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ABSTRACT
Mobile edge computing is a new paradigm which provides cloud computing capabilities at the
edge of pervasive radio access networks in close proximity to users. The problem of edge server
selection in mobile edge environment in terms of user’s overhead is investigated in this paper.
Due to the limited resources of edge server, we firstly study the task completion probability of
edge servers. Secondly, we formally model the problem of edge server selection in terms of time
latency and energy consumption. More especially, the computation overhead method for com-
pleting the task in cases of both servicemigration andnon-migration is investigated. Then, a new
optimized edge server selection algorithm, called combined Genetic algorithm and simulated
Annealing algorithm for edge Server Selection (GASS) is designed. Finally, a series of experiments
on a real-word data-trace are conducted to evaluate the performance of GASS. The results show
that GASS can effectivelyminimize the overhead of the user and outperform traditional heuristic
algorithms.
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1. Introduction

In recent years, with the rapid development of mobile
devices, mobile applications such as natural language
processing, facial recognition, and interactive online
games have begun to appear and gained widespread
attention [1–6]. Usually, these applications are time-
sensitive, demand intensive computation and high-
energy consumption [7]. Due to the physical size con-
straint, however,mobile devices are in general resource-
constrained, having limited computation resources and
limited battery life [8,9]. Therefore, how to solve the
contradiction between the need of performing com-
plex tasks and the limited resource in mobile devices
becomes an important challenge.

To alleviate the resource scarcity of mobile devices,
mobile cloud computing comes into being. Cloud com-
puting centralizes computing and data resources, and
then different users can get resources on demand
[10,11]. However, usersmay experience long latency for
data exchangewith the public cloud throughWideArea
Network(WAN) when connecting to centralized cloud
data centres like Amazon EC2 [12–14] and Windows
Azure [7]. Meanwhile, it is very difficult to reduce the
latency in the wide area network.

Mobile Edge Computing (MEC) is envisioned as
a promising approach to overcome these limitations
[15–17]. As an extension of centralized cloud comput-
ing, MEC’s core concept is to deploy edge servers to

the edge of the network close to the users [7,18]. The
edge server is usually collocated with the base stations
orWi-Fi access point. Thus the user can directly obtain
the required resources from the edge server, which can
reduce the latency caused by data transmission inWAN
[19,20]. At the same time, it can reduce the commu-
nication burden and network congestion of the core
network to a certain extent [21].

However, MEC still faces some challenges. On the
one hand, due to the limited resources of each edge
server and the open, dynamic and ever-changing fea-
tures of the Internet [22,23], the edge server connected
by the user may not have enough remaining resources
to meet the user’s request. Thereby, it is important for
the mobile user to select the optimal edge server from
candidate edge servers. On the other hand, each edge
server covers a specific geographical area so that only
the users within its coverage can connect to it [24]. Due
to user’s mobility, if the user leaves the coverage of the
original edge server with unfinished task, to ensure the
service continuity, another server should be selected to
migrate the service running in the original server [25].
The reason is that if the mobile user continues to get
resources from the original edge server, and transmit
data to/from the user via other network nodes, other
network nodes’ communication resource may be occu-
pied and the service response latency will increase [26].
Therefore, we should select the optimal edge server
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Figure 1. Application of selecting edge servers for mobile user in MEC.

to migrate the service when the service migration
occurs.

To address these challenges, the edge servers should
be select for the mobile user in advance. As illustrated
in Figure 1, the mobile user is going to move from
point A to point B. With the mobile user’s moving,
many edge servers need to select for the user to get
resources. To improve the user’s Quality-of-Experience
(QoE) [27], edge server s1, s4, s6 should be selected
for the mobile user, because they have broader cov-
erage and more resources comparing with other edge
servers. In this paper, we study how to select edge
servers for the mobile user to minimize the user’s over-
head. The following factors will affect the mobile user’s
overhead: (1) since service migration requires a large
amount of data to be transferred between edge servers
[26], frequent service migration can cause serious time
latency; (2) in view of limited resources of each edge
server, the edge server connected by user may be in
overload state, so that the edge server will send the
request to the remote cloud server, which will result in
a additional long roundtrip latency [28]; and (3) user
handheld mobile device has limited power and differ-
ent energy consumptions are produced when the user
connects different edge servers. Hence, it is necessary to
propose an effective method to select the edge servers
for mobile the user to minimize the overhead in terms
of time consumption and energy consumption [29].

