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Summary
Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging.

Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin

structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver

samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently

disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chro-

matin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS

signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which con-

tained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic dif-

ferences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and

help identify molecular mechanisms and genes at GWAS loci.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of loci associated with complex traits, but the

vast majority of variants fall outside the coding region.

As a consequence, the causal variants, molecular mecha-

nisms, target genes, and tissues of action for most loci

have not been characterized. Studies of gene expression

quantitative trait loci (eQTLs) have been instrumental in

identifying plausible target genes and tissues for GWAS

loci.1 Chromatin conformation capture techniques, such

as Hi-C, have identified variants at GWAS loci that physi-

cally interact with gene promoters.2 However, additional

approaches are needed to further pinpoint functional var-

iants and to identify how these variants alter gene

expression.

Variants at GWAS loci are enriched in transcriptional

regulatory elements, which are typically marked by chro-

matin accessibility, in trait-relevant tissues.3 Recent studies

have identified chromatin accessibility QTLs (caQTLs),

many of which overlap transcription factor (TF) binding

sites and motifs.4–9 A subset of caQTLs are colocalized

with eQTLs and GWAS loci, suggesting that variants at

these loci influence gene expression and GWAS traits by

altering chromatin accessibility.4–9 However, caQTLs
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have been mapped in a limited set of human tissues. Map-

ping caQTLs in additional tissues and cell types is valuable

to characterize the transcriptional regulatory mechanisms

for a larger set of GWAS loci.

Liver is involved in numerous processes, including lipid

metabolism, glucose storage, drug metabolism, and im-

mune response.10 Several studies have mapped eQTLs in

liver tissue, and liver eQTLs are colocalized with GWAS

loci for lipid, drug response, and other traits.11–13 Lipid

GWAS loci are enriched in regulatory chromatin states,

including enhancers and promoters, in HepG2 hepato-

cytes.14 QTLs for the active regulatory element histone

marks H3K27ac and H3K4me3 have been identified in

liver tissue, including a subset colocalized with liver eQTLs

and GWAS loci.12 Chromatin accessibility marks active re-

gions containing H3K4me3 and H3K27ac, as well as poised

promoters and enhancers that often do not display these

histone marks.15,16 Consequently, mapping caQTLs in

liver tissue can help functionally characterize GWAS loci

that act by altering gene expression in liver.

In this study, we jointly mapped genotypes, gene expres-

sion, and chromatin accessibility in liver tissue from 20

organ donors and identified caQTLs in liver tissue. We pre-

dicted the impact of caQTL variants on TF binding and pre-

dicted caQTL target genes using four approaches. Finally,
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we used caQTLs, TF bindingmotifs, and target gene links to

predict mechanisms at GWAS loci for multiple traits.
Material and methods

Liver tissue samples
Healthy human liver tissue was collected from 20 deceased organ

donors through the National Institutes of Health Liver Tissue Cell

Distribution System (LTCDS). Tissue was obtained from LTCDS

and approved for use in this study as non-human subjects research

by the Institutional Review Boards (IRBs) at St Jude Children’s

Research Hospital (Memphis, TN) and the University of North Car-

olina (Chapel Hill, NC).
Genotyping and imputation
We genotyped more than 2.5 million variants using the Infinium

Omni2.5Exome-8 BeadChip array v1.3 (Illumina) at the NHGRI

Genomics Core facility. Overall genotyping call rates ranged from

99.0%–99.6%. We mapped the Illumina array probe sequences to

the hg19 genome assembly17 using novoalign (see web resources),

excluding variants with ambiguous probe alignments and variants

with 1000Genomes (1000G) phase 3minor allele frequency (MAF)

> .01 within 7 bp of the 30 end of probes. No individuals were

related at a 3rd-degree relationship threshold using KING v.1.4.18

Prior to performing genotype principal component analysis

(PCA), we removed variants with minor allele count < 4 and that

were found within regions of unusually high linkage disequilib-

rium (LD, see web resources) using VCFtools v.0.1.14,19 and

selected distinct (r2 < 0.2) variants using PLINK v.1.9.20 We per-

formed PCA of 59,674 genotypes using PLINK v.1.920 and found

that each principal component (PC) explained essentially the

same amount of variation (5%), and no PC explained a dispropor-

tionate amount of variation. Therefore, we did not include any ge-

notype PCs as covariates when identifying caQTLs.

Prior to genotype imputation, we combined the genotypes of the

samples in this studywith genotypes from 177 samples from a sepa-

rate studygenotypedon similarchips and removedvariants thatmet

the following criteria: allele frequency difference> 20%with 1000G

phase 3 Europeans, palindromic variants with MAF > .2, genotype

missingness > 2.5%, and deviation from Hardy-Weinberg equilib-

rium (p < 1 3 10�4). Using the Michigan Imputation Server,21 we

phased 1,789,889 autosomal variants using Eagle v.2.322 and

imputed missing genotypes using minimac321 with the Haplotype

Reference Consortium (hrc.r1.1.2016) panel.23We retained variants

with imputation r2 > .3 for downstream analyses.
RNA-seq library preparation, read alignment, and

selection of expressed genes
We extracted and purified total RNA from 20 frozen liver tissue

samples using Trizol as previously described.24 Paired-end,

strand-specific, poly(A) RNA sequencing (RNA-seq) was performed

on an Illumina NovaSeq 6000 with 23 151 bp cycles. RNA-seq

reads were trimmed using Trimmomatic25 and aligned to the

hg19 genome assembly17 using STAR v.2.5326 with default param-

eters. Using verifyBamID v.1.1.1,27 we found no evidence of library

contamination or sample swaps. Expression levels of GENCODE

v.1928 genes were quantified using QoRTs v.1.2.42.29 We classified

genes as expressed if the median transcripts per million (TPM)

across the 20 individuals was at least 1. We performed principal

component analysis on gene counts normalized by library size
and variance-stabilized using DESeq2.30 Principal components

(PCs) were correlated against technical factors to identify covari-

ates in downstream analyses (see ‘‘Correlation of caPeaks with pro-

moter peaks and gene expression’’).

ATAC-seq library preparation
Nuclei were isolated as previously described31 with the following

modifications.Wepulverized50-mgpiecesof frozenhuman liver tis-

sue in liquid nitrogen using a Cell Crusher (CellCrusher), homoge-

nized the tissue powder in ice-cold nuclei isolation buffer (NIB:

20 mM Tris-HCl, 50 mM EDTA, 5 mM spermidine, 0.15 mM sper-

mine, 0.1% mercaptoethanol, 40% glycerol [pH 7.5]) using a 1-mL

dounce for 40 strokes, and rotated for 5 min at 4�C. We filtered the

solution through a Miracloth (Calbiochem), centrifuged at 1,1003

g for 10 min at 4�C, washed the pellet with 250 mL NIB containing

0.5% Triton-X, centrifuged at 500 3 g for 5 min at 4�C, and resus-

pended the pellet in 250 mL of resuspension buffer (10 mM Tris-

HCl, 10 mM NaCl, 3 mM MgCl2 [pH 7.4]). After counting isolated

nuclei, we pelleted 50,000 nuclei at 500 3 g for 5 min at 4�C for

each of three replicate ATAC-seq libraries per sample. Libraries were

prepared using Nextera kits (Illumina) as previously described.32

ATAC-seq read alignment and identification of

consensus peaks
We trimmed ATAC-seq reads to a uniform length of 126 bp using

cutadapt33 and aligned reads as previously described.34 Briefly, we

trimmed sequencing adapters using CTA (see web resources) and

aligned reads to the hg19 human genome17 using BWA-MEM

(see web resources). We selected properly paired autosomal align-

ments with high mapping quality (mapq > 30) with samtools35

and removed duplicate alignments using Picard (see web re-

sources). We used ataqv36 to generate ATAC-seq quality metrics

and confirmed ATAC-seq libraries corresponded to the correct ge-

notypes using verifyBamID.27

To assess reproducibility of libraries from the same individual,

we called narrow peaks separately for each library using

MACS237 with parameters –nomodel –shift -100 –extsize 200,

then merged peaks across all individuals and replicates using BED-

Tools merge,38 and selected peaks present in at least 3 libraries. We

counted the number of reads overlapping each peak using featur-

eCounts39 and performed library size normalization and variance-

stabilization using DESeq2.30 We computed pairwise Pearson

correlations of normalized counts for all peaks and for the

10,000most variable peaks between libraries and visualized the re-

sults using the heatmap.2 function in the gplots R package40 (see

web resources). Libraries from the same individual were highly

correlated, so we merged the alignment .bam files across libraries

for each individual using SAMtools.35

To identify consensus peaks, we converted themerged .bam files

for each individual to .bed files using BEDTools,38 called narrow

peaks for each individual using MACS237 with parameters –nom-

odel –shift -100 –extsize 200 –keep-dup all, and removed peaks

overlapping blacklisted regions.38,41 We then merged peaks across

individuals using BEDTools38 and defined consensus peaks as

merged peaks that shared at least 1 base with a peak present in

samples from at least 3 individuals.

