide 8 (53.5 mg, 0.25 mmol, 1.00 

equiv.) and allene 185b (94.6 mg, 0.75 mmol). Purification by column chromatography 

silica gel (CH2Cl2/acetone 7:3) yielded 186b (71.0 mg, 210 µmol, 84%) as a pale yellow 

oil. 1H NMR (500 MHz, CDCl3, 2 rotamers): δ = 8.33 ‒ 8.28 (m, 1H), 8.27 ‒ 8.17 (m, 

1H), 8.11 (dd, J = 7.9, 1.4 Hz, 1H), 8.06 (dd, J = 7.9, 1.4 Hz, 1H), 7.60 ‒ 7.47 (m, 3H), 

7.41 ‒ 7.28 (m, 9H), 5.45 ‒ 5.37 (m, 2H), 4.82 (s, 1H), 4.74 (s, 1H), 4.16 ‒ 4.01 (m, 

4H), 1.77 (d, J = 7.1 Hz, 3H), 1.62 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3, 2 

rotamers): δ = 166.1 (Cq), 166.0 (Cq), 162.2 (Cq), 161.9 (Cq), 158.4 (Cq), 157.6 (Cq), 

142.9 (Cq), 134.2 (CH), 134.2 (CH), 129.0 (CH), 128.6 (CH), 128.5 (CH), 127.4 (CH), 

127.3 (CH), 127.2 (CH), 126.6 (CH), 126.6 (CH), 126.0 (CH), 124.7 (Cq), 124.6 (Cq), 

99.7 (CH), 99.6 (CH), 60.0 (CH2), 60.0 (CH2), 35.2 (CH), 34.7 (CH), 26.5 (CH3), 26.5 

(CH3), 14.3 (CH3), 14.3 (CH3). IR (ATR): 2976, 1693, 1619, 1490, 1340, 1146, 884, 

758 cm−1. MS (EI) m/z (relative intensity): 338 (1) [M]+, 265 (25), 249 (35), 237 (100), 

142 (30), 78 (35). HR-MS (ESI) m/z calcd for C19H18N2O4 [M]+: 339.1339, 

found: 339.1346. 

 

(E)-2-[3-(2-Ethoxy-2-oxoethylidene)-1-oxo-4-propyl-3,4-dihydroisoquinolin-

2(1H)-yl]pyridine 1-oxide (186c) 
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The general procedure A was followed using benzamide 8 (53.5 mg, 0.25 mmol, 1.00 

equiv.) and allene 185c (116 mg, 0.75 mmol). Purification by column chromatography 

silica gel (CH2Cl2/acetone 4:1) yielded 186c (51.0 mg, 139 µmol, 56%) as a pale yellow 

oil. 1H NMR (500 MHz, CDCl3, 2 rotamers): δ = 8.41 ‒ 8.27 (m, 2H), 8.13 (dd, J = 7.8, 

1.3 Hz, 1H), 8.08 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 (qd, J = 7.4, 1.4 Hz, 2H), 7.46 ‒ 7.30 

(m, 10H), 5.42 ‒ 5.37 (m, 2H), 4.85 (s, 1H), 4.80 (s, 1H), 4.16 ‒ 4.03 (m, 4H), 2.20 ‒ 

2.15 (m, 1H), 2.04 ‒ 1.97 (m, 1H) 1.50 ‒ 1.38 (m, 4H), 1.24 ‒ 1.18 (m, 6H), 0.94−0.90 

(m, 6H). 13C NMR (125 MHz, CDCl3, 2 rotamers): δ = 166.1 (Cq), 166.1 (Cq), 162.4 (Cq), 

162.1 (Cq), 157.6 (Cq), 156.8 (Cq), 141.3 (Cq), 140.8 (Cq), 133.5 (CH), 133.4 (CH), 

129.0 (CH), 128.7 (CH), 128.6 (CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 127.3 (CH), 

126.7 (CH), 126.2 (CH), 126.1 (CH), 125.8 (CH), 125.5 (Cq), 125.5 (Cq), 100.5 (CH), 

100.0 (CH), 60.1 (CH2), 42.5 (CH2), 42.5 (CH2), 40.3 (CH), 39.7 (CH), 20.1 (CH2), 19.8 

(CH2), 14.4 (CH3), 14.4 (CH3), 14.2 (CH3), 14.2 (CH3). IR (ATR): 2960, 2933, 1693, 

1618, 1264, 883, 759, 700 cm−1. MS (EI) m/z (relative intensity): 366 (0.4) [M]+, 293 

(25), 277 (30), 265 (100), 234 (30), 78 (35). HR-MS (ESI) m/z calcd for C21H22N2O4 

[M]+: 367.1652, found: 367.1652. 

 

(E)-2-[3-(2-Ethoxy-2-oxoethylidene)-6-methoxy-4-methyl-1-oxo-3,4-

dihydroisoquinolin-2(1H)-yl]pyridine 1-oxide (186d) 

The general procedure A was followed using benzamide 8 (61.0 mg, 0.25 mmol, 1.00 

equiv.) and allene 185d (94.6 mg, 0.75 mmol). Purification by column chromatography 

silica gel (CH2Cl2/acetone 7:3) yielded 186d (74.0 mg, 201 µmol, 81%) as a pale yellow 

oil. 1H NMR (500 MHz, CDCl3, 2 rotamers): δ = 8.40 ‒ 8.35 (m, 1H), 8.35 ‒ 8.31 (m, 

1H), 8.06 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.49 ‒ 7.42 (m, 1H), 7.39 ‒ 7.32 

(m, 5H), 6.89 (dd, J = 8.7, 2.5 Hz, 2H), 6.80 (dd, J = 4.9, 2.5 Hz, 2H), 5.37 (q, J = 7.2 
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Hz, 2H), 4.80 (s, 1H), 4.71 (s, 1H), 4.17 ‒ 4.02 (m, 4H), 3.87 (s, 3H), 3.86 (s, 3H), 1.78 

(d, J = 7.1 Hz, 3H), 1.64 (d, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3, 2 rotamers): 

δ = 166.3 (Cq), 166.2 (Cq), 164.3 (Cq), 164.3 (Cq), 161.8 (Cq), 161.6 (Cq), 158.7 (Cq), 

157.9 (Cq), 145.4 (Cq), 144.1 (Cq), 140.9 (CH), 140.7 (CH), 131.4 (CH), 131.0 (CH), 

128.8 (CH), 126.9 (CH), 126.3 (CH), 126.2 (CH), 125.9 (CH), 125.4 (CH), 117.5 (Cq), 

117.5 (Cq), 114.0 (Cq), 111.4 (CH), 111.3 (CH), 99.2 (CH), 99.2 (CH), 60.0 (CH2), 60.0 

(CH2), 55.7 (CH3), 35.7 (CH), 35.1 (CH), 26.6 (CH3), 26.6 (CH3), 14.3 (CH3), 14.3 (CH3). 

IR (ATR): 2976, 2932, 1689, 1603, 1257, 1027, 883, 770 cm−1. HR-MS (ESI) m/z calcd 

for C20H20N2O5 [M]+: 369.1445, found: 369.1441. 

 

Benzyl (E)-2-[4-methyl-1-oxo-2-(pyridin-2-yl)-1,4-dihydroisoquinolin-3(2H)-

ylidene]acetate (188a) 

The general procedure B was followed using 186a (40.0 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 19:1) yielded 188a 

(33.0 mg, 86 µmol, 86%) as a pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.70 (ddd, 

J = 4.9, 2.0, 0.9 Hz, 1H), 8.12 (dd, J = 7.8, 1.4 Hz, 1H), 7.89 (td, J = 7.7, 1.9 Hz, 1H), 

7.59 (td, J = 7.5, 1.4 Hz, 1H), 7.44 ‒ 7.28 (m, 9H), 5.46 (q, J = 7.0 Hz, 1H), 5.09 (q, 

J = 12.3 Hz, 2H), 4.77 (s, 1H), 1.70 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3): 

δ = 166.2 (Cq), 162.9 (Cq), 160.7 (Cq), 152.0 (Cq), 150.6 (CH), 142.5 (Cq), 139.1 (CH), 

136.2 (Cq), 133.9 (CH), 128.8 (CH), 128.7 (CH), 128.4 (CH), 128.3 (CH), 127.4 (CH), 

127.1 (CH), 125.5 (Cq), 124.2 (CH), 124.0 (CH), 100.7 (CH), 65.9 (CH2), 34.9 (CH), 

26.7 (CH3). IR (ATR): 2963, 1686, 1605, 1587, 1289, 1131, 747, 697 cm−1. HR-MS 

(ESI) m/z calcd for C24H20N2O3 [M]+: 385.1547, found: 385.1543. 



5. Experimental Section  

110 
 

 

Ethyl (E)-2-[4-methyl-1-oxo-2-(pyridin-2-yl)-1,4-dihydroisoquinolin-3(2H)-

ylidene]acetate (188b) 

The general procedure B was followed using 186b (33.8 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 19:1) yielded 188b 

(28.7 mg, 86 µmol, 86%) as a pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.71 (ddd, 

J = 4.9, 2.0, 0.9 Hz, 1H), 8.11 (dd, J = 7.9, 1.4 Hz, 1H), 7.90 (td, J = 7.7, 1.9 Hz, 1H), 

7.57 (td, J = 7.5, 1.4 Hz, 1H), 7.43 ‒ 7.29 (m, 4H), 5.43 (q, J = 7.0 Hz, 1H), 4.70 (s, 

1H), 4.10 (m, 2H), 1.68 (d, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, 

CDCl3): δ = 166.4 (Cq), 162.9 (Cq), 160.1 (Cq), 152.1 (Cq), 150.6 (CH), 142.6 (Cq), 139.0 

(CH), 133.8 (CH), 128.7 (CH), 127.4 (CH), 127.1 (CH), 125.5 (Cq), 124.2 (CH), 124.0 

(CH), 101.2 (CH), 59.9 (CH2), 34.8 (CH), 26.6 (CH3), 14.4 (CH3). IR (ATR): 2980, 1684, 

1605, 1587, 1287, 1132, 1037, 745 cm−1. HR-MS (ESI) m/z calcd for C19H18N2O3 

[M]+: 323.1390, found: 323.1386. 

 

Ethyl (E)-2-[1-oxo-4-propyl-2-(pyridin-2-yl)-1,4-dihydroisoquinolin-3(2H)-

ylidene]acetate (188c)  

The general procedure B was followed using 186c (36.6 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 19:1) yielded 188c 

(29.3 mg, 91 µmol, 89%) as a pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.71 (ddd, 

J = 4.9, 2.0, 0.8 Hz, 1H), 8.11 (dd, J = 7.8, 1.4 Hz, 1H), 7.90 (td, J = 7.7, 2.0 Hz, 1H), 
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7.56 (td, J = 7.5, 1.4 Hz, 1H), 7.45 ‒ 7.37 (m, 2H), 7.32 (ddd, J = 7.9, 7.0, 1.1 Hz, 2H), 

5.40 (t, J = 6.7 Hz, 1H), 4.76 (s, 1H), 4.32 ‒ 3.97 (m, 2H), 2.05 ‒ 1.86 (m, 2H), 

1.53 ‒ 1.34 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, 

CDCl3): δ = 166.6 (Cq), 163.3 (Cq), 159.5 (Cq), 152.2 (Cq), 150.6 (CH), 140.9 (Cq), 139.0 

(CH), 133.1 (CH), 128.7 (CH), 127.8 (CH), 127.4 (CH), 126.5 (Cq), 124.2 (CH), 123.9 

(CH), 101.9 (CH), 60.0 (CH2), 42.4 (CH2), 39.7 (CH), 19.6 (CH2), 14.4 (CH3), 14.2 (CH3). 

IR (ATR): 2959, 1685, 1606, 1587, 1296, 1133, 745, 637 cm−1. HR-MS (ESI) m/z calcd 

for C21H22N2O3 [M]+: 351.1703, found: 351.1708. 

