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Summary

To investigate the accuracy of genomic breeding values, different scenarios were defined 
by accounting for polygenic effects, a different number of quantitative trait loci (30, 90, 150), 
and three levels of heritability (0.15, 0.25, and 0.4). The Bayes B method was used to estimate 
marker effects. A historical population was simulated stochastically, which consisted of 100 
animals at first 100 generations, then the population size gradually increased to 1000 animals 
during the next 100 generations. The animals in generation 201 with known genotypic and 
phenotypic records were assigned as the reference population, and animals of generation 202 
were considered as the validation population. The genome was comprised of one chromosome 
with 100 cM length and 500 markers that were distributed through the genome randomly. 
Picking up the information that was not captured by linkage disequilibrium (LD), including 
polygenic effects in the predictions increased the accuracy of genomic evaluations. As the 
trait heritability went from 0.15 to 0.40, the average genomic accuracy increased from 0.48 
to 0.64. An increment in the number of quantitative trait loci (NQTL) declined the accuracy of 
the Bayes B method. This study suggests that the highest accuracy (0.74) was achieved when 
additive genotypic effects were coded by a few quantitative trait loci and a lot of small effects 
included in the prediction of genomic breeding values.
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Introduction
Most of the economically important traits in livestock have 

a complex architecture defined by a large number of genes and 
affected by environmental factors. Statistical methods such as 
BLUP combined phenotypes and pedigree information to estimate 
the genetic merit (breeding values) of the selected candidates 
under Fischer's infinitesimal model. According to this model, 
phenotypes are expressed by an infinite number of loci, each with 
an infinitesimal additive effect. In the last decades, due to advances 
in molecular technologies and statistical methods, several 
chromosomal regions that influence quantitative traits have been 
detected. Moreover, the finite amount of DNA in the mammalian 
genome suggests that there must be a finite number of loci that 
control the expression of quantitative traits (between 20,000 and 
35,000 genes) (Ewing and Green, 2000), in contrast with Fischer's 
infinitesimal model. The genomic selection method first suggested 
by Meuwissen et al. (2001) used dense marker information to 
enhance the potential for improving the accuracy of genetic values 
estimation. In genomic selection, genotypic information is used 
to select elite individuals to produce the next generation. The 
marker effects are estimated in a reference population, in which 
the individuals have both known phenotypes and genotypes. The 
estimated marker effects are used to estimate the genomic breeding 
values of selection candidates. However, many different methods 
were suggested to estimate the SNPs effects (Meuwissen et al. 
2001, de los Campos et al. 2009, 2010, VanRaden, 2008, Gianola 
et al. 2006). Many studies have shown that factors such as the size 
of the reference data set (Meuwissen et al., 2001, VanRaden and 
Sullivan, 2010), trait heritability, the number of loci affecting the 
trait (Daetwyler et al., 2008), the degree of genetic relationships 
between training and validation samples (Habier et al., 2007) and 
the distributions of allele frequencies (Clark et al., 2011) affect 
the accuracy of genomic evaluations (Hayes et al. 2010, De los 
Campos et al. 2013). The standard genomic evaluation methods 
utilize genetic markers information that is in LD with at least a 
QTL. Accounting for polygenic effects in addition to marker 
effects reduces the number of false-positive QTL by decreasing 
fake associations. This approach may reduce prediction errors and 
therefore enhance the accuracy of the genomic evaluations. These 
advantages may be achieved due to better use of LD information 
and also better trapping relationship information that is not 
captured by LD. This study aimed to evaluate the accuracy of 
genomic prediction with approaches that account for polygenic 
effects, different numbers of QTLs, and three levels of heritability. 

Materials and Methods

Simulation

Various scenarios were defined according to all combinations 
of accounting for polygenic effects, three different levels of 
heritability, and QTL numbers. Prediction accuracy, the correlation 
between the predicted genomic breeding values and the true 
values were estimated for each scenario. Parameter estimation was 
performed via the Gibbs Sampler algorithm implemented in the 
BGLR package of R software (Perez and De los Campos, 2014).

A historical population of 100 effective numbers with an equal 
sex ratio was simulated using the QMSim software (Sargolzaei and 
Schenkel, 2009), assuming three heritabilities of 0.15, 0.25, or 0.4. 