In order to solve the above problems, we propose the
combined Genetic algorithm and simulated Annealing
algorithm for edge Server Selection (GASS) algorithm
in this paper. And the proposed algorithm can select

edge servers for the mobile user within polynomial
time. The main contributions are as follows:

(1) We model the task completion probability of edge
servers, and analyze the computation overhead of
the user in cases of both service migration and
non-migration;

(2) We propose GASS algorithm that selects edge
servers in advance for user with known path, so
as to minimize user’s overhead in terms of time
latency and energy consumption in mobile envi-
ronment;

(3) Based on a real-world data-trace, we conduct
extensive simulations to evaluate the perfor-
mance of our GASS algorithm. The experimen-
tal results show that GASS can effectively reduce
the overhead of the user compared with heuristic
algorithms.

2. Related work

2.1. Edge server selection in static case

There have been extensive studies on the edge server
selection in mobile edge computing. Tan et al. [30]
proposed the first online algorithm for job dispatching
and scheduling problem in edge-clouds with nontriv-
ial competitive ratio. Firstly, users’ tasks are assigned
to appropriate edge servers, and then all tasks on the
same edge server are scheduled to reduce the weighted
response time of the tasks. Hamed et al [28] proposed
hierarchical fog-cloud computing offloading and mod-
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elled the competition among Internet of Things (IoT)
users as a potential game to determine the computa-
tion offloading decisions. Besides, the authors also ana-
lyzed the properties of the formulated game and showed
the existence of a pure Nash Equilibrium (NE). Phu
et al. [24] further considered the coverage area of the
edge servers and the resources of the edge server. The
allocation problem of users was raised and modelled
as a bin packing problem to minimize the number of
hired edge servers while ensuring the required quality
of service for users. These studies are very meaningful
and focus much effort on reducing overhead. How-
ever, these approaches are only appropriate for com-
puting user’s overhead in static environment. If these
approaches are applied in mobile environment, large
deviations or fail will be resulted in. Different from
them, we propose that the edge servers are selected for
themobile user in themobile environment. At the same
time, in order to ensure the continuity of the service, it
is also necessary to take the service migration problem
into account.

2.2. Servicemigration

In the traditional cloud migration decision model, the
primary migration variable was the allocation of band-
width resources [31] and the objective was to maxi-
mize the use of computing resources (such as CPU,
memory, etc.). However, in the service migration pro-
cess running in the edge cloud servers, user mobility
is a key factor due to the limited coverage area of the
edge server [32]. For that reason, the traditional cloud
service migration decision model cannot directly be
applied to the edge cloud server migration scenario.
In [33], the authors studied the impact of user mobil-
ity on MEC performance, assuming that user mobil-
ity follows a random walk mobility model and used
Markov chain to analyze service migration. A work
on mobility-driven service migration based onMarkov
Decision Processes (MDPs) is given in [34], which
mainly considered one-dimensional mobility patterns
with a specifically defined cost function. And stan-
dard solution procedures are used to solve this MDP.
Furthermore, a more effective method to solve this
problem under the one-dimensional moving model is
proposed in [10]. Its transmission overhead andmigra-
tion overhead are set to a constant whenever it occurs.
Compared with the one-dimensional user movement
model, Pan et al. [15] proposed a more realistic two-
dimensional user movement model to solve the large
state space and approximated the underlying state space
by defining the states as the distance between the user
and the edge server location. Most of the above stud-
ies about servicemigration found the optimal threshold
of service migration. It means that, when user leaves
the coverage area of the original edge server, the user
may make use of other network nodes as the relay node

to get original edge server’s resources without service
migration. The following problems need to be taken
into consideration. On the one hand, the bandwidth
resource of other network nodes may be occupied; on
the other hand, it may cause network congestion. In
comparison, our edge server selection algorithm GASS
requires that the mobile user directly connects to the
edge server and the service is migrated if the user leaves
the coverage of the edge server with unfinished task.

3. Systemmodel

In this section, we assume that the load of each edge
server fits a normal distribution over a period of time
and analyze the task completion probability of edge
servers. Then, we compute the overhead of comple-
tion task in cases of both service migration and non-
migration. Finally, we can obtain the user’s total over-
head during user’s moving.