Overlap of consensus peaks with roadmap chromatin

states
We computed overlap of ATAC-seq consensus peaks with chro-

matin states in adult liver tissue from the Roadmap Epigenomics



Consortium.3 We defined the following states: promoter (1_TssA,

2_TssFlnk, 3_TssFlnkU, 4_TssFlnkD, 14_TssBiv), transcribed

(5_Tx, 6_TxWk), enhancer (7_EnhG1, 8_EnhG2, 9_EnhA1,

10_EnhA2, 11_EnhWk, 15_EnhBiv), polycomb (16_ReprPC,

17_ReprPCWk), heterochromatin (13_Het), ZNF repeats

(12_ZNF/Rpts), and quiescent (18_Quies). For each consensus

ATAC peak, we computed the fraction of bases that overlapped

each chromatin state in liver tissue (Roadmap epigenome ID

E066) using BEDTools coverage.38 We assigned each peak to the

chromatin state with which it shared the most bases, except for

the quiescent state; we only assigned a peak to a quiescent state

if all bases of a peak were found within a quiescent state. If a

peak shared most, but not all, of its bases with a quiescent state,

we assigned the peak to the state with the second highest

coverage.
Selection of transcription factor motifs
We obtained transcription factor (TF) binding motifs from Cis-BP

v.1.02,42 selected all directly determined motifs per TF or the best

inferred motif when a TF did not have a directly determined

motif (TF_Information.txt dataset from Cis-BP), and restricted

to motifs for TFs expressed in liver tissue from GTEx v.8 (median

transcripts per million R 1). We performed clustering to remove

redundant motifs using RSAT matrix-clustering43 with parame-

ters -hclust_method average -calc sum -metric_build_tree Ncor

-lth w 5 -lth cor 0.8 -lth Ncor 0.8 -quick, resulting in 516 motif

clusters. For each motif cluster, we defined the representative TF

as the TF with the highest expression in liver tissue from GTEx

v.8 (measured in median TPM) and the representative motif as

the motif assigned to the representative TF. If multiple motifs ex-

isted for the representative TF in a given cluster, we selected the

motif with the highest information content. Although we often

use the representative TF name to refer to motif clusters for con-

venience, any TF in the cluster may bind at a given locus. There-

fore, we listed all expressed TFs in the cluster in supplemental

tables. Some TFs were assigned as the representative TF for mul-

tiple clusters, potentially representing distinct binding profiles

for the same TF. We retained all of these clusters unless otherwise

noted.
Enrichment of TF motifs and ChIP-seq binding sites in

ATAC peaks
We tested for enrichment of 286 non-redundant transcription fac-

tor (TF) motifs in consensus ATAC peaks using Analysis of Motif

Enrichment (AME)44 with parameters –control –shuffle– –kmer 2

–scoring max –hit-lo-fraction 0.75. We classified motifs with E-

value < 1 3 10�100 as significantly enriched. We derived the 286

motifs from the set of 516 non-redundant motifs (see ‘‘Selection

of transcription factor motifs’’) by selecting the motif with the

highest information content per TF.

We downloaded liver tissue ChIP-seq peaks for 17 TFs45 from the

ENCODE portal46 (sample accession ENCDO882MMZ) and

defined binding sites as the summit of the ChIP-seq peaks. We

computed the number of binding sites overlapping consensus

ATAC-seq peaks for each TF using BEDTools intersect.38 To deter-

mine whether the number of binding sites overlapping ATAC

peaks was more than expected given their genomic frequency,

we permuted binding sites across the genome 1,000 times

excluding blacklisted regions41 using BEDTools shuffle38 and

computed the number of overlaps for each permutation.We calcu-

lated an enrichment p value by determining the fraction of
permuted overlaps that were equal to or greater than the observed

number of overlaps.
Enrichment of heritability in ATAC peaks
Using stratified LD score regression as implemented in LDSC

v.1.0.1,47 we tested whether liver ATAC peaks were enriched

for heritability of 13 GWAS traits: liver enzymes traits alanine

aminotransferase (ALT),48 alkaline phosphatase (ALP),48 and

gamma-glutamyl transferase (GGT);48 cardiometabolic traits

body mass index,49 high-density lipoprotein cholesterol

(HDL),14 low-density lipoprotein cholesterol (LDL),14 triglycer-

ides,14 total cholesterol,14 coronary artery disease,50 waist-hip ra-

tio adjusted for body mass index (WHRadjBMI),49 and type 2

diabetes;51 and two negative control traits likely less relevant

to liver, height52 and rheumatoid arthritis53 (see web resources).

We computed LD scores for liver ATAC peaks using LDSC with

1000G phase 3 European LD and restricting to HapMap3 SNPs.

We computed partitioned heritability of the ATAC peaks using

LDSC correcting for the baseline v.1.2 model, which consists of

53 annotations.47 We report heritability enrichment as the pro-

portion of heritability explained by SNPs within ATAC peaks

divided by the proportion of SNPs within ATAC peaks and clas-

sify enrichments with enrichment p value (enrichment_p) <0.05

as significant.
Chromatin accessibility QTL identification
We identified caQTLs using RASQUAL,5 which jointly tests for

association of genotype with peak accessibility across individuals

and allelic imbalance in read counts at heterozygous variants

within the same individual. We selected ~4 million genetic var-

iants with MAF > 0.1 in the 20 individuals and within 100 kb

of consensus peak centers and then restricted to variants present

in 1000G phase 3 Europeans. To quantify peak accessibility

across samples, we extended alignments 100 bp from either

end of the 50-most base using BEDTools38 and counted the num-

ber of alignments overlapping each peak using featureCounts.39

We did not use WASP54 to remove reads exhibiting allelic map-

ping bias because RASQUAL models and accounts for allelic

mapping bias.5 We used DESeq2 size factors30 to adjust for li-

brary size and the gcCor.R script provided with RASQUAL5 to

adjust for GC bias. To identify global variation between samples

that may confound caQTL detection, we performed PCA on peak

counts adjusted for library size and variance-stabilized by DE-

Seq2.30,40 We ran RASQUAL using differing numbers of PCs as

covariates ranging from 0 to 10 in increments of 1 and selected

2 PCs to maximize the number of peaks with a caQTL at false dis-

covery rate (FDR) of 5%. We performed multiple testing correc-

tion using the two-step eigenMT-BH procedure.55 First, we used

eigenMT56 with the 1000G phase 3 European reference panel

to adjust for the differing variant density around each peak, tak-

ing into account the LD between variants. Second, we selected

the most significant eigenMT-adjusted p value for each peak

and calculated FDR using the Benjamini-Hochberg (BH) proced-

ure.57 We selected significant caQTLs with FDR < 5% and corre-

lation r2 between prior and posterior genotypes > 0.8. We refer

to peaks with a significant caQTL as caPeaks. We repeated the

caQTL analysis using ~0.6 million variants within 1 kb of peak

centers. Unless otherwise noted, all downstream analyses were

performed using caQTLs identified using variants within 1 kb

of peak centers.



Identification of caQTLs strongly influenced by one

sample
To identify caQTLs strongly influenced by one sample, we sepa-

rately removed each sample from the analysis and re-identified

caQTLs in the 20 sets of 19 samples. We used the same caQTL pa-

rameters as for all 20 samples, except that we reduced the mini-

mum MAF threshold to 0.05 to retain variants with MAF of 0.1

in the 20 samples. We restricted analyses to the lead variant-

peak pairs detected in the 20-sample analysis. Given our small

sample size, we would expect some caQTLs to no longer be signif-

icant when one sample is removed due to power even if no influ-

ential samples are present. Therefore, we defined caQTLs that are

strongly influenced by one specific sample as caQTLs that no

longer meet the FDR < 5% threshold (eigenMT-adjusted p <

8.43 10�4) only when one specific sample is removed, but remain

significant when any other sample is removed.
ATAC-seq allelic imbalance and comparison to caQTL

effect sizes
Instead of removing reads that exhibit allelic mapping bias, RASQ-

UAL estimates and accounts for allelic mapping bias during QTL

mapping.5 To compare the RASQUAL results to another strategy,

we used an alternative method to remove reads exhibiting allelic

mapping bias and calculate allelic imbalance (AI). We removed

ATAC-seq reads exhibiting allelic mapping bias using the WASP

mapping pipeline54 and counted the number of ATAC-seq reads

mapping to each allele at heterozygous variants using ASERead-

Counter58 with the option –min-base-quality 30. We removed var-

iants that had aligned bases other than the two genotyped alleles

and included variants with>10 total reads,>3 reads per allele, and

that were heterozygous in >3 individuals. After pooling reads

across individuals, each variant had a minimum of 30 total reads

and 9 reads per allele. The average reference allele fraction across

all heterozygous sites for each sample ranged from 0.502 to

0.505, and the average reference allele fraction after combining

samples was 0.503, indicating that little to no systematic allelic

mapping bias remains. We fit allele counts to a beta-binomial dis-

tribution using the VGAMR package,40,59 tested for AI using a two-

tailed beta-binomial test, and adjusted for multiple testing using

the BH procedure.

To compare effect sizes of AI variants and caQTL signals, we

selected caQTLs that had at least one AI variant in strong LD (r2

> 0.8, 1000G phase 3 Europeans) with the caQTL lead variant

and that resided within the caPeak; LDwas calculated using PLINK

v.1.9.20 For each caQTL with a linked AI variant, we selected the AI

variant with the strongest evidence of imbalance (smallest beta-

binomial p value). For both methods, we calculated an effect size

by subtracting 0.5 from the estimated fraction of reads containing

the alternate allele, which is the RASQUAL PI value for caQTLs. An

alternate allele fraction of 0.5 corresponds to an equal number of

reads for each allele, which is an effect size of 0.We then computed

the Pearson correlation between the absolute value of effect sizes

between the caQTLs and AI variants.
Colocalization of caQTL and H3K27ac QTL signals
We retrieved QTLs for 921 histone 3 lysine 27 acetylation

(H3K27ac) peaks (termed H3K27ac QTLs, FDR < 5%, n ¼ 18)

from a recent report.12 We only tested for colocalization between

QTL signals where the caPeak and H3K27ac peak overlapped

(defined as sharing at least one base). We calculated LD and haplo-

type phase between H3K27ac QTL and caQTL lead variants using
PLINK20 v.1.9 and classified signals as colocalized if these lead var-

iants exhibited strong pairwise LD (r2 > 0.8, 1000G phase 3 Euro-

peans).We calculated effect sizes for caQTLs andH3K27ac QTLs by

subtracting 0.5 from the RASQUAL PI values. We then computed

the Pearson correlation between the absolute value of caQTL

and H3K27ac QTL effect sizes.
caQTL enrichment in chromatin states
To identify which regulatory elements preferentially contain ca-