 

Benzyl 2-[4-methyl-1-oxo-2-(pyridin-2-yl)-1,2-dihydroisoquinolin-3-yl]acetate 

(188a’) 

The general procedure B was followed using 186a (40.0 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 9:1) yielded 188a’ 

(4.00 mg, 11 µmol, 12%) as a white solid. M.p.: 125-126 °C. 1H NMR (300 MHz, CDCl3): 

δ = 8.54 (ddd, J = 4.9, 2.0, 0.9 Hz, 1H), 8.45 (dt, J = 7.9, 1.1 Hz, 1H), 7.78 ‒ 7.72 (m, 

2H), 7.67 (td, J = 7.7, 1.9 Hz, 1H), 7.52 (ddd, J = 8.2, 5.1, 3.2 Hz, 1H), 7.36 ‒ 7.21 (m, 

7H), 5.02 (s, 2H), 3.56 (s, 2H), 2.34 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 169.0 (Cq), 

162.9 (Cq), 152.6 (Cq), 149.9 (CH), 138.5 (CH), 137.6 (Cq), 135.4 (Cq), 133.0 (CH), 

131.2 (Cq), 128.7 (CH), 128.6 (CH), 128.5 (CH), 127.0 (CH), 125.9 (Cq), 125.2 (CH), 

123.9 (CH), 123.4 (CH), 112.4 (Cq), 67.1 (CH2), 36.5 (CH2), 13.9 (CH3). IR (ATR): 3065, 

2168, 1987, 1725, 1656, 1318, 1175, 762 cm−1. HR-MS (ESI) m/z calcd for C24H20N2O3 

[M]+: 385.1547, found: 385.1544. 
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Ethyl 2-[4-methyl-1-oxo-2-(pyridin-2-yl)-1,2-dihydroisoquinolin-3-yl]acetate 

(188b’) 

The general procedure B was followed using 186b (33.8 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 9:1) yielded 188b’ 

(3.30 mg, 10 µmol, 13%) as a white solid. M.p.: 138-140 °C. 1H NMR (300 MHz, CDCl3): 

δ = 8.65 (ddd, J = 4.9, 1.9, 0.8 Hz, 1H), 8.46 (dt, J = 7.9, 1.1 Hz, 1H), 7.87 (td, J = 7.7, 

1.9 Hz, 1H), 7.83 ‒ 7.66 (m, 2H), 7.51 (ddd, J = 8.1, 5.6, 2.6 Hz, 1H), 7.46 ‒ 7.34 (m, 

2H), 4.03 (q, J = 7.1 Hz, 2H), 3.52 (s, 2H), 2.35 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3): δ = 169.2 (Cq), 162.9 (Cq), 152.7 (Cq), 149.9 (CH), 138.4 

(CH), 137.7 (Cq), 133.0 (CH), 131.4 (Cq), 128.4 (CH), 126.9 (CH), 125.9 (Cq), 125.3 

(CH), 123.9 (CH), 123.4 (CH), 112.3 (Cq), 61.3 (CH2), 36.5 (CH2), 14.2 (CH3), 13.8 

(CH3). IR (ATR): 2984, 2167, 1987, 1720, 1652, 1283, 967, 694 cm−1. MS (EI) m/z 

(relative intensity): 366 (0.4) [M]+, 323 (2), 322 (12), 293 (26), 249 (40), 78 (12). HR-

MS (EI) m/z calcd for C19H18N2O3 [M]+: 322.1317, found: 322.1306. 

 

Ethyl 2-[1-oxo-4-propyl-2-(pyridin-2-yl)-1,2-dihydroisoquinolin-3-yl]acetate 

(188c’) 

The general procedure B was followed using 186c (36.6 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 9:1) yielded 188c’ 

(4.70 mg, 13 µmol, 10%) as a white solid. M.p.: 117-119 °C. 1H NMR (300 MHz, CDCl3): 
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δ = 8.89 ‒ 8.58 (m, 1H), 8.48 ‒ 8.32 (m, 1H), 7.86 (td, J = 7.7, 1.9 Hz, 1H), 

7.77 ‒ 7.65 (m, 2H), 7.49 (ddd, J = 8.2, 5.6, 2.5 Hz, 1H), 7.44 ‒ 7.35 (m, 2H), 3.99 (q, 

J = 7.1 Hz, 2H), 3.56 (s, 2H), 2.80 ‒ 2.62 (m, 2H), 1.63 (dt, J = 15.1, 7.6 Hz, 2H), 1.13 (t, 

J = 7.1 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ = 169.4 (Cq), 

162.9 (Cq), 152.7 (Cq), 149.8 (CH), 138.3 (CH), 137.0 (Cq), 132.9 (CH), 131.6 (Cq), 

128.6 (CH), 126.8 (CH), 126.2 (Cq), 125.6 (CH), 123.9 (CH), 123.4 (CH), 116.9 (Cq), 

61.3 (CH2), 36.0 (CH2), 30.1 (CH2), 23.2 (CH2), 14.5 (CH3), 14.2 (CH3). IR (ATR): 2958, 

2872, 1732, 1656, 1488, 1297, 997, 669 cm−1. HR-MS (ESI) m/z calcd for C21H22N2O3 

[M]+: 351.1703, found: 351.1701. 

 

Ethyl 2-[6-methoxy-4-methyl-1-oxo-2-(pyridin-2-yl)-1,2-dihydroisoquinolin-3-

yl]acetate (188d’) 

The general procedure B was followed using 186d (36.8 mg, 0.10 mmol, 1.00 equiv.). 

Purification by column chromatography silica gel (CH2Cl2/acetone 9:1) yielded 188d’ 

(32.0 mg, 91 µmol, 91%) as a white solid. M.p.: 165-168 °C. 1H NMR (400 MHz, CDCl3): 

δ = 8.63 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 8.37 (d, J = 9.5 Hz, 1H), 7.85 (td, J = 7.7, 

1.9 Hz, 1H), 7.57 ‒ 7.32 (m, 2H), 7.17 ‒ 6.96 (m, 2H), 4.02 (q, J = 7.1 Hz, 2H), 3.94 (s, 

3H), 3.50 (s, 2H), 2.30 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3): 

δ = 168.9 (Cq), 163.2 (Cq), 162.3 (Cq), 152.6 (Cq), 149.6 (CH), 139.6 (Cq), 138.1 (CH), 

131.9 (Cq), 130.4 (CH), 125.2 (CH), 123.6 (CH), 119.4 (Cq), 115.0 (CH), 111.6 (Cq), 

105.5 (CH), 61.1 (CH2), 55.4 (CH3), 36.40 (CH2), 14.0 (CH3), 13.8 (CH3). IR (ATR): 

2982, 1731, 1651, 1603, 1323, 1209, 1028, 859 cm−1. HR-MS (ESI) m/z calcd for 

C20H20N2O4 [M]+: 353.1496, found: 353.1491. 
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5.3.1.2 H/D Exchange Experiment 

 

Figure 5.3.1 H/D exchange experiment. 

In an undivided cell with a RVC anode (10 mm × 15 mm × 6 mm) and a platinum 

cathode (10 mm × 15 mm × 0.25 mm), benzamide 8 (107 mg, 0.50 mmol, 1.00 equiv), 

allene 27 (144 mg, 1.20 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv) and 

Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were placed in a 10 mL cell and dissolved in 

CD3OH (5 mL). Electrocatalysis was performed at 40 °C with a constant current of 

2 mA maintained for 15 h. The reaction was stopped by adding H2O (10 mL). The RVC 

anode was washed with CH2Cl2 (10 mL) in an ultrasonic cleaner. The washings were 

added to the reaction mixture and the combined phases were extracted with CH2Cl2 

(3 × 10 mL), then dried over Na2SO4. Evaporation of the solvent and subsequent 

column chromatography (CH2Cl2/MeOH 9:1) gave product 189 (193 mg, 85%) as a 

white solid. The D-incorporation was estimated by 1H-NMR spectroscopy.  No 

deuterium incorporation was detected. 
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Figure 5.3.2. 1H NMR spectroscopy from the deuteration study. 

5.3.2 Electro-Reductive Cobalt-Catalyzed Carboxylation with 

Atmospheric CO2 

5.3.2.1 Characterization Data 

 

(E)-4-Phenylbut-3-enoic acid (130a) 

The general procedure C was followed using cinnamyl chloride 144a (38.2 mg, 

0.25 mmol) and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column 

chromatography on silica gel (n-hexane/EtOAc 6:1 with 1% AcOH) yielded 130a 

(23.5 mg, 59%, 130a/130a’ = 1:1) as a yellow oil. Resonances reported for linear-130a: 

1H NMR (300 MHz, CDCl3): δ = 7.47 – 7.19 (m, 5H), 6.54 (d, J = 15.9 Hz, 1H), 

6.41 – 6.15 (m, 1H), 3.32 (d, J = 7.0 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 177.9 (Cq), 
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136.7 (Cq), 134.0 (CH), 128.6 (CH), 127.7 (CH), 126.3 (CH), 120.8 (CH), 38.1 (CH2). 

Resonances reported for branch-130a’: 1H NMR (300 MHz, CDCl3): δ = 7.45 – 7.23 

(m, 5H), 6.38 – 6.17 (m, 1H), 5.38 – 5.08 (m, 2H), 4.36 (d, J = 8.0 Hz, 1H). 13C NMR 

(75 MHz, CDCl3): δ = 178.4 (Cq), 137.4 (Cq), 135.0 (CH), 128.8 (CH), 128.1 (CH), 127.6 

(CH), 118.1 (CH2), 55.6 (CH). IR (ATR): 2923, 1704, 1495, 1408, 1284, 1211, 1171, 

927, 744, 699 cm−1. MS (ESI) m/z (relative intensity): 185 [M+Na]+ (40). HR-MS (ESI): 

m/z calcd for C10H10O2Na+ [M+Na]+ 185.0573, found 185.0567. The analytical data are 

in accordance to those reported in literature.[175] 

 

(E)-4-(o-Tolyl)but-3-enoic acid (130b) 

The general procedure C was followed using allyl chloride 144b (41.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130b (35.0 mg, 79%, 

130b/130b’ = 1:1.5) as a yellow oil. Resonances reported for linear-130b: 1H NMR 

(300 MHz, CDCl3): δ = 7.50 – 7.41 (m, 1H), 7.17 (m, 3H), 6.74 (d, J = 15.7, 1H), 

6.31 – 6.10 (m, 1H), 3.34 (dd, J = 7.1, 1.5 Hz, 2H), 2.35 (s, 3H). 13C NMR (75 MHz, 

CDCl3): δ = 178.2 (Cq), 135.8 (Cq), 135.3 (Cq), 131.9 (CH), 130.3 (CH), 127.6 (CH), 

126.1 (CH), 125.8 (CH), 122.1 (CH2), 38.4 (CH2), 19.8 (CH3). Resonances reported for 

branch-130b’: 1H NMR (300 MHz, CDCl3): δ = 7.32 (m, 1H), 7.27 – 7.19 (m, 3H), 

6.31 – 6.09 (m, 1H), 5.42 – 4.92 (m, 2H), 4.59 (d, J = 7.4 Hz, 1H), 2.38 (s, 3H). 

13C NMR (75 MHz, CDCl3): δ = 178.9 (Cq), 136.2 (Cq), 135.8 (Cq), 134.6 (CH), 

130.8 (CH), 128.0 (CH), 126.5 (CH), 127.6 (CH), 117.9 (CH2), 51.6 (CH), 19.7 (CH3). 