3.1. Probability computationmodel

When the edge server provides resource to the user, the
server resourcewill be reduced correspondingly (in this
paper, CPU resources represent server resources). Due
to the limited resources of the edge server, there is no
guarantee that the edge servers connected by the user
can provide the required resources for the user. There-
fore, it is necessary to calculate the probability that edge
server successfully completes the task, denoted by p.
Assuming that the load of each edge server fits a normal
distribution over a period of time, we set the probability
density function of the edge server load as

f (x) = 1√
2π

e−
(x−μ)2

2 + b (1)

Here x denotes the load of the edge server whose
definition domain is [0, 2μ] and f (x) is the probabil-
ity when the load is x. Further, the value ofμ is equal to
half of the total resources of the edge server and b is a
constant, only related to the total amount of resources.
We define b as follows:

b =
∫ 0
−∞

1√
2π

e−
x2
2 + ∫ +∞

2μ
1√
2π

e−
x2
2

2μ
(2)

If the resources required by the user are k, the probabil-
ity that the edge server can satisfy the resource required
by the mobile user is

p =
∫ 2μ−k

0
f (x) (3)

Figure 2 shows the standard normal distribution image
and shows how to convert the standard normal dis-
tribution into the probability density function that we
need. Further, Figure 3 shows the probability density
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Figure 2. Normal distribution function.

Figure 3. Probability density function.

function f (x) of the edge server whose total resources
is 4(i.e. 2μ = 4).

If the connected edge server cannot satisfy the
resource requested by the user, the edge server will send
the request to the remote cloud to get the resource
required by the mobile user. The probability is 1–p.
At any time, the user can connect to the remote cloud
server, and the remote cloud server always is able to
provide the resource required by the mobile user.

3.2. Computationmodel of user’s overhead

We then introduce the computation model of user’s
overhead.We assume that there are S edge servers in the
system, where 1, . . . , S denotes the set of edge servers.
The mobile user can connect to these edge servers to
transmit data through the wireless channel during the
mobile process [28]. We further denote the set of all
servers available as 0, 1, . . . , S when the user moves,
where 0 represents the remote cloud server which has
sufficient computing resources. Because the edge server
has limited resources, when the edge server cannot
provide enough resource to the user, the user can get
resources from the remote cloud server. And the user
can also directly connect to the remote cloud server

to obtain resources. We consider a task Ti � (Bi, Di)
that is one of many tasks during the movement and the
task can be computed either on the edge server or the
remote cloud server. Here, Bi denotes the size of com-
putation input data (e.g. the program codes and input
parameters) involving in the task Ti, and Di denotes
the total number of CPU cycles required to accomplish
the computation task Ti. The user can apply the meth-
ods in [35,36] to obtain the information of Bi and Di.
We next discuss the computation overhead in terms of
energy consumption and time consumption in case of
both service migration and non-migration.

3.2.1. No servicemigration
If taskTi is executed on the edge server, di,s <Rsmust be
guaranteed when the user connects to the edge server s,
where di,s indicates the distance between the user hand-
held mobile device and the edge server s, and Rs is the
coverage radius of edge server s. We assume that the
mobile user can only connect to one server at any time.
According to [8], the time the user transfers data to the
edge server s is Bi /ri,s, for task Ti. Here, ri,s indicates the
data transfer rate between the user and the edge server
s, which can know in advance by the user. The comput-
ing power of the edge server s is represented by Fs. If the
user maintains connection with s before the edge server
s completes the task Ti, the execution time of task Ti on
the edge server isDi /Fs. Similar tomany studies such as
[29,37], the time latency that the edge server sends the
computation outcome back to the user is neglected, due
to the fact that for many applications(e.g. face recogni-
tion), the size of the computation outcome in general is
much smaller than the size of computation input data.
So the response time and energy consumption of the
task Ti executed in the edge server s can be given as
follows, respectively

Ti,s = Bi
ri,s

+ Di

Fs
(4)

Ei,s = βi,s
Bi
ri,s

(5)

where βi,s is a constant, mainly related to the transfer
rate between the user and the edge server [28].