Peaks, we compared the number of caPeaks (FDR < 5%) and

non-caPeaks (eigenMT-adjusted p > 0.5) assigned to various liver

tissue chromatin states from Roadmap.3 We tested whether caQTL

variants were enriched in specific liver tissue chromatin states rela-

tive to variants matched for MAF, number of LD proxies, and

distance to nearest gene using the logistic regression model imple-

mented in GARFIELD.60 We defined caQTL variants as signifi-

cantly enriched in a chromatin state if the p value for the logistic

regression beta was less than the Bonferroni-corrected threshold

(alpha of 0.05 for 7 chromatin states) of 7.1 3 10�3 and the

odds ratio was greater than 1. We defined caQTL variants as signif-

icantly depleted in a chromatin state if p < 7.1 3 10�3 and odds

ratio < 1.
Overlap of caPeaks with macrophage ATAC peaks
We retrieved a set of 296,220 ATAC peaks mapped across macro-

phages exposed to four experimental conditions: naive, IFNg stim-

ulation, Salmonella infection, and both exposures4 (see web

resources). To compare peak positions, we used liftOver61 with

the option -minMatch ¼ 0.75 to convert the 3,123 liver caPeaks

from GRCh37 (hg19) to GRCh3817 coordinates. We identified

liver caPeaks that overlapped (defined as sharing at least 1 base)

with a macrophage peak using BEDTools intersect.38 We also

applied liftOver to the macrophage peaks and obtained the same

results.
Transcription factor motif disruption by caQTL variants
We selected 5,378 caQTL variants that resided within a caPeak us-

ing BEDTools intersect38 and that were in strong LD (r2 > 0.8,

calculated with PLINK20) with the caQTL lead variant. To ensure

that each motif occurrence was disrupted by only one variant,

we removed 793 variants located within 30 bp of another caQTL

variant, resulting in 4,585 variants. For both alleles of each caQTL

variant, we extracted the nucleotide sequence for the region con-

taining the variant and the 30 nucleotides on either side of the

variant using the BEDTools slop and getfasta tools.38 We scanned

these sequences for occurrences of 516 non-redundant TF motifs

using Find Individual Motif Occurrences (FIMO)62 with parame-

ters –thresh 0.01–max-stored-scores 1000000–no-qvalue–skip-

matched-sequence –text and only retained motif occurrences

that overlapped caQTL variant positions. For each motif-variant

pair, we selected the strongest motif match (smallest p value) per

allele and only retained motif occurrences that matched strongly

to at least one allele (p < 1 3 10�4). If different motifs for the

same representative TF overlapped the same variant, we selected

the motif with the strongest match.

Similar to a recent study,63 we quantified the difference in motif

match between alleles of a variant using the log ratio of FIMO p

values. The FIMO p value for a given motif occurrence is the prob-

ability of observing a motif occurrence with the same or greater

score, which inherently accounts for differences in score distribu-

tions between different motifs. For a given variant-motif pair, we



definemotif disruption as log10(paw) – log10(pas), where paw and pas

are the FIMO p values for the alleles with the weaker and stronger

motif match, respectively. As motif disruption is always positive,

we classified a motif as disrupted if motif disruption was > 1, cor-

responding to a 10-fold difference in the FIMO p values between

alleles.

We identified motifs whose disruption was associated with

caQTL status using logistic regression. To generate a set of non-

caQTL variants, we first selected peaks with no evidence of genetic

regulation (caQTL eigenMT-adjusted p > 0.5), that overlapped at

least one variant tested in the caQTL analysis and that were similar

to caPeaks in GC content (55%), peak width (520%), and dis-

tance to nearest transcription start site (TSS) of a protein-coding

gene in GENCODE28 (520%). We identified 10 non-caPeaks for

>99% of the caPeaks used in the motif disruption analysis and

defined non-caQTL variants as the 50,054 variants that were

within non-caPeaks and were located more than 30 bp from the

nearest variant. We tested these non-caQTL variants for TF motif

disruption using the same procedure as for caQTL variants and

restricted analysis to the 109 motifs with at least 20 disruptions

by caQTL variants. For each representative TF, we selected the

motif with the most disruptions by caQTL variants to ensure

that we used only one motif per representative TF. We then re-

gressed caQTL status (1 ¼ caQTL, 0 ¼ non-caQTL) against motif

disruption status (1 ¼ disrupted, 0 ¼ not disrupted) for each

motif-variant pair using logistic regression. We classified motif

disruption as associated with caQTL status if the p value for the lo-

gistic regression beta was less than the Bonferroni-corrected

threshold (alpha of 0.05 for 109 motifs) of 4.6 3 10�4. Because

residual differences may exist in peak GC content, width, and dis-

tance to nearest protein coding TSS, we performed logistic regres-

sion with and without these features as covariates and obtained

the same set of significantly enriched motifs.

caPeak target gene identification
We used four methods to identify target genes for caPeaks: prox-

imity to a gene’s TSS, overlap of caPeaks with promoter-centered

chromatin contacts, correlation of caPeaks with peaks at gene pro-

moters or with gene expression, and colocalization of caQTLs and

eQTLs. We excluded genes from the analysis if their Entrez ID did

not map to exactly one Ensembl ID (eQTL data only) or if their

symbol (common name) didn’t map to exactly one Ensembl ID.

When combining results across the four methods, we matched

genes based on Ensembl ID.

TSS proximity

We classified a caPeak as TSS proximal if it was located within 2 kb

upstream and 1 kb downstream of the TSS of any of the 13,782 ex-

pressed genes (median TPM > 1) in our 20 liver samples using

BEDTools closest.38

Promoter-centered chromatin contacts

We obtained promoter-distal and promoter-promoter contacts

mapped in liver tissue using promoter capture Hi-C from a recent

study2 (see web resources). Using described filtering criteria,2 we

selected contacts with p value < 0.01 and interaction frequency

R 5. We identified caPeaks overlapping distal ends of promoter-

distal contacts or either end of promoter-promoter contacts using

BEDTools intersect.38

Correlation of caPeaks with promoter peaks and gene expression

We classified an ATAC-seq peak as the promoter peak for an ex-

pressed gene if it was the closest peak to the TSS of the gene and

it was within 2 kb upstream and 1 kb downstream of the TSS.64

A promoter peak may or may not be a caPeak. We identified
promoter peaks for 10,074 of 13,782 expressed genes. For each

gene with a promoter peak, we identified caPeaks for correlation

that were within 1 Mb of the gene’s TSS but that were not TSS

proximal. For peak and gene counts, we performed library size

normalization and variance-stabilization using DESeq230 and GC

bias-correction using RASQUAL.5 We additionally adjusted peak

counts by the percent of high-quality autosomal alignments

(HQAA) in peaks (a measure of ATAC signal-to-noise), which was

strongly correlated with the first ATAC-seq PC, and gene counts

by the percent of reads mapping to the most expressed gene and

the percent of reads mapping to the top 10 most expressed genes

(geneDiversityProfile_top1pct and geneDiversityProfile_top10pct

metrics from QoRTs29), which were strongly correlated with

RNA-seq PCs 1 and 2, respectively, using the limma removeBatch-

Effects function.65 We then computed the Spearman correlation

between (1) gene expression and caPeaks and (2) promoter peaks

and caPeaks using the cor.test function in R.40 We adjusted for

multiple testing using the BH procedure57 and classified correla-

tions with FDR < 5% as significant.

Colocalization of caQTLs and eQTLs

We obtained liver tissue expression quantitative trait loci (eQTLs)

for 15,668 genes (FDR < 5%) from a meta-analysis of 1,183 indi-

viduals11 and restricted to the 15,418 eQTLs on autosomes. We

calculated LD and haplotype phase between eQTL and caQTL

lead variants using PLINK20 v.1.9 and classified signals as colocal-

ized if these lead variants exhibited strong pairwise LD (r2 > 0.8,

1000G phase 3 Europeans). To compare the direction of effect

for colocalized caQTLs and eQTLs, we compared the sign of the

caQTL effect size (RASQUAL pi statistic - 0.5) and the eQTL effect

size (meta T statistic).

For the caQTL-eQTL colocalizations identified based on LD, we

also assessed colocalization using the Bayesian approach imple-

mented in coloc.66 We ran coloc using p values and minor allele

frequencies because regression coefficients and variances are not

available from the RASQUAL model. coloc estimates five posterior

probabilities (PP): no variant in the tested region affects either trait

(PP0), a variant affects one trait but not the other (PP1 for caQTL

and PP2 for eQTL), different variants affect each trait (PP3, no

colocalization), and the same variant affects both traits (PP4, co-

localization).We considered signals to show strong evidence of co-

localization if PP4 > 0.8, suggestive evidence of colocalization if

PP4 > 0.5, and evidence against colocalization if PP3 > 0.5. If

the sum of PP0, PP1, and PP2 was > 0.5, we concluded that power

was too low to assess colocalization. We note that coloc was de-

signed to operate on results from linear regression or logistic

regression66 and may not be appropriate for the caQTL results

generated from RASQUAL, which combines results from a

negative binomial generalized linear model and tests of allelic

imbalance.5

Colocalization of caQTL and GWAS signals
We downloaded the NHGRI-EBI GWAS catalog67 on October 28,

