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ABSTRACT

In line with precision viticulture, in recent years new methods of vineyard management have been introduced, so as 
to optimize vine cultivation and production of wine of the highest quality. Following on the methodologies developed 
for mapping other crop parameters, there is currently a growing research effort for the discrimination and mapping of 
vine varieties, as this information is useful for vineyard-scale management, local and regional inventory and planning 
purposes, application of EU Directives, and support of certification and production of high quality wines. This research 
focuses on developing a methodology, based on UAV-borne multispectral data, for discriminating and mapping three 
vine varieties in Attica, Greece, employing three non-parametric classifiers, namely Random Forest (RF), Support Vector 
Machines (SVM) and Spectral Angle Mapper (SAM), and selected vegetation indices (VIs). The suggested methodology 
uses easy to obtain and process, cost-effective images and relies mostly on free open-source software. Study conclusions 
suggest that although the multispectral images used did not result in the accurate discrimination of the vine varieties at 
pixel level, expressed by highest overall accuracy (OA) 61.6%, they nevertheless proved useful in mapping varieties at the 
plot level. Therefore, it is considered effective for applications that require such level mapping.
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INTRODUCTION

As the viticulture/oenology industry has been 
historically very important for Europe, there is constant 
effort for more efficient vineyard management and 
oenological practices, which build upon the advantages 
of technological progress. 

Even though it is common belief between winemakers 
that fine wine is the result of well grown grapes, rather than 
the following production processes within the winery, it 
is a fact that the use of technological advancements is 
more widespread in the winery than in the vineyard.

However, following the progress of precision 
agriculture, there is currently a tendency for shifting 
this ratio. In the recent years, there is an evident trend 
in employing proximal (Trought and Bramley, 2011; 

Baluja et al., 2012) and remote sensors (Hall et al., 2002; 
Matese et al., 2015) for acquiring accurate and up to date 
vineyard information. Studies from all over the world 
have proven that employing remote sensing, results to 
better management through better understanding of soil 
(Bramley and Hamilton, 2007), vine health (Mazzetto et 
al., 2010) and vine phenology (Lamb et al. 2004; Fraga et 
al., 2014). 

One of current research pursuits is discriminating and 
mapping vine varieties, using non invasive remote sensing 
techniques. As Ferreiro-Arman et al. (2006) suggest, 
at the vineyard level, there is a need for vine variety 
discrimination as a useful tool for vine growers to detect 
misplantings and to manage inner field species variability, 
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while at a regional level it can be used for planning and 
inventory purposes as well as for certification of wine 
growers.

However, varietal discrimination is not an easy task 
since the leaves of different varieties are structurally and 
biochemically similar (Lacar et al., 2001b) thus having 
very close spectral responses.

This has led research into addressing the problem 
using hyperspectral sensors, which provide a great 
number of spectral channels allowing subtle differences 
to be identified.

Lacar et al. (2001a) used CASI hyperspectral imagery 
in South Australia and Maximum Likelihood classifier 
to map two varieties (Cabernet Sauvignon and Shiraz). 
They found that the two vine varieties showed spectral 
differences primarily in the visible region (400-700nm) 
of the spectrum and more importantly between 530 and 
570nm.

In another study, using hyperspectral proximal 
sensing, Lacar et al. (2001b) showed that between four 
varieties (Cabernet Sauvignon, Merlot, Semillon and 
Shiraz) Cabernet Sauvignon differed most from the other 
varieties, at approximately 512nm and 580nm, while 
512nm, 580nm, 611nm, 649nm, 690nm and 763nm 
showed the greatest potential for discrimination between 
all four varieties.

Ferreiro-Arman et al. (2006) used CASI data and 
an assortment of classifiers to map six vine varieties 
(Cabernet Sauvignon, Merlot Noir, Petit Verdot, Cabernet 
Franc, Sauvignon and Semillon). They commented on the 
adequate spatial resolution of the imagery, highlighting 
that the alternating structure of vegetation and soil 
induces a strong influence on the discrimination of 
pixels. For this reason, they suggested that vine variety 
discrimination may be enhanced by considering higher 
level information on plots and parcels, as opposed to 
single pixels. 