According to (4), (5), we can compute the overhead
in terms of processing time and energy as

Ci = λT

(
Bi
ri,s

+ Di

Fs

)
+ λEβi,s

Bi
ri,s

(6)

where λT and λE denote the weights of time consump-
tion and energy consumption for the user respectively.

When λE ∈ [0, 1], we set λT ∈(0, 1] to avoid the
user experiencing long latency [16]. The setting of these
parameters depends on the user and the type of appli-
cation. For example, when the device is at a low battery
state, the user would like to increase the weight of
energy consumption in order to savemore energy. For a
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latency-sensitive application, the user may increase the
weight of weight of time latency to reduce the latency.

When the user directly connects to the remote cloud,
the user’s waiting time contains the task upload and
server execution time, as well roundtrip latency d
between the mobile user and remote cloud [28]. Then
the time consumption and energy consumption are:

Ti,0 = Bi
ri,0

+ Di

F0
+ d (7)

Ei,0 = βi,0
Bi
ri,0

(8)

where ri,0 indicates the data transmission rate between
the user and remote cloud and F0 indicates the com-
puting power of the remote cloud server. Further, the
overhead in terms of time latency and energy consump-
tion of the task Tiexecuted in remote cloud server can
be given as

Ci = λT

(
Bi
ri,0

+ Di

F0
+ d

)
+ λEβi,0

Bi
ri,0

(9)

It is worth noting that edge servers cannot always sat-
isfy user’s resource requests because of their limited
resources. When the remaining resources of the edge
server cannot meet the requirements, the edge server
needs to send the request to the remote cloud. Accord-
ing to the model of task completion probability, the
success rate that the edge server s completes the task
is p. Thus, the overhead computation function that the
edge server completes the task Tiis

Ci = p
(

λT

(
Bi
ri,s

+ Di

Fs

)
+ λEβi,s

Bi
ri,s

)

+ (1 − p)
(

λT

(
Bi
ri,s

+ Di

F0
+ d

)
+ λEβi,s

Bi
ri,s

)

(10)

3.2.2. Servicemigration
In the real-world, users often move around. Due to
the contradiction between the limited coverage of sin-
gle edge server and user’s mobility, service migration
should be realized to ensure the service continuity.
With regard to service migration in MEC, the amount
of data transferred (e.g. memory state data, applica-
tion image data, input dataset, etc.) is always very large
(e.g. in megabyte or gigabytes) [26]. To optimize the
service downtime generated by service migration, the
three-layer framework for migrating running service
is used in this paper, which is transparent for users
[38]. During the service migration process, the service
downtime is related to transferring the runtime state
(i.e. instance layer) and is only a fraction of the total
migration time. In service non-migration scenario, the
task is completed by one server. However, when the
task is migrated, the task will be completed by differ-
ent servers. We should consider not only the service

downtime, but also the time it takes to complete the
remaining task on another server. Therefore, the over-
head computation model mentioned above can not
be directly applied to service migration scenario. For
ease of interpretation, in this paper we assume that the
service downtime is a constantmt.

If the edge server s′ is selected when the user leaves
the coverage area of s with unfinished task, the execu-
tion time of the task Tican be given as(Di − D′

i)/Fs +
D′
i/Fs′ . Here, Di − D′

i represents the number of CPU
cycles required to accomplish the part of task Tion the
server s and D′

i denotes the number of CPU cycles
required to accomplish another part of task Ti on the
edge server s′. Therefore, we can obtain the time con-
sumption of accomplishing task Ti as

Ti,s,s′ = Bi
ri,s

+ Di − D′
i

Fs
+ D′

i

Fs′
+ mt (11)

Since the success rates that the edge server s and s′ can
satisfy the user resource request are p and p′, the prob-
ability that both the edge server s and s′ can satisfy
the user’s request is pp′; the probability that the edge
server s can satisfy the user’s request and the edge server
s′cannot satisfy the user’s request is p(1–p′). If the edge
server s cannot satisfy the user resource request, the ser-
vice migration is not performed later, and the remote
cloud server completes the task Ti. The probability is
(1–p). We can compute the overhead function of ser-
vice migration in terms of processing time and energy
as

Ci = pp′
(

λT

(
Bi
ri,s

+ Di − D′
i

Fs
+ D′

i

Fs′
+ mt

)