2019, extracted only single variant associations, and converted

variant genomic coordinates fromGRCh3817 toGRCh37 (hg19) us-

ing liftOver.61We extracted variants associated with 19 trait groups

(p < 5 3 10�8) relevant to liver function and cardiometabolic dis-

eases: liver enzymes, high-density lipoprotein cholesterol (HDL),

low-density lipoprotein cholesterol (LDL), total cholesterol (TC),

triglycerides (TG), cardiovascular disease (CVD), hypertension/

blood pressure (HTBP), type 2 diabetes (T2D), insulin, glucose, gly-

cated albumin, serum albumin, glycated hemoglobin (HbA1c), C-

reactive protein (CRP), bilirubin, body mass index (BMI), waist-hip



ratio adjusted for BMI (WHRadjBMI), liver injury, and non-alco-

holic fatty liver disease (NAFLD). We also included two negative

control traits, height and rheumatoid arthritis, which presumably

have less relevance to the liver.We extracted alleles for each variant

from the dbSNP68 build 151 common variant set (see web re-

sources), restricting tobi-allelic variants. To selectonevariantper as-

sociationsignal,weperformedLDclumping separately foreach trait

using swiss (see web resources); variants in strong LD (r2 > 0.8,

1000G phase 3 Europeans) and within 1 Mb of a variant with a

more significant p value were removed. We calculated LD between

lead caQTL and GWAS variants using PLINK20 v.1.9 and classified

signals in high LD (r2 > 0.8) as colocalized. We made LocusZoom

plots for specific loci using LocusZoom v.1.4.69

To identify liver caQTL-GWAS colocalizations also observed in

blood, we retrieved caQTLs mapped in macrophages exposed to

four experimental conditions4 and activated T cells8 (see web re-

sources). For macrophages, we downloaded the caQTL lead variant

summary statistics and selected significant caQTLs at FDR < 10%

using the same procedure described in the previous report,4 and

we converted the genomic coordinates from GRCh38 to hg19 us-

ing liftOver.61 For T cells, we used the set of publicly available

caQTLs at FDR < 5%mapped to hg19 coordinates.8 For both data-

sets, we identified caQTL signals colocalized with GWAS signals

using the procedure described above. We considered a liver

caQTL-GWAS colocalization to be present in a blood cell type if

the liver and blood caPeaks shared at least one base and if the

lead variant of the blood caQTL was in strong LD (r2 > 0.8) with

the same GWAS variant as the liver caQTL. Blood caQTL lead var-

iants were not tested for colocalization if variants were not in the

1000G LD reference panel.

Transcriptional activity reporter assays
HepG2 hepatocyte cells were cultured in MEM-alpha supple-

mented with 10% FBS and 1 mM sodium pyruvate, THP-1 mono-

cyte cells were cultured in RPMI-1640 supplemented with 10%

FBS, and both cell types were maintained at 37�C with 5% CO2.

To test haplotypic differences in transcriptional activity, we de-

signed PCR primers (50-TATGTTGCACAGGCTGGTCT-30 and 50-
GGCAATAACGCCCACCTC-30) to amplify a 666-bp DNA element

(chr16:11,644,551–11,645,216) spanning the ATAC-seq peak and

containing variants rs3784924, rs11644920, and rs57792815,

and we generated PCR products using DNA from individuals ho-

mozygous for both haplotypes. We cloned the derived PCR prod-

ucts into luciferase reporter vector pGL4.23 (Promega) as described

previously.70 The day before transfection, we plated 120,000

HepG2 cells, and on the day of transfection, we plated 300,000

THP-1 cells. We transfected duplicate wells with four to five

sequence-verified independent constructs for each haplotype.

We co-transfected wells with phRL-TK Renilla reporter vector

using lipofectamine 3000 (Life Technologies) following the manu-

facturer’s protocol. To induce differentiation into macrophages,71

we added 100 nM 1a,25-Dihydroxyvitamin D3 (Sigma) to the

THP-1 cells at the time of transfection. To obtain activated macro-

phages, we added 100 ng/mL lipopolysaccharides (Sigma) to

vitamin D3-treated cells 24 h after transfection and incubated cells

for an additional 24 h. Firefly luciferase activity was measured 48 h

post-transfection and normalized to Renilla activity to adjust for

differences in transfection efficiency. Fold-changes in luciferase ac-

tivity were calculated relative to an empty pGL4.23 vector, and sta-

tistical differences in activity were determined using two-tailed

Student’s t tests. We repeated transcriptional activity experiments

on a separate day and obtained equivalent results.
Electrophoretic mobility shift assays (EMSAs)
We designed and annealed 3 biotin-labeled and unlabeled 17-bp

complementary oligonucleotide probes centered on each of vari-

ants rs3784924, rs11644920, and rs57792815. We conducted

EMSAs using the LightShift Chemiluminescent EMSA kit (Thermo

Scientific) following the manufacturer’s protocol. The binding re-

actions consisted of 6 mg HepG2 nuclear extract (NE-PER Kit,

Thermo Fisher Scientific), 1 mg poly(dI-dC), 1x binding buffer,

and 400 fmol biotinylated oligonucleotide as described previ-

ously.70 To test the specificity of the protein complexes to each

allele, we added 10-fold excess unlabeled probes. Protein-DNA

complexes were resolved by gel electrophoresis and transferred

and detected by chemiluminescence as described previously.70

We repeated EMSA experiments on a separate day and obtained

equivalent results.

Results

Joint profiling of gene expression and chromatin

accessibility in human liver tissue

We obtained liver tissue from 20 deceased donors from the

St. Jude liver bank (Table S1) and profiled gene expression

using RNA-seq and chromatin accessibility using ATAC-

seq32 (Figure 1A). All RNA libraries had RNA integrity num-

ber (RIN) of at least 6.5, and the median RIN value was 8

(Table S2), indicating that we extracted high-quality

RNA. We identified 13,782 expressed genes, 13,317 of

which are on autosomal chromosomes (Tables S2–S4;

Figure S1). By generating triplicate ATAC-seq libraries, we

obtained an average of 204million high-quality autosomal

ATAC-seq alignments (HQAAs) per sample and all libraries

had>13% of HQAAs within peaks and TSS enrichment> 4

(Tables S5–S7; Figure S2), indicating that we generated li-

braries from tissue with high signal-to-noise. We identified

223,265 consensus accessible chromatin regions (peaks)

with median peak width of 617 base pairs (Figure 1B).

To predict the regulatory function of ATAC-seq peaks, we

assigned peaks to liver tissue chromatin states from the

Roadmap Epigenomics Project3 and tested for enrichment

of transcription factor (TF) binding sites and motifs in

peaks. Among all 223,265 peaks, 34% were located in en-

hancers and 10% in promoters, and among the 50,000

most accessible peaks, ranked by median DESeq2 normal-

ized count across individuals, 54% were located in en-

hancers and 38% in promoters (Figure 1C). These results

indicate that the strongest peaks were mostly located in

promoters and enhancers, as expected, but that weaker

peaks observed in at least three individuals were located

in less well-characterized regions. We found 90 TF motifs

enriched in peaks (E-value < 1 3 10�100; Table S8),

including motifs for HNF4G (MIM: 605966), FOXA family

members (HNF3), CEBPB72 (MIM: 189965), the multifac-

eted protein CTCF73 (MIM: 604167), and KLF family mem-

bers, which regulate numerous processes in liver.74 Of 17

TFs with ChIP-seq data in liver tissue,45 binding sites for

all TFs were significantly enriched (permutation p < 1 3

10�3) in ATAC peaks (Table S9), and 11 TFs had over 90%

of their binding sites within ATAC peaks (Table S9), similar
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Figure 1. Joint profiling of gene expres-
sion and chromatin accessibility in human
liver tissue
(A) RNA-seq and ATAC-seq was performed
in liver samples from 20 donors.
(B) Distribution of consensus ATAC peak
widths in base pairs.
(C) Percent of consensus ATAC peaks by
chromatin state in liver tissue from the
Roadmap Epigenomics Project. All peaks,
gray; 50,000 most accessible consensus
peaks, black; quiescent represents unanno-
tated regions.
(D) Heritability enrichment of GWAS vari-
ants for multiple traits in all 223,265 liver
ATAC peaks using stratified LD score regres-
sion. Points represent fold enrichment (pro-
portion of heritability divided by propor-
tion of SNPs within ATAC peaks) and error
bars represent standard error. Significant
enrichment (enrichment_p < 0.05), black;
non-significant enrichment (enrichment_p
> 0.05), gray.
(E) Comparison of the distribution of
expression between genes with and without
an ATAC peak overlapping the transcription
start site (TSS).
to previous findings.15 Taken together, ATAC peaksmarked

previously annotated transcriptional regulatory elements

and TF binding sites in liver tissue.

We tested whether liver ATAC peaks were enriched for

heritability of liver-relevant traits using stratified LD score

regression.47 We observed significant heritability enrich-

ment (p < 0.05) for 11 of 13 tested traits (Figure 1D), and

total cholesterol displayed the strongest enrichment

(enrichment ¼ 14.2, p ¼ 7.2 3 10�5). We also observed

strong enrichments (fold enrichment> 10) for LDL choles-

terol and the liver enzymes. Heritability enrichment for

cholesterol traits in liver regulatory elements marked by

H3K4me1 has been previously identified,47 consistent

with our results. As expected, we did not observe signifi-

cant enrichment for rheumatoid arthritis and body mass
index.47 These results indicate that

liver ATAC peaks are enriched for ge-

netic variants associated with liver-

relevant traits.

We next determined whether genes

with ATAC peaks at their transcription

start site (TSS) were more likely to be

expressed compared to genes without

TSS peaks. A larger proportion of ex-

pressed genes had an ATAC peak

directly overlapping the TSS (9,904 of

13,317, 74%) compared to non-ex-

pressed genes (9,975 of 41,532, 24%).

Similarly, genes with a peak at the TSS

tended to have higher expression

than genes without a peak at the TSS

(Figure 1E; Kolmogorov-Smirnov test,
p < 2.2 3 10�16). Together, the data provide high-quality

gene expression and chromatin accessibility profiles in hu-

man liver tissue.

Identification of genetic variants associated with liver

chromatin accessibility

We identified chromatin accessibility quantitative trait loci

(caQTLs) using RASQUAL5 and two distance thresholds:

variants within 100 kilobases (kb) and within 1 kb of

peak centers (Figures 2A and S3–S5; Tables S10–S12).

