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ABSTRACT

WESLEY L. CROUSE: Bayesian Inference of the Allelic Series
in Multiparental Populations with Applications

(Under the direction of Samir N.P. Kelada and William Valdar)

Multiparental populations (MPPs) are experimental populations in which the genome of every

individual is a random mosaic of known founder haplotypes. These populations provide advantages

for detecting quantitative trait loci (QTL) because tests of association between phenotypes and genetic

variation can leverage inferred founder haplotype descent. It is difficult, however, to determine how

haplotypes at a locus group into distinct functional alleles, termed the allelic series. The allelic series

is important because it provides information about the number of casual variants at a QTL and their

combined effects.

We begin by analyzing QTL mapping power in a particular MPP, the Collaborative Cross

(CC). We find that QTL mapping power depends on the allelic series and whether it is balanced

or imbalanced with respect to the founder haplotypes. More generally, this study serves as a

much-needed resource for designing CC experiments that are well-powered to detect QTL using

haplotype-based approaches.

Next, we introduce a fully-Bayesian framework for inferring the allelic series. This framework

accounts for sources of uncertainty found in typical MPPs, including individual haplotype states

at the QTL, the size of the allele effects, and most importantly, the number and composition of

functional alleles. Our prior distribution for the allelic series is based on the Chinese restaurant

process, and we leverage its connection to the coalescent to introduce additional prior information

about haplotype relatedness via a phylogenetic tree. This is the primary innovation of our research.

We evaluate our approach via simulation and find that posterior inference of the allelic series is

uncertain even when power is high. Despite this uncertainty, allele-based inference still improves

effect estimation when the true number of functional alleles is small. Phylogenetic information

improves posterior certainty of the allelic series, effect estimation, and statistical signal. We find

iii



only marginal improvements in QTL mapping power using the allele-based approach without tree

information, and although the tree-informed approach may perform better, implementing it in practice

is challenging.

We also apply our method to real data from the CC and the Drosophila Synthetic Population

Resource, highlighting new insights facilitated by our allele-based association approach.
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CHAPTER 1

Introduction

Achieving precision medicine requires an improved understanding of how genetic variation

affects disease state, therapeutic responsiveness, and, more broadly, underlying disease biology

(Collins and Varmus, 2015). Many genetic risk factors have been identified for disease susceptibility

(MacArthur et al., 2017), drug efficacy (Madian et al., 2012), and adverse drug response (Wilke

et al., 2007), and early results from pharmacological interventions that account for these genetic

risk factors are encouraging (Relling and Evans, 2015). Genetic association is an effective and

popular approach for identifying genetic risk factors, and for interrogating the relationship between

genetic variation and quantitative traits more generally (Visscher et al., 2017). The most common

genetic association approach, the genome-wide association study, involves testing genetic variants

throughout the genome for an association with a quantitative trait in order to characterize the effects

of those variants on that trait. Typically, the impact of each variant is assessed individually, with

adjustment for global population structure as necessary, and without considering the possibility of

interactions with other variants in the local genetic environment. For example, a linear model for

the effect of a single biallelic variant (with alternatives A and a, and assuming homozygosity for

simplicity) is given by

y = µ1 + xaβa + εεε

where y is vector quantitative trait observations for N individuals, µ is the intercept, xa is a vector

indicating the presence of alternative a, βa is the effect of a, and εεε is vector of normally distributed

individual error. This approach only considers a single variant, with parameters µ and βa accounting

for the two levels of the data.

A variant may act on a trait in combination with other nearby variants in a region, however, a

process known as local epistasis (Wei et al., 2014). For example, a linear model for epistasis between
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two biallelic variants (with alternatives B and b) is given by

y = µ1 + xaβa + xbβb + xabβab + εεε,

where xb is a vector indicating b, βb is the effect of b, xab is a vector indicating both a and b, and

βab is the effect of this interaction. This model considers both variants simultaneously, with the

parameters µ, βa, βb, and βab accounting for the four levels of the data. Epistasis occurs when the

combined effect of the variants cannot be reduced to the additive sum of their individual effects, i.e.

βab 6= 0. Epistasis can mask the effects of the individual variants, making the single-variant approach

inappropriate for detecting such a genetic interaction. Given that nearby variants tend to be inherited

together as haplotypes, local epistasis is a potentially large source (Eichler et al., 2010; Zuk et al.,

2012) of the “missing” genetic contribution to complex traits (Manolio et al., 2009) that is not fully

interrogated by single-variant methods.

An alternative to the single-variant association approach that accounts for local epistasis is

haplotype-based association. Returning to the previous example, the two biallelic variants comprise

J = 4 possible haplotypes (AB, Ab, aB, ab), and the linear model is reformulated with respect to

these haplotypes and their effects:

y = xABβAB + xAbβAb + xaBβaB + xabβab + εεε,

where xj is a vector indicating haplotype j, and βββj is the effect of haplotype j. More generally, the

haplotype-based association approach is given by

y = Xβββ + εεε,

where X is a N × J matrix of indicators denoting J haplotypes, and βββ is a vector of J haplotype

effects. Haplotypes-based association approaches can reveal complex genetic interactions that

improve our understanding of the genetic architecture of complex traits (Hamazaki and Iwata, 2019;

Yano et al., 2016; Zhang et al., 2012a; Hamblin and Jannink, 2011; Druet and Georges, 2010; Shim

et al., 2009; McClurg et al., 2007).
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Implementing a haplotype-based association approach can be challenging because, in many situ-

ations, the underlying haplotypes are unknown. In this case, haplotypes must be defined empirically

using combinations of adjacent variants (Meuwissen et al., 2014), or otherwise inferred as a reduced

number of ancestral haplotypes (Davies et al., 2016; Pook et al., 2019). Haplotype-based associa-

tion is straightforward, though, using model systems such as the multiparental population (MPP)

(Churchill et al., 2004; Beyer et al., 2008; King et al., 2012). MPPs are experimental populations

generated by breeding a small but genetically diverse set of inbred parents to produce individual

offspring whose genomes are mosaics of the original founder haplotypes. These populations are

ideal for haplotype-based association because the underlying founder haplotypes are known by

construction and are identical-by-descent in the population (Valdar et al., 2006b; Aylor et al., 2011;

Collaborative Cross Consortium et al., 2012). Typically, haplotypes are inferred for each individual

from genotype information (termed haplotype reconstruction) (Broman et al., 2019; Zheng et al.,

2015; Mott et al., 2000), and haplotype-based association proceeds using each unique combination of

haplotypes observed in the population. As we just described, haplotypes provide richer information

(i.e. more levels of the data, equal to the number of founder haplotypes J) than single variants (two

levels when biallelic) (Haley and Knott, 1992; Martı́nez and Curnow, 1992). This approach assumes

that all haplotypes at a given locus are functionally distinct with respect to the phenotype, testing

the combined and potentially epistatic effect of all variants within the genomic interval, including

variants that are unobserved or undiscovered. This haplotype-based association approach facilitates

the detection of complex genetic signals that may not be revealed by single-variant approaches, an

advantage that has contributed to the widespread development of MPPs across a variety of biomed-

ically (Churchill et al., 2004; Collaborative Cross Consortium et al., 2012; Macdonald and Long,

2007; King et al., 2014; Kover et al., 2009) and agriculturally (Huang et al., 2015) important model

organisms and species.

Although haplotype-based association approaches are useful for detecting complex genetic

signals, it can be difficult to translate their results into knowledge about causal variants. Haplotype-

based approaches typically assume that all haplotypes are functionally distinct and that the effects

of the haplotypes are independent. This assumption, however, is biologically unrealistic, since it

is reasonable to expect that there are only a few causal variants at a locus, and that combinations

of these variants may be shared across haplotypes. More specifically, we expect that sets of shared
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causal variants partition the haplotypes into a potentially smaller number of functionally distinct

alleles, with the assignment of haplotypes to functional alleles termed the allelic series. For example,

a linear model in the case of K functional alleles is given by

y = XMβββ + εεε,

where the allelic series M is a J×K indicator matrix which collapses J haplotypes intoK functional

alleles (i.e. the allelic series), and βββ is a vector of effects for those K alleles (Jannink and Wu, 2003).

Knowledge of the allelic series, and in particular, whether it is biallelic (K = 2) or multiallelic

(K > 2), is critical for inference about the number of causal variants at a locus. This allelic

perspective also suggests that the haplotype-based association approach is inefficient, in that it

involves estimating redundant parameters when some haplotypes may be functionally equivalent

(K ≤ J). Thus, an allele-based association approach would provide valuable insights into the

number of causal variants, while potentially improving effect estimation and the power to detect

quantitative trait loci (QTL).

Here, we introduce an allele-based association approach that explicitly models the allelic series,

treating it as an unknown quantity that must be inferred from the data. In the context of the previous

linear model, this means estimating the indicator matrix M while K is also unknown. This is a

challenging problem because the number of possible allelic configurations is large even when the

number of haplotypes is small. Currently, there are no established methods for inferring the allelic

series, with association methods focused instead on, for example, accommodating uncertainty due

to haplotype reconstruction (Kover et al., 2009; Mott et al., 2000; Haley and Knott, 1992), random

effects (Wei and Xu, 2016), population structure (Zhou and Stephens, 2012; Lippert et al., 2011;

Yuan et al., 2011; Kang et al., 2010; Valdar et al., 2009; Eskin et al., 2008), or several of these, with

non-additive effects (Zhang et al., 2014; Durrant and Mott, 2010). In practice, inference of the allelic

series is often subjective, combining patterns in the haplotype effect estimates with some intuition

about the number of functional alleles, as in Aylor et al. (2011) and Kelada et al. (2012). Yalcin

et al. (2005) developed a method to compare biallelic contrasts of “merged” haplotypes with the full

haplotype model. In the linear model framework, this assumes that M is known with K = 2. This is

essentially a single-variant approach, and it fails to consider multiallelic series. King et al. (2014)

4



generalized merge analysis to interrogate multiallelic contrasts. This approach implies a uniform prior

distribution over the allelic series, p(M) ∝ 1. However, their ad hoc procedure was not embedded

within a broader statistical framework that could account for prior information. Our approach most

closely resembles a model developed by Jannink and Wu (2003) to infer the allelic series in doubled

haploid (homozygous) lines. Their method places either a uniform or Poisson distribution on K,

with the conditional allelic series then distributed uniformly, p(M|K) ∝ 1. This study found that

the allele-based model improved haplotype effect estimation but that inference of the allelic series

itself was generally uncertain. Notably, their approach did not incorporate prior information about

the relatedness of the strains, which they identified as a key limitation of their approach. It is

reasonable to expect that closely related haplotypes are more likely to be functionally identical than

distantly related haplotypes (Morgan and Welsh, 2015) and that including this information would

improve allelic series inference. Accounting for haplotype relatedness in an allele-based association

framework is the primary innovation of our research.

In the approach presented here, inference of the allelic series is framed as a Bayesian model

selection problem. As suggested above, this requires specifying a prior distribution over the space

of allelic configurations, p(M). The space of allelic configurations is often much larger than the

number of observations. In this low-information environment, the prior distribution is critical,

as it provides the basis for setting expectations about the number of functional alleles and their

haplotype composition. Our approach is based on the Chinese restaurant process (CRP), which is the

distribution over partitions that underlies the popular Dirichlet process mixture model (Escobar and

West, 1995; Müller et al., 2015). In this framework, the haplotypes are partitioned into a potentially

smaller set of functional alleles, with the alleles having independent effects. The CRP allows for

control over the prior number of alleles via its concentration parameter, but it implicitly assumes

equal relatedness between individual haplotypes. Our approach generalizes the CRP to allow for

unequal relatedness between the haplotypes by leveraging a particular property of the CRP, namely,

that it can be described as the distribution of partitions induced by functional mutations on random

coalescent trees, a representation known as Ewens’s sampling formula (Ewens, 1972; Kingman,

2006). Examples are given in Figure 1.1. Ewens’s sampling formula provides an intuitive mechanism

for introducing prior information about haplotype relatedness: assuming that the phylogenetic tree

of the haplotypes is known rather than random. This defines a prior distribution over the allelic
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Figure 1.1: Allelic series induced by functional mutations on coalescent trees of haplotypes. i. One
functional mutation on a tree partitions four haplotypes into two functional alleles: (A,D)|(B,C).
ii. Additional mutations on the same tree partition the haplotypes into three functional alleles:
(A,D)|(B)|(C). The second mutation does not affect (A,D). iii. Two functional mutations on a
different tree partition the haplotypes into the same allelic series: (A,D)|(B)|(C). Note that the allelic
series from the first example, (A,D)|(B,C), is impossible given this tree.

series that is informed by the tree, p(M|T ). In this way, our approach is similar to partition models

which include phylogenetic information, for example, by modeling distributional “changepoints”

on a tree (Azim Ansari and Didelot, 2016) or by using phylogenetic distance as an input for a

distance-dependent CRP (Cybis et al., 2018), among others (Zhang et al., 2012b; Thompson and

Kubatko, 2013). In particular, the changepoint model of Azim Ansari and Didelot (2016) specifies a

prior distribution over the allelic series by defining the prior probability that each branch of a tree

is functionally mutated with respect to a phenotype (in their case, a categorical trait). This is also

how we define p(M|T ), and we highlight that it is embedded within the broader population genetics

framework of Ewens’s sampling formula (Ewens, 1972; Kingman, 2006), with its connections to

both the CRP and the coalescent (Berestycki, 2009).

In this document, we introduce an allelic series model and evaluate properties of both the

haplotype-based and allele-based association approaches. In Chapter 2, we focus on a specific prop-

erty of the haplotype-based approach, the power to map QTL, in a particular MPP, the Collaborative

Cross (CC) (Churchill et al., 2004; Collaborative Cross Consortium et al., 2012). This published

study (Keele et al., 2019) stands on its own, serving as a much-needed resource for researchers

interested in designing CC experiments that are well-powered to detect QTL using haplotype-based

approaches. This chapter identifies a key finding: The power to detect QTL using a haplotype-based

approach depends on assumptions about the underlying allelic series. In particular, imbalanced allelic

series, where most of the haplotypes are assigned to a single allele, are poorly detected using existing
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methods. This motivates the development of an allele-based association approach that directly models

the allelic series.

In Chapter 3, we introduce a fully-Bayesian framework for inferring the allelic series and

additive allele effects in MPPs. As described previously, this approach represents the allelic series

as a latent partition of the haplotypes, leveraging Ewens’s sampling formula in order to define an

informative prior distribution that generalizes the CRP to account for unequal haplotype relatedness.

This model places the allelic series on a continuum that encompasses both the single-variant and

haplotype-based approaches at the limits. Our approach accounts for multiple sources of uncer-

tainty found in typical MPPs, including uncertainty due to haplotype reconstruction, the number of

functional alleles (Escobar and West, 1995; Müller et al., 2015), and the magnitude of their effects

(Gelman, 2006). We outline a strategy for posterior inference of this model using a partially-collapsed

Gibbs sampler (Neal, 2000; van Dyk and Park, 2008; Park and Van Dyk, 2009) and show how to use

posterior samples and Rao-Blackwellization to calculate the marginal likelihood (Blackwell, 2007;

Chib, 1995), which is useful for calculating Bayes Factors (BFs) and comparing competing model

assumptions (Kass and Raftery, 1995).

In Chapter 4, we evaluate various properties of the allelic series model via simulation. We

consider the accuracy and posterior certainty of allelic series inference for a given experiment size

and effect size, using several alternative prior distributions for the allelic series. We find that accuracy

is generally low, but we observe that including phylogenetic information can improve these measures.

We also evaluate the error of haplotype effect estimates using the allelic-based approach and the

haplotype-based approach. On this measure, we find that the allele-based approach outperforms the

haplotype-based approach when the true number of functional alleles is small, even in the absence

of additional phylogenetic information. These results are concordant with are most similar study

(Jannink and Wu, 2003). We also evaluate the relative statistical signal, as measured by BFs, between

the haplotype-based and allele-based approaches in order to quantify the potential improvement from

using an allele-based method, both with and without additional phylogenetic information.

In the Chapter 5, we present a series of illustrative real-data examples that showcase the

inferences that are facilitated by our allele-based approach. The first example, an analysis of a QTL

for a red blood cell phenotype in incipient lines of the CC (PreCC) (Kelada et al., 2012), highlights

how local phylogenetic information can improve posterior inference of the allelic series. The second
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example, an analysis of cis-eQTL in the PreCC(Kelada et al., 2014), demonstrates that our method

can detect QTL which are highly multiallelic. The final two examples are analyses of cis-eQTL in the

Drosophila Synthetic Population Resource (DSPR) (King et al., 2014), a MPP with fifteen founder

haplotypes rather than the typical eight; these indicate that our approach (without tree information)

can be applied even in the challenging case of many founder haplotypes.

In Chapter 6, we return to the topic of QTL mapping power in the CC, but reconsidered in the

context of our allele-based association approach. We use the simulation framework described in

Chapter 2, this time comparing a fully-Bayesian implementation of the haplotype-based association

approach with our allele-based approach, along with two other frequentist approaches. This analysis

does not include phylogenetic relatedness at a QTL, as this requires the strong assumption that local

phylogeny for the CC founders is known at every locus. Instead, we compare the allele-based but

tree-naive CRP approach with the haplotype-based approach, finding a modest improvement in power

when the number of functional alleles is small, and especially if the allelic series is imbalanced.

Notably, this improvement comes with a considerable computational burden.

In Chapter 7, we summarize the previous chapters and comment on future directions for

allele-based association approaches in MPPs. We consider phylogeny-informed QTL mapping

using our approach, and more generally, we discuss the challenge of inferring local phylogeny with

recombination. We also discuss how our allelic series model may be useful for identifying candidate

causal variants. Finally, we comment on some of the limitations of our allele-based association

approach and how these could be addressed.
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CHAPTER 2

Determinants of QTL Mapping Power in the Realized Collaborative
Cross

2.1 Overview

This chapter was previously published by Keele et al. (2019) and is reproduced here in its entirety,

with only minor changes due to formatting. In this chapter, we focus on the power to map quantitative

trait loci (QTL) in the Collaborative Cross (CC) using a haplotype-based association approach. This

facilitates the design of future CC experiments that are well-powered to detect QTL. With respect

to the allelic series, we find that QTL mapping power is low when the underlying allelic series is

imbalanced. This motivates the development of an allele-based association approach that directly

models the allelic series, which is the primary focus of future chapters.

The specific contributions of Wesley L. Crouse to this chapter include designing the phenotype

simulations (Section 2.3.2), implementing the simulation procedures at scale, collating and analyzing

the results, and writing sections of the manuscript.

2.2 Introduction

The Collaborative Cross (CC) is a multiparental population (MPP) recombinant inbred (RI) strain

panel of laboratory mice derived from eight inbred founder strains (letter abbreviation in parenthe-

ses): A/J (A), C57BL/6J (B), 129S1/SvImJ (C), NOD/ShiLtJ (D), NZO/H1LtJ (E), CAST/EiJ (F),

PWK/PhJ (G), and WSB/EiJ (H) (Threadgill et al., 2002; Churchill et al., 2004; Chesler et al., 2008;

Threadgill and Churchill, 2012). This set of founder strains represents three subspecies of the house

mouse Mus musculus (Yang et al., 2011) and, in large part due to the inclusion of three wild-derived

founders (F-H), imbues the CC panel with far greater genetic variation than previous RI panels

derived solely from pairs of classical inbred strains. As an RI panel, the CC thus provides a diverse
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set of reproducible genomes and represents a powerful tool for genetic analysis (Collaborative Cross

Consortium et al., 2012; Srivastava et al., 2017). Indeed, although the CC RI panel has only become

available in the last six years (Welsh et al., 2012), it has already yielded new insights into human

disease and basic mouse biology (Shusterman et al., 2013; Rogala et al., 2014; Rasmussen et al.,

2014a; Lorè et al., 2015; Levy et al., 2015; Gralinski et al., 2015; Venkatratnam et al., 2017; Orgel

et al., 2019; Molenhuis et al., 2018).

As originally envisaged, a key use of the CC was as a resource for QTL mapping (Threadgill

et al., 2002; Churchill et al., 2004). In theory, its broad genetic diversity makes it ideal for this

purpose, and its replicability permits the mapping of phenotypes such as drug-response that are

otherwise hard to measure in outbreds (Mosedale et al., 2017). Its utility for QTL mapping in practice

was also predicted by studies in the incipient CC lines (PreCC) (Aylor et al., 2011; Durrant et al.,

2011; Philip et al., 2011; Mathes et al., 2011; Kelada et al., 2012; Ferris et al., 2013; Ram et al.,

2014; Rutledge et al., 2014; Kelada, 2016; Donoghue et al., 2017; Phillippi et al., 2014)

Nonetheless, QTL mapping power depends in part on the number of strains available, and the

number strains available in the CC is, and will remain, far less than the 1,000 proposed in Churchill

et al. (2004): At the time of this work, mice were available for 59 CC strains from the UNC Systems

Genetics Core, with a subset from these 59 and an additional 11 expected to be offered through the

Jackson Laboratory (JAX), a total of 70 CC strains potentially.

A reduction in strain numbers as a function of allelic incompatibilities between subspecies

(Shorter et al., 2017) was expected, and winnowed the number of resulting CC strains down to 50-70.

Although smaller than originally intended, this population size reflects the biological and financial

realities of maintaining a sustainable mammalian genome reference population. [Whereas cost grows

proportional to the the number of strains, demand does not, and a much larger number of strains

would threaten the economic viability of the operation (F. Pardo-Manuel de Villena, pers. comm.).]

Nonetheless, subsets of the available CC strains have already been used to map QTL , as evidenced

by a growing list of studies (Vered et al., 2014; Mosedale et al., 2017; Graham et al., 2017). Beyond

these successes, however, it is unclear how much the reduction has affected the ability to map QTL

in the CC in general.

The initially proposed figure of 1,000 CC strains in Churchill et al. (2004) was more formally

justified in Valdar et al. (2006a) as being necessary to provide enough power both to map single QTL
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and for robust, genome-wide detection of epistasis. That estimate was based on simulations involving

larger numbers (500-1,000) of hypothetical CC genomes. Those simulations, performed before any

CC strains existed and with the goal of guiding the CC’s design, had a broad scope, exploring the

effect of varying strain numbers, alternative mapping approaches [association of single nucleotide

polymorphisms (SNPs) vs association of inferred haplotypes], and alternative breeding strategies. As

such, the power estimates that were reported do not reflect the number of CC strains now available,

nor their actual, realized founder mosaic genomes. An updated, more focused power analysis that

both exploits and works within the constraints of the realized genomes is therefore timely.

Power analyses have been performed previously for a number of RI panels. For biparental

RIs, they have been performed analytically in plants (e.g., Kaeppler 1997), animals [e.g., the BXD

lines in mice (Belknap et al., 1996; Peirce et al., 2004)], and in general (Cowen, 1988; Soller and

Beckmann, 1990; Knapp and Bridges, 1990), as well as through simulation (Falke and Frisch, 2011;

Takuno et al., 2012). For MPP RIs, they have most often been reported as those resources are

introduced to the community. This includes, in plants: Arabidopsis (Kover et al., 2009; Klasen

et al., 2012), nested association mapping (NAM) populations (Li et al., 2011) in maize (Yu et al.,

2008) and sorghum (Bouchet et al., 2017), and multigenerational advanced intercross (MAGIC)

populations of rice (Yamamoto et al., 2014) and maize (Dell’Acqua et al., 2015). In animals, other

than aforementioned prospective study of Valdar et al. (2006a): (Noble et al., 2017) assessed mapping

power of SNP association while introducing a 507-strain nematode resource, the Caenorhabditis

elegans Multiparental Experimental Evolution (CeMEE) panel; and King et al. (2012) estimated

haplotype-based association power while introducing the Drosophila Synthetic Population Resource

(DSPR), a fly panel with more than 1,600 lines. In a follow-up DSPR power analysis, King and

Long (2017) compared the DSPR with the related Drosophila Genetic Reference Panel (DGRP)

(Mackay et al., 2012). They illustrated how QTL effect size differs between a population whose

allele frequencies are balanced (DSPR) vs one whose allele frequencies are less balanced (DGRP)

and explored implications for cross-population validation; they also compared mapping power for

bi-allelic QTL, based on single SNPs, and multi-allelic QTL constructed from actual adjacent SNPs

within genes.

Here we examine related topics on QTL mapping power in the realized CC, including: 1) how

power is affected by the number of strains and replicates; 2) how it is affected by the number of
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functional alleles and their distributions among the founders; and 3) how the QTL effect size is

specific to a particular population or sample and how that influences a power estimate’s interpretation.

To allow researchers to repeat our analyses, but tailored to their own specific requirements or

with updated CC genome lists, we provide an R package SPARCC (Simulated Power Analysis

of the Realized Collaborative Cross), a tool that evaluates the power to map QTL by performing

efficient haplotype regression-based association analysis of simulated QTL using the currently

available CC genomes. SPARCC is highly flexible, allowing QTL to be simulated with any possible

allele-to-founder pattern and scaled with respect to different reference populations. As a re-usable

resource, researchers could estimate power calculations based on the CC strains available to them

and potentially incorporate prior knowledge about the genetic architecture of the likely QTL or the

phenotype as whole.

2.3 Methods

Our power calculations are based on three main processes:

1. Simulation of CC data, including selection of CC strains from a fixed set of realized CC

genomes, and QTL location, and simulation of phenotypes.

2. QTL mapping, including determination of significance thresholds.

3. Evaluation of QTL detection accuracy, power and false positive rate (FPR).

These are described in detail below, after a description of the genomic data that serves as the basis

for the simulations.

2.3.1 Data on realized CC genomes

2.3.1.1 CC strains.

Genome data was obtained for a set of 72 CC strains (listed in Appendix C) available at the time

of writing from http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs.

Genome data was in the form of founder haplotype mosaics (see below) for each strain, this based

on genotype data from the MegaMUGA genotyping platform (Morgan et al., 2016) applied to
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composites of multiple mice per strain. Since genotyping, some of the 72 strains have become extinct,

and more may do so in the future (Darla Miller pers. comm.), although it is also possible that more

may be added. At the time of writing, however, these were all genomes that had been observed by

workers at UNC.