+ λEβi,s
Bi
ri,s

)
+ (1 − p)

(
λT

(
Bi
ri,s

+ Di

F0
+ d

)

+ λEβi,s
Bi
ri,s

)
+ p(1 − p′)

(
λT

(
Bi
ri,s

+ Di − D′
i

Fs

+ D′
i

F0
+ d + mt

)
+ λEβi,s

Bi
ri,s

)
(12)

Consider another scenario. If the task Ti is not com-
pletedwhen the user leaves the coverage area of the edge
server s andno candidate edge server is available for ser-
vicemigration, the task has to bemigrated to the remote
cloud server. In this case, the user’s overhead function
for the task Ti is

Ci = p
(

λT

(
Bi
ri,s

+ Di − D′
i

Fs
+ D′

i

F0
+ d + mt

)

+ λEβi,s
Bi
ri,s

)
+ (1 − p)

(
λT

(
Bi
ri,s

+ Di

F0
+ d

)

+ λEβi,s
Bi
ri,s

)
(13)

It is also noted that if the user has already connected to
the remote cloud, in order to reduce the consumption
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caused by the service migration, no service migration
is executed before the task is completed. Thereby, the
overhead for completing task Tican be obtained by (9).

3.2.3. Mobile user’s total overhead
According to the above computation overhead model,
when an edge server is selected, the computational
overhead for completing a single task can be obtained.
Usually,many tasks need to be completed for a user over
a period of time. Due to user’s mobility, themobile user
will connect to different edge servers to get resources.
Next, we will show how the user selects the edge servers
in the mobile path.

Definition 1 (Mobile Path). A mobile path is repre-
sented by a triple (Time, L, F), where:

(1) Time is the time span during which the user is
moving. It includes a set of continuous time points;

(2) L is the set of the user’s locations corresponding to
all time points in Time;

(3) F is a mapping function between the time points
and the user’s locations on the path. F: Time→L.

In the above definition, L divides the entire moving
path into multiple segments. Function F represents the
correspondence between time and location. Actually, it
indicates the variable speed while a user moves. Specif-
ically, if the time interval is small, it means the user
moves with a high speed in that location; otherwise, the
user moves slowly.

Definition 2 (Edge Server Selection). The selection
of edge server during user movement is a triple (Se, S,
G), where:

(1) Se represents the set of many segments, and
Path = se1∪se2∪ . . . (i.e. Combining all segments
can compose the user’s mobile path.);

(2) M = 0, 1, . . . , S represents the set of all the servers
that the user can connect;

(3) G is a function representing the correspondence
between the segment and all edge servers that
cover the segment: ∀sei ∈ Se, G: sei→M.

Since the user movement path is known in advance,
according to the geographical location and the cover-
age radius of each edge server, we can get all candidate
servers that the user can connect during the moving
path: 0, 1, . . . , S. Function G divides the moving path
intomany segments Se andmakes each segment be cov-
ered by the same severs. When the user moves to the
position of the segment sei, one of the candidate servers
that cover the segment is select to provide resource for
the mobile user.

Definition 3 (The Total Overhead). Assuming that the
user’s movement path is divided into n segments, all
servers that the user can connect are represented as a
vector of length n: < s1, s2, . . . , sn > , si ∈ 0, 1, . . . , S.

∀1 ≤ i ≤ n − 1 and si 
=si+1, if a task is not completed
before the user leaves the coverage area of the edge
server si, the task needs to be migrated, otherwise it
will not bemigrated. Assuming that there arem tasks to
be completed, the user’s total overhead can be obtained
according to the above calculationmodel:

∑m
i=1 Ci. Our

goal is to minimize the total overhead of the mobile
user:min

∑m
i=1 Ci

4. Edge server selection algorithm

In this section, we introduce the details about how to
select edge servers for mobile user to minimize user’s
overhead. We divide the mobile path up into a set of
segments and each segment is covered by the same edge
servers. One of the candidate servers for each segment
will be selected for the mobile user to get resources.
From Figure 1, we can know that the quantity of edge
servers that cover the user’s mobile path will increase
exponentially with the increasing length of moving
path. Thereby, the number of edge servers that need
to be selected will also increases. In this case, if we use
enumeration method to select servers for mobile user,
the minimal overhead can also be obtained. However,
themethod’s complexity isO(mn), wherem denotes the
average number of candidate servers that the user can
select in each segment and n denotes the number of seg-
ments of the user’s moving path. So, as the scale of the
problem increases, the enumeration method becomes
impractical.

