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ABSTRACT 

Shengjie Chai: Bioinformatics Methods for Prediction of Splice Variant Neoantigens 
(Under the direction of Benjamin Vincent, Jan Prins, and Jonathan Serody) 

Tumor-specific peptide epitopes that are generated from mutated genes and presented on 

cell surface MHC molecules, known as neoantigens, are attractive targets for therapeutic 

vaccination given the lack of central tolerance and corresponding presence of endogenous T cells 

that recognize them. Currently most available neoantigen prediction methods focus on predicting 

neoantigens derived from missense mutations or indels. In acute myeloid leukemia (AML), there 

are markedly fewer mutations and predicted neoantigens in the cancer genome compared to other 

cancers, so it is less feasible to target neoantigens derived from missense mutations and indels in 

AML. However, mutations in spliceosomal genes and genome-wide aberrant splicing events are 

common in patients with AML. In work contributed to by our group, a small number of splice 

variant neoantigens have been found to exist in cancer.  

Herein, we report the development of robust method, NeoSplice, to predict splice variant 

neoantigens from massively parallel RNA sequencing (RNA-Seq) data. One of the 

computational challenges for predicting splice variant neoantigens is to infer the novel transcript 

isoforms derived from tumor-specific splicing events. We utilized a Burrows Wheeler Transform 

(BWT) based algorithm to identify tumor specific k-mers and used a splice graph to determine 

whether such a k-mer represents a tumor-specific splice junction in a coding region and its 
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corresponding amino-acid sequence. A frame-shift relative to the normal can easily lead to a 

novel peptide sequence that may be an actionable neoantigen. 

Most current neoantigen calling algorithms primarily rely on epitope/MHC binding 

affinity predictions to rank and select for potential epitope targets. These algorithms do not 

predict for epitope immunogenicity using approaches modeled from tumor-specific antigen data. 

We developed an algorithm based on peptide-intrinsic biochemical features associated with 

neoantigen and minor histocompatibility mismatch antigen (mHA) immunogenicity and present 

a gradient–boosting algorithm for predicting tumor antigen immunogenicity.  

In addition, as part of PhD training in bioinformatics analysis to complement training in 

methods development, we performed comprehensive genomic and immune characterizations of 

bladder tumors and triple-negative breast cancer brain metastases to gain novel insight about 

biomarkers that can be used with potential immunotherapies.   
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CHAPTER 1 MOTIVATION AND BIOLOGICAL JUSTIFICATION 

Here we will discuss immunology concepts and bioinformatics methods for prediction of 

neoantigens and immunogenomic characterization of tumors. This section provides an overview 

of the biological problems addressed by our work. 

1.1 Introduction to the immune system and neoantigens.  

The immune system is a host defense system composed of biological molecules and 

processes that protect the body from pathogens. All eukaryotes are protected by a sophisticated 

mechanism of host defense1. Antigens are substances such as toxins, chemicals, bacteria, viruses, 

and peptides derived from tumor cells that can stimulate immune responses. Each antigen has 

distinct epitopes that can elicit an antigen specific immune response. The immune system can be 

divided into an innate immune system and adaptive immune system1. The innate immune system 

consists of phagocytes (neutrophils, Dendritic cells, macrophages), natural killer cells, and the 

complement protein system1. The targets of innate immune system include viruses, bacteria, 

parasites, and other foreign particles. Phagocytes patrol the body and engulf and digest 

pathogens or foreign particles. Neutrophils are responsible for killing pathogens that they 

phagocytose while dendritic cells and macrophages phagocytose pathogens to help clear cellular 

debris and present antigens to cells of the adaptive immune systems. Natural killer cells can 

recognize cells with low level of cell surface MHC I molecule expression such as tumor cells or 

virus-infected cells and release proteins such as perforin and proteases to promote apoptosis or   
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cell lysis. The complement protein system consists of small proteins that are synthesized by the 

liver and circulate in the blood. Complement proteins bind to the cell surface of cellular 

pathogens (e.g. bacteria, fungi), with binding potentiated by antibodies targeting the same 

pathogens, leading to generation of a membrane attack complex that forms pores in target cell 

membranes to effect cell killing. Although the innate immune system can react rapidly against a 

broad set of targets via receptors that recognize pathogen associated molecular patterns, it cannot 

generate antigen-specific responses and lacks capacity for antigen-specific immunologic memory. 