Of the 72 CC strains used in the simulations, it is planned that 54 will be maintained and

distributed by The UNC Systems Genetics Core, along with another 5 whose genome data were not

available in time for this study (see Discussion) to give a UNC total of 59 strains (listed in Appendix

C). A subset of the UNC 59 will also eventually be maintained by The Jackson Laboratory, which

will also potentially maintain 11 of the 72 not among the UNC 59.

The 72 strains used in the simulations included two that were more closely related than others:

CC051 and CC059. These strains, which are among the UNC 59, were derived from the same

breeding funnel; the number of independent strains available from UNC is thus arguably 58. This

relatedness, though not explicitly modeled in the simulations, is nonetheless marked in the figures,

which include an indicator denoting 58 as a currently realistic maximum for strain number in CC

studies.

2.3.1.2 Reduced dataset of haplotype mosaics.

The genomes of the CC, as with other MPPs, can be represented by inferred mosaics of the original

founder haplotypes (Mott et al., 2000). Founder haplotype mosaics were inferred previously by

the UNC Systems Genetics Core (http://csbio.unc.edu/CCstatus/index.py?run=

FounderProbs) using the hidden Markov model (HMM) of Fu et al. (2012) applied to genotype

calls from MegaMUGA, a genotyping platform providing data on 77,800 SNP markers (Morgan

et al., 2016). The HMM inference provides a vector of 36 diplotype probabilities for each CC

strain for each of 77,551 loci (each defined as the interval between adjacent, usable SNPs) across

the genome. Rather than using all of the available data for our simulations, we used a reduced

version: since adjacent loci often have almost identical descent, mapping using all loci is both

computationally expensive and—at least for the purposes of the power analysis—largely redundant.

Thus, prior to analysis the original dataset was reduced by averaging adjacent genomic intervals

whose diplotype probabilities were highly similar. Specifically, adjacent genomic intervals were

averaged if the maximum L2 norm between the probability vectors of all individuals is less than 10%
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of the maximum possible L2 norm (
√

2); this reduced the file storage from 610 MB to 288 MB, and

the genome from 77,551 to 17,900 intervals (76.9% reduction in positions to be evaluated in a scan).

2.3.2 Phenotype simulation

Phenotypes for CC strains were simulated based on effects from a single QTL, plus effects of

polygenic background (“strain effects”), and noise. Within our simulation framework, we specified:

1) the QTL location, which randomly was sampled from the genome; 2) the sample size in terms of

both strains and replicates; 3) how the eight possible haplotypes at that location are grouped into

eight or fewer functional alleles (the “allelic series”; see below); and 4) how those alleles, along with

strain information, are used to generate phenotype values (see below).

2.3.2.1 Underlying phenotype model.

Simulated phenotypes were generated according to the following linear mixed model. For given QTL

with m ≤ 8 functional alleles, phenotype values y = {yi}Ni=1 for N individuals in n ≤ N strains

were generated so that

y = 1µ+ ZXβ︸ ︷︷ ︸
QTL effect

+ Zu︸︷︷︸
Strain effect

+ ε︸︷︷︸
Noise

, (2.1)

where 1 is an N -vector of 1’s, µ is an intercept, Z is an N × n incidence matrix mapping individuals

to strains, X is an n ×m allele dosage matrix mapping strains to their estimated dosage of each

of the m alleles, β is an m-vector of allele effects, u is an n-vector of strain effects (representing

polygenic background variation), and ε is an N -vector of unstructured, residual error. The parameter

vectors β, u and ε were each generated as being equivalent to independent normal variates rescaled

to have specific variances: the strain effects u and residual ε were rescaled to have population (rather

than sample) variances h2strain and σ2 respectively; the allele effects β were rescaled so that the

QTL contributes a variance h2QTL, with this latter rescaling performed in one of three distinct ways

(described later).

The relative contributions of the QTL, polygenic background, and noise were thus controlled

through three parameters: the QTL effect size, h2QTL, the strain effect size, h2strain, and the residual

variance σ2. By convention, these were specified as fractions summing to exactly 1.
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The allele dosage matrix X was generated by collapsing functionally equivalent haplotypes

according to a specified allelic series. Let D be an n× 36 incidence matrix describing the haplotype

pair (diplotype) state of of each CC strain at the designated QTL, with columns corresponding to

AA,. . . , HH, AB, . . . , GH, such that, for example, {D}3,1 = 1 implies CC strain 3 has diplotype AA.

Then

X = DAM , (2.2)

where A is an 36 × 8 additive model matrix that maps diplotype state to haplotype dosage (e.g.,

diplotype AA equals 2 doses of A), and M is an 8×m “merge matrix” [after Yalcin et al. (2005)]

that encodes the allelic series, mapping the 8 haplotypes to m alleles, such that if haplotypes A and

B were both in the functional group “allele 1”, then diplotype AB in D would correspond to 2 doses

of allele 1 in X (see examples in Appendix D).

2.3.2.2 QTL allelic series.

The specification of an allelic series, rather than assuming all haplotype effects are distinct, acknowl-

edges that for many QTL we would expect the same functional allele to be carried by multiple

founder haplotypes. For our main set of simulations, the allelic series was randomly sampled from

all possible configurations (examples in Figure 2.1); in a smaller, more focused investigation of the

effects of allele frequency imbalance, we sampled from all possible configurations of bi-alleles.

2.3.2.3 Alternative definitions of QTL effect size: B and DAMB.

The QTL effect size (h2QTL) is a critical determinant of mapping power; yet its precise definition and

its corresponding interpretation often varies between studies and according to what question is being

asked. We used two alternative definitions, “B” and “DAMB”, described below. These alternatives

acknowledge that the proportion of variance explained by a particular QTL, and thus the power to

detect that QTL, is not determined solely by h2QTL, but rather depends on several additional factors,

namely: the variance of the finite sample of allele effects β; the allelic series configuration M; and

the particular set of CC strains and their locus diplotypes D.

Definition B scales the allele effects so that h2QTL = V(2β), where V() denotes the population

variance (rather than the sample variance). The QTL effect size is interpretable as the variance
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A B C D E F G H

3 alleles

5 alleles

7 alleles

Allele 1
Allele 5

Allele 2
Allele 6

Allele 3
Allele 7

Allele 4
Allele 8

Figure 2.1: Example allelic series with differing numbers of functional alleles. Each row is an allelic
series, each column of the grid is a CC founder, and colors correspond to functional allele. Two
examples of allelic series are provided for each number of functional alleles: a balanced series and
an imbalanced series. The entire space of allelic series are not shown here; however, the full space of
series with two alleles is shown in Figure 2.9A.

that would be explained by the QTL in a theoretical population that is balanced with respect to

the functional alleles. As such, the proportion of variance explained by the QTL in the mapping

population will deviate from h2QTL due to imbalance in both M and D. Conversely, for a given h2QTL,

the allelic values at a QTL will be constant across populations. (Note: the 2 multiplier ensures proper

scaling since X from Eq 2.2 includes dosages of founder haplotypes at the QTL, ranging from 0 to

2.)

Definition DAMB scales the QTL effect so that h2QTL = V(DAMβ). The QTL effect size

is exactly the variance explained by the QTL in the mapping population, essentially the R2. As

such, it depends on both M and D. Correspondingly, for a given h2QTL, the allelic values will adjust

depending on which population they are in. [In the Supplement, for completeness, we also describe

a further, intermediate option, Definition MB, where h2QTL = V(2Mβ), corresponding to balanced

founder contributions.]

The earlier power study of Valdar et al. (2006a), which considered only bi-allelic QTL, defined

effect size in a manner comparable to Definition B.
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2.3.2.4 Averaging over strains and causal loci.

The previous subsections described simulation of a single phenotype conditional on a set of strains

and a causal genomic locus. For each of S simulations, s = 1, . . . , S, we averaged over these

variables by uniformly sampling 1) the set of strains included in the experiment (for a specified

number of strains), 2) the causal locus underlying the QTL, and 3) the allelic series (for a specified

number of functional alleles). This was intended to produce power estimates that take into account

many sources of uncertainty and are thus broadly applicable.

2.3.3 QTL detection and power estimation

2.3.3.1 QTL mapping model.

QTL mapping of the simulated data was performed using a variant of Haley-Knott (HK) regression

(Haley and Knott, 1992; Martı́nez and Curnow, 1992) that is commonly used in MPP studies

(Mott et al., 2000; Liu et al., 2010; Fu et al., 2012; Gatti et al., 2014; Zheng et al., 2015) whereby

association is tested between the phenotype and the local haplotype state, the latter having been

inferred probabilistically from genotype (or sequence data) and represented as a set of diplotype

probabilities or, in the case of an additive model, a set of haplotype dosages then used as predictors

in a linear regression. Specifically, we used HK regression on the strain means (Valdar et al., 2006a;

Zou et al., 2006) via the linear model

ȳ(s) = 1µ+ PAβ + ε , (2.3)

where ȳ(s) is the sth simulated n-vector of strain means, P is an n× 36 matrix of inferred diplotype

probabilities for the sampled CC genomes at the QTL [i.e., P = p(D|genotype data); see Zhang et al.

(2014)], and ε is the n-vector of residual error on the means, distributed as ε ∼ N(0, I(h2strain+σ2/r)).

The above implies an eight-allele model (cf Eq 2.1 with M = I). Although this could lead to reduced

power when there are fewer functional alleles, particularly at loci in which the functional alleles

are not well represented, it is most common in practice, in accordance with the fact that the allelic

series of an unmapped QTL would typically be unknown in advance [e.g., (Mott et al., 2000; Valdar

et al., 2006a,b; Svenson et al., 2012; Gatti et al., 2014)]. Additional factors that might contribute to
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variation in an experiment, such as covariates or batch effects, are neither simulated nor modeled; it

is assumed that such factors would be adequately accounted for by, for instance, addition of suitable

covariates, pre-processing (e.g., residualizing) of phenotype values or similar, and ultimately lead to

a more-or-less equivalent analysis to that described here. The fit of Eq 2.3 was compared with that

of an intercept-only null model via an F-test, and produced a p-value, reported as its negative base

10 logarithm, the logP. This procedure was performed for all loci across the genome, resulting in a

genome scan for y(s).

2.3.3.2 Genome-wide significance thresholds and QTL detection.

Genome-wide significance thresholds were determined empirically by permutation. The CC panel is

a balanced population with respect to founder genomic contributions and, by design, has minimal

population structure. These features support the assumption of exchangeability among strain genomes:

that under a null model in which the genetic contribution to the phenotype is entirely driven by

infinitesimal (polygenic) effects, all permutations of the strain labels (or equivalently, of the strain

means vector y(s)) are equally likely to produce a given configuration of y(s). Permutation of the

strain means, y(s), was therefore used to find the logP critical value controlling genome-wide type I

error rate (GWER) (Doerge and Churchill, 1996). Briefly, we sampled 100 permutations and perform

genome scans for each; this was done efficiently using a standard matrix decomposition approach

(Appendix A). The maximum logPs per genome scan and simulation s were then recorded, and

these are fitted to a generalized extreme value distribution (GEV) (Dudbridge and Koeleman, 2004;

Valdar et al., 2006a) using R package evir (Pfaff and McNeil, 2018). The upper α = 0.05 quantile of

this fitted GEV was then taken as the α-level significance threshold, T (s)
α . If the maximum observed

logP for y(s) in the region of the simulated QTL exceeded T (s)
α , then the corresponding locus was

considered to be a (positively) detected QTL (see immediately below).

2.3.3.3 Performance evaluation.

For a given simulation, we declared a true positive if the detected QTL was within ±5Mb of the true

(simulated) QTL. The 5Mb window size was used to approximate a QTL support interval, which is

partly a function of linkage disequilibrium (LD) in the CC. (LD has been characterized in the CC

previously but not summarized with a single point estimate (Collaborative Cross Consortium et al.,
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2012); our choice of 5Mb is therefore an approximation, but we find that it only marginally increased

mapping power relative to using smaller window widths.) A false positive was declared if one or

more QTL were detected on chromosomes other than the chromosome harboring the simulated QTL.

Simulations in which a QTL was detected on the correct chromosome but outside the 5Mb window

were disregarded; although this was potentially wasteful of data and biased FPR slightly downward

due to loss of false positives on the chromosome with the simulated QTL, it avoided the need for

arbitrary rules to handle edge cases in which it was ambiguous whether the simulated signal had

been detected or not. Power for a given simulation setting was then defined as the proportion of true

positives among all simulations at that setting, and the FPR was defined as the proportion of false

positives.

As a measurement of mapping resolution, for true positive detection, we recorded the mean and

the 95% quantile of the genomic distance from the true QTL. Given our criterion for calling true

positives, the maximum distance was necessarily 5Mb, and experimental settings that correspond to

low power would be expected to have fewer data points, yielding estimates that are unstable. In order

to obtain more stable estimates, we used a regularization procedure, estimating the mean distance

and 95% quantiles as weighted averages of the observed values and prior pseudo-observations.

Specifically, for an arbitrarily small but detected true positive QTL, it is reasonable to expect the

peak signal to be distributed uniformly within the ± 5Mb window. This implies a mean location

error of 2.5Mb and a 95% quantile of 4.75Mb. Thus, when calculating the regularized mean location

error we assumed 10 prior pseudo-observations of 2.5Mb, and when calculating the regularized 95%

quantile we assume 10 prior pseudo-observations of 4.75Mb. This number of pseudo-observations

represents 1% of the maximum number of possible data points.

2.3.4 Overview of the simulations

2.3.4.1 Simulation settings.

Simulations for all combinations of the following parameter settings:

• Number of strains: [(10-70 by 5), 72]

• QTL effect size (%): [1, (5-95 by 5)]
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• Number of functional alleles: [2, 3, 8]

The number of observations per strain were fixed at r = 1 and the background strain effect size was

fixed at h2strain = 0% with the understanding that results from these simulations provide information

on other numbers of replicates and strain effect sizes implicitly. Specifically, a simulated mapping

experiment on strain means that assumes r replicates, strain effect h2strain, and QTL effect size h2QTL

is equivalent to a single-observation mapping experiment with no strain effect and QTL effect size

h̄2QTL, where

h̄2QTL =
h2QTL

h2QTL + h2strain + σ2/r
(2.4)

[Valdar et al. (2006a), after Soller and Beckmann (1990); Knapp and Bridges (1990); Belknap

(1998)].

For example, a mapping experiment on strain means with QTL effect size h2QTL = 0.3, h2strain =

0.4, σ2 = 0.3, and r = 10, is equivalent to our simulation of a single-observation with no strain

effect but QTL effect size h̄2QTL ' 0.41 (Supplement).

We conducted s = 1, 000 simulation trials per setting. CC strains and the position of the QTL

were sampled for each simulation, providing estimates of power that are effectively averaged over

the CC population. We ran these settings for QTL effect sizes specified with respect to the observed

mapping population (Definition DAMB) and a theoretical population that is balanced in terms of the

functional alleles (Definition B). Confidence intervals for power were calculated based on Jeffreys

interval (Brown et al., 2001) for a binomial proportion. A description of the computing environment

and run-times are provided in Appendix B.

2.3.5 Examining FPR when accounting for non-exchangeability of CC strain

genomes

In the simulations and mapping procedures described above, strain effects are modeled under the

assumption that all CC strains are (at least approximately) equally related. That is, the effects

u = u1, . . . , u72 in Eq 2.1 are simulated as u ∼ N(0, Ih2strain) such that any permutation of the

values is equally likely (the effects are exchangeable), and this same assumption is made in both the

mapping model of Eq 2.3 and the permutation-based estimation of significance thresholds.
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An assumption of equal relatedness among CC strains is commonplace: it is suggested by the

exchangeable random funnel design used in the CC, is supported by the results of (Valdar et al.,

2006a), and has been made in every CC or pre-CC mapping analysis to our knowledge. Making

this assumption simplifies QTL mapping analysis by obviating the need for an explicit modeling of

genomic similarity [as in, e.g., Eskin et al. (2008)], since, when those similarities are approximately

equal and the analysis is performed on strain means, the strain effects are absorbed into the residual

error.

Nonetheless, CC strains are equally related only in expectation. Much like the “equal” relatedness

of siblings, realized relatedness will depart from expectation due to chance at the point of mixing,

and, in the case of the CC, due to selection [e.g., arising from male sterility (Shorter et al., 2017)]

and genetic drift during inbreeding [as reflected in unequal founder contributions by Srivastava et al.

(2017)]. This combination of stochastic forces can produce unequal relatedness, correlated effects

among strains, and population structure, at least at some level.

To quantify population structure in the realized CC, we compared the eigenvalues of the realized

genetic relationship matrix K, calculated from the founder mosaic probabilities [after (Gatti et al.,

2014)], with those from an idealized K that reflects equal relatedness of the CC strains, whose

off-diagonal elements were set to the mean value observed for the off-diagonal elements in the

realized K. We observed that slightly fewer principal components are required to explain 95% of the

variation in the realized K than are required for the balanced K (64 vs 68 components, respectively;

Figure 2.14A). This reduction was attenuated with the omission of CC059, one of the two cousin

strains, but not completely (64 vs 67 components; Figure 2.14B). This suggested that the realized

CC strains have mild population structure.

To evaluate to what degree the population structure in the realized CC genomes could inflate FPR

when mapping using an analytic model and threshold procedure that ignores it (i.e., that assumes

exchangeability), we performed an additional set of null simulations in which strain effects were

generated according to additive infinitesimal model (Lynch and Walsh, 1998) based on the actual

genomic similarities. Specifically, we set h2QTL = 0 and u ∼ N(0,Kh2strain) but left our mapping

protocol unchanged. We conducted 10,000 such null simulations with r=1 for each setting of strain

effect size (%): [0-100 by 20]. These simulations were performed using either all 72 founder

strains or 71 strains with the omission of CC059, one of the two highly-related cousin strains. A
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false positive was declared if any QTL were detected based on the permutation-based significance

threshold.

2.3.6 Measuring the Beavis effect

The “Beavis effect” (Beavis, 1994) refers to an upward bias in estimated effect sizes for detected QTL.

This phenomenon, also known as the “winner’s curse” (Zollner and Pritchard, 2007), arises because

the data used for effect estimation has already been substantially selected during QTL discovery; the

resulting (post-selection) estimates are thus inflated due to ascertainment bias. The Beavis effect was

evaluated theoretically in (Xu, 2003) and found to be most pronounced in studies of smaller sample

size (n < 100), suggesting that it could be a significant feature of CC mapping studies.

To assess the extent of the Beavis effect in CC mapping experiments, we performed simulations

(s = 1, 000) mapping a bi-allelic QTL, with one replicate (r = 1) and zero background strain

effect (h2strain = 0) for all combinations of simulated QTL effect size under Definition DAMB

h2QTL ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} and numbers of strains n ∈ {40, 50, 60, 72}. If an association

was detected within the 10Mb window (using permutation-based thresholds as above), then we

recorded the QTL effect size as the R2 of the model fit at the peak locus (which may or may not be

the locus at which the QTL was simulated).

2.3.7 Availability of data and software

2.3.7.1 R package.

All analyses were conducted in the statistical programming language R (R Core Team, 2018).

SPARCC is available as an R package on GitHub at https://github.com/gkeele/sparcc.

Specific arguments that control the phenotype simulations, the strains used, genomic position of

simulated QTL, and allelic series, are listed in the Supplement. A static version of SPARCC is also

provided there (File S2).

Also included within the SPARCC R package are several results datasets. These include data

tables of power summaries from our simulations, as well as table summaries from simulations of a bi-

allelic QTL that is balanced in the founders, maximally unbalanced in the founders, and the distance

between detected and simulated QTL. Further details are provided in File S1 of the Supplement, an
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account of all the supplemental files. These files are available at figshare, including data, and scripts

to run the analysis and produce the figures. File S3 contains the founder haplotype mosaics required

for the SPARCC package. Files S4, S5, and S6 can be used to perform the large-scale power analysis.

File S7 describes options in the SPARCC package, and also provides two simple tutorials. File S8

produces the figures in this paper and Supplement. File S9 is the supplemental tables and figures.

2.3.7.2 CC strains.

The 72 CC strains with available data that were included in the simulations are described in Appendix

C. Founder diplotype probabilities for each CC strain are available on the CC resource website

(http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs). We used prob-

abilities corresponding to build 37 (mm9) of the mouse genome, though build 38 (mm10) is also

available at the same website.

We store the founder haplotype data in a directory structure that SPARCC is designed to use,

and was initially established by the HAPPY software package (Mott et al., 2000). The reduced data

are available on GitHub at https://github.com/gkeele/sparcc_cache.

2.4 Results

Power simulations were performed for varying numbers of strains, replicates and functional alleles,

and for a ladder of QTL effect sizes. QTL effect size was defined in two ways: as the variance

explained in a hypothetical populations that is balanced with respect to the alleles (Definition B; see

Methods), or as the variance explained in the realized population (Definition DAMB). In this section

we focus on results using the first of these, Definition B, owing to its more consistent theoretical

interpretation. Under that definition, plots of power against numbers of strains are shown in Figure

2.3, and power across a representative selection of conditions is shown in Table 2.1. For comparison,

these numbers are also provided for simulations under Definition DAMB in Table 2.2. Throughout

these simulations the false positive rate was controlled at the target 0.05 level (Figure 2.11).
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Figure 2.2: Simulated CC data and resulting genome scans. Five simulated genome scans are
generated by the code provided in a simple example using our package SPARCC. Red dashed lines
represent 95% significance thresholds based on 100 permutation scans. A blue tick represents the
simulated position for a QTL that was successfully detected, whereas a red tick marks a QTL that
was missed. These simulations were based on a specified set of 65 CC strains, five replicates of each
strain, two functional alleles, 10% QTL effect size, and no background strain effect. The QTL is not
mapped in the fourth simulation, ranked top to bottom, resulting in a power of 80%. Actual power
calculations are based on a greater number of simulations.

2.4.1 Large effect QTL usually detected by 50 or more strains

As a baseline for describing mapping power in the CC, an experiment using one replicate (r = 1) of

all 72 strains is well-powered to detect QTL explaining >40% of phenotypic variance but moderately

or low powered for QTL explaining 30% or less (Table 2.1). Specifically, assuming eight functional

alleles, there is 96.4% power to detect a 50% QTL, 79.2% for a 40% QTL, 44.1% for a 30% QTL,

and 12.4% for a 20% QTL.

More broadly, simulations across different allele effect types and numbers of strains showed that

studies without replicates and with large numbers of strains (>50) were found to be well-powered to

detect large effect QTL (>40%) (Figure 2.3 [top]).

Identifying smaller effect QTL is feasible, however, using replicates. Replicates improve power

by reducing the individual noise variance; as such the extent of the power improvement diminishes as
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more variance is attributable to background strain effects than noise. Assuming no background strain

effect, and using 50 strains, the power to detect a 20% effect-size QTL with a single replicate is near

zero; with 5 replicates it approaches 80%; detecting QTL with effect sizes ≤ 10% is challenging.

For example, achieving 80% power to detect an effect size of 10% when all 72 CC strains were

used required more than 5 replicates per strain (Figure 2.3 [middle right]). Assuming a background

strain effect, as would be expected with a complex trait, can reduce the QTL mapping power of small

effect QTL substantially (Figure 2.3 [bottom]).

2.4.2 Additional strains improve power more than additional replicates

We investigated the relationship between power and the total number of mice, evaluating whether

power gains were greater with additional CC strains or additional replicate observations. Power

was interpolated over a grid of values for number of replicates and total number of mice from

simulations based on a single observation per strain (Figure 2.5). This showed that additional CC

strains improved mapping power more than additional replicates; this is indicated by higher power

values for lower numbers of replicates while holding number of mice constant (see Figure 2.5,

bordered vertical section at 250 mice).

2.4.3 Location error of detected QTL

To obtain an approximation of mapping resolution, for all true positive detections we recorded the

location error, or the genomic distance between simulated and detected QTL. The mean and the 95%

quantile of the location error are reported as stabilized estimates for different numbers of strains and

QTL effect sizes, but averaged over all other conditions, in Figure 2.4. (The stabilization procedure

is described in Methods; raw, unstabilized estimates provided Figure 2.12.) The location error

statistics require careful interpretation: for a detection to be classed as a true positive it had to be

within 5Mb of the simulated QTL; therefore, location error was artificially capped at 5Mb. Mediocre

performance thus corresponds to when that location seems uniformly (and therefore arbitrarily)

distributed over the ±5Mb interval, that is, having a mean of 2.5Mb and a 95% quantile of 4.8Mb.

Location error was improved (reduced) by increasing the number of strains, increasing the

QTL effect size, or both. In particular, as with power, location error was improved by increasing

the number of strains even when while holding the total number of mice constant (Figure 2.13),
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Figure 2.3: Power curves by number of CC strains. Results are stratified by a number of replicates,
background strain effect size, and the number of functional alleles. The [top] row is based on a
single observation per strain and no background strain effect. The [middle] row corresponds to
five replicates per strain and no background strain effect. For the [bottom row], five replicates are
observed and the QTL effect size and background strain effect size sum to 50%, thus penalizing
smaller QTL more harshly. The horizontal red dotted line marks 80% power. The vertical black
dashed line marks 58 strains, which is currently the number of unrelated strains available from
UNC. The columns, left to right, correspond to two, three, and eight functional alleles. Closed
circles represent power estimates that were directly assessed, whereas open circles were interpolated.
Simulations are based on Definition B.

consistent with mapping resolution being improved by an increased number of recombination events

in the QTL region. Distributions of raw location error, stratified by levels of the number of strains,

the number of functional alleles, and the QTL effect size can be found in Figure 2.15.

2.4.4 False positive rate

The FPR for the QTL power simulations was estimated as the percentage of scans (per setting) that

produced a statistically significant signal on a chromosome without a QTL, shown in Figure 2.11.

As expected, FPR was not elevated from 5% when the strain effects were simulated independently,

as the effects were exchangeable by construction. The FPR did not vary with the number of strains

or the number of alleles.
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In additional null simulations that where strain effects were correlated due to realized genomic

similarity, QTL scans assuming independent strain effects (and thus, exchangeability) had elevated

FPR (Figure 2.6 and Table 2.3). Using all 72 CC strains, the FPR varied from a maximum of 14.5%

when strain effects explain all variability to the well controlled FPR of 5.5% when the strain effects

were relatively small. Omitting CC059, one of the highly-related cousin strains (CC053 and CC059),

because of its obvious violation of equal relatedness, reduced the FPR, although it was still elevated

(12.9% for maximum strain effect). This demonstrates that, when strain effects are large relative

to individual error (i.e. highly heritable trait, or the use of many replicates), failure to account for

population structure due to realized imbalance in founder contributions can increase the risk of false

positives.