Testing variants within 100 kb of peak centers, we

identified significant caQTLs for 1,770 peaks (caPeaks),

corresponding to 1,740 unique lead caQTL variants

(Figure 2A; Table S11). For a substantial portion of caPeaks,

the lead caQTL variant was within 1 kb of the caPeak center



Figure 2. Identification and characteriza-
tion of caQTLs
(A) caQTLs identified using variants within
100 kb or 1 kb of peak centers.
(B) Comparison of effect sizes between
caQTLs and simple allelic imbalance (Pear-
son’s R ¼ 0.75). The red line is the one-to-
one line for caQTL effect sizes.
(C) Comparison of effect sizes between
caQTLs and H3K27ac QTLs (Pearson’s R ¼
0.40). The red line is the one-to-one line
for caQTL effect sizes.
(D) Comparison of the number of caPeaks
and non-caPeaks assigned to each chro-
matin state in liver tissue from the Road-
map Epigenomics Project. caPeaks, purple;
non-caPeaks, gray; quiescent represents un-
annotated regions.
(E) Enrichment of caQTL variants in liver
chromatin states. Error bars represent 95%
confidence intervals. * indicates significant
enrichment (p < 0.0071).
(n ¼ 692, 39%, Figures S4B and S4C), and 654 of these 692

variants were within the caPeak. Testing variants within 1

kb of peak centers, we identified a significant caQTL for

3,123 peaks (Figure 2A; Table S12). We likely identified

more caQTLs using a smaller window size because of a

reduced multiple testing burden. We used this set of

3,123 caQTLs for all subsequent analyses unless noted

otherwise.

We next tested whether any caQTLs were strongly influ-

enced by a single sample. Of the 3,123 caQTLs, 355 were

no longer significant when one specific sample was

removed, but remained significant when any other sample

was removed (TableS12).However, all but6 remainednomi-

nally significant (p < 0.05). The most common influential
sample (sample 459) accounted for

only 48 of the 355 caQTLs (14%) and

had the highest percent of HQAA

within peaks (Table S12), indicating

that this samplehashighquality. Taken

together, the vast majority of the

caQTLs are not strongly influenced by

one sample.

To compare the RASQUAL model to

another method that accounts for

allelic mapping bias, we used WASP

to remove reads exhibiting allelic map-

ping bias54 and then calculated AI.

1,912 (81%) caQTLs identified by

RASQUAL exhibited nominal (beta-

binomial p < 0.05) and 1,112 (47%)

exhibited genome-wide AI (FDR <

5%), all with the same direction of ef-

fect as the caQTL (Table S13). Lead

caQTL variants and representative AI

variants exhibiting nominal AI

showed strongly correlated effect sizes
(Pearson’s R ¼ 0.75, Figure 2B). AI effect sizes tended to be

larger than caQTL effect sizes (Figure 2B), possibly because

AI was calculated using individual variants whereas

caQTLs were identified using entire peaks. Therefore, we

conclude that allelic mapping bias has no systematic effect

on the caQTL results.

To determine the extent of shared genetic effects across

different markers of transcriptional regulatory elements,

we compared the 3,123 caQTLs to 921 H3K27ac QTLs

from a recent report.12 Of the 921 H3K27ac QTL peaks,

77 (8%) overlap a caPeak and have a lead variant in strong

LD (r2 > 0.8) with the caQTL lead (Table S14). The 77 colo-

calized caQTL-H3K27ac QTL signals all showed the same

direction of effect, and their effect sizes were moderately
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Figure 3. Disruption of TF binding motifs by caQTL variants
(A) Allele affinities for TF binding and chromatin accessibility for
variants within caPeaks and in strong LD with the caQTL lead
variant (r2 > 0.8).
(B) Association of caQTL status with motif disruption status. Only
the 109 TFs with at least 20 motifs disrupted by caQTL variants
correlated (Pearson’s R ¼ 0.40, Figure 2C). The largely

distinct results may be due to the small sample sizes, anal-

ysis differences, and different genetic effects on the two

epigenetic marks.

To predict the regulatory function of caPeaks, we

compared caPeaks to liver tissue chromatin states from

the Roadmap Epigenomics Consortium.3 Relative to non-

caPeaks (eigenMT-adjusted p > 0.5), caPeaks were more

frequently located in enhancers (48.6% versus 33.0%)

and promoters (11.7% versus 9.3%) (Figure 2D). caQTL

variants were significantly enriched in enhancers (OR ¼
2.9), promoters (OR ¼ 2.0), and transcribed regions (OR

¼ 1.8) and depleted in polycomb (OR ¼ 0.5) and hetero-

chromatin (OR ¼ 0.6) states, which are associated with

gene repression and presumably inaccessible chromatin

(Figure 2E, Table S15). Taken together, caQTLs showed

strong overlap with active transcriptional regulatory ele-

ments, with particularly strong enrichment in enhancers.

To identify liver caQTLs that would not be identified in

blood, we counted liver caPeaks that overlapped macro-

phage ATAC peaks,4 using all macrophage ATAC peaks,

not just caPeaks, due to limited sample sizes. Of the liver

caPeaks, 1,268 (41%) overlapped a macrophage ATAC

peak (Table S12), suggesting that 59% of liver caQTLs

mark regulatory elements not present in macrophages.

This estimate is likely conservative because we included

macrophage ATAC peaks that do not have caQTLs and

demonstrates the importance of mapping caQTLs in a

diverse set of tissues.
Disruption of transcription factor binding motifs by

caQTLs

One way genetic variants may alter chromatin accessibility

is by disrupting TF binding sites.5,6,8 Among 4,585 variants

within a caPeak and in strong LD with the caQTL lead,

3,132 (68%) variants altered the binding affinity of a TF

motif (Figure 3A; Table S16). Of the 2,793 caPeaks contain-

ing a variant, 2,249 (81%) contained at least one variant

predicted to disrupt a motif, and 602 of these contained

2 or more predicted motif-disrupting variants. Motifs for

many TFs were disrupted by multiple caQTL variants,

with 109 TF motifs disrupted by 20 or more variants (Table

S16). Disruption of motifs for 29 of these 109 TFs was

significantly associated with caQTL status (logn OR > 0, p

< 4.6 3 10�4) (Figure 3B; Table S17), including TFs from

the HNF, FOXA, and CEBP families,72 CTCF, and ATF2

(MIM: 123811). FOXA and CEBP factors can act as pioneer

factors by binding to inaccessible chromatin and initiating

the establishment of accessible chromatin75 and ATF2 can
were included in the analysis, and only the 29 significant associa-
tions (p < 4.6 3 10�4) are shown. Error bars indicate 95% confi-
dence intervals.
(C) Percent of disrupted motifs for which the allele with higher
chromatin accessibility matched the motif better. Percents are
shown for the 29 TFs that had at least 20 motifs disrupted by
caQTL variants. Black line, percent for all disrupted motifs across
all tested TFs; red line, average percent across the 29 TFs.
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Figure 4. Prediction of target genes for caPeaks using four approaches
(A) Illustrations of four approaches to predict caPeak target genes.
(B) Hi-C chromatin contact shown as an arc between caPeak191932 and the SNX10 promoter. Selected ATAC-seq signal tracks are shown
for each caQTL genotype of rs12534816. More accessible homozygotes, purple; heterozygotes, black.
(C) Genome browser image showing the correlation across rs12740374 genotypes of caPeak9372 and a peak at a SORT1 promoter. The
purple arrow indicates the caPeak and the gray arrow indicates the promoter peak.
(D) The same peak correlation with points representing normalized peak counts of individual samples colored by rs12740374 genotype.

(legend continued on next page)



alter chromatin structure to activate or repress transcrip-

tion,76 suggesting that this approach identifies TFs that

may influence chromatin accessibility.

To investigate how often TFs bind the more accessible

allele, we compared alleles associated with higher chro-

matin accessibility to the motifs. Among 7,629 motifs for

all TFs, the more accessible allele matched the motif better

for 4,770 motifs (63%, binomial p < 4.1 3 10�107). Simi-

larly, among 3,132 motifs for the highest expressed TF at

each variant, the more accessible allele matched the motif

better for 1,953 motifs (62%, binomial p < 8.0 3 10�44).

When restricting analysis to 993 observations of the 29

TFs for which motif disruption is associated with caQTL

status, the more accessible allele matched the motif better

for 834 motifs (84%, binomial p < 5.1 3 10�111). TFs ex-

hibited variation in the percent of motifs that matched

better to the more accessible allele (Figure 3C). For 11

TFs, including HNF4A (MIM: 600281), ATF4 (MIM:

604064), ERF (MIM: 611888), and FOXA2 (MIM:

600288), more than 90% of stronger motif matches corre-

sponded to the more accessible allele, while for SPI1 (MIM:

165170) only 56% of strongermotif matches corresponded

to the more accessible allele. These results suggest that TFs

typically, but not always, bind to themore accessible allele.

Identifying putative target genes for caPeaks

Connecting caPeaks to their target genes is challenging,

particularly when the caPeaks are distal to transcription

start sites (TSSs). Individual approaches for identifying

target genes have limitations and may not always show a

direct regulatory relationship between a caPeak and gene.

To address these challenges, we used four approaches to

connect caPeaks to genes (Figure 4A).

First, we identified caPeaks proximal (�2 kb/þ1 kb) to

TSSs of genes expressed in liver. Of 3,123 total caPeaks,

114 (4%) were proximal to the TSS of at least 1 gene.

Among these 114 caPeaks, 15 were proximal to the TSS

of two or three genes (Table S18). This approach identified

131 unique caPeak-gene connections (Figure 4A).