IR (ATR): 2926, 1704, 1489, 1406, 1286, 1163, 1039, 927, 751, 734 cm−1. MS (ESI) 

m/z (relative intensity): 199 [M+Na]+ (95), 194 [M+NH4]+ (50). HR-MS (ESI): m/z calcd 

for C11H12O2Na+ [M+Na]+ 199.0730, found 199.0735. The analytical data are in 

accordance to those reported in literature.[254] 
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(E)-4-(4-Isopropylphenyl)but-3-enoic acid (130c) 

The general procedure C was followed using allyl chloride 144c (48.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130c (28.5 mg, 55%, 

130c/130c’ = 4:3) as a pale yellow oil. Resonances reported for linear-130c: 1H NMR 

(400 MHz, CDCl3): δ = 7.34 – 7.29 (m, 2H), 7.19 (m, 2H), 6.50 (d, J = 15.8 Hz, 1H), 

6.30 – 6.15 (m, 1H), 3.29 (d, J = 7.1 Hz, 2H), 2.97 (p, J = 6.9 Hz, 1H), 1.26 (d, J = 6.9 Hz, 

6H). 13C NMR (100 MHz, CDCl3): δ = 178.2 (Cq), 148.6 (Cq), 134.3 (Cq), 133.8 (CH), 

126.9 (CH), 126.6 (CH), 120.0 (CH), 38.2 (CH2), 33.9 (CH), 24.0 (CH3). Resonances 

reported for branch-130c’: 1H NMR (400 MHz, CDCl3): δ = 7.29 – 7.20 (m, 4H), 

6.32 – 6.12 (m, 1H), 5.28 – 5.14 (m, 2H), 4.32 (d, J = 8.1 Hz, 1H), 2.97 (p, J = 6.9 Hz, 

1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ = 178.9 (Cq), 148.2 (Cq), 

135.2 (CH), 134.8 (Cq), 128.0 (CH), 126.3 (CH), 117.9 (CH2), 55.3 (CH), 33.8 (CH), 

24.0 (CH3). IR (ATR): 2959, 1706, 1513, 1415, 1286, 1216, 1054, 967, 925, 550 cm−1. 

MS (ESI) m/z (relative intensity): 227 [M+Na]+ (100). HR-MS (ESI): m/z calcd for 

C13H16O2Na+ [M+Na]+ 227.1043, found 227.1048. The analytical data are in 

accordance to those reported in literature.[255] 

 

(E)-4-[4-(tert-Butyl)phenyl]but-3-enoic acid (130d) 

The general procedure C was followed using allyl chloride 144d (52.2 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 6:1 with 1% AcOH) yielded 130d (30.0 mg, 55%, 

130d/130d’ = 1.2:1) as a yellow oil. Resonances reported for linear-130d: 1H NMR 

(400 MHz, CDCl3): δ = 7.37 (d, J = 8.4 Hz, 2H), 7.28 – 7.24 (m, 2H), 6.50 (d, 
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J = 15.8 Hz, 1H), 6.31 – 6.15 (m, 1H), 3.28 (d, J = 7.0 Hz, 2H), 1.31 (s, 9H). 13C NMR 

(100 MHz, CDCl3): δ = 177.8 (Cq), 150.8 (Cq), 133.9 (Cq), 133.7 (CH), 126.0 (CH), 

125.5 (CH), 120.0 (CH), 38.1 (CH2), 34.6 (Cq), 31.3 (CH3). Resonances reported for 

branch-130d’: 1H NMR (400 MHz, CDCl3): δ = 7.33 (m, 4H), 6.32 – 6.12 (m, 1H), 

5.29 – 5.12 (m, 2H), 4.31 (d, J = 8.1 Hz, 1H), 1.31 (s, 9H). 13C NMR (100 MHz, CDCl3) 

δ = 178.5 (Cq), 150.5 (Cq), 135.1 (CH), 134.3 (Cq), 127.7 (CH), 125.8 (CH), 117.9 (CH2), 

55.1 (CH), 34.5 (Cq), 31.3 (CH3). IR (ATR): 2960, 1705, 1409, 1364, 1269, 1108, 924, 

826, 704, 558 cm−1. MS (ESI) m/z (relative intensity): 241 [M+Na]+ (60). HR-MS (ESI): 

m/z calcd for C14H18O2Na+ [M+Na]+ 241.1199, found 241.1199. 

 

(E)-4-([1,1'-Biphenyl]-4-yl)but-3-enoic acid (130e) 

The general procedure C was followed using allyl chloride 144e (57.2 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 6:1 with 1% AcOH) yielded 130e (40.0 mg, 67%, 

130e/130e’ = 1:3) as a pale white solid. M.p.: 174 – 177 ℃. Resonances reported for 

linear-130e: 1H NMR (400 MHz, CDCl3): δ = 7.62 – 7.54 (m, 4H), 7.47 – 7.39 (m, 4H), 

7.38 – 7.32 (m, 1H), 6.55 (d, J = 15.8 Hz, 1H), 6.39 – 6.31 (m, 1H), 3.32 (d, J = 7.0 Hz, 

2H). 13C NMR (100 MHz, CDCl3): δ = 178.0 (Cq), 140.6 (Cq), 140.4 (Cq), 135.7 (Cq), 

133.5 (CH), 128.8 (CH), 127.4 (CH), 127.3 (CH), 127.1 (CH), 126.9 (CH), 121.0 (CH), 

38.2 (CH2). Resonances reported for branch-130e’: 1H NMR (400 MHz, CDCl3): 

δ =7.62 – 7.54 (m, 4H), 7.47 – 7.39 (m, 4H), 7.38 – 7.32 (m, 1H), 6.32 – 6.20 (m, 1H), 

5.36 – 5.14 (m, 2H), 4.39 (d, J = 8.0 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 178.3 

(Cq), 140.6 (Cq), 140.4 (Cq), 136.4 (Cq), 134.9 (CH), 128.5 (CH), 127.6 (CH), 127.3 

(CH), 127.1 (CH), 126.8 (CH), 118.2 (CH2), 55.3 (CH). IR (ATR): 2928, 1696, 1484, 

1406, 1215, 933, 829, 758, 739, 694 cm−1. MS (ESI) m/z (relative intensity): 237 [M-

H]- (35), 261 [M+Na]+ (20). HR-MS (ESI): m/z calcd for C16H14O2Na+ [M+Na]+ 261.0886, 

found 261.0888. The analytical data are in accordance to those reported in 
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literature.[175] 

 

(E)-4-(Naphthalen-2-yl)but-3-enoic acid (130f) 

The general procedure C was followed using allyl chloride 144f (50.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 6:1 with 1% AcOH) yielded 130f (24.0 mg, 45%, 

130f/130f’ = 1:2.5) as a pale white solid. M.p.: 147 – 150 ℃. Resonances reported for 

linear-130f: 1H NMR (400 MHz, CDCl3): δ = 7.85 – 7.80 (m, 4H), 7.72 (dd, J = 8.5, 

1.6 Hz, 1H), 7.50 – 7.43 (m, 2H), 6.68 (d, J = 15.8 Hz, 1H), 6.41 (dt, J = 16.0, 7.1 Hz, 

1H), 3.36 (d, J = 7.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 177.6 (Cq), 134.2 (CH), 

133.7 (Cq), 133.6 (Cq), 133.1 (Cq), 129.1 (CH), 128.4 (CH), 128.1 (CH), 126.4 (CH), 

126.2 (CH), 126.1 (CH), 123.6 (CH), 121.4 (CH), 38.2 (CH2). Resonances reported for 

branch-130f’: 1H NMR (400 MHz, CDCl3): δ = 7.79 – 7.76 (m, 2H), 7.59 (dd, J = 8.5, 

1.7 Hz, 1H), 7.50 – 7.43 (m, 4H), 6.32 (ddd, J = 17.5, 10.2, 7.8 Hz, 1H), 5.37 – 5.16 

(m, 2H), 4.52 (d, J = 7.8 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 178.2 (Cq), 

135.0 (CH), 134.9 (Cq), 133.6 (Cq), 132.8 (Cq), 128.0 (CH), 127.8 (CH), 127.2 (CH), 

126.4 (CH), 126.3 (CH), 126.1 (CH), 123.6 (CH), 118.5 (CH2), 55.6 (CH). IR (ATR): 

2920, 1700, 1407, 1295, 1214, 932, 824, 750, 615, 484 cm−1. MS (ESI) m/z (relative 

intensity): 235 [M+Na]+ (100). HR-MS (ESI): m/z calcd for C14H12O2Na+ [M+Na]+ 

235.0730, found 235.0725. The analytical data are in accordance to those reported in 

literature.[175] 

 

(E)-4-(Benzo[d][1,3]dioxol-5-yl)but-3-enoic acid (130g) 

The general procedure C was followed using allyl chloride 144g (49.2 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 
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gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130g (27.5 mg, 53%, 

130g/130g’ = 1:2) as a pale yellow oil. Resonances reported for linear-130g: 1H NMR 

(400 MHz, CDCl3): δ = 6.92 (d, J = 1.7 Hz, 1H), 6.80 (d, J = 8.0, 1.7 Hz, 1H), 6.74 (d, 

J = 8.0 Hz, 1H), 6.42 (d, J = 15.9 Hz, 1H), 6.22 – 6.14 (m, 1H), 5.95 (s, 2H), 3.26 (dd, 

J = 7.1, 1.5 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 176.8 (Cq), 148.2 (Cq), 147.4 (Cq), 

133.7 (CH), 131.3 (Cq), 121.1 (CH), 119.1 (CH), 108.4 (CH), 105.8 (CH), 101.2 (CH2), 

37.9 (CH2). Resonances reported for branch-130g’: 1H NMR (400 MHz, CDCl3): δ = 

6.83 (s, 1H), 6.79 – 6.73 (m, 2H), 6.14 – 6.05 (m, 1H), 5.95 (s, 2H), 5.31 – 5.05 (m, 

2H), 4.25 (d, J = 7.9, 1H). 13C NMR (100 MHz, CDCl3): δ = 177.3 (Cq), 148.1 (Cq), 147.2 

(Cq), 135.1 (CH), 131.2 (Cq), 121.6 (CH), 118.1 (CH2), 108.7 (CH), 108.6 (CH), 101.3 

(CH2), 55.0 (CH). IR (ATR): 2916, 1701, 1487, 1440, 1242, 1034, 927, 808, 723, 540 

cm−1. MS (ESI) m/z (relative intensity): 207 [M+H]+ (30). HR-MS (ESI): m/z calcd for 

C11H11O4
+ [M+H]+ 207.0652, found 207.0650. The analytical data are in accordance to 

those reported in literature.[175] 

 

(E)-4-[4-(Methylthio)phenyl]but-3-enoic acid (130h) 

The general procedure C was followed using allyl chloride 144h (49.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130h (33.0 mg, 63%, 

130h/130h’ = 1:9) as a yellow solid. M.p.: 127 – 128 ℃. Resonances reported for 

linear-130h: 1H NMR (400 MHz, CDCl3): δ = 7.27 – 7.25 (m, 1H), 7.25 – 7.23 (m, 3H), 

6.46 (d, J = 15.8 Hz, 1H), 6.26 – 6.23 (m, 1H), 3.28 (d, J = 7.0 Hz, 2H), 2.48 (s, 3H). 