Therefore, we design the heuristic algorithm called
GASS (combined Genetic algorithm and simulated
Annealing algorithm for edge Server Selection). As we
all know, the genetic algorithm and simulated anneal-
ing algorithm are two of the most widely used heuris-
tic algorithms. The ability of genetic algorithm lies in
powerful global searching. And the ability of anneal-
ing algorithm lies in avoiding being trapped in local
optima. The GASS algorithm combines the advantages
of the two algorithms, which introduces the tempera-
ture parameters of the simulated annealing algorithm
into the genetic algorithm. GASS can inherit the pow-
erful global searching ability of the genetic algorithm,
decrease the converge speed to avoid being trapped in
local optima in the early process and increase the con-
vergence speed to improve efficiency in the later process
[21]. The proposed algorithmcan select edge servers for
the mobile user to get an approximate optimal solution
within polynomial time.1

Next, we introduce a more detailed combination
of the genetic algorithm and simulated annealing
algorithm and illustrate how GASS is applied to our
edge server selection problem.

Step 1. In Table 1, the corresponding relationships
between the GASS and edge server selection prob-
lem are shown. In the GASS algorithm, feasible
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Table 1. Term matching between GASS and server selection
problem.

GASS Edge server selection

Chromosome Selected servers
Gene Server
Locus Segment
Fitness User’s overhead in terms of time latency and energy

consumption

solutions are modelled by chromosomes. Thus,
the chromosome corresponds to the edge servers
selected in each segment. Each chromosome com-
prises a set of independent genes, so we use genes
to represent the selected servers. The locus of a
gene in a chromosome expresses a segment dur-
ing user movement. If a chromosome has a high
fitness, it implies that the overhead of the selected
servers is low.

Step 2. At the beginning of the initialization phase, we
initialize the algorithm parameters including the
population size, the initial temperature, terminat-
ing temperature, the cooling parameter, mutation
rate, the iteration times and so on.

Step 3. Selection is a process of reserving the superior
chromosomes and randomly weeding out a part
of the inferior chromosomes. All the remaining
chromosomes are regarded as the parent chromo-
somes.

Step 4. Crossover is an operation that recombines par-
ent chromosomes to generate new child chromo-
somes. In a crossover process, a point is randomly
chosen from the chromosomes firstly. After that,
a randomly selected parent chromosome parent1
loses the genes after that point and another ran-
domly selected parent chromosome parent2 loses
the genes before that point, hence a new child
chromosome child is generated by combining par-
ent chromosomes. We define �f as

�f = f (child) − min(f (parent1), f (parent))
(14)

where f (child) represents the overhead of child
chromosomes. If �f < 0, it implies that the fit-
ness of the child chromosome is better, then we
add child to the population. Otherwise, we calcu-
late the probability value exp (-�f / (k∗T)), where
k is a constant and T is the current temperature.
After that, a random number rand is generated in
(0, 1). If rand < exp (-�f /(k∗T)), we add child to
the population, otherwise, we discard child.

Step 5. Mutation is another operation used to gener-
ate new chromosome. In a mutation process, a
single gene is randomly chosen from the parent
chromosome and randomly changed to another
feasible gene. We then get the new chromosome
child. We define �f as �f = f (child) - f (parent).

If �f <0, we replace parent with child. Other-
wise, we calculate the value exp(-�f /(k∗T)), a
random number of rand is generated in (0,1). If
rand < exp(-�f /(k∗T)), we replace parent with
child, otherwise, reserve parent and discard child.
The approach guarantees that chromosomes with
higher fitness values have a higher probability
to be reserved. In the earlier iterations, the aim
is to decrease the converge speed and avoid the
algorithm falling into local optima. In later iter-
ations, the temperature becomes low, so that the
likelihood of worse chromosomes replacing bet-
ter ones becomes very low. Thereby, the conver-
gence speed and the efficiency of the algorithm are
improved [21].