2.4.5 Beavis effect

It is an expected feature of QTL mapping studies that estimates of QTL effect size, when calculated

only for detected QTL, will be biased upwards. This phenomenon, known as the Beavis effect, is a

form of selection bias and as such is expected to be most extreme under low power conditions, e.g.,

when detection rates are low and/or estimates have high variance.

We explored the Beavis effect in our simulations. Assuming a one-replicate (r = 1) experiment,

we found that, for example, the estimated effect size of a simulated 20% QTL was inflated by 3-fold

when mapping in 40 CC strains, and by 2-fold when mapped in 72 CC strains. More generally, and

as expected, the Beavis effect was reduced with larger numbers of strains and larger QTL effect sizes

(Figure 2.7).

These results also imply that the Beavis effect is reduced by replication, at least to the extent that

replication boosts effective QTL effect size. For example, consider again the mapping of a 20% QTL

effect in 40 strains, which with r = 1 replicates implies 3-fold effect size inflation. Although this

inflation could be reduced to 2-fold by increasing the number of strains to 72, the same reduction

could be achieved by replication: assuming no background strain effect, increasing replicates to

a theoretical r = 1.8 (so as to give a total sample size of N = 40 × 1.8 = 72) would boost the

QTL effect size to an effective ≈31% (according to Eq 2.4) and, as shown in Figure 2.7, have

approximately the same result. The ability of replicates to reduce the Beavis effect, however, will
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diminish to the extent that there is a significant background strain effect, following the general

relationship of replicates and QTL effect size described in Eq 2.4.

2.4.6 Allele frequency imbalance reduces power

For a fixed set of QTL allele effects, it is expected that power will always be greatest when allele

frequencies are balanced. Accordingly, when QTL effect size was defined in terms of the variance

that would be explained in a theoretical population with balanced allele frequencies (Definition B),

deviations from balance in the mapping population—either from imbalance in functional alleles

among the founders or imbalance of the founders among the CC strains—inevitably reduce power

(Figure 2.8A). This reduction in power under Definition B is most evident for bi-allelic QTL (pink),

in which the potential imbalance in allelic series is most extreme, namely when a single founder

carries one functional allele and the other seven possess the alternative allele (7v1).

Conversely, when the QTL effect size is defined in terms of variance explained in the mapping

population (Definition DAMB, which is similar to an R2 measure), power remains constant across

different allelic series and degrees of balance. Although note that this definition carries with it the

(possibly unrealistic) implication that allele effects vary depending what population they are in.

When averaged over many allelic series, QTL mapping power based on Definition B is reduced

relative to Definition DAMB, with the greatest reduction occurring for bi-allelic QTL (Figure 2.8 B).

Though this modest reduction in power may seem to suggest that simulating with respect to a balanced

population (Definition B) versus the mapping population (Definition DAMB) is unimportant in terms

of designing a robust mapping experiment in the CC, we reiterate the value of using Definition B.

Specifically, simulating with respect to Definiton DAMB is overly optimistic regarding mapping

power for QTL with imbalanced allelic series.

We performed additional simulations to evaluate bi-allelic QTL in more detail, these being more

prone to drastic imbalance under Definition B. All 127 possible bi-allelic series are visualized as

a grid in Figure 2.9A, ordered from balance and high power to imbalance and low power. The

corresponding power estimates are shown in Figure 2.9B. Power was maximized when the bi-allelic

series is balanced (4v4; 35/127 possible allelic series) and minimized when imbalanced (7v1; 8/127

possible allelic series). Uniform sampling of bi-allelic series, the approach in the more general

simulations described earlier, slightly reduced power relative to balanced 4v4 allelic series due to
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Figure 2.4: The mean (A) and 95% quantile (B) of location error, the distance in Mb between the
detected and simulated QTL, by effect size and number of strains for 1,000 simulations of each setting.
The simulations are based on Definition B with an eight allele QTL, and only a single observation
per strain. Cells are colored red to white with decreasing mean and blue to white with decreasing
95% quantile. Regularization of the means and 95% quantile was accomplished through averaging
the observed results with pseudo-counts; see Figure 2.12 for the raw measurements. Increasing the
number of strains reduces the location error, both in terms of the mean and 95% quantile, more so
than QTL effect size, also shown in Figure 2.15. The maximum possible location error was 5Mb
due to the 10Mb window centered around the true QTL position used for detecting QTL.
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Figure 2.5: Heatmap of QTL mapping power by number of replicates and total number of mice in
the experiment. Power is based on a QTL effect size of 20%, no background strain effect, and two
functional alleles, though varying these parameters does not affect the dynamic between number of
strains and replicates. The gray diagonal lines represent fixed values of the number of CC strains,
ranging from 10 to 70 in intervals of five. Holding the total number of mice fixed, power is reduced
as the percentage of the sample that are replicates is increased. This is illustrated with a cutout band
centered on 250 mice, where power is lower at the top of the band when replicate mice are a relatively
higher proportion of the total number of mice.
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Figure 2.6: The FPR increases due to population structure among the realized genomes of the
CC strains in the presence of a background strain effect and no QTL. Curves are based on 10,000
simulations for each setting of strain effect and strain sample, based on a single observation per strain.
The inflation in FPR is greater for all 72 CC strains, which includes two closely related cousin strains
(CC051 and CC059). Removing CC059 reduces the inflation in FPR (gray line). The dashed red line
marks the specified type I error rate of 0.05, which is approximately met as expected when no strain
effect is simulated, as in Figure 2.11. Table 2.3 reports the specific FPR values.
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Figure 2.7: The Beavis effect (inflation of QTL effect size estimates) is more pronounced with
smaller simulated QTL effect sizes and reduced numbers of strains. For different settings of numbers
of strains (40, 50, 60, 72) and simulated QTL effect sizes (20%, 30%, 40%, 50%, 60%, 70%),
black dots plot the ratio of the estimated effect size at a detected QTL peak to the effect size that
was simulated at the true QTL locus. Out of 1,000 simulations under each setting, only successful
detections are shown. Black diamonds represents the mean ratio for a category; horizontal red dashed
line marks a ratio of 1, when QTL effect size estimates are unbiased (i.e., no Beavis effect).

Figure 2.8: QTL effect sizes are in reference to a population, though effect size in the specific
mapping population will determine the mapping power. Consider two populations as examples: the
mapping population (definition DAMB) and a population balanced in the functional alleles (definition
B). (A) QTL effect size distributions based on 10,000 simulations of the QTL for 72 strains. Using
definition B, the effect sizes for the mapping population for two alleles is pink and eight alleles is
red. Using definition DAMB, the effect sizes in the balanced population for two alleles is light blue
and eight alleles is dark blue. Horizontal lines within the violin plots represent the 25th, 50th, and
75th quantiles from the estimated densities. Gray dots represent actual data points. (B) Power curves
corresponding to the previously described settings of alleles and QTL effect size definitions. Power
curves are estimated from 1,000 simulations per number of strains for a 50% QTL, no background
strain effect, and a single observation per strain. The horizontal red dotted line marks 80% power.
The vertical black dashed line marks 58 strains, which is currently the number of unrelated strains
available from UNC.
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Figure 2.9: The balance of the allelic series for QTL with two functional alleles, and its effect on
QTL mapping power. (A) The 127 possible allelic series for a bi-allelic QTL, categorized by the
balance in the distribution of alleles among the CC founder strains, and ordered with balanced allelic
series at the top and imbalanced at the bottom. (B) Power curves comparing three different sampling
approaches for the allelic series with two functional alleles, for populations simulated to have a QTL
effect size of 50% in a balanced theoretical population, with a single observation per CC strain. The
horizontal red dotted line marks 80% power. The vertical black dashed line marks 58 strains, which
is currently the number of unrelated strains available from UNC.

averaging over many cases of balance and some cases of extreme imbalance. These latter, more

focused simulations highlight the extent that the reduction in QTL effect size, and thus mapping

power, when simulating based on Definition B, is highly dependent on the allelic series. This could

be of particular importance when considering QTL that result from a causal variant inherited from a

wild-derived founder, such as CAST, which will present as both imbalanced and bi-allelic.

2.5 Discussion

Now that the CC strains have been largely finalized, it is possible to investigate more deeply how,

in potential mapping experiments, power is affected by factors such as the number of strains, the

number of replicates, and the allelic series at the QTL. We find that the CC can powerfully map

large effect QTL (≥ 50%) with single observations of >60 strains. Through the use of replicates, the

power to map QTL can be greatly improved, potentially mapping QTL ≥ 20% in 60 strains with 5

replicates per strain with no background strain effect. To guide the design of new CC experiments,

we provide broad power curves and tables in Figure 2.3 and Tables 2.1 and 2.2.
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The power calculations described here take advantage of realized CC genomes, allowing the

power estimates to be highly specific to the available strains but also necessarily restricting the

number that can be used. This differs from the simulations of (Valdar et al., 2006a), which primarily

focused on comparing potential breeding designs with numbers of strains that far exceed (500-1,000)

the realized population (50-70). As such, directly comparing these studies is challenging. The closest

comparison case is for a 5% QTL with 45% background strain effect with 100 simulated strains with

10 replicates, for which (Valdar et al., 2006a) estimates 4% power. Matching those settings with the

exception of 72 strains instead of 100, and using the DAMB definition of QTL effect size, we find

0.4% power. The relatively lower power with the realized data likely reflects both reduction in the

number of strains by 28% (72 to 100) and the deviations from an ideally-randomized population,

such as the observed reduction in contributions from the CAST and PWK founders (Srivastava et al.,

2017). This emphasizes the challenge in projecting the results from (Valdar et al., 2006a) into the

realized population for the purpose of designing an experiment.

We did not attempt power simulations with epistatic QTL or phenotypes with large background

strain effect. From the results of (Valdar et al., 2006a), it was clear that mapping studies in the

realized CC, even with replicates, would not be well-powered in those contexts. Nonetheless, despite

the reduced number of strains of realized population, we found that successful mapping experiments

can be designed in the realized CC, particularly by harnessing the ability of genetic replicates to

reduce random noise, as well as within the context of molecular phenotypes such as gene expression

for which the genetic architecture is relatively simple.

2.5.1 Interpreting QTL effect sizes

Our simulations suggest that QTL mapping experiments in the CC are well-powered for large-effect

QTL, in the neighborhood of 20-40%, depending on the number of strains and replicates, and the

presence of a background strain effect. As such, it is useful to provide some context for what traits

might plausibly yield QTL of this size. That said, we note that comparisons of reported estimates of

QTL effect size should be interpreted with caution since they vary across different traits and model

systems, are calculated under different experimental protocols that may imply different levels of

noise, such as different numbers of strains or replicates, and may be estimated by different analysis
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conditions (statistical methods, data transformations, etc.). And ultimately, these estimates are subject

to overestimation due to both the aforementioned Beavis effect and reporting bias.

Multiple studies in the pre-CC, which had more strains than the realized CC population, have

reported QTL effect sizes for a variety of traits. (Philip et al., 2011) report effect sizes for 17

QTL for 102 morphological and behavioral traits in 235 incipient CC strains, ranging from 5.3%

(tail-clip latency) to 26% (red cell distribution width). (Durrant et al., 2011) mapped seven QTL for

susceptibility to Aspergillus fumigatus infection in 371 mice from 66 strains, with effects ranging

from 12.2-16.2%. (Gralinski et al., 2015) identified four SARS susceptibility QTL in 140 strains

with effect sizes between 21-26% (vascular cuffing, 21% and 26%; viral titer, 22%; eosinophilia,

26%).

More closely mirroring the number of strains considered here, (Levy et al., 2015) detected six

strong QTL for traits related to trabecular bone microstructure using 160 mice from 31 strains, which

ranged from 61-86%. In an ongoing project involving the mapping of expression QTL (eQTL) from

RNA-seq data collected from three tissues of single individuals from 47 strains, 478-739 eQTL were

detected at genome-wide significance, ranging in effect size from 60-90%. These results reiterate

that QTL mapping studies in the CC are best suited for detection of large effect QTL, as are more

common in molecular traits.

In considering the above, it is useful to understand how this relates to effect sizes seen in humans,

for which the CC is often used as a model system (Flint and Mackay, 2009). In particular, human

GWASs, which often use much larger sample sizes, routinely report QTL with estimated effect sizes

far smaller than is detectable in the CC. Nonetheless, there are reasons to expect effect sizes in

the CC to be larger than in humans. Human GWASs are observational, and as such include many

additional sources of noise, reducing QTL effect sizes relative to what would be possible in more

tightly-controlled experimental designs. Experimental populations will also have larger QTL effect

sizes because: 1) they typically have more balanced allele frequencies; 2) in the case of panels of

RILs such as the CC, because they are homozygous across the genome, which increases the contrast

in additive allele effects and thus boosts additive QTL effect size; and 3), again for RILs, because

they furnish biological replicates, which, as illustrated in Eq 2.4, can increase effect size by reducing

individual error.
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2.5.2 Strains versus replicates

When holding the total number of mice fixed, we found that adding more strains improves power and

reduces location error to a greater degree than does adding more replicates. Moreover, this inference

was made in the absence of a background strain effect—given that replicates reduce individual-level

variance but not strain-level variance, the presence of background effects would reduce the relative

value of replicates yet further. These observations are consistent with the results of Valdar et al.

(2006a) and established theoretical arguments (Soller and Beckmann, 1990; Knapp and Bridges,

1990).

Nonetheless, for many CC mapping experiments we predict that adding replicates will provide

considerable value. First, for all but the most highly polygenic traits, mapping on the means of

replicates, a strategy originally termed “replicated progeny” (Cowen, 1988) or “progeny testing”

(Lander and Botstein, 1989), will always provide additional power. Indeed, with a limited number of

strains available, and the possibility that all available strains are used, replication may sometimes be

the only way power can be further increased (Belknap, 1998).

Second, replicates provide not only an insurance policy against phenotyping errors, but also a

way to average over batches and similar nuisance parameters (Cowen, 1988), thus protecting against

the negative consequences of gene by environment interactions while also providing the opportunity

for such interactions to be detected [e.g., Kafkafi et al. (2005, 2018)].

Third, replicates enable deeper phenotypic characterization and in particular measurement of

strain-level phenotypes that are necessarily a function of multiple individuals. For example, treatment

response phenotypes (e.g., response to drug) are ideally defined in terms of counterfactual-like

observations of drug-treated and vehicle-treated strain replicates [e.g., Festing (2010); Crowley et al.

(2014)] and recombinant inbred lines such as the CC are uniquely able to combine such definitions

with QTL mapping [e.g., Mosedale et al. (2017) and also, in flies, Kislukhin et al. (2013); Najarro

et al. (2015)]. Similarly, strain-specific phenotypic variance ideally requires replicates (Rönnegård

and Valdar, 2011; Ayroles et al., 2015). We did not consider such elaborations here, but we expect

the trade-off between number of strains vs replicates will be more nuanced in such cases.
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2.5.3 Population structure in the CC

Our simulations indicate that deviations from equal relatedness in the realized CC strains have

introduced a degree of population structure that potentially increases the risk of false positives if not

addressed, albeit to a far lesser extent than has been observed in traditional inbred strain association

(Eskin et al., 2008). In particular, null simulations that assumed correlated strain effects due to

genetic relatedness increased FPR for our mapping approach when the strain effect was large relative

to individual error, as would be the case for a highly heritable polygenic trait or when using many

replicates. This elevated FPR supports the use of QTL mapping approaches that account for the

effect of genetic similarity on phenotypes, such as a mixed effect model (Eskin et al., 2008; Kang

et al., 2010; Lippert et al., 2011; Zhou and Stephens, 2012), especially in the context of marginally

significant QTL, which may not remain significant given a higher threshold that controls FPR more

appropriately. Software packages that can fit the LMM specifically with CC data include our miQTL

package (available on GitHub at https://github.com/gkeele/miqtl) and R/qtl2 (Broman

et al., 2019).

For the analyses reported here, a mixed effect model approach was not feasible owing to its

increased computational burden (and in particular, its incompatibility with the computational shortcut

in Appendix A). Instead, we simulated independent strain effects and employed a fixed effect

mapping procedure due to its computational efficiency, especially when computing permutation-

based significance thresholds. Nonetheless, the conclusions drawn in this study should be largely

consistent with the use of a mixed effect model that correctly controls for correlated strain effects

due to genetic relatedness.

2.5.4 Allelic series, and use of an eight allele mapping model

We found that the allelic series can strongly affect power through its influence on observed allele

frequencies. Specifically, imbalanced bi-allelic QTL have significantly reduced mapping power

whereas highly multi-allelic QTL do not because the potential for imbalance is reduced.

Regardless of the true allelic series at a QTL, which is unknown in practice, our statistical

procedure assumed an eight allele model. For QTL with fewer functional alleles than founder strains,

this assumption could reduce power due to the estimation of redundant allele effect parameters.
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Indeed, QTL consistent with a bi-allelic series have been more powerfully detected in some MPP

studies using SNP association (Baud et al. 2013; Keele et al. 2018).

Nonetheless, multi-allelic QTL (with more than two alleles) do occur. This has been seen, for

example, in cis-regulation of gene expression that largely corresponds to the three subspecies lineages

of Mus musculus, present in the CC (Crowley et al., 2015). Moreover, multi-allelic QTL will not be

as powerfully detected through SNP association, as seen, for example, in Aylor et al. (2011). SNP (or

more generally, variant) association also poses additional challenges, such as how to handle regions

of the genome (and variants) that are difficult to genotype, as well as the requirement of extensive

quality control filtering to remove markers with low minor allele frequencies. These challenges are

implicitly reduced in haplotype analysis.

An ideal statistical procedure would formally model the unknown allelic series and their corre-

sponding uncertainty. Though challenging, the development of alternative mapping strategies that

specifically account for the allelic series is clearly an imperative methodological advance that would

greatly benefit QTL analyses in MPPs with diverse founder alleles. That said, allelic series-aware

approaches would likely be computationally expensive and poorly suited to simulation-based power

analyses. Meanwhile, in the absence of more sophisticated approaches, the eight allele model, though

potentially redundant, has several advantages over SNP association that suggest it will remain a

useful (and maybe the default) tool for CC mapping, namely: it encompasses all possible simpler

allelic series, implicitly models local epistasis, and, in reflecting the LD decay around detected QTL,

more clearly delineates the limits of mapping resolution.

2.5.5 Inclusion of extinct CC strains in simulations

Our simulations included genomes from CC strains that are now extinct, and also did not include

all the CC strains that are currently available. This discrepancy reflects the inherent challenge of

maintaining a stable genetic population resource. RI panels, such as the CC, are an approximation to

an ideal: they attempt to provide reproducible genomes that can be observed multiple times as well

as across multiple studies; yet, as a biological population, the genomes are mutable, and through

time will accumulate mutations and drift, and even potentially go extinct.

Although the inclusion of genomes of extinct strains, or those that have drifted since the strains

were genotyped, result in power calculations that do not perfectly correspond to the current CC
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population, they are preferable to simulated genomes, since they represent genomes that were viable

at some point. We view the use of extinct genomes as realistic observations of possible genomes that

reflect both the potential that more strains will become extinct or be gained from other breeding sites

with time, and thus can be reasonably extended to the realized population, now and into the future.

2.5.6 Future use and directions

Any analysis of power is subject to the assumptions underlying that analysis. One of the advantages

of simulation is the ability to evaluate the impact of many of these assumptions, as well as the

consideration of new scenarios by re-running the simulation under different settings, or by elaborating

the simulation itself. We have attempted to make re-running the simulations under different settings

straightforward for other researchers by developing a software package for this purpose. This package

could be used to investigate highly-specialized questions, such as the power for specific combinations

of CC strains or assessing how the power to detect QTL varies depending on genomic position. In

future work, the simulation code itself could be expanded to investigate additional topics of interest,

such as how variance heterogeneity or model mis-specification influence power.

2.5.7 Conclusion

We used a focused simulation approach that incorporates realized CC genomes to provide more

accurate estimates of QTL mapping power than were previously possible. As such, the results

of our simulations provide tailored power calculations to aide the design of future QTL mapping

experiments using the CC. Additionally, we evaluate how the balance of alleles at the QTL can

strongly influence power to map QTL in the CC. We make available the R package SPARCC that we

developed for running these simulations and analyses. It leverages an efficient model fitting approach

in order to explore power in a level of detail that has previously been impractical, it is replicable, and

it can be extended to user-specified questions of interest.
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2.7 Appendix A: QR decomposition for fast regression

To maximize power to detect QTL while controlling the FPR, permutations to determine significance

thresholds are needed, which is computationally expensive and thus the underlying regression

functionality must be highly optimized. We accomplish this through the QR matrix decomposition,

which we will describe briefly (Venables and Ripley, 2002).

Let X = PA be the n×m design matrix included in Eq 2.3, with m = 8. The solution for β

from the least squares normal equations is β̂ = (XTX)−1XTy. Through the QR decomposition,

X = QR, for which Q is an n × p orthonormal matrix (QTQ = I) and R is a m × m upper

triangular matrix. With matrix algebra, it is fairly straightforward to show that β̂ = R−1QTy,

which is also more numerically stable than calculating β̂ through (XTX)−1. After solving for β̂, the

residual sums of squares, and ultimately logP, can be rapidly calculated. Because our simulation

approach involves regressing many permuted outcomes Upy
(s), where Up is a permutation matrix

that re-orders y(s) randomly, on the same design matrices, computational efficiency can be vastly

increased by pre-computing and saving the QR decompositions for all X.

Once the QR decomposition has been stored for a design matrix Xj , j indexing locus, it is highly

computationally efficient to conduct additional tests for any y, thus encompassing all permuted

outcomes Upy. If Xj is the same across S simulations, the boost in computation can extend beyond

permutations to samples of y(s), as is the case when the set of CC strains is fixed. In effect, two cases

result for our R package SPARCC: when the set of CC strains is fixed, and when the set varies.

• Fixed set of CC strains

1. Store QR decompositions of Xj for j = 1, 2, . . . , J

2. Run genome scans for y(s) and Upy
(s) for s = 1, 2, . . . , S × p = 1, 2, . . . , P

• Varied set of CC strains
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1. Store QR decompositions of Xjs for j = 1, 2, . . . , J

2. Run genome scans for y(s) and Upy
(s) for p = 1, 2, . . . , P

3. Repeat steps 1 and 2 for s = 1, 2, . . . , S

Varying the sets of CC strains increases computation time linearly with respect to S. If the inves-

tigators do not have a predefined set of strains, it is appropriate that this source of variability be

incorporated into the power calculation.

2.8 Appendix B: Computing environment and performance

We performed 1,000 simulations (in batches of 100) for each combination of the parameters, re-

sulting in 8,400 individual jobs. These jobs were submitted in parallel to a distributed computing

cluster (http://its.unc.edu/rc-services/killdevil-cluster/). Runtime varied

depending on parameter settings and the hardware used, with the longest jobs taking approximately

seven hours to complete.

2.9 Appendix C: CC strains

This study used haplotype mosiac data available from http://csbio.unc.edu/CCstatus/

index.py?run=FounderProbs for the following 72 CC strains: CC001, CC002, CC003,

CC004, CC005, CC006, CC007, CC008, CC009, CC010, CC011, CC012, CC013, CC014, CC015,

CC016, CC017, CC018, CC019, CC020, CC021, CC022, CC023, CC024, CC025, CC026, CC027,

CC028, CC029, CC030, CC031, CC032, CC033, CC034, CC035, CC036, CC037, CC038, CC039,

CC040, CC041, CC042, CC043, CC044, CC045, CC046, CC047, CC048, CC049, CC050, CC051,

CC052, CC053, CC054, CC055, CC056, CC057, CC058, CC059, CC060, CC061, CC062, CC063,

CC065, CC068, CC070, CC071, CC072, CC073, CC074, CC075, CC076. This includes two strains

CC051 and CC059 that are derived from the same breeding funnel and thus more closely related

than typical pairs of CC strains.

Of the the 72 CC strains used here, 54 are among a larger set of 59 that are currently maintained

and distributed by UNC (personal correspondence with Darla Miller, UNC). These 54/59 strains are

CC001, CC002, CC003, CC004, CC005, CC006, CC007, CC008, CC009, CC010, CC011, CC012,
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CC013, CC015, CC016, CC017, CC019, CC021, CC023, CC024, CC025, CC026, CC027, CC029,

CC030, CC031, CC032, CC033, CC035, CC036, CC037, CC038, CC039, CC040, CC041, CC042,

CC043, CC044, CC045, CC046, CC049, CC051, CC053, CC055, CC057, CC058, CC059, CC060,

CC061, CC062, CC065, CC068, CC071, CC072. The remaining 5/59 strains (CC078, CC079,

CC080, CC081, CC083) lacked haplotype mosaic data at the time of simulation and so were not

included (although note that their mosaics have since been added to the website).

2.10 Appendix D: Additive model and allelic series matrices

2.10.1 Additive matrix

We can use matrices to specify simplifying linear combinations of the 36 diplotypes. The additive

model matrix A is commonly used, and we use it here. Post-multiplication of the diplotype design

matrix D with the A rotates the diplotypes at the locus to dosages of the founder haplotypes. If there

is no uncertainty on the diplotype identities, DA will be the matrix of founder haplotype counts at

the locus.
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A =



A B C D E F G H

AA 2 0 0 0 0 0 0 0

BB 0 2 0 0 0 0 0 0

CC 0 0 2 0 0 0 0 0

DD 0 0 0 2 0 0 0 0

EE 0 0 0 0 2 0 0 0

FF 0 0 0 0 0 2 0 0

GG 0 0 0 0 0 0 2 0

HH 0 0 0 0 0 0 0 2

AB 1 1 0 0 0 0 0 0

AC 1 0 1 0 0 0 0 0

AD 1 0 0 1 0 0 0 0

AE 1 0 0 0 1 0 0 0

AF 1 0 0 0 0 1 0 0

AG 1 0 0 0 0 0 1 0

AH 1 0 0 0 0 0 0 1

BC 0 1 1 0 0 0 0 0

BD 0 1 0 1 0 0 0 0

BE 0 1 0 0 1 0 0 0

...
...

...
...

...
...

...
...

...
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A =



A B C D E F G H

...
...

...
...

...
...

...
...

...