Ferreiro-Arman et al. (2007) assessed the capability of 
CASI imagery for the discrimination of three vine varieties 
(Cabernet Sauvignon, Cabernet France, Merlot Noir) both 

under constant and varying illumination conditions and 
showed that using illumination stratification increases 
classification accuracy. 

However, hyperspectral imagery is more difficult 
to acquire and process, as also more expensive than 
multispectral (Adão et al. 2017). Therefore, studies that 
focus on mapping vine varieties based on multispectral 
imagery are also present in the literature.

Karakizi et al. (2015) in their study used in-situ 
hyperspectral, aerial hyperspectral and satellite 
multispectral data to discriminate vine varieties and 
found that they were all highly correlated. Analysis of 
in-situ reflectance indicated that certain vine varieties 
(Merlot, Sauvignon Blanc, Ksinomavro and Agiorgitiko) 
possess specific spectral properties and detectable 
behavior, which is in accordance with the findings of 
Lacar et al. (2001a) that different varieties pose varying 
discrimination possibilities.

Karakizi and Karantzalos (2015), also, used satellite 
multispectral imagery (World-View 2, Pleiades 1B) 
to map up to six vine varieties, within an object based 
scheme. They incorporated a row detection step in their 
methodology and found that classification accuracy 
greatly increased when reported for parcel level, as 
opposed to pixel level. They also found that Merlot and 
Sauvignon Blanc, achieved high completeness rates on all 
classifications they took part, indicating relatively distinct 
spectral behavior among the other varieties. 

These were also confirmed by a similar study using 
multitemporal satellite multispectral data (WorldView-2), 
which also used textural features, as input to the classifiers 
(Karakizi et al. 2016). 

The aim of this study is to assess the value of UAV-
borne multispectral data, for discriminating and mapping 
three vine varieties in Attica, Greece. The objectives are:

	– to develop a methodology, employing three non-
parametric classifiers, namely Random Forest 
(RF), Support Vector Machines (SVM) and Spectral 
Angle Mapper (SAM), and selected vegetation 
indices (Vis), and 

	– to assess the accuracy of the resulted maps. 
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STUDY AREA

The study area (Figure 1) is a 1.3 ha vineyard located 
in Lavreotiki of the Keratea Community (close to Athens, 
Greece) that belongs to the wider Mediterranean wine-
growing zone, a historic area prominent for its wine from 
ancient times of Socrates and Aristotle. It is located at an 
altitude of about 175 m, at the foot of Panios Mountains, 
embraced on both sides by sea, providing cultivation 
conditions of particular coolness. It differs from other 
parts of the Mediterranean region as its soils have a 
medium sandy loam texture with limestone background. 
Vines are planed 1,3m apart, in rows with 2m distance 
between them. The average vine height is of about 1 m 
and a bilateral Guyot training system is used.

Figure 1. Location of study area

The vineyard is planted with three indigenous 
varieties, namely Savvatiano, Assyrtiko and Malagouzia 
(Figure 2), which are used in the production of wines 
labeled "Protected Geographical Indication (PGI): Attica".

Figure 2. Vine varieties of the study area

It is a non-irrigated vineyard, with relatively old age 
vines of 45-50 years, managed for low yield reaching a 
maximum of 4,000 kg per hectare.

DATA

An aerial survey took place at the end of July 2019, 
at the beginning of ripening (veraison), as this period 
(veraison) is considered appropriate for separating vine 
varieties based on literature. In the case of cooler regions, 
veraison takes place later, typically 40-60 days after fruit 
set (Tonietto and Carbonneau, 2004).

A Parrot Sequoia multi-spectral sensor (530 nm- 810 
nm) was used, onboard a 3DR unmanned aerial vehicle 
(UAV). This sensor provides four individual bands, Red, 
Green, Red Edge, and NIR (as well as an RGB composite 
image) which are suitable for vegetation analysis. Prior to 
the flight, the sensor was calibrated using the appropriate 
calibration board. The flight parameters were defined to 
an altitude of 80m, which resulted in images with pixel 
size of less than 10 cm, along track image overlap was set 
at 85% and across track overlap at 80%. The flight took 5 
minutes, during which 154 images were captured.