The overhead of the chromosome is calculated
according to the fitness function. GASS algorithm
is executed iteratively and approximate optimal solu-
tion is eventually achieved. In the GASS algorithm,
new individuals are generated through crossover and
mutation. The GASS algorithm is summarized in
Algorithm 1.1

The algorithm begins with initialization (Line 1).
According to the user’s moving path and the loca-
tion of the edge server, a gene is randomly selected for
each gene locus, and count chromosomes are gener-
ated to form a population PopulationSet. The selection
operation is performed (Line 3), and a part of chromo-
somes with high fitness are directly retained according
to the setting threshold. The chromosomes with low fit-
ness are randomly reserved and the remaining chromo-
somes are directly discarded. Then, the steps crossover
(Lines 5–9) and mutation (Lines 11–16) are processed,
by which the chromosomes in the population are
updated. Afterwards, the current optimal chromosome
is recorded as CurOptChr (Line 17). Next, the current
optimal chromosome is compared with the optimal
chromosome that has ever recorded in the history, and
the better one is recorded as OptChr (Lines 18–19).
After that, cooling temperature (Line 20) is repeated
until the lowest temperature is reached. Finally,OptChr
is returned as the optimal chromosome (Line 21).

This proposed approach works well only when it
knows the path of the mobile user and the position
of edge servers in advance. An alternative way to get
mobile users’ paths is to make use of prediction meth-
ods utilized often in wireless mobile computing and
communication [39]. In addition, when the user uses
the navigation function, we can also get the user’s mov-
ing path.

5. Simulated experiments and Analysis

In this section, we perform experiments to verify the
performance of GASS and compare the results with
other methods. All experiments were conducted on
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a Windows machine equipped with Inter Core i7
(3.6GHz) and 16GB RAM. The algorithm is imple-
mented by Python3.6.

5.1. Experiment settings

In our experiments, we adopt a hybrid dataset that is a
mixture of the Shanghai Telecom [40,41] and Google
Cluster [30]. The Shanghai Telecom dataset contains
Internet information about service invocations on base
station and we call base station as edge server in the fol-
lowing experiment. The mobile path can be obtained
by selecting two points on the Baidu map, and plan-
ning a path between two points through the Baidumap.
Therefore, we can get all the available edge servers that
cover user’s mobile path. The Google cluster data trace
contains more than 120,000 jobs and each job contains
a lot of tasks.

We assume that the user is equipped with two wire-
less interfaces, which are Long Term Evolution (LTE)
and Wi-Fi [28]. The user may use LTE interface to
communicate with the remote cloud server, while they
can use the Wi-Fi interfaces to connect to nearby edge
servers that can cover the user [42–44].We assume that
the energy parameter βi,s only depends on the type of
interface and does not vary. According to [45], for the
LTE interface, we set β0 = 2605 mJ/sec. We further set
βs = 1224.78 mJ/sec [46], if the user connect to any
edge server via Wi-Fi interface. The average transmis-
sion rate of LTE and Wi-Fi are 5.85 and 3.01 Mbps,
respectively, as measured in [46]. According to these
measurements, we assume that the transmission rate
of Wi-Fi interfaces is randomly distributed over [2.01,
4.01] Mbps, and the transmission rate of LTE interface
is set as 5.85Mbps. We also assume that the processing
power of edge servers is randomly distributed in [2, 3]

GHz and the processing power of remote cloud server
is 4GHz [47]. In this paper, the number of CPU of the
edge server is randomly distributed over [4,7] andnum-
ber of CPU of remote cloud server is very sufficient.
For the convenience of calculation, the CPU number
required by the mobile is set as 1. Unless otherwise
stated, we assume a roundtrip latency of 200 millisec-
onds for remote cloud servers [30]. For the downtime
generated by the service migration, we set a constant
and assume that the service migrated belongs to high
RAM APP, and the value is 15.3 s [38]. Similar to [8],
we set λT = 0.5and λE = 0.5.

5.2. Experiment results

To verify the superiority of the proposed algorithm,
we compare GASS algorithmwith another three widely
used methods: the genetic algorithm (GA), the simu-
lated annealing algorithm (SA) and Greedy algorithm.
In order to avoid the influence of iterations, the itera-
tion number of all of the four methods is same. The
tasks to be completed are randomly chosen from the
data trace.