Second, we used liver tissue promoter capture Hi-C2 to

identify caPeaks that physically interact with gene pro-

moters. We identified 329 distal caPeaks (>15 kb from

any promoter as defined in the Hi-C analysis) that interact

with promoters for 451 genes (Table S18), including a ca-

Peak that interacts with the promoter of SNX10 (MIM:

614780; Figures 4B and S6A). The caPeak near SNX10 was

identified even though only two genotypes were observed

in these samples, demonstrating that caQTL effect sizes

can be large. Among caPeaks that overlapped the promoter
(E and F) SORT1 eQTL associations at the signal colocalized with the c
(F). In both plots, the caQTL lead variant within 1 kb of the peak cente
3 Europeans.
(G) Comparison of directions of effect among all colocalized caQTL a
than C, and more red marks indicate higher gene expression.
(H) UpSet plot comparing the number of shared and unique caPeak-g
caPeak-gene pair to be predicted using all four methods because if a
gene and it cannot be a distal caPeak correlated with the promoter p
of one gene and interact with the promoter of another

gene, we identified an additional 104 caPeaks that interact

with promoters of 190 genes. Combining promoter-distal

and promoter-promoter interactions, we identified 697 ca-

Peak-gene connections (Figure 4A; Table S18).

Third, we identified caPeak sizes that either correlated

with expression level of nearby genes or with the size of

ATAC peaks at promoters. More caPeaks were correlated

with promoter ATAC peaks than with gene expression

level; 120 caPeaks were significantly correlated (FDR <

5%) with promoter ATAC peaks while only 2 caPeaks

were correlated with gene expression (FDR< 5%), resulting

in 121 unique caPeaks because gene RP11-101E14.2 had

both types of correlations (Table S18; Figure 4A). When us-

ing the same p value threshold for both analyses (p< 2.93

10�4), 5 additional caPeaks were correlated with gene

expression. As an example at a regulatory element previ-

ously shown to regulate SORT177 (MIM: 602458), ca-

Peak9372 is positively correlated with a peak proximal to

a SORT1 TSS (peak9400, Spearman rho ¼ 0.76, p < 1.6 3

10�4; Figures 4C, 4D, and S6B; Table S18) and nominally

correlated with SORT1 expression (Spearman rho ¼ 0.69,

p < 1.2 3 10�3; Table S18). The vast majority of peak-

peak correlations (167 of 173, 97%) are positive, suggesting

that higher caPeak accessibility is usually associated with

higher accessibility of connected promoter peaks (Table

S18). Using either caPeak-promoter peak or caPeak-gene

correlations, we identified 196 caPeak-gene connections

(Figure 4A; Table S18).

Finally, we identified caQTLs for which the lead variant

exhibited high LD (r2 > 0.8) with an eQTL lead variant

for 15,418 autosomal genes from a liver tissue eQTL

meta-analysis of 1,183 individuals.11 Of 3,119 unique

caQTL lead variants, 414 (13%) were in strong LD with at

least 1 eQTL lead variant (Table S18), which is similar to

the percentage reported in a previous caQTL study.6

Among caQTL lead variants, 71 were in strong LD with

more than one eQTL lead variant, suggesting that some ca-

Peaks may affect expression of multiple genes. In total, we

identified 463 target genes for 415 caPeaks, representing

506 unique caPeak-gene connections (Figure 4A; Table

S18). For example, we identified a caQTL signal with the

same variants as an eQTL signal for SORT1 (Figures 4E

and 4F). At connected loci, the allele associated with

higher chromatin accessibility was usually associated

with higher gene expression (390 of 506 loci, 77%;

Figure 4G), suggesting caPeaks frequently act as promoters

or enhancers to gene expression. We obtained a similar

result when restricting to caQTL variants associated with
aQTL for caPeak9372 (E) and caQTL associations with caPeak9372
r is indicated by a purple diamond and LD is based on 1000G phase

nd eQTL signals. The A allele represents the more accessible allele

ene links identified by the four approaches. It is not possible for a
caPeak is TSS proximal, it cannot form a Hi-C loop with the same
eak for the same gene.



only one peak and colocalized with eQTL variants associ-

ated with only one gene (273 of 337 loci, 81%). Of the

506 caQTL-eQTL signals colocalized based on LD, 28

showed strong evidence of colocalization using coloc66

(PP4 > 0.8), and an additional 48 showed suggestive evi-

dence of colocalization (PP4 > 0.5 but < 0.8) (Table S18).

Of the 430 signals that did not show suggestive evidence

of colocalization, 409 (95%) did not have sufficient power

to detect colocalization (PP0þPP1þPP2 > 0.5) and no sig-

nals showed evidence of separate, but not colocalized sig-

nals (PP3 > 0.5). Therefore, we conclude that the study is

underpowered to detect colocalizations using coloc.

Together the four methods identified a total of 1,461 ca-

Peak-gene connections, although the approaches showed

low overlap. Only 69 caPeak-gene connections were pre-

dicted by two methods, and no connections by three

methods, likely due to the low power of many of the ap-

proaches (Figure 4H; Table S18). The 69 caPeak-gene asso-

ciations consist of 67 unique caPeaks and 67 unique genes;

two caPeaks had two target genes. It is not possible for a ca-

Peak-gene pair to be predicted using all four methods

because if a caPeak is TSS proximal, it cannot be found

within the distal end of a Hi-C loop >15 kb from the

same TSS and it cannot be a distal caPeak correlated with

the promoter peak for the same gene. Thus, the only

method that can corroborate TSS proximity is caQTL-

eQTL colocalization. Of the 131 caPeak-gene connections

identified by TSS proximity, 32 (24%) were supported by

caQTL-eQTL colocalization. In addition, when considering

peak correlations for which the distal caPeak was tested by

other approaches, 98 of 307 (32%) caQTL-eQTL colocaliza-

tions and 108 of 436 (25%) Hi-C loops showed at least

nominal (p < 0.05) evidence. These methods are limited

by power and technical factors, suggesting that the 69 ca-

Peak-gene connections identified by two methods may

be a conservative estimate. This integrated approach pre-

dicted a target gene for 861 of 3,123 caPeaks (28%), sug-

gesting that caPeaks frequently interact with genes.

Prediction of regulatory mechanisms at GWAS loci

To identify genetic variants that may influence disease by

altering chromatin accessibility, we identified colocalized

caQTL and GWAS signals, based on strong LD (r2 > 0.8) be-

tween lead caQTLs and lead GWAS variants. Using GWAS

variants for 19 traits relevant to liver function and cardio-

metabolic traits from the NHGRI-EBI GWAS catalog67 (Ta-

ble S19), we identified 110 potentially colocalized caQTL

and GWAS signals, corresponding to 111 caPeaks, because

one caQTL signal was associated with two caPeaks (Table

S20). We identified at least one colocalized caQTL for 15

of the 19 traits, and of the GWAS signals for these traits,

liver enzymes showed the highest percentage of poten-

tially colocalized caQTLs (14 signals, 18%) (Table 1). For

traits with at least 5 GWAS-caQTL signals, we identified a

relatively high percentage of colocalized signals (>5%)

for total cholesterol and LDL cholesterol, consistent with

the involvement of liver in lipid metabolism.10 As a nega-
tive control, we observed a relatively low percentage (<2%)

of GWAS signals colocalized with liver caQTLs for height

and rheumatoid arthritis (Table S21).

Only 26 of the 143 (18%) liver caQTL-GWAS colocaliza-

tions were observed using blood caQTL datasets (Table

S20). For liver enzymes, total cholesterol, and LDL choles-

terol, respectively, only 3 of 14, 3 of 18, and 2 of 13 liver

caQTL-GWAS colocalizations were observed in blood (Ta-

ble S21). GWAS signals for liver enzymes were colocalized

with a higher percentage of liver caQTLs (0.51%) than

each of the blood cell type caQTLs (0.06%–0.12%),

whereas GWAS signals for rheumatoid arthritis were colo-

calized with a higher percentage of blood caQTLs

(0.09%–0.21%) than liver caQTLs (0.06%) (Table S22).

However, many of these colocalization differences be-

tween liver and blood may be due to limited caQTL sample

sizes. Larger studies using identical caQTL pipelines are

needed to robustly identify cell type-specific caQTL-

GWAS colocalizations.

To identify plausible regulatory mechanisms at GWAS

loci, we integrated our GWAS-colocalized caQTLs with TF

motif-disrupting variants and predicted caPeak target

genes. Of the 111 caPeaks at potentially colocalized

caQTL-GWAS signals for liver function or cardiometabolic

traits, 85 harbored a TF motif-disrupting variant, 56 had a

predicted target gene, and 45 of these overlapped with

both types of data. The gene with a TSS closest to the

GWAS lead variant was predicted to be a target gene for

25 of 56 caPeaks (45%).

We identified seven liver function or cardiometabolic

GWAS-caQTL colocalized signals with strong evidence of

regulatory mechanisms. At these GWAS loci, the caPeak

had a target gene identified by two approaches and

harbored TF motif-disrupting variants (Table 2). We identi-

fied colocalized caQTL, eQTL, and GWAS signals and a

correlated caPeak-promoter peak pair (Tables 2 and S20;