13C NMR (100 MHz, CDCl3): δ = 177.8 (Cq), 138.1 (CH), 133.7 (Cq), 133.5 (Cq), 126.9 

(CH), 126.8 (CH), 120.3 (CH), 38.1 (CH2), 15.4 (CH3). Resonances reported for 

branch-130h’: 1H NMR (400 MHz, CDCl3): δ = 7.28 – 7.22 (m, 4H), 6.18 (ddd, J = 17.6, 

10.1, 7.8 Hz, 1H), 5.30 – 5.08 (m, 2H), 4.29 (d, J = 7.8 Hz, 1H), 2.47 (s, 3H). 13C NMR 

(100 MHz, CDCl3): δ = 178.3 (Cq), 138.2 (CH), 135.0 (Cq), 134.2 (Cq), 128.7 (CH), 
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127.1 (CH), 118.3 (CH2), 55.0 (CH), 16.0 (CH3). IR (ATR): 2917, 1688, 1401, 1212, 

1092, 930, 815, 735, 599, 503 cm−1. MS (ESI) m/z (relative intensity): 231 [M+Na]+ 

(100), 207 [M-H]- (50). HR-MS (ESI): m/z calcd for C11H12O2SNa+ [M+Na]+ 231.0450, 

found 231.0452. The analytical data are in accordance to those reported in 

literature.[256] 

 

(E)-4-(3-Methoxyphenyl)but-3-enoic acid (130i) 

The general procedure C was followed using allyl chloride 144i (45.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130i (24.5 mg, 51%, 130i/130i’ = 6:1) 

as a yellow oil. Resonances reported for linear-130i: 1H NMR (400 MHz, CDCl3): 

δ = 7.24 (dd, J = 8.2, 7.6 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.91 (dd, J = 2.5, 1.8 Hz, 

1H), 6.80 (dd, J = 8.2, 2.5 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H), 6.28 (dt, J = 15.9, 7.0 Hz, 

1H), 3.82 (s, 3H), 3.30 (d, J = 7.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 177.9 (Cq), 

160.0 (Cq), 138.2 (Cq), 134.0 (CH), 129.7 (CH), 121.3 (CH), 119.2 (CH), 113.6 (CH), 

111.7 (CH), 55.6 (CH3), 38.1 (CH2). Resonances reported for branch-130i’: 1H NMR 

(400 MHz, CDCl3): δ = 7.30 – 7.24 (m, 1H), 6.94 – 6.88 (m, 2H), 6.86 – 6.81 (m, 1H), 

6.24 – 6.16 (m, 1H), 5.30 – 5.15 (m, 2H), 4.31 (d, J = 8.0 Hz, 1H), 3.81 (s, 3H). 

13C NMR (100 MHz, CDCl3): δ = 178.4 (Cq), 160.0 (Cq), 139.0 (Cq), 135.0 (CH), 

130.0 (CH), 120.5 (CH), 118.3 (CH2), 114.0 (CH), 113.1 (CH), 55.6 (CH3), 55.4 (CH). 

IR (ATR): 2938, 1705, 1599, 1489, 1263, 1155, 1042, 968, 777, 692 cm−1. MS (ESI) 

m/z (relative intensity): 193 [M+H]+ (100), 215 [M+Na]+ (50). HR-MS (ESI): m/z calcd 

for C11H13O3Na+ [M+Na]+ 193.0859, found 193.0858. The analytical data are in 

accordance to those reported in literature.[175] 
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(E)-4-[4-(Trifluoromethyl)phenyl]but-3-enoic acid (130j) 

The general procedure C was followed using allyl chloride 144j (55.2 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130j (34.0 mg, 59%, 

130j/130j’= 1:5.6) as a yellow oil. Resonances reported for linear-130j: 1H NMR 

(400 MHz, CDCl3): δ = 7.57 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 6.55 (d, 

J = 15.9 Hz, 1H), 6.38 (dt, J = 15.3, 7.0 Hz, 1H), 3.33 (d, J = 7.0 Hz, 2H). 13C NMR 

(100 MHz, CDCl3): δ = 177.8 (Cq), 140.2 (Cq), 132.7 (CH), 129.7 (q, 2JC-F = 32.7 Hz, 

Cq), 126.6 (CH), 125.7 (q, 3JC-F = 3.8 Hz, CH), 124.1 (q, 1JC-F = 272.0 Hz, Cq), 123.7 

(CH), 38.1 (CH2). 19F NMR (282 MHz, CDCl3): δ = – 62.6 (s). Resonances reported for 

branch-130j’: 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 7.9 Hz, 2H), 7.45 (d, J = 8.0 

Hz, 2H), 6.20 (ddd, J = 17.6, 10.1, 7.9 Hz, 1H), 5.35 – 5.15 (m, 2H), 4.40 (d, J = 7.8 

Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 177.9 (Cq), 141.3 (Cq), 134.1 (CH), 130.1 (q, 

2JC-F = 32.6 Hz, Cq), 128.8 (CH), 125.9 (q, 3JC-F = 3.8 Hz, CH), 124.1 (q, 1JC-F = 272.0 

Hz, Cq), 119.0 (CH2), 55.4 (CH). 19F NMR (282 MHz, CDCl3): δ = – 62.7 (s). IR (ATR): 

2918, 1709, 1618, 1412, 1324, 1165, 1124, 1068, 930, 835 cm−1. MS (ESI) m/z (relative 

intensity): 253 [M+Na]+ (10). HR-MS (ESI): m/z calcd for C11H9F3O2Na+ [M+Na]+ 

253.0447, found 253.0444. The analytical data are in accordance to those reported in 

literature.[175] 

 

(E)-4-(4-Fluorophenyl)but-3-enoic acid (130k) 

The general procedure C was followed using allyl chloride 144k (42.7 mg, 0.25 mmol) 

and Co(OAc)2 (4.43 mg, 0.025 mmol). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130k (29.0 mg, 64%, 
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130k/130k’ = 9:1) as a yellow oil. Resonances reported for linear-130k: 1H NMR 

(400 MHz, CDCl3): δ = 7.37 – 7.29 (m, 2H), 7.02 – 6.97 (m, 2H), 6.48 (d, J = 15.9 Hz, 

1H), 6.19 (dt, J = 15.1, 6.9 Hz, 1H), 3.29 (d, J = 7.0 Hz, 2H). 13C NMR (100 MHz, 

CDCl3): δ = 177.6 (Cq), 162.5 (d, 1JC-F = 247.0 Hz, Cq), 133.0 (CH), 132.9 (d, 4JC-F = 

3.3 Hz, Cq), 128.0 (d, 3JC-F = 8 Hz, CH), 120.7 (d, 4JC-F = 2.4 Hz, CH), 115.6 (d, 2JC-F = 

21.6 Hz, CH), 38.1 (CH2). 19F NMR (282 MHz, CDCl3): δ = – 114.3 (s). Resonances 

reported for branch-130k’: 1H NMR (400 MHz, CDCl3): δ = 7.31 – 7.27 (m, 2H), 

7.07 – 7.02 (m, 2H), 6.16 – 6.13 (m, 1H), 5.33 – 5.10 (m, 2H), 4.33 (d, J = 7.7 Hz, 1H). 

13C NMR (100 MHz, CDCl3): δ = 177.9 (Cq), 162.4 (d, 1JC-F = 247.0 Hz, Cq), 134.8 (CH), 

133.2 (d, 4JC-F = 3.8 Hz, Cq), 129.9 (d, 3JC-F = 8.1 Hz, CH), 118.4 (CH2), 115.8 (d, 2JC-F  

= 21.0 Hz, CH), 54.8 (CH). 19F NMR (282 MHz, CDCl3): δ = – 114.8 (s). IR (ATR): 2923, 

1697, 1509, 1400, 1302, 1225, 978, 845, 801, 510 cm−1. MS (ESI) m/z (relative 

intensity): 203 [M+Na]+ (25). HR-MS (ESI): m/z calcd for C10H9FO2Na+ [M+Na]+ 

203.0479, found 203.0472. The analytical data are in accordance to those reported in 

literature.[256] 

 

(E)-4-(4-Chlorophenyl)but-3-enoic acid (130l) 

The general procedure C was followed using allyl chloride 144l (0.25 mmol, 46.8 mg) 

and Co(OAc)2 (0.025 mmol, 4.43 mg). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130l (29.0 mg, 47%, 130l/130l’ = 9:1) 

as a pale white solid. M.p.: 105 – 106 ℃. Resonance reported for linear-130l: 1H NMR 

(400 MHz, CDCl3): δ = 7.36 – 7.23 (m, 4H), 6.47 (d, J = 15.8 Hz, 1H), 6.26 (dt, J = 15.8, 

7.1 Hz, 1H), 3.30 (d, J = 7.1 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 177.6 (Cq), 135.2 

(Cq), 133.5 (Cq), 133.0 (CH), 128.9 (CH), 127.7 (CH), 121.7 (CH), 38.1 (CH2). 

Resonance reported for branch-130l’: 1H NMR (400 MHz, CDCl3): δ = 7.34 – 7.25 (m, 

4H), 6.21 – 6.09 (m, 1H), 5.30 – 5.16 (m, 2H), 4.32 (d, J = 7.9 Hz, 1H). 13C NMR 

(100 MHz, CDCl3): δ = 177.7 (Cq), 135.9 (Cq), 134.6 (Cq), 133.8 (CH), 129.7 (CH), 
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129.1 (CH), 118.7 (CH2), 55.4 (CH). IR (ATR): 2922, 1715, 1491, 1400, 1300, 1212, 

974, 790, 686, 504 cm−1. MS (ESI) m/z (relative intensity): 195 [35M-H]- (10). HR-MS 

(ESI): m/z calcd for C10H8ClO2
- [35M-H]- 195.0218, found 195.0216. The analytical data 

are in accordance to those reported in literature.[256] 

 

 

(E)-4-(4-Bromophenyl)but-3-enoic acid (130m) 

The general procedure C was followed using allyl chloride 144m (0.25 mmol, 57.9 mg) 

and Co(OAc)2 (0.025 mmol, 4.43 mg). Purification by column chromatography on silica 

gel (n-hexane/EtOAc 5:1 with 1% AcOH) yielded 130m (40.0 mg, 66%, 

130m/130m’ = 1:4 with approx. 5% dehalogenated linear-130a and 10% 

dehalogenated branch-130a’) as a yellow solid. M.p.: 104 – 107 ℃. Resonance 

reported for linear-130m: 1H NMR (400 MHz, CDCl3): δ = 7.43 (d, J = 8.4 Hz, 2H), 7.25 

(d, J = 8.4 Hz, 2H), 6.45 (d, J = 15.9 Hz, 1H), 6.26 (dt, J = 15.9, 7.4 Hz, 1H), 3.28 (d, 

J = 6.7 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 177.8 (Cq), 135.7 (Cq), 133.0 (CH), 

131.8 (CH), 128.0 (CH), 121.8 (CH), 121.7 (Cq), 38.1 (CH2). Resonance reported for 

branch-130m’: 1H NMR (400 MHz, CDCl3): δ = 7.47 (d, J = 8.2 Hz, 2H), 7.20 (d, 

J = 8.3 Hz, 2H), 6.16 (ddd, J = 17.5, 10.2, 7.8 Hz, 1H), 5.30 – 5.14 (m, 2H), 4.29 (d, 

J = 7.8 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 178.2 (Cq), 136.3 (Cq), 134.5 (CH), 

132.0 (CH), 130.0 (CH), 121.9 (Cq), 118.6 (CH2), 55.0 (CH). IR (ATR): 2921, 1704, 

1487, 1398, 1211, 1071, 973, 789, 668, 501 cm−1. MS (ESI) m/z (relative intensity): 

239 [79M-H]- (20). HR-MS (ESI): m/z calcd for C10H8BrO2
- [79M-H]- 238.9713, found 

238.9708. The analytical data are in accordance to those reported in literature.[254] 
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5.3.2.2 Kinetic Profile 

 

Figure 5.3.3. General reaction scheme for kinetic profiling. 

Under an atmosphere of N2, cinnamyl chloride 144a (76.4 mg, 0.50 mmol), Co(OAc)2 

(8.85 mg, 0.05 mmol, 10.0 mol %), PPh3 (26.2 mg, 0.10 mmol, 20.0 mol %), nBu4NPF6 

(193.8 mg, 0.5 mmol, 1.00 equiv) were dissolved in DMF (10.0 mL) and stirred at 25 ℃. 

The reaction vessel was bubbled for 30 minutes under CO2 gas. The CO2 gas (1 atm) 

was constantly supplied throughout the course of the reaction. For 6 h, an in situ IR 

spectrum was acquired every 2 mins. The full kinetic profile was determined from the 

decrease of the peak at 755 cm−1, which corresponds to the C–Cl stretching frequency 

of substrate 144a. The absolute peak area was measured from 696 to 675 cm−1 with 

a two-point baseline at 696 and 675 cm−1 (see Figure 5.3.4 and Figure 5.3.5). 