BF 0 1 0 0 0 1 0 0

BG 0 1 0 0 0 0 1 0

BH 0 1 0 0 0 0 0 1

CD 0 0 1 1 0 0 0 0

CE 0 0 1 0 1 0 0 0

CF 0 0 1 0 0 1 0 0

CG 0 0 1 0 0 0 1 0

CH 0 0 1 0 0 0 0 1

DE 0 0 0 1 1 0 0 0

DF 0 0 0 1 0 1 0 0

DG 0 0 0 1 0 0 1 0

DH 0 0 0 1 0 0 0 1

EF 0 0 0 0 1 1 0 0

EG 0 0 0 0 1 0 1 0

EH 0 0 0 0 1 0 0 1

FG 0 0 0 0 0 1 1 0

FH 0 0 0 0 0 1 0 1

GH 0 0 0 0 0 0 1 1



2.10.2 Allelic series matrices

We explore the influence of the allelic series on QTL mapping power through the simulation procedure.

The QTL mapping procedure estimates separate parameters for each founder, though in reality, there

are likely fewer functional alleles. We denote the qth functional allele as kq. The allelic series can be

sampled and encoded in the M.ID argument within the sim.CC.data() function of SPARCC.

Below are examples of balanced (4v4) and unbalanced (7v1) bi-allelic series, as well as tri-allelic

series.
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2.10.2.1 Allelic series with eight alleles (maximum)

M.ID = ‘‘0,1,2,3,4,5,6,7’’

M = I =



k0 k1 k2 k3 k4 k5 k6 k7

A 1 0 0 0 0 0 0 0

B 0 1 0 0 0 0 0 0

C 0 0 1 0 0 0 0 0

D 0 0 0 1 0 0 0 0

E 0 0 0 0 1 0 0 0

F 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 1 0

H 0 0 0 0 0 0 0 1


2.10.2.2 Example balanced (4v4) bi-allelic series

M.ID = ‘‘0,1,0,0,1,0,1,1’’

M =



k0 k1

A 1 0

B 0 1

C 1 0

D 1 0

E 0 1

F 1 0

G 0 1

H 0 1


M.ID = ‘‘0,1,1,1,0,0,1,0’’
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M =



k0 k1

A 1 0

B 0 1

C 0 1

D 0 1

E 1 0

F 1 0

G 0 1

H 1 0


2.10.2.3 Example unbalanced (7v1) bi-allelic series

M.ID = ‘‘0,0,0,0,0,1,0,0’’

M =



k0 k1

A 1 0

B 1 0

C 1 0

D 1 0

E 1 0

F 0 1

G 1 0

H 1 0


M.ID = ‘‘0,1,0,0,0,0,0,0’’
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M =



k0 k1

A 1 0

B 0 1

C 1 0

D 1 0

E 1 0

F 1 0

G 1 0

H 1 0


2.10.2.4 Example tri-allelic series

M.ID = ‘‘0,0,1,2,2,0,2,0’’

M =



k0 k1 k2

A 1 0 0

B 1 0 0

C 0 1 0

D 0 0 1

E 0 0 1

F 1 0 0

G 0 0 1

H 1 0 0


M.ID = ‘‘0,1,0,0,0,0,2,2’’
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M =



k0 k1 k2

A 1 0 0

B 0 1 0

C 1 0 0

D 1 0 0

E 1 0 0

F 1 0 0

G 0 0 1

H 0 0 1
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2.11 Data and Supplement details

Data and analysis files in the Supplement include:

• File S1: data supplement details.pdf - Overview of data and Supplement.

• File S2: sparcc 1.1.1.tar.gz - SPARCC R package used for all analyses.

• File S3: sparcc cache.zip - CC haplotype mosaics formatted for SPARCC.

• File S4: sparcc powersim.R - Example R script to perform large-scale power analysis.

• File S5: sparcc powersim.sh - Example shell script to coordinate separate calls to

sparcc powersim.R.

• File S6: collapse results.R - Example R script to aggregate results from multiple calls to

sparcc powersim.R.

• File S7: sparcc options tutorial.pdf - Provides description of options in SPARCC, and provides

simple tutorials for using the package.

• File S8: generate figures.R - R script to generate figures in manuscript and Supplement.

• File S9: supplement tables figures.pdf - The supplementary tables and figures.

2.11.1 SPARCC Package

The static version of the SPARCC R package (1.1.1) used in this paper is provided in the Supplement

as File S2. R and shell scripts are provided to generate the same results as File S4, File S5, File S6,

and File S8. Static versions of these files have been placed on figshare. The current version of

the SPARCC package is available here: https://github.com/gkeele/sparcc. SPARCC

can be installed using the command ’R CMD INSTALL’ at the terminal. The current version

can be conveniently installed using the devtools R package and the following command within R:

’install github(“gkeele/sparcc”)’.
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2.11.2 Data objects included in SPARCC package

• r1.dat: Data frame of power and FPR results for Definition B from 1,000 simulations per

combination of

– Number of strains: [(10-70 by 5), 72]

– Single observation per strain

– Number of alleles: [2, 3, 8]

– h2strain = 0

– h2QTL: [0.01, (0.05-0.95 by 0.05)]

• r1.damb.dat: Data frame of power and FPR results for Definition DAMB from 1,000 simula-

tions per combination of

– Number of strains: [(10-70 by 5), 72]

– Single observation per strain

– Number of alleles: [2, 3, 8]

– h2strain = 0

– h2QTL: [0.01, (0.05-0.95 by 0.05)]

• r1.4v4.dat: Data frame of power and FPR results for Definition B with bi-allelic series forced

to be balanced (4 founders per functional allele) from 1,000 simulations per combination of

– Number of strains: [(10-70 by 5), 72]

– Single observation per strain

– Number of alleles: 2

– h2strain = 0

– h2QTL = 0.5

• r1.7v1.dat: Data frame of power and FPR results for Definition B with bi-allelic series forced

to be imbalanced (singler founder with one allele) from 1,000 simulations per combination of

– Number of strains: [(10-70 by 5), 72]
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– Single observation per strain

– Number of alleles: 2

– h2strain = 0

– h2QTL = 0.5

• r1.dist.dat: Data frame of mean location error results for Definition B from 1,000 simulations

per combination of

– Number of strains: [(10-70 by 5), 72]

– Single observation per strain

– Number of alleles: [2, 3, 8]

– h2strain = 0

– h2QTL: [0.01, (0.05-0.95 by 0.05)]

• r1.exchange.dat: Data frame of FPR results for Definition B from 10,000 null simulations with

correlated strain effects based on K per combination of

– Number of strains: [71 (excluding CC059), 72]

– Single observation per strain

– Number of alleles: 0

– h2strain: [0-1 by 0.2]

– h2QTL = 0

• r1.beavis.dat: Data frame of QTL effect size estimations for Definition DAMB from 1,000

simulations per combination of

– Number of strains: [(40-60 by 10), 72]

– Single observation per strain

– Number of alleles: 2

– h2strain = 0

– h2QTL: [(20-70 by 10)]
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• K: Matrix of dimension 72× 72 representing the realized genetic relationship matrix of the 72

CC strains, calculated from the founder mosaics.

2.11.3 File types

• *.R - These are R scripts used for the analyses and figures.

• *.sh - These are bash scripts used to run large-scale analysis.

• *.RData - These files are contained in the happy formated sparcc cache directory that can be

loaded in R and are necessary for SPARCC to run.
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2.12 Supplemental Tables and Figures
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Figure 2.10: Power estimates for experiments with three and five replicates interpolated from
estimates from only a single observation per CC strain. Power curves correspond to a QTL with
effect size of 30% and two functional alleles. QTL effect sizes for experiments with replicates are
adjusted based on Eq 2.4, allowing for results from single observation simulations to be projected into
experiments with replicates. Pre-computed power estimates for single observation simulations are
stored in SPARCC and can conveniently be extrapolated into other settings, as is demonstrated here.
The horizontal red dotted line marks 80% power. The vertical black dashed line marks 58 strains,
which is currently the number of unrelated strains available from UNC. Closed circles represent
power estimates that were directly evaluated. Open circles represent power estimates that were
interpolated from single observation results.
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False positive rate
Background Strain 71 strains 72 strains
0 0.058 0.055
0.2 0.0648 0.062
0.4 0.078 0.083
0.6 0.092 0.102
0.8 0.109 0.124
1 0.129 0.145

Table 2.3: False positive rate in the Collaborative Cross with no simulated QTL and the presence of
population structure (also in Figure 2.6). Background strain effects were assumed to be correlated
based on the realized genomic similarity of the 72 strains. We also excluded CC059, cousin strain of
CC051, for a total of 71 strains.
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Figure 2.11: False positive rate (FPR) based on 1,000 simulations per setting with respect to number
of CC strains, stratified by the number of functional alleles. The horizontal red dashed line marks
the 5% type I error (false positive) rate. CC strains and loci were varied in simulations, resulting
in false positive rates that average over loci and strain combinations. Confidence intervals were
calculated based on Jeffreys interval (Brown et al., 2001) for a binomial proportion. Plots, left to
right, correspond to two, three, and eight functional alleles. The FPR represents the probability that
any QTL is detected on chromosomes other than the chromosome on which the simulated QTL is
located. The significance thresholds maintain the desired type I error rate of 0.05. As expected,
the allelic series does not appear to influence FPR. The vertical black dashed line marks 58 strains,
which is currently the number of unrelated strains available from UNC.
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Figure 2.12: The raw mean (A) and 95% quantile (B) of the location error, the distance in Mb
between the detected and simulated QTL, by effect size and number of strains for 1,000 simulations
of each setting. These simulations are based on Definition B with an eight allele QTL, and only
a single observation per strain. Cells are colored red to white with decreasing mean and blue to
white with decreasing 95% quantile. Black cells represent the case in which no simulated QTL were
detected. Estimates from poorly-powered settings are more likely to be unobserved or unstable from
low detection. Regularized measurements are provided in Figure 2.4. Increasing the number of
strains reduces both the mean and 95% quantile location error more so than QTL effect size, also
shown in Figure 2.15. The maximum possible location error was 5Mb due to the 10Mb window
centered around the true QTL position used for detecting QTL.
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Figure 2.13: Mean location error of detected QTL increases with the number of replicates while
keeping total sample size fixed. Estimates are based on linear interpolation from dense simulations
using Definition B with single observations per strains. The total number of mice and the QTL effect
size are fixed at 250 and 50%, respectively. The red dotted line highlights that the lowest mean
location error occurs at 4, the lowest number of replicates possible for a sample of 250 mice, given
the 72 strains used in the simulations.
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Figure 2.14: The realized genetic relationship matrix K deviates from a perfectly balanced population.
Red and blue circles represent the eigenvalues of the eigendecomposition of the realized K, when
including both cousin strains (A) and excluding one (B). Black diamonds represent the eigenvalues
of a balanced K, with the relationship fixed at the mean relationship observed in the realized K.
Vertical dashed lines represent the number of components necessary to explain 95% of the variation
for the different K. The first eigenvalue represents the variation accounted for by the overall mean of
K. In the balanced K, after removing the effect of the mean, all components contribute equally to the
variance. The eigenvalue of the second component for the 72 strains is slightly inflated, representing
the cousin strains, a notable deviation from equal relatedness. This inflation disappears when one of
the cousin strains is removed, however population structure still persists.
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Figure 2.15: Distributions of the un-regularized location error, by number of strains (A), number of
alleles (B), and QTL effect size (C). Observed distances are between -5 and 5Mb due to the 10Mb
window centered around the simulated QTL that was used for QTL detection in the large scale results.
Gray dots represent the distances for a single simulations. The colored violin plots represent the
distribution of distances across the simulations. The black dot marks the mean location error for
each category. Horizontal lines represent the 25th and 75th quantiles. (A) With QTL effect size fixed
at 50% and the number of alleles at 8, as the number of CC strains increases, the distribution of
location error becomes more concentrated around zero, meaning the mapping resolution improves
with increasing numbers of strains. (B) With the QTL effect size again fixed at 50% and the number
of strains fixed at 72, the distribution of distances does not appear to differ based on the number of
functional alleles. (C) With the number of strains fixed at 72 and the number of alleles fixed at 8, as
the QTL effect size increase, the distribution of distances becomes more concentrated around zero.
These simulations are based on Definition B and single observations per strain. See Figures 2.4 and
2.12 for specific estimates of location error over different settings of QTL effect size and numbers of
strains.
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CHAPTER 3

Methods for Allele-Based Approach

3.1 Overview

In this chapter, we introduce a fully-Bayesian framework for inferring the allelic series in multi-

parental populations (MPPs). This framework encompasses both the single-variant and haplotype-

based association approaches, and it permits optional prior information about haplotype relatedness,

as encoded by a phylogenetic tree. The allele-based approach described in this chapter is the basis

for the remaining chapters, which evaluate its properties and demonstrate its applications.

3.2 Introduction

At a QTL, a quantitative trait y = (y1, ..., yN )T measured in N individuals i = 1, ..., N is associated

with genetic variation at a particular location in the genome. In a multiparental population with J ≥ 2

founder strains j = 1, ..., J , this genetic variation is encoded by the pair of founder haplotypes, or

the diplotype, present at the locus, denoted for each individual by the indicator vector di. We are

interested in understanding the genetic architecture of the phenotype, or the form of the relationship

between yi and di.

Assume that the diplotype state of each individual is known. Then di is an indicator vector with

length J +
(
J
2

)
corresponding to the number of possible pairs of founder haplotypes. The diplotype

states of all individuals are given by the matrix D = (d1, ...,dN )T with dimension N ×J+
(
J
2

)
. For

example, in a population with J = 3 founder haplotypes labeled as {A,B,C}, a possible diplotype
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state matrix is given by

D =



AA BB CC AB AC BC

1 0 0 0 0 1 0

2 1 0 0 0 0 0

...
...

...
...

...
...

...

N 0 1 0 0 0 0


.

The first individual has the AC diplotype, or one copy of both the A and C haplotypes, while the

second individual has the AA diplotype, or two copies of the A haplotype.

We assume an additive genetic model, which defines the phenotypic effect of each diplotype as

the sum of two haplotype effects. In our example, the AC diplotype state of the first individual has

effect 0.5βA + 0.5βC on the phenotype, while the AA diplotype state of the second individual has

effect 0.5βA + 0.5βA. More generally, the diplotype effects are given by the matrix product

βββdip = Aβββhap,

where βββdip is a length J+
(
J
2

)
vector of diplotype state effects, βββhap is a length J vector of haplotype

effects, and A is a J +
(
J
2

)
× J matrix that maps diplotype states to (half) counts of haplotypes,

termed the additive design matrix. The diplotype effects for our example, decomposed into the
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product of the additive design matrix and the haplotype effects, are given by

Aβββhap =



A B C

AA 1 0 0

BB 0 1 0

CC 0 0 1

AB 0.5 0.5 0

AC 0.5 0 0.5

BC 0 0.5 0.5


×


βA

βB

βC

,

βββdip =



AA βA

BB βB

CC βC

AB 0.5βA + 0.5βB

AC 0.5βA + 0.5βC

BC 0.5βB + 0.5βC


,

and the diplotype effects of all individuals are then the matrix product Dβββdip = DAβββhap.

Assume that the phenotype is completely explained by the diplotype effects and normally-

distributed individual error, i.e. there are no other covariates, replicates observations, or population

structure. Then the relationship between y and D is given by the likelihood function

y|µ,D,βββhap, σ ∼ N(µ1 + DAβββhap, σ
2IN ), (3.1)

where µ is the intercept and σ2 scales the error variance of the phenotype. This model is overparam-

eterized, with µ and βββhap fitting J + 1 variables to the J levels of the data, but we ignore this for

now and address it later. A more familiar form substitutes X = DA, where X is a N × J design

matrix of haplotype counts; however, we use the previous notation because it emphasizes the additive

relationship between y and D.
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A standard Bayesian regression approach assumes that the haplotype effects are a priori dis-

tributed according to

βββhap|σ, φ ∼ N(0, σ2φ2IJ),

where φ controls the size of the haplotype effects relative to individual error (Servin and Stephens,

2007). This fits an independent haplotype effect for each of the J founder haplotypes, implicitly

assuming that, with respect to the phenotype, each founder haplotype is functionally distinct. This

assumption is unrealistic, however, if the causal variant underlying the QTL is a biallelic SNP. Then,

the founder haplotypes fall into two functionally distinct groups based on the presence or absence of

the SNP, and additional distinctions among the haplotypes are redundant, as in Yalcin et al. (2005).

For example, if haplotypes A and C both have functional allele k, then their effects are equal to

the effect of that allele: βA = βC = βk. More complicated cases, such as local epistasis between

multiple nearby variants, could lead to some number of K functional alleles k = 1, ...,K where

2 ≤ K ≤ J , as in King et al. (2014). Thus, the haplotype effects are dependent: they depend on

the number of functional alleles and how those alleles are distributed among the haplotypes. This

mapping of haplotypes to functional alleles is the allelic series.

We propose an approach that extends the additive genetic model to explicitly account for the

allelic series, as in Jannink and Wu (2003). Our approach decomposes the haplotype effects into the

product of the allelic series matrix and a vector of allele effects:

βββhap = Mβββalle, (3.2)

where βββalle = (β1, ..., βK)T is a length K vector of allele effects, M = (m1, ...,mJ)T is a

J ×K matrix denoting the allelic series, and mj is a length K indicator vector denoting the allele

assignment of strain j. In our example, haplotypes A and C share one of two functional alleles, and
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the corresponding haplotype effects βββhap are given by the matrix product

M(0,1,0)βββalle =



k=1 k=2

A 1 0

B 0 1

C 1 0

×
 β1

β2

,

βββhap =


A β1

B β2

C β1

,

where the subscript of M is a unique identifier of the allelic series configuration it encodes. The

haplotype effects βββhap are no longer independent and functionally distinct, but instead are comprised

of repeated values of a smaller set of allele effects βββalle. More generally, the allelic series matrix M

partitions the J haplotypes into K functional alleles, which also determines the number of allele

effects in βββalle. If the allelic series is known and K < J , this approach will estimate βββhap more

efficiently than the standard haplotype-based approach because it fits only K allele effects, rather

than J redundant haplotype effects.

The allelic series is rarely known a priori, but it may be inferred from the data. From a Bayesian

perspective, we are interested in the allelic series’ posterior distribution,

p(M|y) =
p(y|M)p(M)

p(y)
,

which requires specifying a prior distribution over the space of possible partitions encoded by M. In

our example with J = 3 haplotypes, the space of allelic series is easily enumerated and includes a

null configuration where all haplotypes are functionally identical,

M(0,0,0) =



k=1

A 1

B 1

C 1

,
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all the partitions of three haplotypes into two functional alleles,

M(0,0,1) =



k=1 k=2

A 1 0

B 1 0

C 0 1

,

M(0,1,0) =



k=1 k=2

A 1 0

B 0 1

C 1 0

,

M(0,1,1) =



k=1 k=2

A 1 0

B 0 1

C 0 1

,

and a configuration where all the haplotypes are functionally distinct,

M(0,1,2) =



k=1 k=2 k=3

A 1 0 0

B 0 1 0

C 0 0 1

.

Specifying a prior distribution over this space involves simultaneously defining expectations about

the number of functional alleles and which combinations of haplotypes are more or less likely to be

functionally distinct. This is particularly challenging when there are more founder haplotypes, as the

space of allelic series partitions becomes exceedingly large.

Partition problems are common in Bayesian nonparametric statistics, and our approach is closely

related to the popular Dirichlet process (DP) with a normal base distribution, i.e.,

βββhap|σ, φ, α ∼ DP(α,N(0, σ2φ2)),
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where α is the concentration parameter (Escobar and West, 1995). Under the DP, the corresponding

prior distributions on the decomposed elements of βββhap are

M|α ∼ CRP(α),

βββalle|σ, φ ∼ N(0, σ2φ2IK),

where CRP denotes the Chinese restaurant process. In the CRP, the concentration parameter α

controls the prior distribution of the number of functional alleles, and the distribution over particular

allelic configurations is implied by the process itself. Specifically, the CRP assigns a haplotype to an

allele conditionally, in proportion to the number of haplotypes already assigned to that allele, without

considering which particular haplotypes comprise the allele. In this way, the CRP is uninformative

with respect to the relationship between individual haplotypes. We use the CRP as a starting point

for directly modeling the allelic series, eventually modifying it in order to introduce additional prior

information about haplotype relatedness.

In the remainder of the methods, we first describe the likelihood function in more detail, relaxing

some assumptions and specifying convenient conjugate prior distributions for several variables.

Then, we discuss the CRP and its properties in more detail, including using Ewens’s sampling

formula to show how it can be interpreted as a distribution over random coalescent trees with the

haplotypes at the leaves. Next, we use this connection to the coalescent to define an informative prior

distribution for the allelic series which reflects information about haplotype relatedness, as encoded

by a phylogenetic tree. We then specify prior distributions for the remaining model parameters and

discuss elicitation of prior hyperparameters. Last, we describe posterior inference via a partially-

collapsed Gibbs sampler and show how the output of this sampler can be used to calculate the

approximate marginal likelihood and Bayes factors (BFs).

3.3 Likelihood Function

The likelihood function defines the relationship between the phenotype and the diplotype states. We

introduced a simplified version of the likelihood in Equation 3.1 that describes the phenotype as a

linear combination of additive haplotype effects and normally-distributed individual error. We also
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decomposed the haplotype effects into the product of an allelic series configuration and allele effects

in Equation 3.2. Substituting this decomposition into the likelihood, and allowing for the possibility

of both other covariates and replicate observations, the likelihood function is given by

y|µ,D, M,βββalle, δδδ, σ ∼

N(µ1 + DAMβββalle + Zδδδ, σ2W−1),

where Z is a N × P matrix of optional covariates, δδδ is a length P vector of covariate effects, and W

is a N ×N diagonal matrix with the number of replicates for each observation on the diagonal.

Our approach requires evaluating the likelihood over many settings of M with varying dimension.

This motivates the use of conjugate priors for the allele effects, which allow us to simplify the

likelihood by integrating, or collapsing, the allele effects out of the expression (Servin and Stephens,

2007). Thus, we use the conjugate normal-gamma prior distribution for the precision, intercept, allele

effects, and covariate effects:

σ−2 ∼ Ga(0.5κ, 0.5λ),

µ|σ ∼ N(0, σ2τ2µ),

βββalle|σ, φ ∼ N(0, σ2φ2CCT ),

δδδ|σ ∼ N(0, σ2τ2δ IP ),

where κ, λ are shape and rate hyperparameters that control prior precision, and τµ, τδ are hyperpa-

rameters related to the prior intercept and covariate effect sizes.

We made note in the overview that the likelihood function is overparameterized, with µ and (now)

βββalle fitting K + 1 parameters to K allelic levels of the data. For this reason, the prior covariance

of βββalle includes a sum-to-zero constraint encoded by C, a K × (K − 1) contrast matrix (Crowley
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et al., 2014). For example, if K = 3, then the scaled prior covariance of the allele effects is given by

CCT =



k=1 k=2 k=3

k=1 1 −0.5 −0.5

k=2 −0.5 1 −0.5

k=3 −0.5 −0.5 1

.

This matrix product is singular, reducing the dimension of the allele effect vector from K to K − 1,

and the likelihood function is no longer overparameterized. Thus, the allele effects can be expressed

as

βββalle = Cβββ,

which is the product of the contrast matrix C and a K − 1 vector of independent effects βββ with prior

distribution

βββ|σ, φ ∼ N(0, σ2φ2IK−1).

Note that under this constraint, the intercept µ is interpreted as the mean phenotype, adjusted for

covariates, in a population that is balanced with respect to the functional alleles, and the allele

effects are defined relative to this point. Thus, comparing haplotype effects across allelic series

requires making inference on the full prediction µ1 + MCβββ, which accounts for this shifting point

of reference.

The intercept, independent allele effects and covariate effects, given together by the vector

θθθT =

[
µ βββT δδδT

]
, are jointly normally distributed according to

θθθ|σ, φ ∼ N(0, σ2V),

where V is a (K + P )× (K + P ) diagonal matrix encoding the scaled prior covariance

V =



µ βββ δδδ

µ τµ 0 0

βββ 0 φ2IK−1 0

δδδ 0 0 τδIP

.
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The likelihood can be rewritten as

y|µ,D,M,βββalle, δδδ, σ ∼ N(Xθθθ, σ2W−1),

where X is the N × (K + P ) concatenated design matrix

X =

[ µ βββ δδδ

1 DAMC Z

]
.

Conjugacy yields a closed form for a simplified, t-distributed likelihood function:

y|D,M, φ ∼ tκ(0, λ[W−1 + XVXT ]).

This simplified likelihood depends only on the diplotype states, allelic series configuration, and

relative variance of the allele effects—this proves useful during posterior inference. We will describe

prior distributions for D and φ later, focusing next on prior distributions for M, the space of possible

allelic configurations.

3.4 Prior Distribution of the Allelic Series

3.4.1 Chinese Restaurant Process

Specifying a prior distribution over the allelic series involves defining expectations about the number

of functional alleles and likely allelic configurations. This is challenging because the space of possible

allelic series is quite large even when the number of haplotypes is small. For example, the CC has

J = 8 founder haplotypes and 4,140 possible allelic series; the DSPR has J = 15 and over 1.3 billion

possibilities (Rota, 1964). Encoding specific prior intuitions about such a space is difficult. It is

tempting to consider a uniform prior over the allelic series [p(M) ∝ 1] which allows the likelihood to

drive posterior inference about the allelic series. This is the implicit prior for frequentist approaches

such as King et al. (2014), or Yalcin et al. (2005) (conditional on K = 2). However, in most cases

the number of observations will be much smaller than the number of possible allelic configurations,

and this low-data scenario is precisely when prior information is most important. Instead of posterior
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inference being dominated by the likelihood, it will be sensitive to the properties of the uniform

distribution, which include a strong prior belief in an intermediate number of functional alleles and a

lack of flexibility to calibrate this belief.

Partition problems occur frequently in Bayesian nonparametric statistics, and a common and

more flexible prior distribution is the CRP,

M|α ∼ CRP(α),

with probability density function

p(M|α) = Γ(α)Γ(α+ J)−1αK
K∏
k=1

Γ(Jk),

where α is a concentration parameter which controls the expected number of functional alleles, and

Jk is the number of haplotypes assigned to allele k (Escobar and West, 1995). The CRP is widely

used in partition problems because it is exchangeable, making it amenable to posterior sampling.