Immunologic memory is the ability of the immune system to rapidly and specifically recognize 

and respond to an antigen that has been previously encountered. The adaptive immune system 

consists of T cells and B cells, which recognize specific antigens via highly diverse cell surface 

receptors and can generate and maintain immunologic memory by generating memory T cells 

and memory B cells. These memory cells of the adaptive immune system are induced 

stochastically following adaptive immune receptor engagement and signaling. They are 

relatively few in number and reside in the lymphatic tissues, however upon repeat antigen 

stimulation they clonally expand in large numbers yielding daughter effector cells of the same 

specificity that are strongly activated and able to respond to the cognate antigen. In this way, 

effective immunological memory is stored in a set of low frequency but high potency T and B 

cell populations. 

The T-cell receptor (TCR) found on T cells and B-cell receptor (BCR) or immunoglobulin 

(Ig) produced by B cells play an important role in the adaptive immune system. T cell receptors 

are protein heterodimers of either an alpha chain + beta chain or gamma chain + delta chain. T 

cells recognize targets via TCR binding to peptide antigens presented by major 

histocompatibility complex molecules on the surface of the cell. Peptides of length 8-11 amino 
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acids presented by MHC class I molecules are recognized by CD8+ T cells, whereas peptides of 

length 15-24 amino acids are recognized by MHC class II molecules. Once a T cell binds its 

cognate peptide/MHC through the TCR, signaling downstream of the TCR drives a program that 

includes activation, clonal expansion, cytokine production (CD4+ and CD8+ T cells), and 

capacity to effect cytotoxicity of targets via production of perforin, granzyme, and Fas ligand. 

Immunoglobulin (Ig) consist of two closely related forms: BCR that is attached to the surface of 

B cells and antibody that is secreted by B cells. The two immunoglobulin forms are structurally 

analogous. However, the BCR contains an additional transmembrane region that anchors it to the 

cell surface and allows it to participate in intracellular signaling. Antibody molecules, in contrast, 

have the same antigen-binding specificity as the BCR but are secreted by the cell and can act 

remotely to bind pathogens and stimulate clearance of these through complement-mediated lysis 

or phagocytosis by macrophages (with both mechanisms being cooperation between the adaptive 

(antibody) and innate (complement, macrophages) immune systems).  

The adaptive immune system generates diversity of antigen-specific recognition in T cells 

and B cells via V(D)J recombination, a unique mechanism of genetic recombination that occurs 

during the maturation stage of T cells and B cells development and leads to a repertoire of 

antibodies/immunoglobulins (Igs) and T cell receptors (TCRs) found on B cells and T cells 

respectively. Specifically, The T-cell receptor (TCR) consists of variable alpha and beta or 

gamma and delta chains, and the BCR/antibody consists of variable light and heavy chains. 

During somatic recombination, the beta chains in TCR and heavy chains in BCR randomly select 

one copy of Variable (V), Joining (J), and Diversity (D) gene segments to form a unique variable 

region. The light chains of BCR and alpha chains of TCR undergo VJ recombination and do not 

contain a D region. Some diversity of TCR and BCR arises from the large number of V, D, and J 
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gene segments that may be chosen from. For example, there are 44 Variable (V) gene segments, 

27 Diversity (D), and 6 Joining (J) gene segments to be selected and combined for human 

immunoglobulin heavy chain during somatic recombination2,3. Additional diversity of the TCR 

and BCR repertoires is generated by the stochastic germline nucleotide deletion and addition of 

non-germline templated nucleotides at the V-D and D-J junctions. Thus, the total theoretical 

repertoire diversity for TCR and BCR is ~1015 unique sequences. The number of unique 

TCR/BCR sequences in any individual is < 1010, the theoretical repertoires are vastly larger than 

the real repertoire in any person. This provides the population with a robust set of antigen 

receptors that can recognize diverse pathogen-derived antigens to drive productive immune 

responses. 