In addition, the vineyard boundary was measured 
with a GPS / GNSS Leica receiver, as well as internal 
boundaries of the three varieties parcels. Eight control 
points were also installed and measured with a GPS 
/ GNSS geodetic receiver to allow precise geometric 
correction and orthorectification of the captured images. 
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In parallel, reference data were collected at 25 locations 
in the vineyard, to be used for training the classifiers and 
assessing the accuracy of the final thematic maps.

METHODOLOGY

Figure 3 presents the consecutive steps followed 
during image analysis of this study. The collected images 
were initially pre-processed to be ready for further analysis. 
During the preprocessing, the four separate bands were 
aligned to eliminate the displacement that results from 
the positioning of the four lenses on the multi-spectral 
scanner. The images were then orthorectified using 
Agisoft’s Metashape software, which initially creates a 
point cloud based on the estimated position of the sensor 
when capturing the images and subsequently creates a 
terrain elevation model, also using the control points 
collected in the field. They were afterwards merged into 
an orthomosaic.

To enhance the information contained in the 
resulting image, the following VIs (Table 1), which have 
proven useful in vine plant studies, were calculated and 
integrated into the image as additional bands to be taken 
into account during the classification phase.

The first of these indices, NDVI, was thresholded and 
used to mask out the non-vine pixels, so that further 
analysis could focus only on the pixels of interest.

Also, the reference dataset collected in the field was 
increased by digitizing 275 additional points on the 
multispectral image (Figure 4), in order to create adequate 
training and testing sets, for robust classification and 
accuracy assessment. This was feasible as it was verified 
that each vineyard parcel was planted with a single 
variety.

Figure 3. Methodology flowchart
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Table 1. VIs integrated into the multispectral image

VI name VI acronym Expression Description

Normalised Difference 
Vegetation Index NDVI Quantification of vegetation by measuring the difference 

between near infrared

Enhanced Vegetation 
Index 2 EVI2

Optimized vegetation index, designed to enhance vegetation 
signal with improved sensitivity to areas with high biomass, and 
improved vegetation monitoring through decoupling of foliage 
signal and reduction of atmospheric effects

Chlorophyll Vegetation 
Index CVI Index used to calculate the total leaf chlorophyll content.

Chlorophyll Index Green CIgreen Index with values sensitive to small changes in chlorophyll 
content and are consistent with most species

Chlorophyll Index RedEdge CIrededge Index with values sensitive to small changes in chlorophyll 
content and are consistent with most species

Green/NIR Difference 
Vegetation Index GDVI

Indicator of the green or photosynthetic activity of living plants. 
It is particularly sensitive to changes in chlorophyll content in 
plants

Green-Red Normalised 
Difference Vegetation Index GRNDVI Index that highlights the amount of vegetation, the difference 

between vegetation and soil and reduces atmospheric effects

Normalized Difference 
Red/Green Redness Index NDRGRI Index with normalized red and green difference

Figure 4. Reference dataset (training and testing)
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Table 2. OA achieved by the classifiers used

Classifier OA

Random Forest 61.6%

Support Vector Machines 59.6%

Spectral Angle Mapper 58.6%

Figure 5. Map produced by RF classifier

The image and training data were then used in 
combination with the following classifiers in order to 
discriminate and map the three varieties present in the 
study area.

Random Forest is a non-parametric classifier that 
consists of a large number of individual decision trees 
that operate as an ensemble. Each individual tree in the 
random forest spits out a class prediction and the class 
with the most votes becomes our model’s prediction (Pal, 
2005).

Support Vector Machines (SVM) is an effective, 
distribution free classifier that uses machine learning 
theory to maximize predictive accuracy while 
automatically avoiding over-fitting to the data (Boser et 
al., 1992). The SVM seeks to find the optimal separating 
hyperplane between classes by focusing on the training 
cases that lie at the edge of the class distributions, the 
support vectors, with the other training cases effectively 
ignored (Brown et al., 2000; Belousov et al., 2002).