Exchangeability means that the density function of the CRP can be factored into conditional distribu-

tions that describe the allele assignment of a particular haplotype given the allelic configuration of all

the other haplotypes. It also means that this conditional density can be applied iteratively (and in

any order), beginning with all haplotypes unassigned, to construct the unconditional density of M|α

(Welling, 2006).

The conditional probability density function of the CRP is given by

p(Mj |α,M−j) =


Jk(J − 1 + α)−1 k ≤ K

α(J − 1 + α)−1 k = K + 1,

where Mj is the allele assignment of haplotype j, and M−j is the allelic configuration of the other

J − 1 haplotypes. The probability that haplotype j is assigned to allele k is proportional to the

number of haplotypes already assigned to that allele, and the probability that haplotype j is assigned

to a new allele is proportional to the concentration parameter α. This proportionality induces a

“rich-get-richer” property that favors imbalanced allelic configurations (e.g. for J = 8, a biallelic

contrast of 7 haplotypes vs 1 haplotype for J = 8, “7v1”) over balanced configurations (e.g. an
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even biallelic contrast, “4v4”) (Wallach et al., 2008). Note that the conditional probability that a

haplotype is assigned to an existing functional allele does not depend on which particular haplotypes

have already been assigned to that allele, only the number that have been assigned. In this way, the

CRP is uninformative with respect to the relationship between individual haplotypes.

However, the CRP does allow for control over the prior number of functional alleles via the

concentration parameter. When α→∞, all of the haplotypes will be assigned to a unique functional

allele (M = I), which is identical to the standard haplotype approach which assumes that all J

haplotypes are functionally distinct. When α→ 0, all of the haplotypes will be assigned to a single

functional allele (M = 1), which is equivalent to a null model with no genetic effect.

To allow for additional flexibility, we place a prior distribution over the concentration parameter:

α ∼ Ga(aα, bα), (3.3)

where aα and bα are hyperparameters that control the shape and rate of the concentration parameter.

We discuss prior elicitation for these hyperparameters in a later subsection.

3.4.2 Ewens’s Sampling Formula and the CRP

The CRP is equivalently represented via Ewens’s sampling formula as the distribution over partitions

induced by functional mutations on random coalescent trees with the founder haplotypes at the leaves

(Ewens, 1972; Kingman, 2006). The intuition for this interpretation is as follows. At a QTL, there is a

tree that describes the relatedness of the founder haplotypes. At various points during the evolution of

this locus, functional mutations that altered the phenotype occurred at a constant rate on the branches

of the tree. These functional mutations were transmitted to the founder haplotypes at the leaves of

the tree, partitioning the haplotypes into groups which carry the same set of functional mutations.

This partition is the allelic series. Examples of allelic series induced by functional mutations on

coalescent trees of haplotypes are given in Figure 1.1. If we assume that the tree relating the founder

haplotypes is unknown, but that it is distributed according to the coalescent process, then the resulting

distribution over partitions is the CRP (Berestycki, 2009).
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More formally, Ewens’s sampling formula describes the allelic series as a function of a tree and

which branches of that tree are functionally mutated:

M = f(T,b),

where T denotes a tree with J leaves and 2J − 2 branches, and b = (b1, ..., b2J−2)
T is a length

2J−2 vector of indicators that denote whether or not a branch is mutated. The conditional probability

density function of the allelic series given the tree and branch mutations is

p(M|T,b) = 1{T,b⇒M},

where 1{T,b⇒M} is an indicator function that takes value 1 when T and b imply M and 0 otherwise.

The tree T is an unknown random graph that is distributed according to the coalescent process

with J leaves:

T ∼ Coalescent(J).

Coalescent trees are defined by sequential coalescent events that join lineages of the tree in random

order, beginning with the leaves, as well as the times at which these coalescent events occur, which are

exponentially distributed and depend on the number of lineages remaining prior to each coalescence

(Kingman, 1982). For our purposes, it is sufficient to note that there is a probability distribution over

trees, p(T ), and that this distribution assumes equal relatedness of the haplotypes via the random

order of coalescent events. We also note that each branch of the tree has a corresponding length,

which is contained in the length 2J − 2 vector `̀̀ and described in coalescent units.

The mutation status of the branches b is an unknown vector of indicators. Assume that functional

mutations occur on the branches of the tree as a Poisson process with constant rate 0.5α. Then the

number of mutations on each branch is Poisson distributed with rate proportional to branch length,

and the probability density function for b, which indicates whether or not each branch is mutated, is

p(b|T, α) =

2J−2∏
m=1

(e−0.5α`m)1−bm(1− e−0.5α`m)bm .
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This is similar to Azim Ansari and Didelot (2016), but with branch lengths scaled by 0.5 and in

coalescent units. The concentration parameter α controls the functional mutation rate per half-unit

of coalescent branch length. Note that moving forward, we will refer to α interchangeably as the

concentration parameter (of the CRP) or the functional mutation rate (on the tree), depending on

context. When α→∞, the probability that each branch is mutated approaches 1, the tree is saturated

with functional mutations, and all of the founder haplotypes are functionally distinct (M = I). When

α→ 0, the probability that each branch is mutated approaches 0, there are no functional mutations

on the tree, and all of the founders are functionally identical (M = 1).

The probability density function for the allelic series is thus

p(M|α) =

∫
T

{∑
b

p(M|T,b)p(b|T, α)

}
p(T ) dT,

which involves identifying the allelic series implied by each combination of mutated branches on a

tree, weighing by the probability of that combination, summing over all possible combinations, and

then integrating over all possible coalescent trees. Remarkably, this is identical to the probability

density function of the CRP described previously (Berestycki, 2009).

3.4.3 Tree-Informed CRP

In the previous subsection, we described how the CRP can be interpreted as a process of functional

mutation on random coalescent trees, with these mutations partitioning the leaves (haplotypes) into

the allelic series. This process is uninformative with respect to the relationship between individual

haplotypes because it integrates over all possible coalescent trees, which are generated by randomly

selecting lineages to coalesce, implying equal relatedness of the haplotypes. While the CRP does not

encode information about the relatedness of the haplotypes, it does, however, allow control over the

prior number of functional alleles, via the rate of functional mutation on the branches of the trees.

Within this framework, it is straightforward to define a distribution over the allelic series that

encodes specific prior information about the relatedness of the haplotypes in the form of a tree.

Conditional on a tree, the distribution over the allelic series reflects the relationships defined by the

structure of the tree and the lengths of its branches. The tree topology reduces the space of possible

partitions because many settings of M violate the relationships defined by T , making this information
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highly informative. The branch lengths of T also provide information about the allelic series, as long

branches are more likely to be functionally mutated than short branches. Consequently, haplotypes

separated by longer branches are more likely to be functionally distinct than haplotypes separated by

shorter branches. The functional mutation rate still controls the prior number of functional alleles,

now in combination with the tree structure and branch lengths.

If the tree is known, the conditional probability density function of the allelic series is given by

p(M|T, α) =
∑
b

p(M|T,b)p(b|T, α),

which does not involve integrating over coalescent trees, but does involve (weighted) summation

over all 22J−2 possible configurations of b. This approach is computationally intractable when the

number of haplotypes is large, but provided J is small (e.g. J = 8, the case for many MPPs, but

not J = 15, the case for the DSPR), it is possible to compute p(M|T, α) directly. We focus on this

approach and consider alternatives in the discussion.

Recall that the functional mutation rate (concentration parameter) α is an unknown variable with

a prior distribution. To avoid the computational burden of calculating p(M|T, α) for many settings

of α during posterior inference, we instead marginalize over this variable and compute p(M|T )

directly. The conditional probability density function is given by

p(M|T ) =
∑
b

p(M|T,b)

∫
α

p(b|T, α)p(α) dα

 .

In Appendix A, we show that the integral over α can be computed exactly when α has a gamma prior

distribution.

Finally, to this point, we have assumed that the tree is known, but it may be unknown and inferred

with uncertainty from a sequence alignment (Drummond et al., 2012). In this case, we are interested

in the allelic series prior distribution conditional on the sequence alignment S,

p(M|S) =

∫
T

p(M|T )p(T |S)dT

This can be approximated by averaging p(M|T ) over a sample of trees from p(T |S).
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3.5 Prior Distribution of Diplotype States

The diplotype state of each individual is an unobserved latent variable that is probabilistically inferred

via haplotype reconstruction. To account for this uncertainty, the diplotype state of each individual is

given a categorical prior distribution

di ∼ Cat(pi),

where pi is a J +
(
J
2

)
length vector of prior diplotype probabilities for each individual.

3.6 Prior Distribution of Allele Effect Size

The variable φ controls the size of the allele effects relative to individual error. Importantly, it also

controls the degree to which model complexity is penalized in Bayesian regression. An uninformative

prior on the allele effects (φ→∞) has the undesirable property of universally favoring a null model

with no genetic effect. It is possible to specify a single value for φ, but this represents exact prior

knowledge about the relative size of the allele effects, which is inappropriate if there is uncertainty

about QTL effect size. Instead, it is preferable to specify a prior distribution over φ in order to

accommodate this uncertainty.

We place a half-t prior distribution on the scaled standard deviation of the allele effects:

φ ∼ Half-t2bφ ,

where 2bφ is degrees of freedom of the half-t distribution. The half-t is a preferred prior choice for

variance components in normally-distributed models due to its behavior at the boundary (φ = 0) and

its convenient representation as the product of two conditionally-conjugate latent variables (Gelman,

2006).
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3.7 Prior Elicitation

The model is now fully elaborated, but we have not specified values for the prior hyperparameters. In

this subsection, we guide the selection of these hyperparameters, discussing relevant considerations

that may influence these selections.

3.7.1 Individual Error, Mean and Covariate Effects

We specify uninformative prior distributions for the size of the individual error (κ, φ→ 0) and the

intercept of the data (τµ →∞). If optional covariates are included, we also specify an uninformative

prior distribution for the corresponding covariate effects (τδ → ∞). These prior distributions are

improper, but posterior inference is proper when these quantities are informed by the data.

3.7.2 Concentration Parameter / Functional Mutation Rate

The shape and rate parameters aα and bα control the prior distribution of the concentration parameter

(functional mutation rate), which in turn controls the prior distribution over the number of functional

alleles. An uninformative prior distribution for the concentration parameter is given by aα, bα → 0.

However, posterior learning about the concentration parameter depends only on the number of

founder haplotypes J and the number of functional alleles K. For this reason, even if M is known,

the concentration parameter is poorly informed when J is small. This necessitates a prior distribution

that reflects reasonable prior expectations about the number of functional alleles.

We consider two alternatives for aα and bα. The first alternative is an exponential distribution

which places 50% of the prior probability on the null model, given by aα = 1 and bα ≈ 2.33

when J = 8 (termed “Exponential” in the next chapter). This prior distribution favors small

numbers of functional alleles with low variance. The second alternative is a weakly-informative

distribution which places moderate probability at the tails of the distribution [p(K = 1) = 0.05 and

p(K = J) = 0.01, respectively], given by aα ≈ 2.30 and bα ≈ 0.75 when J = 8 (termed “Gamma”

in the next chapter). This prior distribution expects an intermediate number of alleles with higher

variance. We note that it is possible to calibrate other expectations similarly, for example regarding

the frequency of biallelic contrasts, or the expected number of functional mutations on a tree, as in

Azim Ansari and Didelot (2016). We emphasize that the reasonableness of these expectations is
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specific to the number of founder haplotypes, the nature of the analysis (pre-/post-QTL detection),

and other population- or trait-specific prior beliefs.

3.7.3 Coalescent Tree

Specifying a prior tree for the haplotypes is highly informative with respect to the allelic series.

Our framework assumes that the phylogenetic tree is coalescent (with branches in coalescent units),

satisfying assumptions of no recombination, selection or population structure. In the context of QTL

mapping, the exact location of the causal sequence is often uncertain, making it difficult to satisfy the

assumption of no recombination in particular. We discuss inferring trees in recombinant organisms

in more detail in Chapter 7. We evaluate the consequences of tree misspecification in Chapter 4.

3.7.4 Diplotype States

We assume that the prior probability of the diplotype state of each individual pi is inferred using

established methods for haplotype reconstruction (Mott et al., 2000).

3.7.5 Relative Allele Effect Size

The half-t prior distribution on φ, the scaled standard deviation of allele effect size, is controlled by

degrees of freedom 2bφ. We set bφ = 1, which is the minimum value of bφ that yields a monotonically

decreasing prior distribution for the proportion of variance explained by the QTL, defined as

h2QTL =
φ2σ2

φ2σ2 + σ2
,

=
φ2

φ2 + 1
.

Larger values of bφ reflect a stronger prior belief in “small” effect sizes and increase the degree of

shrinkage in the allele effects.

3.8 Posterior Inference

We perform posterior inference via a partially-collapsed Gibbs sampler (van Dyk and Park, 2008;

Park and Van Dyk, 2009). Conceptually, this involves four steps: 1) updating the allelic series with
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the effects and scale of the error integrated, or collapsed, from the model; 2) jointly sampling the

effects and scale of the error; 3) updating the relative size of the allelic effects; and 4) jointly updating

the diplotype states. The effects and scale of the error are integrated from the model during the first

step in order to avoid mismatching the dimension of β and the dimension of M when updating the

allelic series. After updating the allelic series, the effects and scale of the error are reintroduced into

the model in order to take advantage of a convenient latent variable sampling scheme for the relative

size of the allele effects and in order to facilitate a joint update of the diplotype states. We will now

briefly discuss each of these steps in more detail.

3.8.1 Updating the Allelic Series

We update the allele assignment of each haplotype individually, conditional on the allele assignment

of the other haplotypes. In the case of the CRP, we must also update the concentration parameter.

The conditional posteriors of the allelic series and the concentration parameter under the CRP are

given by

p(Mj |y,D,M−j , φ, α) ∝ p(y|D,M, φ)p(Mj |M−j , α),

p(α|y,D,M, φ) ∝ p(M|α)p(α).

The first equation is the product of the t-distributed likelihood and the categorical, exchangeable,

conditional prior distribution of the CRP. The conditional posterior is calculated directly by evaluating

the likelihood at all possible (conditional) settings of the allelic series (Neal, 2000). The conditional

posterior of the concentration parameter depends only on the (number of alleles in the) allelic series,

and there is a convenient, well-established latent variable approach for sampling from this posterior

distribution (Escobar and West, 1995; Müller et al., 2015).

In the case of the tree-informed prior distribution, the concentration parameter has already been

integrated from the allelic series prior. Thus, the conditional posterior of the allelic series under the

tree-informed prior is given by

p(Mj |y,D,M−j , φ, T ) ∝ p(y|D,M, φ)p(Mj |M−j , T ),
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which is nearly identical to the previous equation. However, the conditional prior distribution of the

allelic series given the tree, p(Mj |M−j , T ), is not exchangeable and was not directly evaluated. Thus,

we assume that the conditional prior distribution is proportional to the marginal prior distribution

p(Mj |M−j , T ) ∝ p(M|T ),

treating this distribution as if it were exchangeable. At each iteration of the sampler, we randomize

the order in which the haplotypes assignments are updated. This is to avoid bias introduced by

ordered updates of nonexchangeable variables, as observed in (Wallach et al., 2008). We have not

observed issues with mixing using this approach, suggesting that this violation of exchangeability is

mild.

3.8.2 Sampling the Effects and Error

The conditional posterior of the intercept, allele effects, covariate effects and error scale is given by

p(θθθ, σ|y,D,M, φ, [α ∨ T ]) ∝ p(y|D,M, θθθ, σ)p(θθθ|σ, φ)p(σ),

which is the product of the normally-distributed likelihood and a conjugate normal-gamma prior

distribution, yielding a normal-gamma conditional posterior distribution, as in Servin and Stephens

(2007). We use the notation [α ∨ T ] to indicate that the distribution is conditional on either α or T ,

depending on which allelic series prior distribution is used.

3.8.3 Updating the Relative Size of the Allele Effects

The conditional posterior of the relative size of the allele effects is give by

p(φ|y,D,M, θθθ, σ, [α ∨ T ]) ∝ p(βββ|σ, φ)p(φ),

which is the product of a normal distribution and a half-t prior distribution for the standard deviation,

which is not conjugate. However, the half-t prior distribution can be re-expressed as the product of

two latent variables: one the square root of an inverse-gamma-distributed variable and the other the

absolute value of a normally-distributed variable. Respectively, these variables are conditionally
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conjugate to the prior distribution of βββ and the likelihood function, allowing for straightforward

updating of these latent variables (Gelman, 2006).

3.8.4 Updating the Diplotype States

The conditional posterior of the diplotype states is given by

p(D|y,M, θθθ, σ, φ, [α ∨ T ]) ∝ p(y|D,M, θθθ, σ)p(D),

which is the product of the normally-distributed likelihood and a categorical prior distribution. The

diplotype states are conditionally independent, and the joint conditional posterior is computed directly

by evaluating the likelihood of each individual observation over all possible possible diplotype states.

3.9 Marginal Likelihood and Hypothesis Testing

The marginal likelihood is useful for comparing alternative hypotheses about the data. For example,

two competing hypothesis can be evaluated by computing a BF, which is the ratio of the marginal

likelihoods under the assumptions of each hypothesis (Kass and Raftery, 1995). Computing the

marginal likelihood directly via integration is difficult because it involves exploring the space of all

combinations of prior values for the model variables. Instead, we use the output of the Gibbs sampler

to construct an estimate of the marginal likelihood (Chib, 1995).

From Bayes theorem, the natural logarithm of the marginal likelihood can be expressed as

lnp(y) =lnp(y|D,M, θθθ, σ) + lnp(D,M, θθθ, σ)−

lnp(D,M, θθθ, σ|y),

which is true at every point (D∗,M∗, θθθ∗, σ∗). Obtaining an estimate of the marginal likelihood

involves factoring the joint posterior (and prior) into quantities that can either be calculated directly

or can be well-approximated from the output of the Gibbs sampler at the specified point.
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The estimate of the joint posterior is given by

lnp̂(D,M, θθθ, σ|y) =lnp̂(M|y) + lnp̂(θθθ, σ|y,M)+

lnp(D|y,M, θθθ, σ).

The first term, lnp̂(M|y), is the marginal posterior density of the allelic series. Samples from

the marginal posterior are given by the Gibbs sampler, and the density estimate at M∗ is the

proportion of posterior samples equal to this value. This estimate is most accurate at the maximum a

posteriori (MAP) of the allelic series, which is used to select M∗. The second term of our estimate,

lnp̂(θθθ, σ|y,M), is the joint posterior of the coefficients and the scale of the error variance, which is is

not given directly by the Gibbs output. Thus, after selecting M∗, we fix the allelic series in the Gibbs

sampler and resume iterating, obtaining samples from this conditional posterior. The conditional

posterior yields sufficient statistics which are then used to obtain an accurate Rao-Blackwellized

estimate of the joint conditional posterior density.(Blackwell, 2007) These sufficient statistics are

also used to select high-probability values of θθθ∗ and σ∗ at which to evaluate the estimate. Finally, the

third term of our estimate, lnp(D|y,M, θθθ, σ), is the full conditional posterior of the diplotype states.

This is calculated directly, and D∗ is selected as the marginal MAP of the diplotype states.

Factoring the joint prior is straightforward, as many of the priors are independent by construction.

The joint prior distribution is given by

lnp(D,M, θθθ, σ) =lnp(D) + lnp(M)+

lnp(θθθ|σ) + lnp(σ).

Note that calculating lnp(M), or lnp(M|T ) when using a tree, involves integrating over α. This has

already been calculated directly when using the tree, but it must be approximated when using the

CRP. Calculating lnp(θθθ|σ) involves integrating over φ, which has a closed form involving a confluent

hypergeometic function (Abramowitz and Stegun, 1972). Finally, when using an improper prior

distribution for µ, δδδ and σ, the final two terms in the prior are equal to zero, and as such are only are

evaluated up to a constant. Comparisons of these marginal likelihood via BFs are valid provided δδδ is
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unchanged, as these constants cancel when evaluating the ratio of likelihoods (Servin and Stephens,

2007).

3.10 Availability of Software

These methods are implemented in the Tree-Based Inference of Multiallelism via Bayesian Regression

(’TIMBR’) R package, available on GitHub at https://github.com/wcrouse/TIMBR.

3.11 Appendix A - Marginalizing the Tree-Informed Prior

In this appendix, we show that the prior density of the mutation status of the branches b can be

marginalized over the concentration parameter α if the concentration parameter has a gamma prior

distribution. This is useful for computing the tree-informed allelic series prior distribution. Our

approach includes considerable bookkeeping of signs and coefficients, so we demonstrate using a

minimal example, b = (0, 0, 1, 1, 1, 0) for J = 4.

We begin by expanding p(b|T, α):

p(b|T, α) =
2J−2∏
m=1

(e−0.5α`m)1−bm(1− e−0.5α`m)bm ,

=e−0.5α`1e−0.5α`2(1− e−0.5α`3)(1− e−0.5α`4)(1− e−0.5α`5)e−0.5α`6 ,

=e−0.5α(`1+`2+`6)(1− e−0.5α`3)(1− e−0.5α`4)(1− e−0.5α`5),

=e−0.5α(`1+`2+`6)(1− e−0.5α`5 − e−0.5α`4 + e−0.5α(`4+`5) − e−0.5α`3

+ e−0.5α(`3+`5) + e−0.5α(`3+`4) − e−0.5α(`3+`4+`5)),

=e−0.5α(`1+`2+`6) − e−0.5α(`1+`2+`5+`6) − e−0.5α(`1+`2+`4+`6)

+ e−0.5α(`1+`2+`4+`5+`6) − e−0.5α(`1+`2+`3+`6)

+ e−0.5α(`1+`2+`3+`5+`6) + e−0.5α(`1+`2+`3+`4+`6) − e−0.5α(`1+`2+`3+`4+`5+`6).

Each term is an exponentiated sum of branch lengths. All terms includes the branch lengths of the

branches that are not mutated ({1, 2, 6}). The eight terms correspond to the eight possible subsets of

the set of mutated branches ({2, 3, 4}), whose lengths are either included or excluded from the sum.
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If the sum includes an even number of mutated branches, the sign of the term is positive, and if the

sum includes an odd number, the sign is negative.

We are interested in

p(b|T ) =

∫
α

p(b|T, α)p(α) dα.

From the previous expansion, we know that this is an integral of a sum, which allows us to evaluate

the integral separately for each term:

p(b|T ) =

∫
α

e−0.5α(`1+`2+`6) ∗ p(α) dα−
∫
α

e−0.5α(`1+`2+`5+`6) ∗ p(α) dα− . . . .

The prior distribution for the concentration parameter is

α ∼ Ga(aα, bα),

which has probability density function (omitting subscripts for clarity)

p(α) = baΓ(a)−1αa−1e−bα.

Focusing only on the first term, we have

p(b|T ) =

∫
α

e−0.5α(`1+`2+`6) ∗ p(α) dα− . . .

=

∫
α

e−0.5α(`1+`2+`6)baΓ(a)−1αa−1e−bα dα− . . .

= baΓ(a)−1
∫
α

αa−1e−(b+0.5[`1+`2+`6])α dα− . . .
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The quantity within the integral is the kernel of a gamma distribution with shape a and rate b +

0.5(`1 + `2 + `6), and the integral is equal to the inverse of its normalizing constant:

p(b|T ) = baΓ(a)−1Γ(a)(b+ 0.5[`1 + `2 + `6])
−a − . . .

= ba(b+ 0.5[`1 + `2 + `6])
−a − . . .

=

(
b

b+ 0.5(`1 + `2 + `6)

)a
− . . .

The other terms in the expression are solved similarly. This provides a closed form expression for

p(b|T ), which in turn is used to compute p(M|T ).
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CHAPTER 4

Performance in Single-Locus Simulations

4.1 Overview

In this chapter, we investigate various properties of the haplotype- and allele-based association

approaches via simulation. These single-locus simulations evaluate the performance of various

alternative prior distributions for the allelic series at simulated QTL with varying numbers of

functional alleles. The alternative priors are evaluated with respect to their accuracy in identifying the

underlying allelic series, their error in estimating haplotype effects, and their relative statistical signal.

These three criteria inform the utility of the allele-based association approach in inferring genetic

architecture, predicting phenotypes, and identifying QTL. This chapter focuses on two main topics:

prior selection for the allele-based model in the absence of additional phylogenetic information,

and the utility of including that additional prior information, with varying levels of accuracy, as a

coalescent tree.

In the first set of simulations, we consider three alternative prior distributions for the allelic

series:

• a uniform prior which assumes that all configurations of the allelic-series are a priori equally

likely (termed the “Uniform” model):

p(M) ∝ 1.

This is implemented as a uniform process prior (Wallach et al., 2008).
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• the CRP-based model with a weakly informative gamma prior distribution on the concentration

parameter (the “Gamma” model):

M|α ∼ CRP(α)

α ∼ Ga(aα ≈ 2.30, bα ≈ 0.75),

In the common case of eight possible haplotypes (the case considered in these simulations),

this prior distribution corresponds to a 5% probability of the null model with one functional

allele and a 1% probability of the full model with all eight haplotypes functionally distinct,

• and the CRP-based model with a more informative and less permissive exponential prior

distribution on the concentration parameter (the “Exponential” model), parameterized in terms

of the gamma for consistency:

M|α ∼ CRP(α)

α ∼ Ga(aα = 1, bα ≈ 2.33),

With eight possible haplotypes, this prior distribution corresponds to a 50% probability of one

functional allele, and monotonically favors smaller numbers of functional alleles a priori.

These alternative prior distributions for the allelic series were introduced in the preceding chapter,

and their implied distributions over functional alleles are depicted in Figure 4.1. This first set of

simulations provides guidance on prior elicitation regarding the allelic series and the number of

functional alleles.

Given this guidance, we then focus on the Exponential model while investigating the second

main topic: the utility of introducing additional prior information on the phylogenetic relatedness of

the founder haplotypes. Specifically, we consider four alternatives:
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Figure 4.1: Prior distribution of number of functional alleles for alternative prior distributions. The
Uniform model places high prior weight on an intermediate number of functional alleles, as these
permit many allelic configurations. The Gamma model is less informative with respect to the number
of alleles, with fatter tails than the Uniform. The Exponential model favors smaller numbers of
functional alleles relative to the other models.

.