T cells are widely recognized as the most important immune cell population for mediating 

anti-tumor immunity, including direct anti-tumor cytotoxicity in the case of CD8+ T cells and 

generation of pro-inflammatory cytokines and chemokines in the case of CD4+ T cells. A small 

number of B cells and T cells can proliferate and expand into a large oligoclonal population 

when a specific antigen is recognized. Typical targets of adaptive immune system include 

antigens derived from pathogens such as viruses and bacteria, however tumor-derived antigens 

can also be targeted. Tumor-specific variant peptides that are generated from mutated genes and 

can be presented by MHC molecules on the tumor cell surface are known as neoantigens (i.e. 

"new" antigens) since they are: (1) not present in normal non-cancerous cells, (2) derived from 

genomic variants that are present in the tumor cells, and (3) able to be recognized by the patient's 

T cells. Normally, T cells specific for "self" antigens (i.e. non-mutated self peptides) are deleted 

during T cell development in the thymus by a process of negative selection known as central 

tolerance. Neoantigens are attractive targets for therapeutic vaccination (i.e. vaccine given to 
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induce anti-tumor immunity after a patient has been diagnosed, rather than as a preventative 

measure) given the lack of central tolerance and corresponding presence of endogenous T cells 

that recognize them4. The process of how neoantigens are generated and can induce cytotoxic T 

cell responses is shown in Figure 1.1. First, proteins synthesized in the tumor cell can be 

ubiquinated and degraded by the proteasome into shorter peptides with 8–11 amino acids5. The 

degraded small peptides will then enter the endoplasmic reticulum (ER) lumen through the 

transporter associated with antigen processing (TAP)5. Some of the degraded small peptides in 

the ER can bind to the binding groove of MHC I5,6. The peptide–MHC class I complexes will 

then be transported to the membrane surface where they can interact with CD8+ cytotoxic T 

cells5. Exogenous peptides and membrane protein peptides with longer amino acid sequences 

(15–24 amino acids) will be processed and presented to CD4+ T helper cells via MHC class II on 

antigen presenting cells (APCs)5. Some populations of APCs are able to present peptides derived 

from intracellular proteins on MHC class II molecules in a process known as cross presentation. 

 The activation of T cells requires an antigen specific signal through TCR as well as an 

antigen nonspecific co-stimulatory signal through receptors such as CD28 that interact with 

molecules such as CD80 and CD86 on APCs. If the peptides presented by MHC molecules are 

derived from tumor-specific mutations (red peptides in Figure 1.1) and co-stimulatory signal is 

present, T cell-mediated cytotoxicity can be induced to destroy the cancer cell. Self-antigens 

(green peptides in Figure 1.1) might not be able to induce T cell-mediated cytotoxicity due to 

central tolerance processes that eliminate self-reactive T cells and/or peripheral tolerance 

processed that inactivate self peptide-reactive T cells. 
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1.2 Introduction to computational prediction of tumor-specific antigens 

Recent studies have shown that neoantigen targeted therapy can yield improved ex vivo anti-

tumor immune responses in patients with advanced and metastatic tumors, although there is a 

lack of evidence of in vivo anti-tumor activity due to limited numbers of patients and short 

follow up time in these phase I trials7,8. Typical neoantigen prediction pipelines involve first 

identifying highly expressed tumor-specific mutations by comparing mutations identified by 

whole-exome sequencing (WES) data of matched tumor- and normal-cell samples6,9–16. RNA 

sequencing (RNA-seq) data of tumor sample was used to filter lowly expressed mutations6,9–16. 