(1) Impact of Iteration Times: As shown in Algorithm
1, the parameter of iteration times is set in the
initialization phase. This group of simulations is
to verify the effectiveness of our algorithm and
examines the impact of iteration times. During
the experiment, the number of iterations of the
algorithm is changed while the other parame-
ters of the algorithm are kept unchanged. The
number of iterations of the algorithm is related
to the settings of the initial temperature T, the
termination temperature Tmin, and the cooling
rate α. When T = 100, Tmin = 2 and α = 0.98,
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Figure 4. Impact of iteration times.

we set the radius of the edge server as 500m, and
the user’s moving speed is kept at a constant speed
of 6m/s.

The impact of the iteration times is shown in
Figure 4. In this experiment, our GASS algorithm out-
performs the other three algorithms. With the increas-
ing of iteration times, the overheads generated by GASS
algorithm, SA algorithm and GA algorithm decrease
stably and then converges to a stable value. However,
TheGreedy algorithmonly selects the edge servers with
the most resources, and does not consider the impact
of user mobility, service migration, data transmission
rate and other factors so that it is not capable of achiev-
ing the objective of minimal overhead. GA and SA
algorithm can get reasonable results but compared to
the GASS algorithm, they are inferior.

(2) Impact of Edge Server Coverage Radius:The impact
of increasing edge server coverage radius on the
experimental results is demonstrated in Figure 5,
when the coverage of each server increases from
500metres to 1200 metres. The moving speed of
the user keeps 6m/s. All experiments are repeated
100 times, and we use the average value as the
result.

The impact of edge server radius on the number
of candidate edge servers is shown in Figure 5 (a). It
indicates that as the radius of the edge server service
increases, the number of candidate edge servers that
the user can connect increases. This is because that the
larger coverage radius of the edge server, the larger area
the edge server can cover. Thus, there are more edge
servers that can cover the user’s mobile path.

As shown in Figure 5(b), it can see that with the
increasing of edge server’s coverage radius r, the user’s
overheads generated by four algorithms decreases. The
reason is that the larger radius of the edge server, the
larger segment length that each edge server can cover.

Figure 5. Impact of edge server coverage radius.

As a result, services may be migrated less frequently.
Therefore, it may reduce the downtime of the ser-
vice. Meanwhile, according to the result obtained from
Figure 5(a), the user may have more choices when the
user selects edge server in each segment so that the
user can select the edge servers that produce less over-
head. Meanwhile, from Figure 5(b), it can be seen that
under the same conditions, the GASS algorithm is still
superior to other three algorithms.

(3) Impact of Mobile Speed: the impact of the user’s
moving speed on the experimental results is shown
in Figure 6. In this experiment, the edge server
radius is set as 500metres and the moving speed of
the user increases from 6m/s to 20m/s. We imple-
ment the experiment for 100 times, calculate the
overhead of the user and record the average value.
The faster the user moves, the less time the user
has passed the known path, and the fewer tasks the
user completes on the mobile path.
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Figure 6. Impact of moving speed.

From Figure 6 (a), we can know that as the user
moves faster, the number of tasks which need to be
completed during the moving path also decreases.
Thus, as can be seen from Figure 6 (b), the over-
head of the user reduces with the increasing of mov-
ing speed. Meanwhile, the experimental results show
that under the same conditions, the overhead of GASS
algorithm is obviously less than that of GA algorithm
and SA algorithm, and is better than that of greedy
algorithm.

6. Conclusion

In this paper, we focus on the problem of edge server
selection in mobile environment. We assume that the
load of each edge server fits a normal distribution over
a period of time. Thereby, the task completion probabil-
ity of edge servers can be obtained. Furthermore, with
the precondition that the task completion probability of
edge servers is known, we can compute user’s overhead
in cases of both service migration and non-migration.
To minimize user’s overhead in terms of time con-
sumption and energy consumption, we propose GASS
algorithm that can select servers in advance for the user.

The simulation experiments show that GASS outper-
forms traditional methods in terms of user’s overhead.
However, the application of the proposed method is
restricted. The mobile path and the speed of all mobile
users should be precisely predicted. Moreover, the pro-
posed algorithm should be implemented as a service in
cloud or edge cloud to obtain optimal result within a
short time. In the future, we will also seek other algo-
rithms to select edge server for the mobile user with
higher effectiveness or efficiency.
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