• the CRP-based “Exponential” model described above, which implicitly assumes that the

phylogenetic tree of the haplotypes is unknown and distributed according to coalescent theory:

p(M|α) =

∫
T

p(M|T, α)p(T ) dT

T ∼ Coalescent(J = 8)

α ∼ Ga(aα = 1, bα ≈ 2.33),

• the Exponential model with the true tree known a priori (the “Tree” model), in which latent

combinations of functional mutations on branches of the tree provide additional information

about the prior distribution of the allelic series:

p(M|T, α) =
∑
b

p(M|T,b)p(b|T, α),
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• the Tree model with the tree information partially misspecified as T ∗ (the “Miss” model):

p(M|T ∗, α) =
∑
b

p(M|T ∗,b)p(b|T ∗, α).

This assumes imperfect but correlated information about the phylogenetic tree of the founder

haplotypes. This is described in more detail in the next section,

• and the Tree model with the tree information completely misspecified as T ′ (the “Wrong”

model):

p(M|T ′, α) =
∑
b

p(M|T ′,b)p(b|T ′, α).

This assumes that a tree is supplied but that it is independent of the true tree, thus providing

incorrect phylogenetic information. This is also described in more detail in the next section.

Comparing these alternatives highlight the relative benefits of including prior tree information, and

the sensitivity of those benefits to varying levels of incorrectness. Finally, in some cases, we also

evaluate these scenarios against two additional alternatives:

• the standard haplotype-based approach where all haplotypes are functionally distinct (the “Full”

model):

M = I,

• an oracle approach where the true allelic series is known a priori (the “Known” model).

These comparisons provide insight into the performance of the allele-based association approach

relative to the standard haplotype-based approach and provide an upper bound on its potential.

This chapter continues with a description of the simulation procedure, followed by definitions of

the evaluation metrics. We then present results from the two sets of simulations as described above.

Finally, we discuss the implications of these results and compare them with similar studies (Jannink

and Wu, 2003; Azim Ansari and Didelot, 2016; King et al., 2014).

88



4.2 Simulation Procedure

We iteratively simulate QTL for an eight-haplotype MPP with known but varied coalescent phylogeny

of the haplotypes at the locus. Throughout the simulations, we assume a fixed experiment size of

N = 400 individuals, balanced with respect to haplotypes and with known homozygous diplotype

states, D. Rather than vary experiment size, we instead vary QTL effect size, as measured by the

proportion of total phenotype variance explained by the QTL, h2QTL, as previously described in

Chapter 2. We anticipate that the properties explored during these simulations depend primarily on

power (a function of experiment size, haplotype balance, and QTL effect size), rather than experiment

size per se, and thus hold both experiment size and haplotype balance fixed for simplicity. We also

assume that the population does not have structure in genetic background. Thus, with non-replicate

observations, any variance attributable to strain effects, h2strain, is indistinguishable from individual-

level error and can be ignored. Finally, we consider only additive QTL effects because the diplotypes

are assumed to be homozygous, and thus dominance effects are not revealed.

Subject to these assumptions, we performed the following simulation procedure:

• Sample a coalescent tree T to describe the local phylogenetic relationship of the eight founder

haplotypes:

T ∼ Coalescent(J = 8),

• For a given functional mutation rate α, calculate the distribution of allelic series implied by

the tree:

p(M|T, α) =
∑
b

p(M|T,b)p(b|T, α),

• For a given number of functional alleles K, sample an allelic series conditional on T that

satisfies K:

p(M|T, α,K) ∝ p(K|T, α,M)p(M|T, α),

• For a given QTL effect size h2QTL, zero-center and scale K equally-spaced allele effects βββalle

to satisfy mean(βββalle) = 0 and var(βββalle) = h2QTL
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• Sample a vector of N individual errors from

εεε ∼ N(0, 1),

and zero-center and scale to satisfy mean(εεε) = 0 and var(εεε) = 1− h2QTL,

• Calculate the simulated phenotypes:

y = DAMβββalle + εεε.

Rather than sample normally-distributed allele effects, we elected to use uniformly-spaced allele

effects, similar to (King et al., 2014). As the number of functional alleles increases, when the

allele effects are normally-distributed, the minimum distance between any two allele effects becomes

increasingly small, making it harder to detect these effects. Our uniformly-spaced approach eliminates

the possibility of arbitrarily small and undetectable differences between allele effects, with the

consequence that our results potentially overstate the power to detect larger numbers of functional

alleles if allele effects are in fact normally-distributed.

To explore the impact of incorrect tree information in our simulations, we also performed two

additional steps:

• Sample a completely misspecified tree T ′ from the coalescent:

T ′ ∼ Coalescent(J = 8).

In this case, T ′ does not contain any information about the true tree T . This is used in the

“Wrong” tree scenario.

• Sample a partially misspecified tree T ∗ using the procedure outlined in Azim Ansari and Dide-

lot (2016). This involves resampling the patristic distances between each pair of haplotypes

from

d ∼ Unif(0.1 ∗ d, 0.9 ∗ d)
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and generating a new tree T ∗ based on the unweighted pair group method with arithmetic

mean. This procedure results in trees with generally smaller total branch lengths, so we took

the additional step of resampling the total branch length of T ∗ from the coalescent. This

procedure generates a misspecified tree T ∗ that is based on information from the true tree T ,

but which potentially has rearrangements of the tree structure and different branch lengths.

This is used in the “Miss” tree scenario.

We elected to use the patristic distance resampling method to generate T ∗ because of its use in Azim

Ansari and Didelot (2016), which is similar to our approach. There are alternative methods for

“scrambling” trees, such as the subtree-prune-regraft procedure, in which part of the tree is removed

and reattached in another position. However, applying the this procedure is nontrivial in the context

of trees with meaningful branch lengths (Song, 2006), as it requires difficult decisions about selecting

where to prune and how to handle height restrictions during regraft.

We performed 1000 simulations for each combination of the following parameter settings:

• Number of functional alleles K: [1-8]

• QTL effect size h2QTL: [10%, 50%]

• Concentration parameter α: [0.1, 1, 10]

In all cases, we show results stratified by the true number of functional alleles K. In the first section

of simulation results, we do not consider tree information, and thus the results are independent of the

true α conditional on K. In the second section of simulation results, we do consider tree information,

and the results are no longer independent of α conditional on K. However, we find that our results

are relatively insensitive to α, and for this reason, we only present results from the α = 1 case. Note

that the relative benefit of tree information (conditional on K) is somewhat higher when α = 10 and

lower when α = 0.1.

4.3 Evaluation Metrics

We evaluate the performance of our alternative prior distributions across three general categories:

their accuracy in identifying the underlying allelic series, their error in estimating haplotype effects,
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and their relative statistical signal. Within these categories, we define several specific metrics by

which the alternative prior distributions are evaluated. With respect to accuracy in identifying the

allelic series, these include:

• whether or not the maximum a posteriori (MAP) allelic series is the correct allelic series (“0-1

Accuracy”)

• the posterior mass on the correct allelic series, p(M|y) (“Posterior Certainty”)

• the posterior expectation on the number of functional alleles, E(K|y) (“Expected Number of

Alleles”)

• the posterior probability of over- or underestimating the correct number of alleles.

For error in estimating haplotype effects, we evaluate using

• the mean squared error (MSE) of the posterior haplotype effects, p(βββhap|y), relative to the

true effects. This is averaged over posterior samples of the allelic series and allele effects,

which together determine the haplotype effects, βββhap = Mβββalle.

Finally, for relative statistical signal, we consider

• the natural log Bayes Factor (lnBF), which uses the ratio of marginal likelihoods to compare

competing hypothesis. When considering the allele-based Uniform, Gamma and Exponential

alternatives, we compare against the Full haplotype-based model or a null model of no

effect. When considering Tree information, we compare relative to the Exponential approach,

specifically highlighting the addition of tree information within the allele-based framework.

When discussing lnBFs, use refer to interpretation thresholds given by (Kass and Raftery, 1995). In

the positive direction, these ranges correspond to “Positive” from 1-3, “Strong” from 3-5, and “Very

Strong” above 5. The interpretation is similar in the negative direction, but with the directionality

reversed. All these metrics are presented with confidence intervals. For “0-1 Accuracy”, we use

Jeffreys interval (Brown et al., 2001) for a binomial proportion. We use a t-distribution for all other

metrics.
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4.4 Results - Alternative Prior Distributions

In this section, we evaluate the Uniform, Gamma, and Exponential alternatives for encoding prior

information about the allelic series, across the three categories described in the previous section,

using their corresponding metrics.

4.4.1 Accuracy of Allelic Series

For all alternative prior distributions, the accuracy of allelic series inference depends on the true

number of functional alleles. Figure 4.2 shows the 0-1 accuracy of the MAP allelic series under

the Uniform, Gamma and Exponential alternatives, for a varying number of true functional alleles.

In the relatively lower power scenario (10% variance explained by QTL), the ability to detect

multiallelic series is low, but the two CRP-based models, Exponential and Gamma, have high

accuracy when the QTL has one functional allele (the null model) or when it is biallelic. In the high

power scenario (50% variance explained by the QTL), the CRP-based models have reasonably high

accuracy (approximately 80%) up to four functional alleles, with the Exponential outperforming

the Gamma through this range. The more-diffuse Gamma prior maintains some limited accuracy

through eight alleles, outperforming the Exponential, although accuracy for highly-multiallelic series

is generally low even when power is high. In both scenarios, the Uniform approach is worse than the

Exponential and Gamma, except when the number of alleles is intermediate.

Figure 4.3 is similar to the previous figure but shows the posterior certainty of the correct allelic

series rather than the accuracy of the MAP allelic series. The Gamma and Uniform priors have

relatively low certainty across both power scenarios and for all true numbers of functional alleles.

In contrast, relative to Gamma, the Exponential prior is decisive when the true number of alleles is

low, but at the expensive of accuracy when the true number of alleles is high. Notably, in the high

power scenario, the Gamma prior has reduced certainty when the QTL is null relative to biallelic,

suggesting it has a tendency to overestimate under the null.

Figure 4.4 is also similar to the previous figures but shows the posterior expectation of number

of alleles. In the low power scenario, the expectations for both Gamma and Uniform are insensitive

to the true number of alleles, consistently reporting an intermediate number of functional alleles,

while the Exponential is accurate when the true number of alleles is one or two, but then reports
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Figure 4.2: 0-1 accuracy of posterior allelic series inference for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.

Figure 4.3: Posterior certainty of allelic series inference for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.
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Figure 4.4: Posterior expectation of number of alleles for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.

approximately three alleles when the true number of alleles is higher higher. In the high power

scenario, all the alternatives are more sensitive to the true number of alleles, with the exponential

in particular approaching the correct expectation through the five alleles range. Notably, both the

Exponential and Uniform show an exaggerated tendency to overestimate when the QTL is null. We

hypothesize that this is due to their relatively fat tails with respect to prior number of functional

alleles, and that this acts in combination with a prior for QTL effect size that can accommodate small

effects. When the true number of alleles is one, the QTL effect is necessarily zero, it then becomes

“easier” for these permissive allelic series priors to estimate many effects, each of very small size.

Figure 4.5 shows the posterior probability of under- and overestimating the true number of

alleles. These results show that all the alternative prior distributions tend to underestimate the number

of functional alleles when the true number is large, even in the high power scenario. In the low power

scenario, the Exponential is more prone to underestimation than the other two alternatives. However,

the Exponential is also considerably less likely to overestimate the true number of alleles across

both power scenarios. Thus, the Exponential is more conservative than the Gamma or Uniform in

reporting that a QTL is multiallelic.
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Figure 4.5: Posterior probability of under- and overestimating the number of alleles for alternative
prior distributions, in low and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying
numbers of true functional alleles.
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Figure 4.6: MSE of haplotype effect estimates for alternative prior distributions, in low and high
power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional alleles.

4.4.2 Error of Haplotype Effect Estimation

Figure 4.6 shows the MSE of haplotype effect estimates for the alternative allelic series prior

distributions, now additionally compared with the Full and Known models. As expected, for all

alternatives, MSE is lower in the high power scenario than in the low power scenario. The Full model

has near-constant MSE when the true number of alleles is greater than one, but when there is only

one functional allele (the null model), the Full model has lower MSE, shrinking near-zero effects. In

both the high and low power scenarios, the allelic series models outperform the Full model when

the true number of alleles is low. This trend continues into intermediate numbers of alleles when

power is high. However, when the true number of alleles is high, the Full model is better than the

allelic series models. As with accuracy, the Exponential is relatively better than Gamma and Uniform

when the true number of alleles is low, and it is relatively worse when the true number of is high.

The Known model establishes a lower-bound on MSE in the case where the allelic series is known a

priori. The allelic series models approach this lower bound in the high power scenario, when the true

number of alleles is low, which is consistent with their high accuracy in this case.
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4.4.3 Statistical Signal

Figure 4.7 shows the lnBF for the alternative allelic series prior distributions relative to the Full

model, provided that the true number of functional alleles is greater than one. In the low power

scenario, when allelic series inference is highly uncertain, the lnBFs are near zero for all alternative

priors, indicating that there is little additional statistical signal provided by the allelic series models.

In the high power scenario, the lnBFs strongly support the allelic series models relative to the Full

model when there are two or three true functional alleles. However, as the true number of functional

alleles increases, the allelic series models fare worse than the full model, with negative evidence for

Gamma, very strong negative evidence for Exponential, and negative to strongly negative evidence

for Exponential.

Figure 4.8 shows the lnBF for the alternative allelic series prior distributions and the Full

haplotype-based model, relative to a null model of no genetic effect, when the QTL is in fact null

(one functional allele). These results were pooled across power scenarios because QTL effect size

is irrelevant in this case. As expected, we find that there is generally negative evidence for all of

these alternative prior distributions relative to the null. The Full lnBFs are the most negative, but

with a long right tail that extends into a range of weakly positive support in its 99% quantile. The

Exponential lnBFs are more tightly distributed near zero and have a more restrained right tail. The

Gamma and Uniform lnBFs are intermediate to these two alternatives, but with right tails that are

more similar to the Full and longer than the Exponential.

Finally, to establish an upper bound on the statistical signal present in the allelic series, Figure

4.9 shows the lnBF for the Known model relative to the Full model, provided that the true number of

functional alleles is greater than one and less than eight. There is increased signal from the allelic

series in all cases, and this increase is greatest when the true number of functional alleles is small.

In the low power scenario, there is strong to positive support in favor of the Known model, and in

the high power scenario this support is often decisive. These results indicate that there is substantial

statistical signal in the allelic series and that this signal increases with power.

98



Fi
gu

re
4.

7:
ln

B
Fs

fo
r

al
te

rn
at

iv
e

pr
io

r
di

st
ri

bu
tio

ns
re

la
tiv

e
to

Fu
ll

m
od

el
,

on
na

tu
ra

l
lo

g
sc

al
e,

in
lo

w
an

d
hi

gh
po

w
er

sc
en

ar
io

s
(r

es
pe

ct
iv

el
y,

h
2 Q
T
L

=
[0
.1
,0
.5

])
,f

or
va

ry
in

g
nu

m
be

rs
of

tr
ue

fu
nc

tio
na

la
lle

le
s.

H
or

iz
on

ta
ll

in
es

co
rr

es
po

nd
to

in
te

rp
re

ta
tio

n
th

re
sh

ol
ds

.I
n

th
e

po
si

tiv
e

di
re

ct
io

n,
th

es
e

ra
ng

es
co

rr
es

po
nd

to
“P

os
iti

ve
”

fr
om

1-
3,

“S
tr

on
g”

fr
om

3-
5,

an
d

“V
er

y
St

ro
ng

”
ab

ov
e

5.
T

he
in

te
rp

re
ta

tio
n

is
si

m
ila

ri
n

th
e

ne
ga

tiv
e

di
re

ct
io

n,
bu

tw
ith

th
e

di
re

ct
io

na
lit

y
re

ve
rs

ed
.

99



Figure 4.8: lnBFs for alternative prior distributions relative to null model, on natural log scale, pooled
across high and low power scenarios (respectively, h2QTL = [0.1, 0.5]), when the true allelic series is
null. The solid and dotted vertical lines correspond to the 95% and 99% observed quantiles.

Figure 4.9: lnBFs for the Known model relative to Full model, on natural log scale, in low and high
power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional alleles.
Horizontal lines correspond to interpretation thresholds. In the positive direction, these ranges
correspond to “Positive” from 1-3, “Strong” from 3-5, and “Very Strong” above 5. The interpretation
is similar in the negative direction, but with the directionality reversed.
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Figure 4.10: 0-1 accuracy of posterior allelic series inference for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.

4.5 Results - Tree Information

In this section, we investigate the utility of including additional prior information on the phylogenetic

relatedness of the founder haplotypes, comparing the Exponential and Tree alternatives. We also

consider the possibility that this tree information is either partially misspecified (Miss) or completely

misspecified (Wrong).

4.5.1 Accuracy of Allelic Series

Figure 4.10 shows the 0-1 accuracy of the MAP allelic series under the Exponential, Tree, Miss and

Wrong alternatives, for varying numbers of true functional alleles. In both power scenarios, including

phylogenetic tree information provides a modest increase in accuracy relative to not including tree

information, even when that tree information is partially misspecified. However, including Wrong

tree information substantially decreases accuracy relative to not including tree information.

Figure 4.11 shows the posterior certainty of the allelic series under the same alternatives. As

before, tree information increases accuracy even when partially misspecified. Notably, posterior

certainty when the tree is completely misspecified is still similar to posterior certainty when no tree

information is provided, despite reducing 0-1 accuracy. This suggests that Wrong tree information

tends to increase certainty on incorrect allelic series, rather than reducing certainty on the correct al-
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Figure 4.11: Posterior certainty of allelic series inference for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.

lelic series. This hypothesis could be assessed more directly using the full distribution of simulations,

rather than just the mean that we show here.

Figure 4.12 is similar to the previous figures but shows the posterior expectation of number of

alleles. Again, these results show incremental improvement when using tree information, subject to

the same general trends that we observed in the previous set of simulation results. These results also

indicate a relative tendency towards overestimation when Wrong tree information is provided.

4.5.2 Error of Haplotype Effect Estimation

Figure 4.13 shows the MSE of haplotype effect estimates for the Exponential, Tree, Miss, and Wrong

alternatives, additionally compared with the Full and Known models. In the low power scenario,

both the Tree and Miss alternatives improve on Exponential for low to intermediate numbers of

alleles, and all numbers of alleles are improved in the high power scenario. Wrong tree information

generally increases MSE relative to Exponential. In the low power scenario, this is sufficient to

make the Wrong worse than the Full for most numbers of functional alleles. However, in the high

power scenario, even when the tree is completely misspecified, the allele-based Wrong alternative

still improves on the haplotype-based Full model when the true number of functional alleles is small.

This suggests that, although Wrong tends to overestimate the true number of functional alleles, when
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Figure 4.12: Posterior expectation of number of alleles for alternative prior distributions, in low
and high power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional
alleles.

the true number of functional alleles is small, it is still possible to find more-parsimonious allelic

series that provide better haplotype effect estimates than the Full model.

4.5.3 Statistical Signal

Figure 4.14 shows the lnBF for the Tree, Miss, and Wrong alternatives relative to the Exponential.

In the low power scenario, there is positive evidence in favor of Tree information when the number

of alleles is between two and four, and in the high power scenario, there is positive to strong evidence

in favor of Tree information when the number of alleles is between two and six. The evidence for

Tree information is negative for higher numbers of alleles across both power scenarios. When there

is only one functional allele (the null model), the Tree lnBFs are centered near zero, suggesting that

Tree and Exponential behave similarly under the null. In all cases, the Miss alternative is similar to

but slightly worse than the Tree alternative, reflecting that it is partially misspecified but still contains

some correct information. When the true number of alleles is greater than zero and power is low,

there is negative evidence for the Wrong tree information relative to the Exponential, which is reflects

that it contains incorrect phylogenetic information. When power is high, the evidence for the Wrong

alternative is strongly negative. In general, the distributions for all lnBFs are diffuse, indicating a

high degree of variability around the central tendencies we have described.
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Figure 4.13: MSE of haplotype effect estimates for alternative prior distributions, in low and high
power scenarios (respectively, h2QTL = [0.1, 0.5]), for varying numbers of true functional alleles.

4.6 Discussion

In this chapter, we used simulations to evaluate the haplotype- and allele-based association approaches

with respect to their accuracy, error in estimating haplotype effects, and relative statistical signal. In

the first set of results, we focused on allele-based models in the absence of additional phylogenetic

information. We found that, for the CRP-based Gamma and Exponential approaches, the accuracy

to identify the correct allelic series is high when the QTL is biallelic, with the Exponential being

decisive in this case. However, when the QTL is multiallelic, accuracy deteriorates for all alternatives

as the true number of alleles increases, even when power is high. We found that the Uniform prior

on the allelic series, which places considerable weight on an intermediate number of alleles, is only

competitive in that case. All the allele-based methods tend to underestimate the number of alleles

when the true number of alleles was high. This is consistent with simulations results in both Azim

Ansari and Didelot (2016) and King et al. (2014). Respectively, these studies used approaches most

similar to our Tree and Uniform approaches, and both showed a tendency to underestimate either

distributional “changepoints” or number of alleles. With respect to overestimation, we found that

when the true number of alleles is low, the Exponential alternative is less prone to overestimation

than the other alternatives.
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Despite a general uncertainty about the posterior allelic series, when the true number of alleles is

small, allele-based methods reduce error in haplotype effects relative to the Full haplotype-based

approach, even when power is low. When power is high, this improvement is also apparent with

an intermediate number of alleles, and it approaches the lower-bound established by Known allele

effects. However, when the true number of alleles is large, the allele-based methods are worse than

the Full haplotype-based method. As implied by their prior distributions, the Exponential is better

than the Gamma when the true number of alleles is small and worse when the true number of alleles

is large.

These observations point to a somewhat paradoxical conclusion: Although there is often insuf-

ficient information to identify the allelic series with certainty, accounting for the allelic series can

still improve effect estimation, provided that the true number of alleles is small. This is consistent

with Jannink and Wu (2003), which also used an allelic series model and performed many similar

simulations. The allele-based model improves effect estimation because it allows the data to be

represented using fewer parameters, and this reduction in parameters can still be beneficial even

when the allelic series is only partially known.

To provide perspective on identifying QTL, we also evaluated the statistical signal of the allele-

based alternatives relative to the Full haplotype-based approach. When power is high, we found

strongly improved signal when the QTL is bi- or triallelic, and a reduction in signal otherwise. When

power is low, we found only small differences in statistical signal between these alternatives. Under

the null of no genetic effect, the lnBFs for Exponential were tightly distributed near zero, with a

shorter positive tail than the other approaches. In the context of mapping QTL, when stringent

significance thresholds are necessary, this conservative behavior may be beneficial.

We recommend using the Exponential prior distribution for the allele-based models. In many

applied cases it will be reasonable to expect that QTL have only a few functional alleles, and

when this is the case, the Exponential performs consistently better than the other alternatives across

most metrics. In particular, when the number of alleles is small, the Exponential is less likely to

overestimate the number of alleles than the Gamma. Additionally, the Exponential provides a decisive

answer in the case of biallelic QTL. Haplotype effect estimates and statistical signal are similar for

both the Gamma and Exponential, but the Exponential has potentially better, more conservative,

106



behavior under the null. For this reason, we used the Exponential as the basis for our second set of

simulations, and it is the default approach for the remaining chapters.

Although the gain in statistical signal from using the allele-based models seems marginal, it

is more compelling when considering the upper bound given by the Known allelic series. In this

idealized case of perfect information, we found strong improvements in signal for all numbers of

functional alleles, although this improvement does decrease with power and as the number of alleles

increases. Together, these results suggest that complete knowledge of the allelic series improves

statistical signal, but that there is often insufficient posterior certainty to fully realize this benefit.

One way to increase posterior certainty is to include additional prior information. Within

our framework, additional information about the allelic series is introduced by conditioning on a

coalescent tree that describes the phylogenetic relationship between the founder haplotypes. Across

all our metrics, we found that including tree information improves the performance of the allelic

series approach, even when that tree information is partially, but not completely, misspecified. The

tree-informed approach behaves similarly to the tree-naive approach under the null. These promising

results indicate that our tree-informed allelic series approach can improve inference about genetic

architecture, phenotype prediction, and perhaps QTL detection.
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CHAPTER 5

Application to Real Data

5.1 Overview

In this chapter, we apply our allele-based association approach to several real-data examples, each

of which highlights a key point about our approach for allelic series inference. The first example,

an analysis of a QTL for a red blood cell phenotype detected in incipient lines of the CC (PreCC)

by Kelada et al. (2012), introduces allelic series inference and demonstrates how local phylogenetic

information improves posterior inference of the allelic series. The second example, an analysis of

whole lung cis-eQTL detected in the PreCC by Kelada et al. (2014), summarizes the distribution

of allelic series over many QTL and identifies QTL which appear highly multiallelic. The final

examples, an analysis of two whole head cis-eQTL detected in the Drosophila Synthetic Population

Resource (DSPR) by King et al. (2014), an MPP with fifteen founder haplotypes rather than the

typical eight, shows that our allele-based approach (without tree information) is applicable even

when there are many founder haplotypes. Together, these examples showcase the potential usefulness

of the allele-based association approach in future MPP studies.

The following sections address each of these examples in more detail. Each section begins with

an overview of the data and example-specific methods, followed by a summary of the results. In all of

the examples, we apply both the “Full” haplotype-based approach and the “Exponential” allele-based

approach. These were defined in the previous chapter, and we now refer to the “Exponential” more

generally as the “CRP”. In the first example, we also apply the “Tree” approach, with an adjustment

for uncertainty in the tree.
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5.2 Inference with Tree Information

5.2.1 Data and Methods

In this section, we apply our allele-based approach to a QTL for mean red blood cell volume (MCV)

previously reported in Kelada et al. (2012). This study of blood parameters used 131 genetically

diverse mice that were partially-inbred (5-14 generations) during the early development of the CC.

The authors identified a large-effect QTL for MCV on chromosome 7 along with a candidate causal

gene, Hbb-b1. For our allelic series analyses, we used the phenotype values for MCV measured in

this study and assumed that the genomic region around Hbb-b1 is causal for the QTL.