Figures 4C–4F) at the SORT1 locus associated with LDL

cholesterol for which the alternate allele (rs12740374-T)

has been shown to create a CEBP binding site and increase

hepatic SORT1 expression.77 At a less well-characterized lo-

cus, the caQTL signal with lead variant rs13395911 associ-

ated with caPeak119621 is colocalized with GWAS signals

for plasma liver enzyme levels in European48 and Asian78

individuals and an eQTL for EFHD111 (MIM: 611617; Fig-

ures 5A–5C and S7). Increased accessibility corresponds

to higher EFHD1 expression level and higher liver enzyme

levels. caPeak119621 physically interacts with the pro-

moter of EFHD1 in liver tissue promoter capture Hi-C

data2 (Figure 5D), further suggesting that caPeak119621

may affect EFHD1 expression. CaPeak119621 does not

overlap an ATAC peak in macrophages4 (Table S12). The

peak overlaps ChIP-seq peaks for 12 TFs in liver

(Figure 5E), and rs13395911 disrupts motifs for eight TFs

expressed in liver (Tables S16 and S20). The motif with

the largest difference between rs13395911 alleles is for

FOXA2, and the allele with higher chromatin accessibility

matches the motif better (Figure 5F). These and other



Table 1. Colocalized GWAS-caQTL signals by trait

Trait
Number of
GWAS signalsa

Number of colocalized
caQTL-GWAS signalsb

Percent of colocalized
caQTL-GWAS signalsc

Liver enzymes 77 14 18.2

Total cholesterol 292 18 6.2

Glucose 54 3 5.6

Insulin 18 1 5.6

LDL cholesterol 240 13 5.4

Bilirubin 20 1 5.0

HDL cholesterol 314 12 3.8

C-reactive protein 81 3 3.7

Triglycerides 279 10 3.6

Cardiovascular disease 454 14 3.1

Body mass index 986 29 2.9

Blood pressure 1,540 38 2.5

Type 2 diabetes 268 5 1.9

HbA1c 66 1 1.5

WHRadjBMI 209 3 1.4

Glycated albumin 2 0 0.0

Liver injury 17 0 0.0

NAFLD 9 0 0.0

Serum albumin 15 0 0.0

LDL, low-density lipoprotein; HDL, high-density lipoprotein; WHRadjBMI, waist-hip ratio adjusted for BMI; NAFLD, non-alcoholic fatty liver disease.
aCounted as lead GWAS variants not in high LD (r2 < 0.8) with another.
bColocalized if the caQTL lead variant was in strong LD (r2 > 0.8) with the GWAS lead.
cPercent of all GWAS signals that are colocalized with a caQTL.
connections provide potential regulatory mechanisms

linking variants to regulatory element, transcription fac-

tors and genes that may influence the GWAS traits.

Identification of a putative functional variant at the

LITAF locus

Near LITAF (MIM: 603795), which encodes lipopolysaccha-

ride (LPS)-induced TNF factor, we identified a caQTL signal

for caPeak75869 and tested variants for allelic differences in

transcriptional activity and protein binding. This caQTL

signal is potentially colocalized with a GWAS signal for

LDL cholesterol79 and an eQTL signal for LITAF11 (Figures

6A, 6B, and S8). caPeak75869 loops to the promoter of LI-

TAF in liver tissue promoter capture Hi-C2 (Figure 6C). ca-

Peak75869 contains the lead caQTL variant rs57792815

(caQTL p < 5.0 3 10�17) and two additional variants in

strong LD with the caQTL lead, rs3784924 (r2 ¼ 0.95) and

rs11644920 (r2 ¼ 0.98). The haplotype associated with

higher accessibility consists of the rs57792815-T,

rs3784924-A, and rs11644920-A alleles. We tested a 666-

bp DNA construct spanning the three variants for haplo-

type differences in transcriptional activity using luciferase

reporter assays, testing the construct in two orientations

relative to a minimal promoter. Given that LITAF is

involved in lipopolysaccharide (LPS)-stimulated immune
response,80 we tested transcriptional activity in four cell

types: HepG2hepatocytes, THP-1monocytes, THP-1 differ-

entiated macrophages, and LPS-stimulated THP-1 macro-

phages. In all four cell types, the forward orientation

construct containing the alleles associated with higher

accessibility showed significantly higher transcriptional ac-

tivity than the construct containing the other alleles, with

the strongest differences observed in hepatocytes (fold

change ¼ 2.49, p ¼ 2 3 10�4) and LPS-stimulated macro-

phages (fold change ¼ 1.39, p ¼ 7 3 10�4; Figure 6D). The

same haplotype showed significantly higher transcrip-

tional activity in the reverse orientation for hepatocytes

(p ¼ 1 3 10�4) and unstimulated macrophages (p ¼ 0.02)

and a trend toward higher transcriptional activity in the

other cell types (Figure S8G). Although allelic differences

were observed in all four cell types, caPeak75869 does not

overlap an ATAC peak in macrophages4 (Table S12). We

next tested each of the three haplotype variants for allelic

differences in protein binding using nuclear extract from

HepG2 cells. Only rs11644920 showed allele-specific bind-

ing, with the Tallele showing increased binding (Figures 6E

and S8H). caPeak75869 contained liver ChIP-seq binding

sites for numerous TFs and all three variants within the

peak disrupted motifs (Figure 6F; Tables S16 and S20). We

focused on the motif disrupted by rs11644920 because it



Table 2. Selected caQTLs at GWAS loci

caQTL variant caPeak GWAS variant GWAS trait LD r2 a Gene Methodsb
caQTL, eQTL
directionsc

rs12740374 peak9372 rs12740374 LDL cholesterol 1.00 SORT1 eQTL, Corr D, D

rs17276527 peak13768 rs4077194 HDL cholesterol 1.00 RALGPS2 eQTL, HiC D, D

rs13395911 peak119621 rs13395911 ALT 1.00 EFHD1 eQTL, HiC I, I

rs2232015 peak9185 rs1730859 LDL cholesterol 0.97 PRMT6 TSS, eQTL D, D

rs2037517 peak71475 rs832890 Pulse pressure 0.90 PLEKHO2 eQTL, HiC D, D

rs12677006 peak205272 rs1906672 Sys. blood pressure 0.89 DDHD2 eQTL, HiC I, I

rs57792815 peak75869 rs34318965 LDL cholesterol 0.81 LITAF eQTL, HiC I, I

Loci are shown for shared caQTL-GWAS signals if the caPeak was linked to a target gene by twomethods and if the caPeak harbored motif-disrupting variants. ALT,
alanine aminotransferase levels; Sys, systolic.
aLD r2 between the caQTL and GWAS lead variants.
bMethods that linked the caPeak to a gene. Corr, correlation between caPeak and promoter peak accessibility.
cDirection of chromatin accessibility and gene expression relative to the allele associated with an increase in the GWAS trait, where ‘‘I’’ indicates increased and ‘‘D’’
indicates decreased accessibility or expression. Additional traits and loci are listed in Table S20.
was the only variant that showed allelic differences in bind-

ing in the EMSA results. Variant rs11644920 disrupted a

motif for ATF2, and the A allele matched the motif better

(Figure S8I), which is also the allele associated with higher

chromatin accessibility. This result contrasts the EMSA re-

sults, which showed greater binding for the T allele.

Together, these results suggest that altered transcription fac-

tor binding at rs11644920 and increased chromatin accessi-

bility of the regulatory element marked by caPeak75869

may lead to increased transcriptional activity andhigher LI-

TAF expression.

Discussion

We profiled chromatin accessibility in 20 individuals and

identified caQTLs in human liver tissue. caQTL variants

frequently disrupt TF binding motifs, and alleles that bet-

ter match a motif often have higher chromatin accessi-

bility, consistent with TFs stabilizing chromatin in an

accessible state. We identified 1,461 putative caPeak-gene

links using four approaches, suggesting that caPeaks

frequently regulate gene expression. We identified 110

caQTLs at GWAS signals, including 56 with a predicted ca-

Peak target gene, identifying regulatory mechanisms that

may be responsible for trait variation. Among variants at

a colocalized caQTL, eQTL, and LDL cholesterol GWAS

signal near LITAF, one variant showed allelic differences

in transcriptional activity and in vitro TF binding. This

study contributes to the epigenomic characterization of

human liver tissue and will aid in functional characteriza-

tion of GWAS loci that act in liver.

Combining caQTLs, caPeak-gene links, and disrupted TF

motifshelps identifymechanismsatGWAS loci. At thewell-

characterized SORT1GWAS locus for lipid and cardiovascu-

lar traits,77 we showed that the previously described func-

tional variant rs12740374 is associated with chromatin

accessibility and that the caPeak containing this variant is

correlatedwith a peak at the SORT1 promoter.We also iden-

tified plausible regulatory mechanisms at less well-charac-
terized loci. At a GWAS signal for BMI81 and LDL choles-

terol,79 we identified a caQTL potentially colocalized with

a PRMT6 (MIM: 608274) eQTL signal and observed that

the caPeak overlapped the PRMT6 TSS. PRMT6 has been

shown to regulate hepatic glucose metabolism in mice.82

Our data suggest that a variant at this locus may increase

chromatin accessibility and alter TF binding at the PRMT6

TSS, leading to higher PRMT6 expression and decreased

LDL cholesterol (Table S20). At a GWAS locus for plasma

liver enzyme levels,48,78 we predicted EFHD1 as a target

gene based on both caQTL-eQTL colocalization and a pro-

moter capture Hi-C link. While EFHD1 is expressed in liver

tissue, the GTEx portal shows that expression is much

higher in other tissues,1 and the gene’s roles in liver have

not been characterized.83 The caPeak at this locus does

not overlap an ATAC peak in macrophages4 (Table S12),

but additional experiments, such as single nucleus ATAC-

seq, are needed to determine the relevant cell type within

liver tissue. Our data suggest that EFHD1 may be a target

gene at this locus and act through one or more of the cell

types in liver tissue. These and other results highlight the

utility of caQTLs to identify mechanisms at GWAS loci.

At the LITAF locus, we provided direct evidence that

variant rs11644920 can alter transcriptional regulation.

Here, the caQTL, liver eQTL, and LDL cholesterol GWAS

signals are colocalized, and the variant, mechanism, and

cell type responsible for these associations were unknown.