During the first 100 historical generations, random mating was 
performed; then, to arrive at a mutation-drift balance, 100 more 
generations were simulated in which the population size increased 
to 1000 individuals gradually (the average number of progenies 
per dam was equal to two). After the last historical generation, 
the recent population was constructed by the random selection of 
1000 individuals and two successive generations were generated 
by random mating. The animals in generation 201 with known 
genotypes and records for the trait constructed the training 
population. The animals of generation 202 formed the validation 
population which it was assumed there were no phenotypic 
records.

The genome was comprised of one chromosome of 100 cM, 
and 500 marker loci and QTL were randomly distributed on 
the chromosome. All marker loci and QTL were bi-allelic with 
equal initial allelic frequencies. The number of segregating QTL 
affecting the trait was set at 30, 90, or 150. The Marker and 
QTL allele frequencies were assumed to be equal in the 200th 
generation. The mutation rate of the markers and QTLs were 
assumed to be 2.5 × 10-5 per locus per generation. To calculate the 
true breeding values, the additive effect of the QTLs was sampled 
from the gamma distribution with a shape parameter of 0.4 and a 
scale parameter of 1.66. The true breeding values were calculated 
as below:

where Qij is an incidence vector indicating QTL alleles at locus 
j for animal i and qj is a vector of QTL alleles effects at locus j. 
The phenotypic values were calculated as the sum of true breeding 
values and errors that were sampled from a normal distribution 
N(0, σ2

e).

The Bayes B model was used to estimate marker effects and to 
account for polygenic effects, a modified Bayes B model, described 
below, was used.

Model

Bayes B

The Bayes B method was first described in the study of 
Meuwissen et al (2001). Bayes B is likely the most accepted model, 
besides the lack of its formulation. Bayes B assumes a normal prior 
distribution on the marker effects with zero mean and variance. 
Then, a mixture of distributions is assumed on this variance that 
is equal to zero with probability π and distributed as a chi-square 
distribution with probability 1-π. 

σ2
βi = 0 with probability π, 

σ2
βi ~ χ-2 (df,s2) with probability (1-π).

In his formulation assuming a zero variance implies the absence 
of uncertainty about the marker effect, and therefore the inference 
lacks Bayesian sense. Furthermore, the selection of π is arbitrary 
with no justification as well as the choice of the hyperparameters 
in the inversed chi-square distribution that causes the flaws of 
this method. However, Bayes B is one of the most used methods 
and provides high accurate predictions, especially for those traits 
coded by large effect genes as fat percentage. 

[1]
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Modified Bayes B

The Bayes B model was extended to include a polygenic effect 
(Solberg et al., 2009):

[2]
where y is the vector of phenotypes, μ is the overall mean, a is the 
vector of polygenic effects, ∑ is the summation over all marker 
loci from 1 to p, Xj is a design matrix for the j'th marker, gj is the 
vector of the j'th marker effect and e is the residual term. The 
variance of a was Var(a) = Aσ2

a, where A (1000 × 1000) is the 
additive relationship matrix, calculated based on five generations 
of pedigree from generation 196 to 200 using the algorithm of 
(Meuwissen and Luo,1992). Polygenic effects were sampled in the 
MCMC chain using Gibbs sampling and assuming a prior N(0, 
σ2

a) following Sorenson and Gianola (2002), and σ2
a was estimated 

using a scaled inverted chi-squared prior distribution with -2 
degrees of freedom, which implies a non-informative flat prior 
distribution (Sorenson and Gianola, 2002).

The elements of the X for each individual depend on the 
number of alleles present in its genotype. For example, for ith 
individual having genotypes AA, Aa, or aa at jth marker locus, the 
Xij element in X was assigned equal to 2, 1, or 0, respectively. In 
this study, a Bayesian approach (Bayes B) was used to estimate 
marker effects. 

 Results and Discussion
The accuracy of all scenarios was presented in Table 1. 

Because of picking up the information that was not captured by 
LD, including polygenic effects in the predictions increased the 
accuracy of genomic evaluations. The highest improvement of 
accuracy due to involving polygenic effects (0.07) occurred for the 
trait with the highest heritability (h2=0.4) and the lowest number 
of QTLs (NQTL=30).