Spectral Angle Mapper (SAM) is a physically based 
classification algorithm that determines the spectral 
similarity between two spectra by calculating the angle 
between the two spectra, treating them as vectors in a 
space with dimensionality equal to the number of bands 
(Kruse et al., 1993). SAM compares the angle between 
the training spectra vectors of each class to the candidate 
pixel vectors of unknown class in n-dimensional space. 
It assigns to each candidate the class with the smallest 
angle.

The accuracy of the classification maps was assessed 
using a confusion matrix (Congalton and Green, 1999). 
This matrix cross-tabulates labels assigned to pixels 
by the classifier with labels assigned to the reference/ 
testing sample, using geographic location as the key to 
cross-tabulation. Overall Accuracy (OA), the percentage 
of cases that are correctly classified, calculated along the 
confusion matrix diagonal, was calculated as well as user’s 
and producer’s accuracy (Story and Congalton, 1986).

RESULTS

The figures (Figures 5 and 6) show the vineyard as 
classified by the RF classifier, which achieved the highest 
OA (61.6%).

Figure 6. Focus on parts of the classified variety parcels

Tables 2 and 3 show the OA achieved by the three 
classifiers used, the confusion matrix that resulted from 
the RF classification, and the user’s and producer’s 
accuracy.
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Table 3. Confusion matrix of RF classification

Reference

Savvatiano Malagouzia Assyrtiko Total

Classification

Savvatiano 79 30 30 139

Malagouzia 46 48 5 99

Assyrtiko 2 2 58 62

Total 127 80 93 300

DISCUSSION

The results of this study show that multispectral data 
do not contain enough information to allow accurate 
discrimination and mapping of the three vine varieties 
that have been examined. Nevertheless, in each plot the 
majority of the pixels were correctly classified. Therefore, 
if post classification analysis is considered and results are 
aggregated at the plot level, plots are classified with 100% 
accuracy. This does not serve the purpose of identifying 
misplantings, but it does allow for the discrimination and 
mapping of single variety vineyard plots.

Further examination of the results shows that the 
variety pair that is more difficult to discriminate is 
Savvatiano and Assyrtiko. Looking at the resulting maps 
it is evident that a large number of pixels are falsely 
classified as Savvatiano while they belong to the other 
classes, thus this category has a large commission error. 
The exact opposite is the case with Malagouzia, where 
very few pixels of other categories have been assigned 
as such.

The following factors, aside the challenges imposed 
by VIs as described by Xue and Su (2017), are considered 
to have affected the results of the study and should be 
further addressed for potential increase of classification 
accuracy.

For this study, the aerial survey was held in July, 
during the veraison (vine ripening) in Greece, which based 
on existing literature is a favorable period for vine variety 
discrimination. During the course of the study, while 
gathering information from vine growers, it was suggested 
that another favorable period for discrimination is 
budding at the beginning of the growing season. This will 

be further explored to determine whether images taken 
at this stage of vine development are more suitable for 
the discrimination and mapping of vine varieties.

Also, the achieved accuracy would probably be 
different if mapping other varieties that have more diverse 
spectral response, as the literature suggests (Lacar et al., 
2001b; Karakizi et al., 2015, Karakizi and Karantzalos, 
2015). It is therefore considered to extend the study to 
other varieties of the Greek vineyard.

The methodology could be also extended to object-
oriented analysis (GEOBIA) as opposed to the pixel-level 
analysis used in the present work. This would add value 
to the multispectral images by making advantage of their 
very high spatial resolution, which is very efficiently 
managed within GEOBIA (Chen et al., 2018)

It would also be of value to extend the research to 
include hyperspectral imagery, which provides richer 
spectral information, to examine whether this would lift 
the evident barrier of multispectral data.

CONCLUSIONS

Study conclusions suggest that although the 
multispectral images used did not result in the accurate 
discrimination of the vine varieties at pixel level, they 
nevertheless proved useful in mapping varieties at the 
plot level, which is requested in several stydies. 

Given the fact that the methodology under 
consideration is based on easy to obtain and process, 
cost-effective images as well as that it relies mostly on 
free open source software, it is considered effective for 
applications that require plot level mapping.
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