LITAF encodes a transcription factor that can mediate

effects on inflammation,80 suggesting a potential role in

hepatocytes and/ormacrophages in an inflammatory envi-

ronment. We showed that variants in the caPeak alter tran-

scriptional reporter activity in hepatocytes, monocytes,

macrophages, and lipopolysaccharide-stimulated macro-

phages. In all cell types, the caPeak showed a similar

magnitude of enhancer activity and alleles showed differ-

ences in transcriptional activity, suggesting that the

variant may act in any or all of these cell types. The caPeak

at this locus does not overlap an ATAC peak in macro-

phages4 (Table S12), but additional experiments, such as
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Figure 5. A plausible regulatory mechanism at the EFHD1 locus for plasma liver enzyme levels
(A–C) GWAS association with plasma levels of the liver enzyme alanine transaminase in Japanese individuals (A), eQTL association for
EFHD1 (B), and caQTL associations for caPeak119621 (C). For all three plots, the caQTL lead variant within 1 kb of the peak center is
indicated by a purple diamond and LD is based on 1000G phase 3 East Asians (A) or Europeans (B and C). Additional plots are shown
in Figure S7.
(D) Hi-C chromatin contact shown as an arc between caPeak119621 and the EFHD1 promoter. Selected ATAC-seq signal tracks are shown
for each rs13395911 genotype. More accessible homozygotes, purple; heterozygotes, black; less accessible homozygote, gray.
(E) Transcription factor ChIP-seq peaks in liver tissue from ENCODE that overlap caPeak119621.
(F) Sequence logo plot for the FOXA2motif s disrupted by caQTL variant rs13395911 (arrow). The motif match is shown on the negative
strand, and variant alleles in (D) and (E) are shown on the positive strand.
single nucleus ATAC-seq, are needed to determine the rele-

vant cell type within liver tissue. We further provided evi-

dence that rs11644920 alters protein binding, at least

in vitro. Further study is needed to provide direct evidence

that these variants alter transcription of LITAF and how

altered levels of LITAF may affect cholesterol levels.
The maximum distance threshold between peaks and

tested variants had a substantial impact on caQTL detec-

tion. Analyzing variants within a narrow region around a

peak reduced the multiple testing burden for nearby vari-

ants, whereas testing variants in a broader region allowed

identification of variants within one peak that may also
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Figure 6. Identification of a putative functional variant at the LITAF locus for LDL cholesterol
(A and B) eQTL association for LITAF (A) and caQTL associations for caPeak75869 (B) at an LDL cholesterol GWAS signal. In both plots,
the caQTL lead variant within 1 kb of the peak center is indicated by a purple diamond, and LD is based on 1000G phase 3 Europeans.
Additional plots are shown in Figure S8.
(C) Hi-C chromatin contact between caPeak75869 and the LITAF promoter. Selected ATAC signal tracks are shown for each rs57792815
genotype. More accessible homozygotes, purple; heterozygotes, black; less accessible homozygotes, gray.
(D) Transcriptional activity of a 666-bp DNA element spanning caPeak75869 and containing rs3784924, rs11644920, and rs57792815 in
HepG2 hepatocytes, THP-1 monocytes, THP-1 differentiated macrophages, and LPS-stimulated THP-1 macrophages. The DNA element

(legend continued on next page)



influence another peak. A wide range of distance thresh-

olds have been applied to caQTL discovery, including var-

iants within 1 kb and 20 kb of peak centers,6 50 kb from

peak ends,4 and 1 Mb from peak ends.8 We found many

more significant results when using variants within 1 kb

of peak centers compared to variants within 100 kb of

peak centers, potentially due to reduced multiple testing

burden and low power to detect long-range caQTL effects

due to small sample size. Future caQTL studies with larger

sample sizes will be more powered to detect longer-range

caQTLs.

Due to the modest sample size of this study, we only

tested for caQTLs using common variants (MAF R 0.1)

and did not predict regulatory variants at low-frequency

GWAS signals. Based on three large GWASs for height,52

body mass index,52 and blood lipids79 (see web resources),

77%–91% of signals had lead variant MAF R 0.1, suggest-

ing that we could test the majority of GWAS signals for

caQTLs. However, allele frequencies in small sample sizes

may differ from population allele frequencies, and larger

caQTL studies will have more power to detect caQTLs at

low frequency variants.

We used four approaches to suggest genes that may be

regulated by caPeaks. However, several factors limit how

many caPeak-gene connections can be identified and

how many are shared by two or more approaches. TSS

proximity is useful to detect variation in promoter acces-

sibility, although our results showed that only 4% of ca-

Peaks are TSS proximal, and caQTL-eQTL colocalization

is the only method we tested that can corroborate TSS

proximity. Promoter capture Hi-C data2 identifies distal re-

gions that physically interact with promoters, although

additional Hi-C loops may be identified in additional sam-

ples and with higher sequencing depth. Hi-C loops < 15

kb were removed,2 indicating that the Hi-C data cannot

corroborate caQTL-eQTL colocalizations or caPeak-pro-

moter peak/gene expression correlations located < 15 kb

from the promoter. The identification of caPeaks corre-

lated with promoter peaks84 or with gene expression is

limited by sample size, and gene expression is affected

by many other factors. The LD-based method we used

to predict colocalized caQTL and eQTL signals helps iden-

tify peaks and genes with a shared genetic basis, although

this method is influenced by low-resolution fine-mapping

of the lead caQTL variant, use of an LD threshold, and

choice of LD reference panel. Due to the modest sample

size of this study, we were underpowered to detect coloc-

alizations using coloc,66 and we recommend that future

caQTL studies consider larger sample sizes for more robust
was tested in the forward orientation relative to the genome (reverse o
accessible alleles rs3784924-A, rs11644920-A, and rs57792815-T; H2
and rs57792815-C. Symbols represent 4–5 independent clones for ea
dard deviation; p values from t tests of allelic differences.
(E) EMSA using HepG2 nuclear extract (NE) shows allelic differences
shown in Figure S8H. Green arrow, band represents T-allele-specific
non-specific binding. Competition probes were unlabeled and inclu
(F) TF ChIP-seq peaks in liver tissue from ENCODE that overlap caPe
colocalizations. Identification of conditional liver eQTLs,

which tend to be further from gene TSSs compared to pri-

mary eQTLs,85,86 could lead to additional caQTL-eQTL co-

localizations. While each of these approaches was useful

to predict links between caPeaks and genes, additional ex-

periments are needed to identify causal relationships.

The caQTLs presented here are a resource for studying

liver regulatory elements and will help identify mecha-

nisms at GWAS loci for multiple traits that act through

liver. The 56 caQTLs at GWAS loci with predicted target

genes are strong candidates for future functional studies.

While caQTLs can pinpoint functional regulatory variants,

the modest sample size and analyses restricted to common

variants limit fine-mapping potential and highlight the

importance of considering LD proxies. The promising reg-

ulatory mechanisms identified here motivate identifica-

tion of liver caQTLs in larger sample sizes.
Data and code availability

Summary statistics for caQTL data are available at https://mohlke.

web.unc.edu/data/.

Raw and processed genotype, ATAC-seq, and RNA-seq data are

available in the Gene Expression Omnibus (GEO). The accession

number for the data reported in this paper is GEO: GSE164942.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.05.001.
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Web resources

Blood lipids GWAS summary statistics for stratified LD score

regression, http://lipidgenetics.org/

Blood lipids significant GWAS lead variants, https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC6521726/bin/NIHMS1502930-

supplement-3.xlsx

Body mass index GWAS summary statistics for stratified LD score

regression, https://portals.broadinstitute.org/collaboration/gi

ant/images/1/14/Bmi.giant-ukbb.meta-analysis.combined.

23May2018.HapMap2_only.txt.gz

Body mass index significant GWAS lead variants, https://portals.

broadinstitute.org/collaboration/giant/images/e/e2/

Meta-analysis_Locke_et_al%

2BUKBiobank_2018_top_941_from_COJO_analysis_UPDATED.

txt.gz

BWA, https://github.com/lh3/bwa

Coronary artery disease GWAS summary statistics for stratified LD

score regression, http://www.cardiogramplusc4d.org/media/

cardiogramplusc4d-consortium/data-downloads/UKBB.GWAS1

KG.EXOME.CAD.SOFT.META.PublicRelease.300517.txt.gz

CTA, https://github.com/ParkerLab/cta

dbSNP build 151 common variants, ftp://ftp.ncbi.nlm.nih.gov/

snp/organisms/human_9606_b151_GRCh37p13/VCF/

00-common_all.vcf.gz

Gplots R package, https://rdrr.io/cran/gplots/

Height GWAS summary statistics for stratified LD score regres-

sion, https://portals.broadinstitute.org/collaboration/giant/

images/6/63/Meta-analysis_Wood_et_al%

2BUKBiobank_2018.txt.gz

Height significant GWAS lead variants, https://portals.broa

dinstitute.org/collaboration/giant/images/4/4b/Meta-analysis_

Wood_et_al%2BUKBiobank_2018_top_3290_from_COJO_anal

ysis.txt.gz

Liver enzymes GWAS summary statistics for stratified LD score

regression, http://www.lolipopstudy.org/data-download

Macrophage ATAC peaks from Alasoo et al., https://zenodo.org/

record/1188300/files/ATAC_peak_metadata.txt.gz

Macrophage caQTLs in 4 experimental conditions from Alasoo

et al., https://zenodo.org/record/1133333#.X-T2NNhKg2w

Novoalign, http://www.novocraft.com/products/novoalign

OMIM, https://www.omim.org/

Picard, https://github.com/broadinstitute/picard

Promoter capture Hi-C data (liver code is LI11), http://kobic.kr/

3div/download

Promoter capture Hi-C promoter baits, https://junglab.wixsite.

com/home/db-link

Regions of unusually high linkage disequilibrium, https://

genome.sph.umich.edu/wiki/

Regions_of_high_linkage_disequilibrium_(LD)

Rheumatoid arthritis GWAS summary statistics for stratified LD

score regression, http://plaza.umin.ac.jp/�yokada/datasource/

files/GWASMetaResults/RA_GWASmeta_European_v2.txt.gz

swiss, https://github.com/statgen/swiss
T cell local caQTLs from Gate et al. (sheet 1): https://www.nature.

com/articles/s41588-018-0156-2

Type 2 diabetes (T2D GWAS meta-analysis - Unadjusted for BMI)

GWAS summary statistics for stratified LD score regression,

https://diagram-consortium.org/downloads.html

WHRadjBMI GWAS summary statistics for stratified LD score

regression, https://portals.broadinstitute.org/collaboration/gia

nt/images/6/6e/Whradjbmi.giant-ukbb.meta-analysis.

combined.23May2018.HapMap2_only.txt.gz
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