 

Figure 5.3.4. 3D surface plot for the C=C vibration of carboxylated product 130a. 
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Figure 5.3.5. Plot of the normalised peak area (%) vs time of the consumption of starting material 144a 

and the production of 130a. 

5.3.2.3 Rates of Cobalt Salts as Pre-catalyst 

 

Figure 5.3.6. Investigation on the rates of different cobalt salts. 

Under an atmosphere of N2, cinnamyl chloride 144a (76.4 mg, 0.50 mmol), [Co] 

(10.0 mol %), PPh3 (26.2 mg, 0.10 mmol, 20.0 mol %), nBu4NPF6 (193.8 mg, 0.5 mmol, 

1.00 equiv) were dissolved in DMF (10.0 mL) and stirred at 25 ℃. The reaction vessel 

was bubbled for 30 minutes under CO2 gas before initiation. CO2 gas (1 atm) was 

constantly supplied throughout the course of the reaction. For 6 h, an in situ IR 

spectrum was acquired every 2 mins. The absolute peak area was measured from 696 

to 675 cm−1 with a two-point baseline at 696 and 675 cm−1. 
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Figure 5.3.7. Plot of the peak area (a.u.) vs time on the comparison of the profile of different simple cobalt 

salts. 

5.3.2.4 Cyclic Voltammetry 

The cyclic voltammetry measurements were performed with a Metrohm Autolab 

PGSTAT204 workstation and the following analysis was performed with a Nova 2.1 

application. For all experiments, a saturated calomel electrode (SCE) was used as the 

reference electrode and a glassy-carbon (GC) electrode (3 mm-diameter, disc 

electrode) was used as the working electrode. The measurements were recorded at a 

scan rate of 100 mVs-1. The operating temperature was at 298 K. All solutions were 

degassed via freeze-pump-thaw method prior to use and N2 gas was bubbled through 

the solutions for at least 5 mins before the experiment was performed. These 

experiments were performed under inert conditions with cinnamyl chloride 144a as the 

model substrate (constant flow of dry N2 gas). 
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Figure 5.3.8. Cyclic voltammograms of individual components under CO2 and their mixtures. Cyclic 

voltammograms at 100 mVs−1 using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working 

electrode. Co(OAc)2 (2.0 mM), PPh3 (2.0 mM) and cinnamyl chloride 144a (2.0 mM). CO2 gas (1 atm). 
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Figure 5.3.9. Cyclic voltammograms of Co(I) catalyst and mixtures. Cyclic voltammograms at 100 mVs−1 

using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working electrode. CoCl(PPh3)3 195 (2.0 mM) 

and cinnamyl chloride 144a (2.0 mM). CO2 gas (1 atm). 
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5.3.3 Electro-Reductive Nickel-Catalyzed Thiolation 

5.3.3.1 Characterization Data 

 

Phenyl(3-phenylpropyl)sulfane (176aa) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176aa (49.1 mg, 86%) as a pale yellow oil. Resonances reported for 176aa: 

1H NMR (300 MHz, CDCl3): δ = 7.30 – 7.18 (m, 6H), 7.18 – 7.09 (m, 4H), 2.88 (t, 

J = 7.3 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 1.93 (p, J = 7.4 Hz, 2H). 13C NMR (75 MHz, 

CDCl3): δ = 141.4 (Cq), 136.7 (Cq), 129.3 (CH), 129.0 (CH), 128.6 (CH), 128.5 (CH), 

126.1 (CH), 126.0 (CH), 34.8 (CH2), 33.0 (CH2), 30.8 (CH2). IR (ATR): 3025, 2932, 

1584, 1480, 1438, 1025, 736, 690, 567, 475 cm−1. MS (EI) m/z (relative intensity): 

228 [M]+ (55), 110 (40), 65 (40). HR-MS (EI+): m/z calcd for C15H16S+ [M]+ 228.0973, 

found 228.0967. The analytical data are in accordance to those reported in 

literature.[219] 

 

(3-Phenylpropyl)(p-tolyl)sulfane (176ab) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(p-tolyl) benzenesulfonothioate 160b (72.7 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ab (52.1 mg, 86%) as a pale yellow oil. Resonances reported for 176ab: 

1H NMR (300 MHz, CDCl3): δ = 7.39 – 7.29 (m, 4H), 7.29 – 7.11 (m, 5H), 2.96 (t, 

J = 7.3 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H), 2.02 (p, J = 7.4 Hz, 2H). 13C NMR 
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(75 MHz, CDCl3): δ = 141.5 (Cq), 136.1 (Cq), 132.8 (Cq), 130.1 (CH), 129.8 (CH), 128.6 

(CH), 128.5 (CH), 126.1 (CH), 34.8 (CH2), 33.8 (CH2), 30.8 (CH2), 21.1 (CH3). IR (ATR): 

3025, 2920, 2855, 1492, 1453, 1092, 801, 743, 697, 488 cm−1. MS (ESI) m/z (relative 

intensity): 243 [M+H]+ (50), 141 (15). HR-MS (ESI): m/z calcd for C16H19S+ [M+H]+ 

243.1202, found 243.1194. The analytical data are in accordance to those reported in 

literature.[257] 

 

(4-Methoxyphenyl)(3-phenylpropyl)sulfane (176ac) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(4-methoxyphenyl) benzenesulfonothioate 160c (77.1 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ac (54.9 mg, 85%) as a colourless oil. Resonances 

reported for 176ac: 1H NMR (300 MHz, CDCl3): δ = 7.35 – 7.21 (m, 4H), 7.21 – 7.11 

(m, 3H), 6.85 – 6.78 (m, 2H), 3.76 (s, 3H), 2.81 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.5 Hz, 

2H), 1.89 (p, J = 7.4 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 158.9 (Cq), 141.5 (Cq), 

133.2 (CH), 128.6 (CH), 128.5 (CH), 126.6 (Cq), 126.0 (CH), 114.6 (CH), 55.4 (CH3), 

35.2 (CH2), 34.7 (CH2), 30.9 (CH2). IR (ATR): 2932, 1592, 1492, 1283, 1242, 1173, 

1030, 825, 699, 522 cm−1. MS (EI) m/z (relative intensity): 258 [M]+ (60), 125 (15). HR-

MS (EI+): m/z calcd for C16H18OS+ [M]+ 258.1073, found 258.1074. The analytical data 

are in accordance to those reported in literature.[257] 

 

(4-Fluorophenyl)(3-phenylpropyl)sulfane (176ad) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(4-fluorophenyl) benzenesulfonothioate 160d (73.8 mg, 0.275 

mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-
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hexane/EtOAc 19:1) yielded 176ad (51.7 mg, 84%) as a colourless oil. Resonances 

reported for 176ad: 1H NMR (300 MHz, CDCl3): δ = 7.38 (ddd, J = 7.6, 5.7, 1.9 Hz, 4H), 

7.32 – 7.22 (m, 3H), 7.10 – 7.01 (m, 2H), 2.95 (t, J = 7.4 Hz, 2H), 2.83 (t, J = 7.5 Hz, 

2H), 2.01 (p, J = 7.4 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 161.7 (d, 1JC-F = 246.0 Hz, 

Cq), 141.3 (Cq), 132.3 (CH), 132.2 (CH), 131.4 (d, 4JC-F = 3.3 Hz, Cq), 128.5 (d, 4JC-

F = 4.1 Hz, CH), 126.1 (CH), 116.0 (d, 2JC-F = 21.8 Hz, CH), 34.6 (CH2), 34.3 (CH2), 

30.7 (CH2). 19F NMR (282 MHz, CDCl3): δ = – 115.7 (s). IR (ATR): 3026, 2931, 1589, 

1489, 1226, 1156, 1091, 822, 700, 503 cm−1. MS (EI) m/z (relative intensity): 246 [M]+ 

(50), 128 (25). HR-MS (EI+): m/z calcd for C15H15FS+ [M]+ 246.0873, found 246.0874. 

 

(4-Chlorophenyl)(3-phenylpropyl)sulfane (176ae) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(4-chlorophenyl) benzenesulfonothioate 160e (78.3 mg, 0.275 

mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ae (57.2 mg, 87%) as a pale yellow oil. Resonances 

reported for 176ae: 1H NMR (300 MHz, CDCl3): δ = 7.39 – 7.31 (m, 2H), 7.31 – 7.18 

(m, 7H), 2.95 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.01 (p, J = 7.4 Hz, 2H). 

13C NMR (75 MHz, CDCl3): δ = 141.2 (Cq), 135.2 (Cq), 131.9 (Cq), 130.5 (CH), 129.1 

(CH), 128.6 (CH), 128.6 (CH), 126.2 (CH), 34.7 (CH2), 33.2 (CH2), 30.6 (CH2). IR 

(ATR): 2929, 1475, 1388, 1094, 1010, 809, 744, 697, 536, 485 cm−1. MS (ESI) m/z 

(relative intensity): 263 [35M+H]+ (40). HR-MS (ESI): m/z calcd for C15H16
35ClS+ 

[35M+H]+ 263.0656, found 263.0653. The analytical data are in accordance to those 

reported in literature.[258] 
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Benzyl(3-phenylpropyl)sulfane (176af) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-benzyl benzenesulfonothioate 160f (72.7 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176af (49.7 mg, 82%) as a pale yellow oil. Resonances reported for 176af: 

1H NMR (300 MHz, CDCl3): δ = 7.39 – 7.25 (m, 8H), 7.25 – 7.14 (m, 2H), 3.75 (s, 3H), 

2.73 (t, J = 7.6 Hz, 2H), 2.48 (t, J = 7.3 Hz, 2H), 1.93 (p, J = 7.4 Hz, 2H). 13C NMR 

(75 MHz, CDCl3): δ = 141.7 (Cq), 138.7 (Cq), 129.5 (CH), 128.9 (CH), 128.6 (CH), 

128.5 (CH), 127.0 (CH), 126.0 (CH), 36.3 (CH2), 34.9 (CH2), 30.9 (CH2), 30.8 (CH2). 

IR (ATR): 3026, 2919, 1494, 1453, 1072, 1029, 743, 696, 594, 471 cm−1. MS (ESI) m/z 

(relative intensity): 265 [M+Na]+ (40), 259 (30). HR-MS (ESI): m/z calcd for C16H18SNa+ 

[M+Na]+ 265.1021, found 265.1017. The analytical data are in accordance to those 

reported in literature.[257] 

 

Cyclohexyl(3-phenylpropyl)sulfane (176ag) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-cyclohexyl benzenesulfonothioate 160g (70.5 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ag (49.2 mg, 84%) as a yellow oil. Resonances reported for 176ag: 

1H NMR (300 MHz, CDCl3): δ = 7.38 – 7.29 (m, 2H), 7.29 – 7.20 (m, 3H), 2.78 (t, 

J = 7.6 Hz, 2H), 2.73 – 2.65 (m, 1H), 2.60 (t, J = 7.4 Hz, 2H), 2.05 – 1.90 (m, 4H), 

1.88 – 1.76 (m, 2H), 1.71 – 1.58 (m, 1H), 1.42 – 1.27 (m, 5H). 13C NMR (75 MHz, 

CDCl3): δ = 141.8 (Cq), 128.6 (CH), 128.5 (CH), 126.0 (CH), 43.7 (CH), 35.1 (CH2), 

33.9 (CH2), 31.8 (CH2), 29.7 (CH2), 26.3 (CH2), 26.0 (CH2). IR (ATR): 2925, 2851, 1496, 

1448, 1262, 998, 744, 698, 492, 408 cm−1. MS (ESI) m/z (relative intensity): 
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235 [M+H]+ (40). HR-MS (ESI): m/z calcd for C15H23S+ [M+H]+ 235.1515, found 

235.1510. 