Table 1. Accuracy of genomic prediction with approaches that ac-
count for polygenic effects, different number of QTLs, and three lev-
els of heritability

Heritability Number of QTLs Without
polygenic effects

With polygenic 
effects

30 0.51 0.54

0.1590 0.47 0.50

150 0.44 0.47

30 0.62 0.66

0.2590 0.57 0.62

150 0.52 0.58

30 0.67 0.74

0.490 0.63 0.67

150 0.59 0.62

 In a simulation study, Piyasatian and Dekkers (2013) showed 
that when LD was low, the increment of the accuracy due to 
the inclusion of polygenic effects was noticeable. They declared 
that polygenic effects increased the LD signal and captured the 
remaining relationship information that was not captured by SNPs, 
depending on the extent of LD across chromosomes and training 
population size. Accounting for polygenic effects in a genomic 
model influenced the estimated variances by picking up the part 
of the genetic variance that was not captured by the common 
genomic model. A simulation study by Calus and Veerkamp (2007) 
showed a slight increase in accuracy by including polygenic effects 
on the genomic approach, but this depended on the extent of LD 
between adjacent SNPs. Kapell et al. (2012) considered various 
growth, behavioral and physiological traits in mice and showed 
that involving polygenic effects had little effect on the prediction 
ability of the genomic approach. Legarra et al. (2008) and De los 
Campos et al. (2009) reported an increased prediction ability 
using the genomic model relative to the polygenic model, but 
little difference between a solely genomic model and a combined 
genomic-polygenic model was found. 

The accuracy of genomic evaluation improved from 0.48 to 0.64 
as heritability increased from 0.15 to 0.40 (Fig. 1a). The positive 
correlation between genomic evaluation accuracy and heritability 
was reported in previous studies (Atefi et al, 2018, Wang et al. 2019, 
Calus and Veerkamp 2007, Kolbehdari et al. 2007, Martinez et al. 
2018). Since marker effects are estimated using the relationship 
between phenotype and genotypic markers, estimation of marker 
effects and therefore genomic breeding values (GEBVs) will be 
more accurate for traits with high heritability.

Figure 1. Accuracy of genomic evaluations for a) Different levels of 
heritability, b) Different number of QTLs 

In a simulation study, where three levels for heritability (0.5, 
0.3, and 0.1) in combination with other population structures 
and genetic architecture of the trait were investigated, the results 
showed an increasing trend in the accuracy of GEBVs when 
heritability of the trait increased (Atefi et al, 2018). 

The amount of accuracy decreased as the number of QTLs 
increased. The lowest accuracy (0.53) was achieved for NQTL=150 
and the highest value (0.62) was for NQTL=30 (Fig. 1b).

In a simulation study, increasing the number of QTLs from 
0.03 Me to 1 Me (Me is the number of independent chromosome 
segments), decreased the accuracy of the Bayes B method from 
0.739 to 0.344 (Daetwyler et al. 2008). However, different trends 
were reported by researchers. For instance, Gorgani Firozjah et 
al (2014) reported that the accuracy of all investigated scenarios 
decreased by increasing the number of QTLs from 400 to 600. 
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Different trends of genomic accuracy due to increasing the 
number of QTLs may be related to the interaction between the 
number of QTLs with other components of genetic architecture, 
i.e., the interaction among QTLs alleles and interaction between 
QTLs and non-genetic factors.

Bayesian methods define a prior density for SNPs in which a 
high proportion of SNPs has a null effect (π), while other SNPs 
have large or moderate effects. Therefore, Bayesian methods have 
greater accuracy for the traits controlled by a few QTLs (Wang et 
al. 2019). 

This study suggests that the highest accuracy (0.74) was 
achieved when trait variation was extremely specified by additive 
genotypic effects, and additive genotypic effects were coded by a 
few QTLs and a lot of small effects provided that all these small 
effects were included in the estimation of GEBVs. 

 Conclusion
The accuracy of GEBVs was affected by three investigated 

factors in this study i.e., trait heritability, number of QTLs, and 
the inclusion of polygenic effects in the genomic evaluations. The 
accuracy of the Bayes B method was increased as the heritability 
increased. Conversely, the increment of the number of QTLs 
decreased the accuracy of GEBV. Including polygenic effects in 
the genomic evaluation improved the accuracy of GEBV due to 
capturing information that could not be captured only by LD. The 
highest accuracy (0.74) was obtained for the trait with the highest 
heritability which its variance defined by the lowest number of 
QTLs (30) and plenty of minor genes. The results of this study 
emphasize that considering polygenic effects in addition to genetic 
markers improved the accuracy of genomic breeding values by 
exploiting relationship information that could not be captured by 
LD.
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