Our allelic series approach requires full diplotype state probabilities for each mouse, as inferred

by haplotype reconstruction. However, the published study focused on expected haplotype dosages,

and the full diplotype state probabilities were discarded due to their size. Thus, for our analyses, we

performed another haplotype reconstruction using the same genotype information, also using HAPPY

(Mott et al., 2000) but with different settings. To speed computation, the published study averaged

haplotype dosages from adjacent loci if there was no evidence of recombination across them in the

PreCC population. To remain consistent with the published results of this study and Kelada et al.

(2014), we averaged the diplotype state probabilities from our new haplotype reconstruction over the

same regions.

To infer the phylogenetic tree of the founder haplotypes at the causal genomic region, we

performed the following steps. First, we found the location of Hbb-b1 (renamed Hbb-bs; Chr7:

103,826,523-103,827,928 in GRCm38/mm10), as reported by Mouse Genome Informatics (Bult

et al., 2019). Next, we identified a larger 23kb nonrecombinant region surrounding the gene (Chr7:

103,807,679 103,831,178) by applying the four-gamete test (Hudson and Kaplan, 1985) to high-

quality SNPs from Sanger Mouse Genomes Project (Keane et al., 2011). Then, we constructed a

sequence alignment for the founder haplotypes using high quality SNPs and indels from the same

source. Next, we used BEAST 1.8.3 (Drummond et al., 2012) to infer a coalescent phylogeny for

this sequence alignment, assuming a constant mutation rate, constant population size and the HKY

substitution model (Hasegawa et al., 1985). We generated one million MCMC samples from the

posterior of coalescent trees, thinning every 1000 samples, yielding a total of 1000 posterior samples
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Allelic Series # of Alleles Posterior Probability
0,1,0,1,1,0,0,0 2 0.5568
0,1,0,1,1,2,0,0 3 0.0801
0,1,2,1,1,2,0,0 3 0.0644
0,1,0,1,1,0,2,2 3 0.0278
0,1,0,1,1,0,2,0 3 0.0204
0,1,0,2,1,0,0,0 3 0.0189
0,1,2,1,1,0,0,0 3 0.0181
0,1,0,1,2,0,0,0 3 0.0178
0,1,0,2,2,0,0,0 3 0.0160
0,1,0,1,1,0,0,2 3 0.0132

Table 5.1: Top ten posterior allelic series for MCV QTL using the CRP approach.

of the tree. These trees are visualized using Densitree (Bouckaert and Heled, 2014). Finally, we

computed the allelic series prior distribution for each sample of the tree and averaged the result in

order to arrive at a final tree-informed allelic series prior distribution for this QTL.

We used the Full, CRP and Tree approaches to analyze this QTL, generating 100,000 posterior

samples for each.

5.2.2 Results and Discussion

Figure 5.1 shows the MCV phenotype for the 94 of 131 mice with prior maximum diplotype states

that are homozygous at the QTL, plotted by that haplotype. The phenotype clearly depends on the

haplotype at the QTL, but intuitively, the number of functional alleles is not obvious. Table 5.1 shows

the top ten posterior allelic series inferred using the CRP approach. The top allelic series is biallelic

and comprises 55.7% of the posterior probability, but there are several other multiallelic series with

reasonable support (11 with ≥ 1%, together accounting for another 30.1% of the posterior). These

multiallelic series preserve the biallelic contrast identified by the top allelic series, indicating that

this is a high-confidence feature of the haplotype effects. The posterior expected number of alleles is

2.59, and the posterior distribution of the number of alleles is given in Figure 5.2. Overall, these

results provide evidence in favor of a biallelic QTL but allelic series inference is still uncertain.

The left panel of Figure 5.3 shows the posterior distribution of haplotype effects using both

the Full and CRP approaches. As expected, the Full haplotype effect estimates are similar to the

observed phenotypes in Figure 5.1. Relative to the Full, the CRP haplotype effects are more certain,

with narrower 95% highest posterior density (HPD) intervals, as shown in Table 5.2. This increased
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Figure 5.1: Mean cell volume by founder haplotype at the QTL for mice with homozygous prior
maximum diplotype state.

Figure 5.2: Posterior distribution of number of alleles for MCV QTL using the CRP and Tree
approaches. The lines denote the corresponding prior distributions; square = CRP, circle = Tree.
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Figure 5.3: Posterior distribution of haplotype effects for MCV QTL using the Full, CRP, and Tree
approaches. Full - multicolored; CRP - dark gray; Tree - light gray.

certainty is because the allelic series model allows information about the effects to be shared across

haplotypes. This information sharing is particularly evident for haplotype F, which has its effect

distribution pulled towards an allele effect that is shared with A, C, G, and H. Nonetheless, the

haplotype effect distribution of F retains a long tail, covering much of the original range of the Full

effect distribution. Comparing the Full and CRP approaches more broadly, the lnBF in favor of the

CRP is 1.17, indicating positive evidence in favor of allele-based effects.

Figure 5.4 shows samples of phylogenetic trees that relate the founder haplotypes at the causal

locus. For most samples, there are long branches separating haplotypes B, D, and E from the other

five haplotypes. Among the others, haplotypes A, H, and C are more closely related than F and

G. Relative to the coalescent, which is depicted in Figure 5.5, these trees are highly structured,

Haplotype Full CRP Tree
A 6.60 4.06 2.99
B 5.03 3.36 3.23
C 7.14 5.04 3.04
D 5.87 3.44 3.23
E 5.96 3.43 3.23
F 5.96 5.57 5.72
G 6.08 3.96 4.43
H 5.07 3.74 2.99

Table 5.2: Width of the 95% highest posterior density interval for haplotype effects using the Full,
CRP, and Tree approaches.
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Figure 5.4: Samples of causal trees at the MCV locus. The consensus tree is in bold, and color
denotes different tree topologies.

representing only three of 10,395 possible tree topologies. This structure informs the prior distribution

of the allelic series in the Tree model, as shown in Figure 5.6. There are 720 allelic series with

support using the Tree approach, compared with the full space of 4,140 using the CRP. The allelic

series favored by the Tree approach reflect the relationships encoded by the causal trees; for example,

the top non-null allelic series is biallelic and contrasts haplotypes B, D, and E against the others, and

its prior probability is increased over 150-fold relative to the CRP. Notably, this allelic series is also

the top result returned by the CRP approach.

Table 5.3 shows the top ten posterior allelic series inferred using the Tree approach. The top

allelic series is unchanged from the CRP results, but its posterior probability is increased to 68.1%.

There are fewer multiallelic series with reasonable support (5 with ≥ 1% posterior probability), and

they have been informed by the phylogenetic distance between F, G and the other haplotypes. The

posterior expected number of alleles is lower than the CRP at 2.40, and the posterior distribution of

the number of alleles is given in Figure 5.2.

The right panel of Figure 5.3 shows the posterior distribution of haplotype effects using both the

CRP and Tree approaches. The Tree-informed haplotype effects are largely unchanged from the CRP
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Figure 5.5: Samples of coalescent trees.

Figure 5.6: Prior probability of allelic series by number of alleles, using the CRP and Tree approaches.
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Allelic Series # of Alleles Posterior Probability
0,1,0,1,1,0,0,0 2 0.6808
0,1,0,1,1,2,0,0 3 0.1335
0,1,0,1,1,0,2,0 3 0.0865
0,1,0,1,1,2,3,0 4 0.0639
0,1,0,1,1,2,2,0 3 0.0122
0,1,2,1,1,0,0,0 3 0.0027
0,1,0,2,2,0,0,0 3 0.0027
0,1,2,1,1,3,0,0 4 0.0021
0,1,2,1,1,3,4,0 5 0.0019
0,1,0,1,1,0,0,2 3 0.0015

Table 5.3: Top ten posterior allelic series for MCV QTL using the Tree approach.

haplotype effects, with only modest changes in HPD lengths (Table 5.2). Overall, there is strong

positive evidence for the Tree approach relative to the CRP, with a lnBF of 4.81 in favor of the Tree.

In summary, this example demonstrates that our method can be used to infer the allelic series at

a QTL, that this inference can improve haplotype effect estimation, and that including additional

phylogenetic information can increase both posterior certainty and statistical signal.

5.3 Identifying Multiallelic QTL

5.3.1 Data and Methods

In this section, we apply our allele-based approach to a collection of gene expression QTL previously

reported in (Kelada et al., 2014). This study analyzed rank-normalized gene expression, measured

by microarray, in whole long tissue from PreCC mice. For our analyses, we focused on genes with

cis-eQTL (within 10Mb of the gene), and we ignored eQTL for which array probes contained SNPs

segregating between the founder strains, as these bias the microarray and are a potential source of

false positive QTL (Alberts et al., 2007). These criteria left 4,516 cis-eQTL for our allelic series

analyses.

Our allelic series approach requires full diplotype state probabilities for each mouse, but this

study used many of the same mice from (Kelada et al., 2012), and these probabilities were also not

retained. For our analyses, we used diplotype probabilities from the new haplotype reconstruction

described in the previous section. For an unknown reason, seven previously-reported cis-eQTL no
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Figure 5.7: Posterior distribution of number of alleles, averaged over all cis-eQTL. The line denotes
the corresponding prior distribution.

longer had corresponding genomic intervals in the new diplotype data. These were omitted from our

analyses.

We used the CRP approach to analyze these 4,509 cis-eQTL, generating 100,000 posterior

samples for each. We also used the Full approach when analyzing our most multiallelic result, with

the same number of samples.

5.3.2 Results and Discussion

Figure 5.7 shows the posterior distribution of number of alleles, averaged over all cis-eQTL. This

suggests that many QTL are multiallelic, with 35.7% and 21.8% posterior probability for three

and four alleles, respectively. There is also substantial support for biallelic QTL, which has 30.3%

posterior probability. Given that these QTL were genome-wide significant in (Kelada et al., 2014),

it is not surprising that there is near-zero support for the null model of one allele. There is general

support for 2-4 alleles, but there are also genes which appear highly multiallelic. Table 5.4 highlights

the most highly multiallelic QTL in this dataset.
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Probe Gene Chr Position Expected Alleles
1 ILMN 2667352 Glo1 17 30,729,806 6.7549
2 ILMN 2418957 BC032285 17 6,270,475 6.3900
3 ILMN 3023451 Zfp985 4 146,918,112 6.3694
4 ILMN 2880052 Xlr4b X 70,459,704 6.2664
5 ILMN 2499598 AK009977 11 58,777,283 6.1449
6 ILMN 3004949 Fam55d 9 47,970,198 5.8813
7 ILMN 2643495 Fez1 9 36,640,394 5.8658
8 ILMN 2685581 H2-K1 17 34,132,957 5.7066
9 ILMN 1221376 Cyp4f39 17 32,589,668 5.6539

10 ILMN 3153940 Unc45b 11 82,724,831 5.6496
11 ILMN 2634905 Fbp2 13 62,938,245 5.6022
12 ILMN 2998406 Zfp979 4 146,986,048 5.5955
13 ILMN 1213056 Fez1 9 36,640,394 5.5861
14 ILMN 1236008 Isoc2a 7 4,828,740 5.5309
15 ILMN 2776728 Zfp979 4 146,986,048 5.4501
16 ILMN 2735046 Cml3 6 85,711,089 5.4235
17 ILMN 2527805 Wfdc10 2 164,481,546 5.4121
18 ILMN 2665266 H2-T22 17 36,175,354 5.4084
19 ILMN 2894678 H2-T22 17 36,175,354 5.4022
20 ILMN 2584887 Atp5f1 3 105,745,781 5.3849

Table 5.4: Highly multiallelic cis-eQTL; top twenty by posterior expected number of alleles. Gene
positions from NCBI37/mm9.

The most multiallelic cis-eQTL in our dataset was Glo1. Figure 5.8 shows Glo1 expression for

the 111 of 138 mice with prior maximum diplotype states that are homozygous at the QTL, plotted

by that haplotype. Our approach finds over 95% posterior support for six to eight alleles at this QTL

(Figure 5.9). Figure 5.10 shows the posterior distribution of haplotype effects using both the Full

and CRP approaches, which are similar in light of the high posterior number of alleles. Interestingly,

previous studies have found that mouse strains have a complicated haplotype structure at Glo1, and

that expression of this gene is associated with anxiety-like behavior in mice (Williams IV et al.,

2009). This supports our finding that Glo1 is highly multiallelic, and it also suggests that genes with

multiallelic QTL may also be associated with other interesting phenotypes.

We also note that several highly multiallelic cis-eQTL are near the major histocompatibility

complex on chromosome 17, which is consistent with high genetic diversity in this region (Lilue

et al., 2019).

In conclusion, we find that whole lung cis-eQTL in the PreCC tend to have between two and

four alleles. Given that the CC founders are comprised of three different subspecies of mice (Didion
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Figure 5.8: Glo1 expression by founder haplotype at the QTL for mice with homozygous prior
maximum diplotype state.

Figure 5.9: Posterior distribution of number of alleles for Glo1 cis-eQTL. The line denotes the prior
distribution.
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Figure 5.10: Posterior distribution of haplotype effects for Glo1 cis-eQTL using the Full and CRP
approaches. Full - multicolored; CRP - dark gray.

and De Villena, 2013), this multiallelism is reasonable. It would be interesting to directly interrogate

if the posterior allelic series for a gene corresponds to its subspecies origin. Additionally, we find

highly multiallelic cis-eQTL in this dataset. In particular, Glo1 is our most multiallelic gene, and its

complicated haplotype structure has been implicated in anxiety-like behavior in mice. It would be

interesting to investigate if other multiallelic genes are also associated with interesting phenotypes,

or more generally, if multiallelic genes are enriched for any notable properties.

5.4 Inference with Many Founder Haplotypes

5.4.1 Data and Methods

In this section, we apply our allele-based approach to two gene expression QTL previously reported

in (King et al., 2014). This study analyzed rank-normalized gene expression, measured by microarray,

in pooled whole head tissue from 596 crosses of DSPR flies, with a total of fifteen founder haplotypes.

One objective of this study was to estimate the number of alleles at eQTL. The authors highlighted
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Allelic Series # of Alleles Posterior Probability
0,0,0,0,0,1,1,0,0,2,0,0,0,0,0 3 0.2536
0,0,0,0,0,1,2,0,0,3,0,0,0,0,0 4 0.0503
0,0,0,0,0,1,1,0,0,2,1,0,0,0,0 3 0.0482
0,0,0,0,1,1,1,0,0,2,0,0,0,0,0 3 0.0459
0,0,0,0,0,1,1,0,0,1,0,0,0,0,0 2 0.0361
0,1,1,1,1,0,0,1,1,2,1,1,1,1,1 3 0.0297
0,1,1,1,1,2,2,1,1,0,1,1,1,1,1 3 0.0253
0,0,0,0,0,1,1,0,0,2,2,0,0,0,0 3 0.0238
0,0,0,0,1,2,2,0,0,1,0,0,0,0,0 3 0.0229
0,0,0,0,1,1,1,0,0,2,1,0,0,0,0 3 0.0147

Table 5.5: Top ten posterior allelic series for CG4086 cis-eQTL using the CRP approach.

two examples, CG4086 and CG10245, as examples of biallelic and multiallelic QTL, respectively.

We focused on these two examples for our analyses.

We used the Full and CRP approaches to analyze these QTL, generating 100,000 posterior

samples for the Full and 1,000,000 samples for the CRP.

5.4.2 Results and Discussion

Figure 5.11 shows the posterior distribution of number of alleles for the CG4086 QTL using the

CRP approach. Although the previous study found that this QTL was biallelic, we find a 61.7%

posterior probability that the QTL has three functional alleles. Table 5.5 shows the top ten posterior

allelic series, which tend to contrast haplotypes A6, A7, and B2 against the others. This is consistent

with the Full posterior haplotype effects, as shown in Figure 5.12. Relative to the Full, the allele-

based haplotype effects of the CRP are more certain, with narrower 95% HPD intervals (Table 5.6).

Notably, both the Full and CRP approaches make effect haplotype effect predictions for A1, A5, and

B3, all of which are poorly represented at this QTL and were omitted in the previous study. Overall,

there is very strong evidence in favor of the of the CRP relative to the Full approach, with a lnBF of

7.71.

Figure 5.13 shows the posterior distribution of number of alleles for the CG10245 QTL using

the CRP approach. The previous study found that this QTL was highly multiallelic, a finding which

we confirm, with an expected posterior number of alleles of 8.95. However, the posterior distribution

of the allelic series is highly uncertain (Table 5.7), which is due to the large number of possible

allelic series when there are fifteen founder haplotypes and many alleles. Figure 5.14 shows the
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Figure 5.11: Posterior distribution of number of alleles for CG4086 cis-eQTL. The line denotes the
prior distribution.

Figure 5.12: Posterior distribution of haplotype effects for CG4086 cis-eQTL using the Full and CRP
approaches.
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Haplotype Full CRP
A1 3.56 2.99
A2 1.19 0.17
A3 1.03 0.17
A4 0.99 0.17
A5 5.11 3.11
A6 1.81 1.31
A7 1.07 0.68

AB8 1.22 0.19
B1 2.03 0.19
B2 1.02 0.56
B3 5.11 3.11
B4 1.09 0.17
B5 1.19 0.18
B6 1.04 0.17
B7 1.06 0.17

Table 5.6: Width of the 95% highest posterior density interval for CG4086 haplotype effects using
the Full and CRP approaches.

posterior distribution of haplotype effects using the Full and CRP approaches. Interestingly, many of

the haplotype effect distributions for the CRP are multimodal, and the 95% HPD intervals for the

CRP are generally wider than for the Full (Table 5.8). This is a consequence of the highly uncertain

posterior allelic series. The intervals for A4 and B2, both of which are poorly represented at this

QTL, are actually narrower, showing how the CRP can provide, in a sense, additional shrinkage to

the haplotype effects. Consistent with extensive multiallelism, there is very strong evidence against

the CRP relative to the Full approach, with a lnBF of -11.15.

Allelic Series # of Alleles Posterior Probability
0,1,2,1,2,1,3,4,1,1,5,6,1,7,8 9 0.002380
0,1,2,3,2,1,3,3,3,3,4,1,3,0,2 5 0.001602
0,1,2,3,2,4,5,3,3,3,1,6,3,5,7 8 0.001206
0,1,2,3,2,1,4,3,3,3,1,5,3,6,0 7 0.001068
0,1,2,3,2,1,4,5,1,1,6,7,1,8,9 10 0.001064
0,1,2,1,2,1,3,4,4,1,1,5,4,6,0 7 0.001050
0,1,2,2,2,1,3,3,3,3,4,1,3,0,2 5 0.001040
0,1,2,3,2,4,5,3,3,3,1,6,3,7,5 8 0.001034
0,1,2,1,2,1,3,4,1,5,6,7,1,8,9 10 0.001030
0,1,2,2,2,1,3,4,1,1,5,6,1,7,8 9 0.001021

Table 5.7: Top ten posterior allelic series for CG10245 cis-eQTL using the CRP approach.
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Figure 5.13: Posterior distribution of number of alleles for CG10245 cis-eQTL. The line denotes the
prior distribution.

Figure 5.14: Posterior distribution of haplotype effects for CG10245 cis-eQTL using the Full and
CRP approaches.
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Haplotype Full CRP
A1 1.10 1.56
A2 2.42 2.61
A3 1.33 1.83
A4 9.95 7.76
A5 1.11 1.72
A6 1.01 1.59
A7 0.88 1.53

AB8 0.90 1.12
B1 0.98 1.55
B2 9.98 7.80
B3 0.89 1.52
B4 1.80 2.53
B5 0.92 1.55
B6 0.91 1.53
B7 1.09 1.88

Table 5.8: Width of the 95% highest posterior density interval for CG10245 haplotype effects using
the Full and CRP approaches.

In summary, these examples demonstrate that our approach can be used to infer the allelic series

in MPPs with many founder haplotypes. Allelic series inference can be highly uncertain in this case,

given the large number of possible allelic series. However, accounting for the allelic series can still

improve haplotype effect estimation, provided that the number of functional alleles is small.
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CHAPTER 6

Performance in QTL Mapping Simulations

6.1 Overview

In this chapter, we return to the topic of QTL mapping power in the Collaborative Cross (CC),

reconsidered in the context of our allele-based association approach. Chapter 2, published as Keele

et al. (2019), found that the power to detect QTL using a haplotype-based association approach

depends on the allelic series. In particular, imbalanced allelic series, where most of the haplotypes

are assigned to a single allele, are more difficult to detect than allelic series that are balanced. Given

that power depends on the allelic series, it is reasonable to expect that an allele-based association

approach could improve QTL mapping power relative to a haplotype-based approach. We introduced

such an allele-based association approach in Chapter 3, and in Chapter 4 we found cases where

it increases statistical signal. In this chapter, we reevaluate QTL mapping power in the CC, again

using simulation, and directly compare several haplotype-based association approaches with our

allele-based approach.

We consider four alternative QTL mapping approaches:

• the method used in Chapter 2, a haplotype-based approach that estimates the haplotype effects

as fixed effects and uses the regression on probabilities (ROP) approximation to account for

diplotype uncertainty (termed “FE-ROP”) (Haley and Knott, 1992),

• a haplotype-based approach that estimates the haplotype effects as random effects, which also

uses ROP (“RE-ROP”) (Wei and Xu, 2016),

• the “Full” approach from Chapter 4, which is our fully-Bayesian implementation of the

haplotype-based approach that includes posterior diplotype sampling,
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• the “CRP” approach from Chapter 4 (previously Exponential), which is our allele-based

approach, naive to additional prior tree information.

Comparing these approaches isolates several differences between the FE-ROP model of the first

chapter and our allele-based model. First, our approach is more similar to a random effect model,

which regularizes haplotype (or allele) effect estimates (highlighted by FE-ROP vs RE-ROP). Second,

our haplotype-based approach performs posterior diplotype sampling, instead of approximating

diplotype uncertainty using ROP (Full vs RE-ROP). Finally, and of of primary interest, our approach

directly models the allelic series rather than assuming that all haplotypes are functionally distinct

(CRP vs Full).

We do not consider prior information about haplotype phylogeny in this chapter. The local

phylogeny of the CC founder strains is highly variable to recombination and introgression (Yang

et al., 2011; Didion and De Villena, 2013), and inferring local phylogeny is a challenging problem, a

topic we discuss in Chapter 7. Rather than make the strong assumption that the local phylogeny of

the CC founders is known at every locus, our simulated QTL assume a uniform distribution on the

allelic series, conditional on the number of alleles, as in Keele et al. (2019). Thus, the simulated QTL

do not have an underlying true phylogeny, and we focus on the CRP approach, which assumes an

unknown, latent coalescent tree. We point to the simulations in Chapter 4 for the potential benefit of

including additional prior tree information relative to the CRP approach.

In the remainder of this chapter, we outline the methods for our simulated QTL experiments,

which are similar to Chapter 2. We then present the mapping power for each alternative approach.

Finally, we conclude by discussing the utility of the allele-based association approach for QTL

mapping.

6.2 Simulation Procedure

We simulated QTL using the same procedure from Chapter 2 (Keele et al., 2019) but with a few

modifications. The fully-Bayesian Full and CRP approaches require Gibbs sampling, making them

computationally intensive (Table 6.1). To minimize computation time, we obtained genome-wide

significance thresholds via null parametric bootstrap, as in Valdar et al. (2009), rather than the

permutation procedure used in Chapter 2. Significance thresholds via permutation require analyzing
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Method Runtime (Min)
FE-ROP 1.42
RE-ROP 3.43

Full 42.63
CRP 891.64

Table 6.1: Runtime in minutes for a single simulated QTL mapping experiment using the FE-ROP,
RE-ROP, Full and CRP approaches. All approaches are evaluated using the same hardware, analyzing
a dataset of the size simulated in this chapter.

permuted (null) data over many iterations for each simulated QTL experiment. In contrast, the null

parametric bootstrap also requires many iterations, but in our case it can be performed just once for

all simulated QTL. The QTL we simulate do not include covariates and are standardized to have zero

mean and unit variance, so the null parametric model is the standard normal distribution. Thus, we

performed the following steps to obtain significance thresholds:

• Sample null phenotypes from the standard normal distribution, creating a null dataset that is

the same size as the simulated data,

• Perform QTL mapping on the null data using each alternative mapping approach and collect

the maximum observed test statistic. For the FE-ROP and RE-ROP approaches, the test statistic

is −ln(p), and for the Full and CRP it is the lnBF relative to the null model,

• Iterate the previous steps 2,000 times to approximate the null distribution of the maximum test

statistic using each approach,

• Fit generalized extreme value distributions for each null distribution and calculate the 95%

quantiles (Dudbridge and Koeleman, 2004; Valdar et al., 2006a).

This procedure provides a 95% genome-wide significance threshold via null parametric bootstrap.

We also reduce computation by narrowly focusing this chapter on QTL mapping power. We do

not assess the false positive rate (FPR), instead assuming that it is well-controlled by the procedure

we just described. Mapping power only involves the threshold and the test statistic at the true locus

(or a surrounding region, as in Chapter 2). If FPR is ignored and the threshold is known, it is only

necessary to evaluate the mapping approaches at the true locus, not for every locus in the genome.

This dramatically reduces computation time, allowing us to evaluate many more simulated QTL.

127



For the simulated QTL, we assume one observation (r = 1) from each of the CC strains used

in the first chapter (N = 72). We specify either two, three or eight functional alleles, and the

true allelic series is sampled uniformly conditional on the number of alleles. We also specifically

evaluate biallelic series that are either balanced (4v4) or highly imbalanced (7v1). We specify QTL

effect size, h2QTL, from 20% to 50% in increments of 10%. We assume no population structure,

making background strain effects ignorable when there are no replicate observations. The QTL effect

sizes used in this chapter are selected for illustration, as they span the full range of power for these

approaches, given the selected sample size (N = 72) and number of replicates (r = 1).

For each of these combinations of settings, we simulate 10,000 QTL using the ’sparcc’ R

package developed by Keele et al. (2019), available on GitHub at https://github.com/

gkeele/sparcc. We fit the FE-ROP and RE-ROP models using the ’miqtl’ package developed

by Greg Keele, available at https://github.com/gkeele/miqtl. We fit the Full and CRP

models using our ’TIMBR’ package, available at https://github.com/wcrouse/TIMBR.

For each simulated QTL, we record if the true locus was detected (i.e. test statistic higher than

threshold), and in the case of the CRP, if the MAP allelic series was correct (“0-1 Accuracy”, defined

in Chapter 4).