 

2-Methyl-3-[(3-phenylpropyl)thio]furan (176ah) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(2-methylfuran-3-yl) benzenesulfonothioate 160h (69.9 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ah (41.8 mg, 72%) as a yellow oil. Resonances 

reported for 176ah: 1H NMR (300 MHz, CDCl3): δ = 7.34 – 7.27 (m, 3H), 7.25 – 7.15 

(m, 3H), 6.35 (d, J = 1.9 Hz, 1H), 2.74 (t, J = 7.6 Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H), 2.37 

(s, 3H), 1.88 (p, J = 7.3 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 154.8 (Cq), 141.6 (Cq), 

140.6 (CH), 128.6 (CH), 128.5 (CH), 126.0 (CH), 115.1 (CH), 110.4 (Cq), 35.3 (CH2), 

34.6 (CH2), 31.2 (CH2), 12.0 (CH3). IR (ATR): 3025, 2919, 2854, 1754, 1496, 1453, 

1222, 1088, 742, 700 cm−1. MS (EI) m/z (relative intensity): 232 [M]+ (95). HR-MS (EI+): 

m/z calcd for C14H16OS+ [M]+ 232.0922, found 232.0923. 

 

2-[(3-Phenylpropyl)thio]thiophene (176ai) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(thiophen-2-yl) benzenesulfonothioate 160i (70.5 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ai (43.9 mg, 75%) as a colourless oil. Resonances reported for 176ai: 

1H NMR (300 MHz, CDCl3): δ = 7.38 – 7.30 (m, 3H), 7.27 – 7.19 (m, 3H), 7.17 (dd, 

J = 3.4, 1.5 Hz, 1H), 7.02 (ddd, J = 5.1, 3.5, 1.3 Hz, 1H), 2.85 (t, J = 7.2 Hz, 2H), 2.79 

(t, J = 7.6 Hz, 2H), 1.99 (p, J = 7.4 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 141.4 (Cq), 

134.6 (Cq), 133.6 (CH), 129.2 (CH), 128.6 (CH), 128.5 (CH), 127.6 (CH), 126.0 (CH), 

38.3 (CH2), 34.4 (CH2), 30.9 (CH2). IR (ATR): 3025, 2926, 2853, 1495, 1453, 1216, 
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988, 845, 743, 699 cm−1. MS (EI) m/z (relative intensity): 234 [M]+ (85), 115 (60). HR-

MS (EI+): m/z calcd for C13H14S2
+ [M]+ 234.0531, found 234.0529. 

 

2-[(3-Phenylpropyl)thio]benzo[d]thiazole (176aj) 

The general procedure D was followed using 1-bromo-3-phenylpropane 175a (38.0 µL, 

0.250 mmol) and S-(benzo[d]thiazol-2-yl) benzenesulfonothioate 160j (84.5 mg, 

0.275 mmol, 1.1 equiv) for 6 h. Purification by column chromatography on silica gel (n-

hexane/EtOAc 9:1) yielded 176aj (57.1 mg, 80%) as a yellow oil. Resonances reported 

for 176aj: 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.1 Hz, 

1H), 7.45 – 7.37 (m, 1H), 7.34 – 7.25 (m, 3H), 7.24 – 7.16 (m, 3H), 3.35 (t, J = 7.2 Hz, 

2H), 2.81 (t, J = 7.5 Hz, 2H), 2.17 (p, J = 7.4 Hz, 2H). 13C NMR (100 MHz, CDCl3): 

δ = 167.0 (Cq), 153.4 (Cq), 140.9 (Cq), 135.3 (Cq), 128.6 (CH), 128.5 (CH), 126.2 (CH), 

126.1 (CH), 124.2 (CH), 121.6 (CH), 121.0 (CH), 34.7 (CH2), 32.9 (CH2), 30.8 (CH2). 

IR (ATR): 3025, 2933, 1495, 1455, 1425, 1075, 992, 752, 725, 697 cm−1. MS (ESI) m/z 

(relative intensity): 286 [M+H]+ (100). HR-MS (ESI): m/z calcd for C16H16NS2
+ [M+H]+ 

286.0719, found 286.0722. 

 

(4-Methylphenethyl)(phenyl)sulfane (176ba) 

The general procedure D was followed using 1-(2-bromoethyl)-4-methylbenzene 175b 

(49.8 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ba (49.7 mg, 88%) as a yellow oil. Resonances 

reported for 176ba: 1H NMR (300 MHz, CDCl3): δ = 7.53 – 7.47 (m, 2H), 7.46 – 7.38 

(m, 2H), 7.35 – 7.28 (m, 1H), 7.27 – 7.18 (m, 4H), 3.29 (dd, J = 9.3, 6.2 Hz, 2H), 3.03 

(dd, J = 9.4, 6.4 Hz, 2H), 2.46 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 137.2 (Cq), 136.6 
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(Cq), 136.0 (Cq), 129.3 (CH), 129.2 (CH), 129.0 (CH), 128.4 (CH), 125.9 (CH), 

35.2 (CH2), 35.2 (CH2), 21.1 (CH3). IR (ATR): 3017, 2920, 1584, 1514, 1480, 1438, 

1024, 807, 737, 690 cm−1. MS (EI) m/z (relative intensity): 228 [M]+ (50), 105 (30). HR-

MS (EI+): m/z calcd for C15H16S+ [M]+ 228.0967, found 228.0968. The analytical data 

are in accordance to those reported in literature.[258] 

 

 

(4-Methoxyphenethyl)(phenyl)sulfane (176ca) 

The general procedure D was followed using 1-(2-bromoethyl)-4-methoxybenzene 

175c (53.8 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ca (52.5 mg, 86%) as a pale yellow oil. Resonances 

reported for 176ca: 1H NMR (300 MHz, CDCl3): δ = 7.44 – 7.28 (m, 4H), 7.27 – 7.20 

(m, 1H), 7.20 – 7.13 (m, 2H), 6.93 – 6.86 (m, 2H), 3.84 (s, 3H), 3.27 – 3.07 (dd, J = 9.1, 

6.3 Hz, 2H), 2.93 (dd, J = 9.2, 6.4 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 158.3 (Cq), 

136.6 (Cq), 132.4 (Cq), 129.6 (CH), 129.3 (CH), 129.0 (CH), 126.0 (CH), 114.0 (CH), 

55.4 (CH3), 35.5 (CH2), 34.8 (CH2). IR (ATR): 2930, 2833, 1611, 1583, 1510, 1438, 

1300, 1244, 737, 690 cm−1. MS (ESI) m/z (relative intensity): 267 [M+Na]+ (50), 256 

(10). HR-MS (ESI): m/z calcd for C15H16OSNa+ [M+Na]+ 267.0814, found 267.0819. 

The analytical data are in accordance to those reported in literature.[259] 

 

Phenyl[4-(trifluoromethyl)phenethyl]sulfane (176da) 

The general procedure D was followed using 1-(2-bromoethyl)-4-

(trifluoromethyl)benzene 175d (63.3 mg, 0.250 mmol) and S-phenyl 

benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 1.1 equiv). Purification by column 
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chromatography on silica gel (n-hexane/EtOAc 19:1) yielded 176da (62.8 mg, 90%) 

as a pale yellow oil. Resonances reported for 176da: 1H NMR (300 MHz, CDCl3): 

δ = 7.51 (d, J = 8.0 Hz, 2H), 7.36 – 7.21 (m, 6H), 7.20 – 7.12 (m, 1H), 3.20 – 3.05 (m, 

2H), 2.93 (dd, J = 8.8, 6.5 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ = 144.2 (d, 5JC-F 

= 1.6 Hz, Cq), 136.0 (Cq), 129.6 (CH), 129.1 (CH), 129.0 (CH), 128.6 (Cq), 126.3 (CH), 

125.5 (q, 4JC-F = 3.8 Hz, CH), 124.4 (d, 1JC-F = 271.8 Hz, Cq), 35.4 (CH2), 34.9 (CH2). 

19F NMR (282 MHz, CDCl3): δ = – 62.3 (s). IR (ATR): 2925, 1618, 1583, 1324, 1163, 

1121, 1067, 822, 738, 690 cm−1. MS (EI) m/z (relative intensity): 282 [M]+ (40), 110 (10). 

HR-MS (EI+): m/z calcd for C15H13F3S+ [M]+ 282.0685, found 282.0683. 

 

(4-Fluorophenethyl)(phenyl)sulfane (176ea) 

The general procedure D was followed using 1-(2-bromoethyl)-4-fluorobenzene 175e 

(50.8 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ea (52.3 mg, 90%) as a pale yellow oil. Resonances 

reported for 176ea: 1H NMR (300 MHz, CDCl3): δ = 7.44 – 7.29 (m, 4H), 7.29 – 7.13 

(m, 3H), 7.07 – 6.96 (m, 2H), 3.28 – 3.11 (m, 2H), 2.94 (dd, J = 9.1, 6.3 Hz, 2H). 

13C NMR (75 MHz, CDCl3): δ = 161.6 (d, 1JC-F = 244.3 Hz, Cq), 136.2 (Cq), 135.9 (d, 

4JC-F = 3.2 Hz, Cq), 130.0 (d, 3JC-F = 7.8 Hz, CH), 129.4 (CH), 129.0 (CH), 126.1 (CH), 

115.3 (d, 2JC-F = 21.1 Hz, CH), 35.3 (d, 5JC-F = 1.4 Hz, CH2), 34.8 (CH2). 19F NMR 

(282 MHz, CDCl3): δ = – 116.5 (s). IR (ATR): 2924, 1600, 1508, 1480, 1221, 823, 738, 

690, 531, 492 cm−1. MS (EI) m/z (relative intensity): 232 [M]+ (50), 110 (20). HR-MS 

(EI+): m/z calcd for C14H13FS+ [M]+ 232.0717, found 232.0717. 

 

 



5. Experimental Section 

137 

 

 

(4-chlorophenethyl)(phenyl)sulfane (176fa) 

The general procedure D was followed using 1-(2-bromoethyl)-4-chlorobenzene 175f 

(54.9 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176fa (60.3 mg, 97%) as a pale yellow oil. Resonances 

reported for 176fa: 1H NMR (300 MHz, CDCl3): δ = 7.44 – 7.29 (m, 6H), 7.29 – 7.22 

(m, 1H), 7.20 – 7.14 (m, 2H), 3.24 – 3.12 (m, 2H), 2.94 (dd, J = 8.8, 6.6 Hz, 2H). 

13C NMR (75 MHz, CDCl3): δ = 138.6 (Cq), 136.2 (Cq), 132.3 (Cq), 130.0 (CH), 129.5 

(CH), 129.1 (CH), 128.7 (CH), 126.2 (CH), 35.1 (CH2), 35.0 (CH2). IR (ATR): 2922, 

1583, 1491, 1480, 1406, 1092, 1015, 805, 737, 690 cm−1. MS (EI) m/z (relative 

intensity): 248 [M]+ (40), 139 (15). HR-MS (EI+): m/z calcd for C14H13
35ClS+ [35M]+ 

248.0421, found 248.0422. The analytical data are in accordance to those reported in 

literature.[258] 

 

2-[2-(Phenylthio)ethyl]-1,3-dioxolane (176ga) 

The general procedure D was followed using 2-(2-bromoethyl)-1,3-dioxolane 175g 

(45.3 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 19:1) yielded 176ga (43.1 mg, 82%) as a colourless oil. Resonances 

reported for 176ga: 1H NMR (400 MHz, CDCl3): δ = 7.37 (dt, J = 8.3, 1.9 Hz, 2H), 7.30 

(dd, J = 8.3, 6.8 Hz, 2H), 7.22 – 7.15 (m, 1H), 5.01 (t, J = 4.5 Hz, 1H), 4.02 – 3.92 (m, 

2H), 3.92 – 3.83 (m, 2H), 3.10 – 2.99 (t, J = 7.3 Hz, 2H), 2.08 – 1.98 (m, 2H). 13C NMR 

(100 MHz, CDCl3): δ = 136.3 (Cq), 129.1 (CH), 128.9 (CH), 125.9 (CH), 103.1 (CH), 

65.0 (CH2), 33.6 (CH2), 27.8 (CH2). IR (ATR): 2952, 2880, 1583, 1480, 1438, 1131, 

1024, 876, 739, 691 cm−1. MS (ESI) m/z (relative intensity): 233 [M+Na]+ (60). HR-MS 
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(ESI): m/z calcd for C11H14O2SNa+ [M+Na]+ 233.0607, found 233.0609. 

 

Ethyl 6-(phenylthio)hexanoate (176ha) 

The general procedure D was followed using ethyl 6-bromohexanoate 175h (55.8 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ha (50.5 mg, 80%) as a colourless oil. Resonances reported for 176ha: 

1H NMR (400 MHz, CDCl3): δ = 7.36 – 7.24 (m, 4H), 7.17 (td, J = 7.0, 6.6, 1.4 Hz, 1H), 

4.13 (q, J = 7.1 Hz, 2H), 2.92(t, J = 7.2 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 1.66 (h, 

J = 7.8 Hz, 4H), 1.52 – 1.42 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, 

CDCl3): δ = 173.5 (Cq), 136.8 (Cq), 129.0 (CH), 128.8 (CH), 125.8 (CH), 60.2 (CH2), 

34.2 (CH2), 33.4 (CH2), 28.8 (CH2), 28.3 (CH2), 24.5 (CH2), 14.3 (CH3). IR (ATR): 2933, 

2860, 1730, 1480, 1255, 1178, 1092, 1025, 737, 690 cm−1. MS (ESI) m/z (relative 

intensity): 275 [M+Na]+ (100), 253 [M+H]+ (5). HR-MS (ESI): m/z calcd for 

C14H20O2SNa+ [M+Na]+ 275.1076, found 275.1076. The analytical data are in 

accordance to those reported in literature.[260] 

 

Hex-5-en-1-yl(phenyl)sulfane (176ia) 

The general procedure D was followed using 6-bromohex-1-ene 175i (40.8 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ia (42.3 mg, 88%) as a colourless oil. Resonances reported for 176ia: 

1H NMR (400 MHz, CDCl3): δ = 7.36 – 7.21 (m, 4H), 7.19 – 7.10 (m, 1H), 5.78 (ddt, 

J = 16.9, 10.1, 6.6 Hz, 1H), 5.07 – 4.89 (m, 2H), 2.98 – 2.86 (t, J = 7.2 Hz, 2H), 

2.10 – 2.01 (m, 2H), 1.70 – 1.62 (m, 2H), 1.57 – 1.47 (m, 2H). 13C NMR (100 MHz, 

CDCl3): δ = 138.5 (CH), 137.0 (Cq), 129.0 (CH), 128.9 (CH), 125.8 (CH), 114.9 (CH2), 

33.6 (CH2), 33.4 (CH2), 28.7 (CH2), 28.1 (CH2). IR (ATR): 3075, 2925, 1640, 1584, 
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1480, 1438, 1025, 911, 737, 690 cm−1. MS (EI) m/z (relative intensity): 192 [M]+ (40), 

135 (15). HR-MS (EI+): m/z calcd for C12H16S+ [M]+ 192.0967, found 192.0969. The 

analytical data are in accordance to those reported in literature.[261] 

 

(Cyclohexylmethyl)(phenyl)sulfane (176ja) 

The general procedure D was followed using (bromomethyl)cyclohexane 175j (44.3 

mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ja (43.3 mg, 84%) as a yellow oil. Resonances reported for 176ja: 1H NMR 

(300 MHz, CDCl3): δ = 7.40 – 7.24 (m, 4H), 7.21 – 7.13 (m, 1H), 2.85 (d, J = 6.9 Hz, 

2H), 1.93 (dd, J = 12.9, 3.4 Hz, 2H), 1.81 – 1.63 (m, 3H), 1.62 – 1.50 (m, 1H), 

1.35 – 1.14 (m, 3H), 1.12 – 0.94 (m, 2H). 13C NMR (75 MHz, CDCl3): δ = 128.9 (CH), 

128.7 (CH), 125.6 (CH), 119.2 (Cq), 41.1 (CH2), 37.7 (CH2), 33.0 (CH2), 26.5 (CH2), 

26.2 (CH2). IR (ATR): 2921, 2850, 1583, 1467, 1257, 1155, 1028, 735, 688, 636 cm−1. 

MS (EI) m/z (relative intensity): 206 [M]+ (50), 123 (20). HR-MS (EI+): m/z calcd for 

C13H18S+ [M]+ 206.1129, found 206.1131. The analytical data are in accordance to 

those reported in literature.[262] 

 

(6-Chlorohexyl)(phenyl)sulfane (176ka) 

The general procedure D was followed using 1-bromo-6-chlorohexane 175k (49.9 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 19:1) 

yielded 176ka (52.0 mg, 91%) as a colourless solid. M.p.: 22 – 23 ℃. Resonances 

reported for 176ka: 1H NMR (400 MHz, CDCl3): δ = 7.37 – 7.24 (m, 4H), 7.21 – 7.14 

(m, 1H), 3.52 (t, J = 6.7 Hz, 2H), 2.93 (t, J = 6.9 Hz, 2H), 1.81 – 1.72 (m, 2H), 

1.72 – 1.62 (m, 2H), 1.50 – 1.42 (m, 4H). 13C NMR (100 MHz, CDCl3): δ = 136.9 (Cq), 
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129.1 (CH), 129.0 (CH), 125.9 (CH), 45.1 (CH2), 33.6 (CH2), 32.6 (CH2), 29.1 (CH2), 

28.2 (CH2), 26.6 (CH2). IR (ATR): 2924, 2853, 1583, 1478, 1438, 1090, 731, 689, 650, 

480 cm−1. MS (EI) m/z (relative intensity): 228 [M]+ (50), 123 (40). HR-MS (EI+): m/z 

calcd for C12H17
35ClS+ [35M]+ 228.0734, found 228.0735. The analytical data are in 

accordance to those reported in literature.[263] 

 

5-(Phenylthio)valeronitrile (176la) 

The general procedure D was followed using 5-bromovaleronitrile 175l (40.5 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane/EtOAc 9:1) 

yielded 176la (43.5 mg, 91%) as a yellow oil. Resonances reported for 176la: 1H NMR 

(300 MHz, CDCl3): δ = 7.36 – 7.25 (m, 4H), 7.23 – 7.15 (m, 1H), 2.97 – 2.90 (m, 2H), 

2.36 – 2.28 (m, 2H), 1.81 – 1.74 (m, 4H). 13C NMR (75 MHz, CDCl3): δ = 135.8 (Cq), 

129.4 (CH), 129.0 (CH), 126.2 (CH), 119.3 (Cq), 32.8 (CH2), 27.9 (CH2), 24.2 (CH2), 

16.7 (CH2). IR (ATR): 2931, 2245, 1582, 1480, 1438, 1089, 1025, 739, 691, 478 cm−1. 

MS (ESI) m/z (relative intensity): 192 [M+H]+ (60), 214 [M+Na]+ (40). HR-MS (ESI): m/z 

calcd for C11H14NS+ [M+H]+ 192.0841, found 192.0842. The analytical data are in 

accordance to those reported in literature.[264] 

 

4,4,5,5-Tetramethyl-2-[3-(phenylthio)propyl]-1,3,2-dioxaborolane (176ma) 

The general procedure D was followed using 3-bromopropylboronic acid pinacol ester 

175m (62.2 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 9:1) yielded 176ma (35.5 mg, 51%) as a yellow oil. Resonances 

reported for 176ma: 1H NMR (300 MHz, CDCl3): δ = 7.39 – 7.23 (m, 4H), 7.20 – 7.12 

(m, 1H), 3.01 – 2.90 (m, 2H), 1.86 – 1.75 (m, 2H), 1.27 (s, 12H), 0.95 (t, J = 7.7 Hz, 

2H). 13C NMR (75 MHz, CDCl3): δ = 137.2 (Cq), 128.8 (CH), 128.7 (CH), 125.5 (CH), 
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83.2 (Cq), 35.6 (CH2), 24.9 (CH3), 24.1 (CH2), 10.7 (br C-B, CH2). 11B NMR (96 MHz, 

CDCl3): δ = 33.7 (s). IR (ATR): 2977, 2928, 1584, 1371, 1316, 1143, 969, 847, 737, 

691 cm−1. MS (ESI) m/z (relative intensity): 301 [M+Na]+ (100), 279 [M+H]+ (10). HR-

MS (ESI): m/z calcd for C15H23BO2SNa+ [M+Na]+ 301.1407, found 301.1411. 

 

3-[2-(Phenylthio)ethyl]-1H-indole (176na) 

The general procedure D was followed using 3-(2-bromoethyl)-1H-indole 175n 

(56.0 mg, 0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 

0.275 mmol, 1.1 equiv). Purification by column chromatography on silica gel (n-

hexane/EtOAc 9:1) yielded 176na (50.0 mg, 79%) as a pale white solid. M.p.: 

115 – 116 ℃. Resonances reported for 176na: 1H NMR (400 MHz, CD2Cl2): δ = 8.03 

(s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.45 (dd, J = 8.2, 1.4 Hz, 2H), 7.41 – 7.33 (m, 3H), 

7.25 (ddd, J = 8.2, 7.1, 1.4 Hz, 2H), 7.17 (ddd, J = 7.8, 7.1, 1.4 Hz, 1H), 7.09 – 7.01 

(m, 1H), 3.33 (dd, J = 8.4, 6.9 Hz, 2H), 3.16 (t, J = 7.6 Hz, 2H). 13C NMR (100 MHz, 

CD2Cl2): δ = 137.4 (Cq), 136.8 (Cq), 129.5 (CH), 129.4 (CH), 127.7 (Cq), 126.3 (CH), 

122.5 (CH), 122.5 (CH), 119.8 (CH), 119.1 (CH), 115.0 (Cq), 111.7 (CH), 34.6 (CH2), 

25.8 (CH2). IR (ATR): 3389, 2923, 1579, 1477, 1456, 1220, 1087, 1008, 731, 689 cm−1. 

MS (ESI) m/z (relative intensity): 276 [M+Na]+ (40), 254 [M+H]+ (30). HR-MS (ESI): m/z 

calcd for C16H15NSNa+ [M+Na]+ 276.0817, found 276.0816. 

 

rac-sec-Butyl(phenyl)sulfane (176oa) 

The general procedure D was followed using 2-bromobutane 175o (34.3 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane) yielded 

176oa (15.0 mg, 36%) as a colourless oil. Resonances reported for 176oa: 1H NMR 

(400 MHz, CDCl3): δ = 7.43 – 7.37 (m, 2H), 7.32 – 7.25 (m, 2H), 7.25 – 7.19 (m, 1H), 
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3.22 – 3.11 (m, 1H), 1.73 – 1.60 (m, 1H), 1.60 – 1.49 (m, 1H), 1.28 (d, J = 6.7 Hz, 3H), 

1.04 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ = 135.7 (Cq), 132.0 (CH), 128.9 

(CH), 126.7 (CH), 45.0 (CH), 29.6 (CH2), 20.7 (CH3), 11.6 (CH3). IR (ATR): 2962, 2874, 

1584, 1479, 1438, 1377, 1025, 747, 738, 691 cm−1. MS (EI) m/z (relative intensity): 

166 [M]+ (50), 137 (10). HR-MS (EI+): m/z calcd for C10H14S+ [M]+ 166.0811, found 

166.0810. The analytical data are in accordance to those reported in literature.[265] 

 

Cyclohexyl(phenyl)sulfane (176pa) 

The general procedure D was followed using cyclohexyl bromide 175p (40.8 mg, 

0.250 mmol) and S-phenyl benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 

1.1 equiv). Purification by column chromatography on silica gel (n-hexane) yielded 

176pa (19.0 mg, 38%) as a colourless oil. Resonances reported for 176pa: 1H NMR 

(400 MHz, CDCl3): δ = 7.39 (dd, J = 7.8, 2.3 Hz, 2H), 7.28 (td, J = 7.7, 2.2 Hz, 2H), 

7.24 – 7.17 (m, 1H), 3.15 – 3.06 (m, 1H), 2.09 – 1.91 (m, 2H), 1.83 – 1.72 (m, 2H), 

1.67 – 1.53 (m, 1H), 1.48 – 1.16 (m, 5H). 13C NMR (100 MHz, CDCl3): δ = 135.3 (Cq), 

132.0 (CH), 128.9 (CH), 126.7 (CH), 46.7 (CH), 33.5 (CH2), 26.2 (CH2), 25.9 (CH2). IR 

(ATR): 2928, 2852, 1584, 1479, 1449, 1438, 997, 751, 735, 691 cm−1. MS (EI) m/z 

(relative intensity): 192 [M]+ (60), 84 (10), 66 (5). HR-MS (EI+): m/z calcd for C12H16S+ 

[M]+ 192.0967, found 192.0968. The analytical data are in accordance to those 

reported in literature.[265] 
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5.3.3.2 Constant Potential Experiments 

 

Figure 5.3.10. Constant potential electrolysis based on CV studies. 