6.3 Results

Figure 6.1 shows QTL mapping power using the FE-ROP, RE-ROP, Full, and CRP approaches

for varying numbers of true functional alleles. In general, differences in power between the four

approaches are minor, but there are several clear trends. The allele-based CRP approach outperforms

the Full haplotype-based approach when there are only two functional alleles, and it remains narrowly

better when there are three functional alleles. When there are eight functional alleles, the CRP is

narrowly worse. The Full and RE-ROP approaches are nearly identical, suggesting that there is

not much uncertainty in the diplotype state probabilities used for these simulations. RE-ROP is

consistently better than FE-ROP, indicating that regularizing haplotype effect estimates increases

power. Consistent with the results of our simulation chapter, Figure 6.2 shows that, when power is

high, the CRP approach accurately identifies biallelic series, but this is not the case for multiallelic

series.
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Figure 6.2: 0-1 accuracy of posterior allelic series inference by QTL effect size using the CRP
approach, for varying numbers of true functional alleles.

Figure 6.3 shows QTL mapping power using the FE-ROP, RE-ROP, Full, and CRP approaches

for balanced and imbalanced biallelic series. As observed in the first chapter, power is lower for all

approaches when the allelic series is imbalanced. The CRP approach is the most powerful approach

for all biallelic series, but especially when the allelic series is imbalanced.

Figure 6.3: QTL mapping power by QTL effect size using the FE-ROP, RE-ROP, Full, and CRP
approaches, for balanced and imbalanced biallelic series.

6.4 Discussion

In this chapter, we used simulations to evaluate various haplotype- and allele-based association

approaches for their power in QTL mapping. We found that the allele-based CRP outperforms

haplotype-based approaches when there are only two functional alleles. This is accompanied by
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highly accurate allelic series inference when the power is also high. The CRP has low posterior

allelic series accuracy when there are three functional alleles, but it still has marginally higher power

than the other haplotype-based alternatives in this case. The haplotype-based approaches are more

powerful than the allele-based approach when there are eight functional alleles. These QTL mapping

results are broadly consistent with the single-locus results in Chapter 4.

We conclude that the allele-based association approach improves on existing haplotype-based

approaches for QTL mapping, provided that there are only a few functional alleles at the locus.

This improvement is marginal, however, and comes with a high computational cost. If computation

is prohibitive, we recommend using the much faster RE-ROP random effect approach, which

outperforms the similarly-fast FE-ROP fixed effect approach.

There may be situations which justify the increased computation of allele-based association

approach. In particular, we found that the allele-based CRP substantially increases power in the case

of imbalanced biallelic series. This is likely due to the “rich-get-richer” property of the CRP, which

favors contrasts that are imbalanced a priori (Wallach et al., 2008). If genetic differences are driven

by only one or a few founder haplotypes, as with the wild-derived founder strains of the CC and

Diversity Outbred (DO) (Yang et al., 2011), we anticipate that our allele-based association approach

would be more powerful than haplotype-based approaches.
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CHAPTER 7

Conclusion

7.1 Overview

In this chapter, we summarize the previous chapters and comment on future directions for allele-based

association approaches in MPPs. We consider phylogeny-informed QTL mapping using our approach,

and more generally, we discuss the challenge of inferring local phylogeny with recombination. We

also discuss how our allelic series model may be useful for identifying candidate causal variants.

Finally, we comment on some of the limitations of our allele-based association approach and how

these could be addressed.

7.2 Allelic series inference improves effect estimation despite poste-

rior uncertainty

Our single-locus simulations in Chapter 4 indicate that inference of the allelic series (in the absence

of tree information) is generally uncertain, even in situations that we expect would have high QTL

mapping power (the focus of Chapter 2). Posterior certainty is higher in the biallelic case, when

there are relatively more observations to distinguish the allele effects. In combination with a prior

allelic series that expects few functional alleles, the posterior allelic series is decisive in this case.

Posterior certainty on the correct allelic series decreases, however, as the true number of functional

alleles increases. This is because the space of possible allelic series configurations is larger (for an

intermediate number of alleles), and there are relatively fewer observations to distinguish the allele

effects. For these reasons, the allele-based association approach may be more useful for evaluating

whether a QTL is more likely to be biallelic or multiallelic, rather than for identifying the allelic

series per se. Our approach can also be used to determine the most-highly multiallelic QTL in a
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dataset, as we did for eQTL (Kelada et al., 2014) in Chapter 5. Characterizing highly multiallelic

QTL is an interesting topic for further investigation.

Despite uncertainty in the allelic series, the allele-based approach does improve haplotype effect

estimation relative to the haplotype-based approach, provided there are only a few functional alleles

at the locus. The allele-based approach allows the data to be represented using fewer parameters, and

this reduction in parameters can still be beneficial even when the allelic series is only partially known.

This improvement in effect estimation was particularly evident in the “biallelic” DSPR example

(King et al., 2014) in Chapter 5. These results suggest that the allele-based approach will be useful

in the context of phenotype prediction, or other applications that might benefit from improved effect

estimation.

7.3 Allele-based approach can improve QTL mapping but is compu-

tationally intensive

Our simulated QTL mapping experiments in Chapter 6 show that the tree-naive allele-based as-

sociation approach improves QTL mapping power relative to the haplotype-based approach when

the number of functional alleles is small. This is particularly true for imbalanced biallelic series,

addressing a weakness of the haplotype-based approach identified in Chapter 2. In general, how-

ever, the improvement in power for the allele-based approach is modest, and it comes with a high

computational cost. We expect that this cost will typically not be justified, except perhaps when

imbalanced allelic series are anticipated a priori, or when additional phylogenetic information about

the founder haplotypes can be included, which we discuss in the next section.

It may be reasonable to expect imbalanced biallelic series if genetic differences are driven by

only one or a few founder haplotypes, as with the wild-derived founder strains of the Collaborative

Cross (CC) and Diversity Outbred (DO) (Yang et al., 2011). If this is the case, it may be beneficial

to consider the single-variant mapping approach as an alternative to the less-powerful haplotype-

based approach and the much-slower allele-based approach, though this ignores the possibility of

multiallelic, epistatic effects. Directly comparing the single-variant approach with the haplotype-

and allele-based approaches would be a valuable direction for future research.
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7.4 Local phylogeny improves inference but is uncertain

Accounting for founder haplotype relatedness in an allele-based association framework is the primary

innovation of our research. The single-locus simulations in Chapter 4 show that including prior

information about haplotype relatedness, in the form of a coalescent tree, improves our allele-based

association approach with respect to allelic series inference, haplotype effect estimation and statistical

signal, although less so with reduced power. In combination with the tree-naive simulated QTL

mapping experiments in Chapter 6, these results suggest that QTL mapping power could potentially

be improved if local phylogeny was known throughout the genome.

The phylogenetic tree of the founder haplotypes is necessarily unknown, however, and can only

be observed indirectly through genetic variation. Our framework is based on the coalescent (Kingman,

1982), which describes the phylogenetic relationship for a single nonrecombinant genomic region.

The assumption of no recombination is necessary because, in recombinant systems, phylogeny can

vary throughout the genome due to incomplete lineage sorting (Degnan and Rosenberg, 2009) and

(particularly for the CC and DO founder strains) introgression (Yang et al., 2011; Didion and De

Villena, 2013). This means that neighboring genomic regions can have distinct (but correlated) phy-

logenetic trees. The complex structure describing recombination events and varied local phylogeny is

the “ancestral recombination graph” (ARG), and inferring it is the subject of active research (Kelleher

et al., 2019; Rasmussen et al., 2014b). If the ARG were known exactly, variation in haplotype

phylogeny throughout the genome could be a useful source of information for QTL mapping. In

practice, though, the ARG will be uncertain, with regions that are poorly informed by mutations or

biased due to errors. Due to this uncertainty, the inferred ARG will be less useful for QTL mapping

than known local phylogeny, although it is unclear to what extent.

We did not consider haplotype phylogeny during the simulated QTL mapping experiments

in Chapter 6. The simulation procedure, established in Chapter 2, uses real data from the CC.

We did not want to make the strong assumption that the local phylogeny of the CC founders is

known at every locus, described perfectly by an inferred ARG. Instead, we considered known

phylogenetic trees in the single-locus simulations in Chapter 4. We found only small improvements

in statistical signal from known trees in the lower power scenario, which is the situation where

additional prior information would be most beneficial. We anticipate that any improvement in QTL
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mapping power from local phylogenetic information is unlikely to outweigh the high computational

cost that accompanies the allele-based approach.

Given uncertainty in the ARG, we recommend using our tree-naive approach by default when

analyzing QTL in recombinant MPPs. There are situations, though, when local phylogeny can be

accurately inferred, and in these cases, including tree information improves allelic series inference

and haplotype effect estimation. We demonstrated this in Chapter 5, for a QTL with a known causal

gene (Kelada et al., 2012), in combination with fully-Bayesian tree inference software (Drummond

et al., 2012). We anticipate our tree-informed approach will be useful in haploid systems, as in Azim

Ansari and Didelot (2016) and Cybis et al. (2018), because most haploids do not recombine, and thus

have a single phylogenetic history for their entire genome.

7.5 Connecting the allelic series to causal variants

The allele-based association approach is useful for evaluating whether a QTL is more likely to be

biallelic or multiallelic. It can be difficult, however, to connect information about the allelic series to

causal variants. Evaluating evidence in favor of a single biallelic variant is straightforward, as our

framework encompasses a fully-Bayesian implementation of merge analysis (Yalcin et al., 2005).

Multiallelic series are more challenging. When a QTL is multiallelic, we expect that multiple

causal variants distinguish the haplotypes into functional alleles. Our allele-based association

approach only considers haplotype effects for a single genomic interval (i.e. the diplotype state

probabilities do not vary in this region). Thus, it implicitly assumes that all causal variants are on

the same genomic interval. For this reason, results from our allele-based approach cannot strictly be

used to evaluate combinations of variants from different (even adjacent) genomic intervals.

An alternative in our framework assumes that the allelic series is at least as complicated as

a given biallelic variant. In this case, the prior distribution of the allelic series is restricted to

exclude partitions that violate the functional distinctions given by a causal variant. For example, for

J = 3 haplotypes and a causal biallelic variant that contrasts haplotypes A and C with B, the prior

distribution for the allelic series is

p(M|m1 6= m2,m2 6= m3) ∝ p(m1 6= m2,m2 6= m3|M)p(M).
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The first term on the right-hand side is an indicator variable denoting whether the allelic series M

satisfies the conditions given by the biallelic variant, m1 6= m2 and m2 6= m3. The second term is

the prior distribution of the allelic series (marginalized over the concentration parameter). Using this,

we can compute a “variant-consistent” prior distribution that allows for multiallelic effects, but only

in combination with the causal variant under consideration (and implicitly, only other variants on the

same interval, in proportion to the prior). This variant-consistent approach may be more useful than

single-variant merge analysis for identifying candidate causal variants at multiallelic QTL. We have

implemented this variant-consistent prior distribution for the allelic series in our R package ’TIMBR’

(https://github.com/wcrouse/TIMBR), and evaluating it would be an interesting topic

for future research.

7.6 Limitations of the allele-based approach

The allele-based association approach is limited by its computational speed. Our fully-Bayesian

approach uses Gibbs sampling for posterior inference, which requires drawing many samples, at every

locus, for every prior hypothesis. This limits the practical usefulness of the allele-based approach

for mapping QTL and identifying causal variants. One solution could be approximate maximum a

posteriori (MAP) inference (Raykov et al., 2016). MAP inference avoids sampling and would be

considerably faster than full posterior inference, though presumably with reduced performance.

Our method for calculating the tree-informed allelic series prior distribution is also computation-

ally expensive. This is because it involves precomputing the prior probability of all 22J−2 possible

configurations of branch mutations b on a tree T , recording the implied allelic series M for each.

This approach is feasible for J = 8 founder haplotypes, the case for many MPPs, but not for J = 15,

as in the DSPR. When J is large, it may be preferable to include the branch mutations b in the

posterior sampling procedure, as in Azim Ansari and Didelot (2016), rather than integrating over

them to compute the prior distribution. This will require mixing over the larger space of branch

mutations b, though, rather than the smaller space of allelic series M. Another alternative is to

disregard the tree structure, and instead use patristic distances between haplotypes as input for a

distance dependent CRP (Blei and Frazier, 2009), as in Cybis et al. (2018). It would be interesting to
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compare results from a distance dependent CRP with the tree-informed CRP that we have defined

here.

Finally, the allele-based association approach only considers additive allele effects and unstruc-

tured error. As discussed in (Jannink and Wu, 2003), it would be possible to include effects for allelic

dominance in our model, though it would be desirable to include these as an additional variance

component, as in (Zhang et al., 2014). We did not consider error due to population structure in

genetic background, which could also be included as an additional variance component (Eskin et al.,

2008; Kang et al., 2010; Lippert et al., 2011; Zhou and Stephens, 2012). Adding model complexity

via dominance effects or population structure may be useful, but it would increase the computational

requirements of the allele-based association approach.
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Rönnegård, L. and Valdar, W. (2011). Detecting major genetic loci controlling phenotypic variability
in experimental crosses. Genetics, 188(2):435–447.

147



Rota, G.-C. (1964). The Number of Partitions of a Set. The American Mathematical Monthly,
71(5):498–504.

Rutledge, H., Aylor, D. L., Carpenter, D. E., Peck, B. C., Chines, P., Ostrowski, L. E., Chesler, E. J.,
Churchill, G. A., de Villena, F. P. M., and Kelada, S. N. P. (2014). Genetic regulation of Zfp30,
CXCL1, and neutrophilic inflammation in murine lung. Genetics, 198(2):735–745.

Servin, B. and Stephens, M. (2007). Imputation-based analysis of association studies: Candidate
regions and quantitative traits. PLoS Genetics, 3(7):1296–1308.

Shim, H., Chun, H., Engelman, C. D., and Payseur, B. A. (2009). Genome-wide association studies
using single-nucleotide polymorphisms versus haplotypes: an empirical comparison with data
from the North American Rheumatoid Arthritis Consortium. BMC Proceedings, 3(Suppl 7):S35.

Shorter, J. R., Odet, F., Aylor, D. L., Pan, W., Kao, C.-Y., Fu, C.-P., Morgan, A. P., Greenstein, S.,
Bell, T. A., Stevans, A. M., Feathers, R. W., Patel, S., Cates, S. E., Shaw, G. D., Miller, D. R.,
Chesler, E. J., McMillian, L., O’Brien, D. A., and de Villena, F. P.-M. (2017). Male Infertility
Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross.
Genetics, 206(2):557–572.

Shusterman, A., Salyma, Y., Nashef, A., Soller, M., Wilensky, A., Mott, R., Weiss, E. I., Houri-
Haddad, Y., and Iraqi, F. A. (2013). Genotype is an important determinant factor of host
susceptibility to periodontitis in the Collaborative Cross and inbred mouse populations. BMC
Genetics, 14:68.

Soller, M. and Beckmann, J. S. (1990). Marker-based mapping of quantitative trait loci using
replicated progenies. Theoretical and Applied Genetics, 80(2):205–208.

Song, Y. S. (2006). Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic
trees. Annals of Combinatorics, 10(1):147–163.

Srivastava, A., Morgan, A. P., Najarian, M. L., Sarsani, V. K., Sigmon, J. S., Shorter, J. R., Kashfeen,
A., McMullan, R. C., Williams, L. H., Giusti-Rodrı́guez, P., Ferris, M. T., Sullivan, P., Hock,
P., Miller, D. R., Bell, T. A., McMillan, L., Churchill, G. A., and De Villena, F. P. M. (2017).
Genomes of the Mouse Collaborative Cross. Genetics, 206(2):537–556.

Svenson, K. L., Gatti, D. M., Valdar, W., Welsh, C. E., Cheng, R., Chesler, E. J., Palmer, A. a.,
McMillan, L., and Churchill, G. a. (2012). High-resolution genetic mapping using the Mouse
Diversity outbred population. Genetics, 190(2):437–447.

Takuno, S., Terauchi, R., and Innan, H. (2012). The power of QTL mapping with RILs. PloS ONE,
7(10):e46545.

Thompson, K. L. and Kubatko, L. S. (2013). Using ancestral information to detect and localize
quantitative trait loci in genome-wide association studies. BMC Bioinformatics, 14(1):200.

Threadgill, D. W. and Churchill, G. A. (2012). Ten Years of the Collaborative Cross. Genetics,
190(2):291–294.

Threadgill, D. W., Hunter, K. W., and Williams, R. W. (2002). Genetic dissection of complex
and quantitative traits: from fantasy to reality via a community effort. Mammalian Genome,
13(4):175–178.

148



Valdar, W., Flint, J., and Mott, R. (2006a). Simulating the Collaborative Cross: power of quantitative
trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice.
Genetics, 172(3):1783–1797.

Valdar, W., Holmes, C. C., Mott, R., and Flint, J. (2009). Mapping in structured populations by
resample model averaging. Genetics, 182(4):1263–1277.

Valdar, W., Solberg, L. C., Gauguier, D., Burnett, S., Klenerman, P., Cookson, W. O., Taylor, M. S.,
Rawlins, J. N. P., Mott, R., and Flint, J. (2006b). Genome-wide genetic association of complex
traits in heterogeneous stock mice. Nature Genetics, 38(8):879–887.

van Dyk, D. A. and Park, T. (2008). Partially Collapsed Gibbs Samplers: Theory and Methods.
Journal of the American Statistical Association, 103(482):790–796.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York,
fourth edition.

Venkatratnam, A., Furuya, S., Kosyk, O., Gold, A., Bodnar, W., Konganti, K., Threadgill, D. W.,
Gillespie, K. M., Aylor, D. L., Wright, F. A., Chiu, W. A., and Rusyn, I. (2017). Collaborative
Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicoki-
netics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its
Oxidative Metabolism. Toxicological Sciences, 158(1):48–62.

Vered, K., Durrant, C., Mott, R., and Iraqi, F. A. (2014). Susceptibility to Klebsiella pneumonaie
infection in collaborative cross mice is a complex trait controlled by at least three loci acting at
different time points. BMC Genomics, 15(1):865.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., and Yang, J.
(2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal
of Human Genetics, 101(1):5–22.

Wallach, H. M., Jensen, S. T., Dicker, L., and Heller, K. A. (2008). An Alternative Prior Process for
Nonparametric Bayesian Clustering. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 892–899.

Wei, J. and Xu, S. (2016). A Random-Model Approach to QTL Mapping in Multiparent Advanced
Generation Intercross (MAGIC) Populations. Genetics, 202(2):471–86.

Wei, W. H., Hemani, G., and Haley, C. S. (2014). Detecting epistasis in human complex traits.
Nature Reviews Genetics, 15(11):722–733.

Welling, M. (2006). Flexible Priors for Infinite Mixture Models. In Proceedings of the Workshop on
Learning with Nonparametric Bayesian Methods, 23rd ICML.

Welsh, C. E., Miller, D. R., Manly, K. F., Wang, J., McMillan, L., Morahan, G., Mott, R., Iraqi, F. A.,
Threadgill, D. W., and de Villena, F. P.-M. (2012). Status and access to the Collaborative Cross
population. Mammalian Genome, 23(9-10):706–712.

Wilke, R. A., Lin, D. W., Roden, D. M., Watkins, P. B., Flockhart, D., Zineh, I., Giacomini, K. M.,
and Krauss, R. M. (2007). Identifying genetic risk factors for serious adverse drug reactions:
Current progress and challenges. Nature Reviews Drug Discovery, 6(11):904–916.

149



Williams IV, R., Lim, J. E., Harr, B., Wing, C., Walters, R., Distler, M. G., Teschke, M., Wu, C.,
Wiltshire, T., Su, A. I., Sokoloff, G., Tarantino, L. M., Borevitz, J. O., and Palmer, A. A. (2009).
A common and unstable copy number variant is associated with differences in Glo1 expression
and anxiety-like behavior. PLoS ONE, 4(3).

Xu, S. (2003). Theoretical basis of the Beavis effect. Genetics, 165(4):2259–2268.

Yalcin, B., Flint, J., and Mott, R. (2005). Using progenitor strain information to identify quantitative
trait nucleotides in outbred mice. Genetics, 171(2):673–681.

Yamamoto, E., Iwata, H., Tanabata, T., Mizobuchi, R., Yonemaru, J.-i., Yamamoto, T., and Yano, M.
(2014). Effect of advanced intercrossing on genome structure and on the power to detect linked
quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genetics,
15:50.

Yang, H., Wang, J. R., Didion, J. P., Buus, R. J., Bell, T. A., Welsh, C. E., Bonhomme, F. F., Yu, A.
H.-T. T., Nachman, M. W., Pialek, J., Tucker, P., Boursot, P., McMillan, L., Churchill, G. A.,
and De Villena, F. P.-M. M. (2011). Subspecific origin and haplotype diversity in the laboratory
mouse. Nature Genetics, 43(7):648–655.

Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P. C., Hu, L., Yamasaki, M., Yoshida, S., Kitano,
H., Hirano, K., and Matsuoka, M. (2016). Genome-wide association study using whole-genome
sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics,
48(8):927–934.

Yu, J., Holland, J. B., McMullen, M. D., and Buckler, E. S. (2008). Genetic design and statistical
power of nested association mapping in maize. Genetics, 178(1):539–551.

Yuan, Z., Zou, F., and Liu, Y. (2011). Bayesian multiple quantitative trait loci mapping for recombi-
nantinbred intercrosses. Genetics, 188(1):189–195.

Zhang, Z., Guillaume, F., Sartelet, A., Charlier, C., Georges, M., Farnir, F., and Druet, T. (2012a). An-
cestral haplotype-based association mapping with generalized linear mixed models accounting
for stratification. Bioinformatics, 28(19):2467–2473.

Zhang, Z., Wang, W., and Valdar, W. (2014). Bayesian Modeling of Haplotype Effects in Multiparent
Populations. Genetics, 198(1):139–156.

Zhang, Z., Zhang, X., and Wang, W. (2012b). HTreeQA: Using Semi-Perfect Phylogeny Trees in
Quantitative Trait Loci Study on Genotype Data. G3: Genes, Genomes, Genetics, 2(2):175–189.

Zheng, C., Boer, M. P., and van Eeuwijk, F. A. (2015). Reconstruction of Genome Ancestry Blocks
in Multiparental Populations. Genetics, 200(4):1073–1087.

Zhou, X. and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association
studies. Nature Genetics, 44(7):821–824.

Zollner, S. and Pritchard, J. K. (2007). Overcoming the winner’s curse: estimating penetrance
parameters from case-control data. American Journal of Human Genetics, 80(4):605–615.

Zou, F., Xu, Z., and Vision, T. (2006). Assessing the significance of quantitative trait loci in replicable
mapping populations. Genetics, 174(2):1063–1068.

150



Zuk, O., Hechter, E., Sunyaev, S. R., and Lander, E. S. (2012). The mystery of missing heritability:
Genetic interactions create phantom heritability. Proceedings of the National Academy of
Sciences, 109(4):1193–1198.

151


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Determinants of QTL Mapping Power in the Realized Collaborative Cross
	Overview
	Introduction
	Methods
	Data on realized CC genomes
	CC strains.
	Reduced dataset of haplotype mosaics.

	Phenotype simulation
	Underlying phenotype model.
	QTL allelic series.
	Alternative definitions of QTL effect size: B and DAMB.
	Averaging over strains and causal loci.

	QTL detection and power estimation
	QTL mapping model.
	Genome-wide significance thresholds and QTL detection.
	Performance evaluation.

	Overview of the simulations
	Simulation settings.

	Examining FPR when accounting for non-exchangeability of CC strain genomes
	Measuring the Beavis effect
	Availability of data and software
	R package.
	CC strains.


	Results
	Large effect QTL usually detected by 50 or more strains
	Additional strains improve power more than additional replicates
	Location error of detected QTL
	False positive rate
	Beavis effect
	Allele frequency imbalance reduces power

	Discussion
	Interpreting QTL effect sizes
	Strains versus replicates
	Population structure in the CC
	Allelic series, and use of an eight allele mapping model
	Inclusion of extinct CC strains in simulations
	Future use and directions
	Conclusion

	Acknowledgments
	Appendix A: QR decomposition for fast regression
	Appendix B: Computing environment and performance
	Appendix C: CC strains
	Appendix D: Additive model and allelic series matrices
	Additive matrix
	Allelic series matrices
	Allelic series with eight alleles (maximum)
	Example balanced (4v4) bi-allelic series
	Example unbalanced (7v1) bi-allelic series
	Example tri-allelic series


	Data and Supplement details
	SPARCC Package
	Data objects included in SPARCC package
	File types

	Supplemental Tables and Figures

	Methods for Allele-Based Approach
	Overview
	Introduction
	Likelihood Function
	Prior Distribution of the Allelic Series
	Chinese Restaurant Process
	Ewens's Sampling Formula and the CRP
	Tree-Informed CRP

	Prior Distribution of Diplotype States
	Prior Distribution of Allele Effect Size
	Prior Elicitation
	Individual Error, Mean and Covariate Effects
	Concentration Parameter / Functional Mutation Rate
	Coalescent Tree
	Diplotype States
	Relative Allele Effect Size

	Posterior Inference
	Updating the Allelic Series
	Sampling the Effects and Error
	Updating the Relative Size of the Allele Effects
	Updating the Diplotype States

	Marginal Likelihood and Hypothesis Testing
	Availability of Software
	Appendix A - Marginalizing the Tree-Informed Prior

	Performance in Single-Locus Simulations
	Overview
	Simulation Procedure
	Evaluation Metrics
	Results - Alternative Prior Distributions
	Accuracy of Allelic Series
	Error of Haplotype Effect Estimation
	Statistical Signal

	Results - Tree Information
	Accuracy of Allelic Series
	Error of Haplotype Effect Estimation
	Statistical Signal

	Discussion

	Application to Real Data
	Overview
	Inference with Tree Information
	Data and Methods
	Results and Discussion

	Identifying Multiallelic QTL
	Data and Methods
	Results and Discussion

	Inference with Many Founder Haplotypes
	Data and Methods
	Results and Discussion


	Performance in QTL Mapping Simulations
	Overview
	Simulation Procedure
	Results
	Discussion

	Conclusion
	Overview
	Allelic series inference improves effect estimation despite posterior uncertainty
	Allele-based approach can improve QTL mapping but is computationally intensive
	Local phylogeny improves inference but is uncertain
	Connecting the allelic series to causal variants
	Limitations of the allele-based approach

	BIBLIOGRAPHY