Under an atmosphere of Ar, an oven-dried undivided electrochemical cell with graphite 

rod (5.00 mm x 15.0 mm) and Pt plate (10.0 mm x 15.0 mm x 0.125 mm) was charged 

with 1-bromo-3-phenylpropane 175a (38.0 µL, 0.250 mmol), S-phenyl 

benzenesulfonothioate 160a (68.8 mg, 0.275 mmol, 1.1 equiv), NiBr2•diglyme 

(4.40 mg, 0.0125 mmol, 5.0 mol %), 2,2’-bipyridine (2.90 mg, 0.0188 mmol, 7.5 mol %) 

dissolved in DMF (5.0 mL). Electrolysis was done with Metrohm Dropsens Multi 

Potentialstat/Galvanostat µSTAT 4000 at constant potential (reference to Ag wire) of 

different potentials at ambient temperature for 6 h (see Table 5.3.1). The reactions 

were performed independently. 

Table 5.3.1. Comparisons of the constant potential studies. 

Entry Reduction Peak 

Potential of 160a (CV) 

CPE (x V) 

vs. Ag+/AgCl 

Note 160a 

recovered 

Isolated 

Yield 

1 1st: − 0.91 V − 1.00 V 66% 

PhSSPh 

10% 18% 

2 2nd: − 1.62 V − 1.80 V 44% 

PhSSPh 

--- 53% 

3 --- − 0.70 V 18% 

PhSSPh 

77% traces 
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5.3.3.3 Further Investigations on the Formation of Disulfide 158a 

 
Figure 5.3.11. Further electrolysis of product 176aa to disulfide 158a. 

Under an atmosphere of Ar, the oven-dried undivided electrochemical cell with graphite 

rod (5.00 mm x 15.0 mm) and Pt plate (10.0 mm x 15.0 mm x 0.125 mm) was charged 

with 1- Phenyl(3-phenylpropyl)sulfane 176aa (57.1 mg, 0.250 mmol), NiBr2•diglyme 

(4.40 mg, 0.0125 mmol, 5.0 mol %), 2,2’-bipyridine (2.90 mg, 0.0188 mmol, 7.5 mol %) 

dissolved in DMF (5.0 mL). Electrocatalysis was then performed at 5.0 mA of constant 

current at ambient temperature for 3 h. Purification by column chromatography on silica 

gel (n-hexane) yielded only disulfide 158aa (13.0 mg, 45%) as a white powder. 

5.3.3.4 Radical Clock Experiments 

 
Figure 5.3.12. Radical clock studies. 

Under an atmosphere of Ar, an oven-dried undivided electrochemical cell with Mg foil 

anode (3.00 mm x 15.0 mm x 0.02 mm) and Ni foam cathode (10.0 mm x 15.0 mm x 

1.00 mm) was charged with 6-bromo-1-hexene 175i (40.8 mg, 0.250 mmol, 1.00 equiv), 

S-phenyl benzenesulfonothioate 160a (0.275 mmol, 1.1 equiv), NiBr2•diglyme (2.5 or 

5.0 mol %), 2,2’-bipyridine (3.75 or 7.50 mol %) dissolved in DMF (5.0 mL). 

Electrocatalysis was then performed at 5.0 mA of constant current at ambient 

temperature for 3 h. The reaction vessel was first diluted with EtOAc (30 mL). Both 

electrodes were washed and sonicated thoroughly with EtOAc (3 x 5.0 mL). The 

washings were added into the reaction mixture and the combined phases were 
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extracted with EtOAc (30 mL), the organic phases were then washed with deionized 

H2O (3 x 20 mL), dried over Na2SO4. Evaporation of the solvents and the ratio of 176ia 

and 176ia’ were determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene 

as internal standard. 

Table 5.3.2. Results of the radical clock investigations. 

Entry [Ni] (X mol%) 2,2’-Bipyridine Yield (%) 176ia:176ia’ 

1 2.5 3.75 69 14:1 

2 5.0 7.50 96 >20:1  

 

Figure 5.3.13. 1H NMR spectroscopy of radical clock experiment with 2.5 mol % of [Ni]. 
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Figure 5.3.14. 1H NMR spectroscopy of radical clock experiment at 5.0 mol % of [Ni]. 

5.3.3.5 Cyclic Voltammetry 

The cyclic voltammetry measurements were performed with a Metrohm Autolab 

PGSTAT204 workstation and the following analysis was performed with a Nova 2.1 

application. For all experiments, a saturated calomel electrode (SCE) was used as the 

reference electrode and a glassy-carbon (GC) electrode (3 mm-diameter, disc 

electrode) was used as the working electrode. The measurements were recorded at a 

scan rate of 100 mVs-1. The operating temperature was at 298 K. All solutions were 

degassed via freeze-pump-thaw method prior to use and N2 gas was bubbled through 

the solutions for at least 5 mins before the experiment was performed. These 

experiments were performed under inert conditions with 1-bromo-3-phenylpropane 

175a and S-phenyl benzenesulfonothioate 160a as the model substrate (constant flow 

of dry N2 gas). 
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Figure 5.3.15. Cyclic voltammograms of individual components. Cyclic voltammograms at 100 mVs−1 

using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working electrode. NiBr2•diglyme (2.0 mM), 

2,2’-bipyridine (2.0 mM), bromide 175a (2.0 mM) and thiosulfonate 160a (2.0 mM). 
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Figure 5.3.16. Cyclic voltammograms comparing the ligated nickel complex and thiosulfonate 160a. 

Cyclic voltammograms at 100 mVs−1 using DMF and nBu4NPF6 (0.10 M) as electrolyte, and a GC working 

electrode. Ni(bpy)Br2 (2.0 mM) and 160a (2.0 mM). 
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Figure 5.3.17. Cyclic voltammogram of disulfide 158a at 100 mVs−1 using DMF and nBu4NPF6 (0.10 M) 

as electrolyte, and a GC working electrode. Diphenyl disulphide 158a (2.0 mM). 
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Figure 5.3.18. Cyclic voltammogram of phenyl thiolate salt at 100 mVs−1 using DMF and nBu4NPF6 

(0.10 M) as electrolyte, and a GC working electrode. PhSNa (2.0 mM). 
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7.1 Electrochemical C–H Annulations of Benzamides with Internal Allenes 
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7.2 Electro-Reductive Cobalt-Catalyzed Carboxylation with CO2 
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7.3 Electro-Reductive Nickel-Catalyzed Thiolations 

 

 

 



7. NMR Spectra 

196 
 

  

 

  



7. NMR Spectra  

197 
 

  

 

 

  



7. NMR Spectra 

198 
 

   

 

 

  



7. NMR Spectra  

199 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. NMR Spectra 

200 
 

   

 

 

 



7. NMR Spectra  

201 
 

 

 

 



7. NMR Spectra 

202 
 

  

 

 

 



7. NMR Spectra  

203 
 

 

 

 

 



7. NMR Spectra 

204 
 

  

 

 

 



7. NMR Spectra  

205 
 

 

 

 

 



7. NMR Spectra 

206 
 

 

 

 

 



7. NMR Spectra  

207 
 

 

 

 



7. NMR Spectra 

208 
 

 

 

 



7. NMR Spectra  

209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. NMR Spectra 

210 
 

   

 

 

 



7. NMR Spectra  

211 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. NMR Spectra 

212 
 

   

 

 

 



7. NMR Spectra  

213 
 

 

 



7. NMR Spectra 

214 
 

 

 

 



7. NMR Spectra  

215 
 

 

 

 



7. NMR Spectra 

216 
 

 

 

 

 



7. NMR Spectra  

217 
 

 

 

 

 



7. NMR Spectra 

218 
 

 

 

 



7. NMR Spectra  

219 
 

 

 

 



7. NMR Spectra 

220 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. NMR Spectra  

221 
 

 

 

 



7. NMR Spectra 

222 
 

 

  

 

 



7. NMR Spectra  

223 
 

 

 

  



Acknowledgement 

224 
 

Acknowledgement 

It has been a very fruitful journey here in the Ackermann group which would have not 

been possible without the help of Prof. Dr. Lutz Ackermann. Hence, first and foremost, 

I would like to thank him for this opportunity and all the guidance that he has given me. 

It was definitely an empowering experience for one’s knowledge in chemical research. 

 

Second, I am thankful to my second supervisor Prof. Dr. Shoubik Das. His help and 

suggestions were indeed encouraging. I am also grateful to the other members of my 

thesis committee, Prof. Dr. Dr. h.c.mult. Lutz F. Tietze, Prof. Dr. Dietmar Stalke, 

Dr. Holm Frauendorf and Dr. Michael John. 

 

Third, I would like to share my appreciation to a few of my co-workers whom I have 

either worked with or have had great discussions for ideas and thoughtful comments: 

Dr. Julian Koeller, Dr. Valentin Müller, Dr. João C. A. Oliveira, Dr. Cuiju Zhu, 

Dr. Youai Qiu, Dr. Mélanie Lorion, Dr. Fabio Pesciaioli, Dr. Thomas Müller, 

Dr. Ramesh C. Samanta, Dr. Shoukun Zhang, Dr. Torben Rogge, Dr. Lars H. Finger, 

Dr. Xuefeng Tan, Dr. Elżbieta Gońka, Dr. Joachim Loup, Dr. Nikolaos Kaplaneris, 

Dr. Tjark H. Meyer, Dr. Isaac Choi, Dr. Korkit Korvorapun, Leonardo Massignan, 

Alexej Scheremetjew, Agnese Zangarelli, Renato L. de Carvalho, Talita B. Gontijo and 

Anna Casnati. 

 

Fourth, the thesis would not have been completed without the great help of many, 

namely: Dr. João C. A. Oliveira, Dr. Nikolaos Kaplaneris, Dr. Isaac Choi, 

Dr. Shoukun Zhang, Leonardo Massignan and Agnese Zangarelli. 

 

Fifth, I am very much grateful to the permanent working staffs that have made the 

journey much smoother than it would have been; without their help, the working 

laboratory runs short of fuel: Gabriele Keil-Knepel, Stefan Beußhausen, 

Karsten Rauch and Bianca Spitalieri. 



Acknowledgement  

225 
 

Sixth, I would like to give a toast to all the social events, abholung and the trip to 

Cuxhaven; they were often filled with fun and laughter. They made the PhD journey 

jaunty and lighter. As well as when season changes in Germany, I got to experience 

the different snippets of living here. 

 

Seventh, to Oma Veronika Kramer and the Kramer family. I am indebted to all the 

support and help that all of you have given me before even stepping into Germany, as 

if I am one of your own. The entirety of this friendship transcended borders and cultures. 

On behalf of my family and myself, I dedicate this thesis and all the works in honour of 

that. 

 

Last but not least, to the greatest mommy, daddy and sister. This voyage was made 

only plausible by you. I am very grateful for all the unconditional love, support and 

understanding that you have given me. I dedicate and share this achievement 

wholeheartedly to you. 

 

 

 

“Reason is the slave of passion.” 

- Fyodor Dostoevsky