Highly expressed mutation derived neo-epitopes were prioritized using their predicted binding 

affinities to HLA I and HLA II molecules expressed by the patient17–24.The binding affinities are 

typically predicted using neural network model trained using peptide-MHC binding affinity 

measurements and mass spectrometry identified ligand data17–21,23–25. Currently most available 

neoantigen prediction methods such as pVAC-tools, MuPeXI, TSNAD, Neopepsee, and 

Antigen.garnish focus on predicting neoantigens derived from missense mutations or indels6,9–16. 

These tools all implement the neoantigen prediction pipeline described above with differences in 

neoantigen ranking and filtering. MuPeXI used a priority score calculated using information such 

as percent rank affinity of the mutant peptide and normal peptide, RNA-seq expression level, 

presence of mutant peptide in reference peptidome to rank peptides14. pVAC-tools also use a 

priority score calculated using RNA-seq expression level, binding affinity, and variant allele 

fraction to rank peptides9,15. Additionally, pVAC-tools contains a pVACfuse function that allows 

prediction of neoantigens derived from gene fusion and a pVACvector function that can extract 

peptide sequences around the predicted neoantigen to facilitate the design of design of DNA 

vector-based vaccines and long peptide vaccines9,15. In TSNAD, a TMHMM tool was used to 
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predict topology of membrane proteins13,26. Additional neoantigens targets that are derived from 

extracellular mutations of membrane proteins so that they can be targeted by antibodies are 

included in the final results13. TSNAD can also predict neoantigen derived from gene fusions13. 

Neopepsee can classify predicted neoantigens into different immunogenicity categories using a 

locally weighted naïve Bayes algorithm with nine features including predicted binding affinity, 

hydrophobicity, polarity and charged score, and amino acid pairwise contact potentials as input6. 

Antigen.garnish predict neoantigen as well as neoantigen immunogenicity and clinical outcome 

through examining the characteristics such as hydrophobic sequences and dissimilarity of 

neoantigen to self-proteome16. However, all the neoantigen prediction methods described 

require DNA sequencing data as well as RNA sequencing data. Furthermore, none of these 

tools can predict splice variant neoantigens. The algorithmic details including method, input, 

algorithm, genomic source(s) of neoantigen prediction algorithms can be found in Table 1.1. 

Method Input Algorithm Genomic Source(s) 

pVAC-tools VCF file including 

DNA and RNA 

coverage information, 

BEDPE (gene fusion 

derived neoantigen 

prediction) 

Enumerate mutant 

peptides that cover the 

mutation. Also predict 

neoantigens derived 

from gene fusion 

events. Use features 

such as RNA-seq 

expression level, 

binding affinity, and 

DNA sequencing data 

and RNA sequencing 

data 
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variant allele fraction 

to rank peptides. 

MuPeXI VCF file and 

Expression file 

Enumerate mutant 

peptides that cover the 

mutation. Use features 

such as percent rank 

affinity of the mutant 

peptide and normal 

peptide, RNA-seq 

expression level, 

presence of mutant 

peptide in reference 

peptidome to rank 

peptides 

DNA sequencing data 

and RNA sequencing 

data 

Neopepsee VCF file and RNA 

sequencing FASTQ 

file 

Enumerate mutant 

peptides that cover the 

mutation. Use features 

including predicted 

binding affinity, 

hydrophobicity, 

polarity and charged 

score, and amino acid 

pairwise contact 

DNA sequencing data 

and RNA sequencing 

data 
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potentials to rank 

peptides  

TSNAD DNA sequencing and 

RNA sequencing 

FASTQ file 

Enumerate mutant 

peptides that cover the 

mutation. Also predict 

neoantigens derived 

from gene fusion 

events. Additional 

neoantigens targets 

that are predicted to 

derive from 

extracellular 

mutations of 

membrane proteins so 

that can be targeted by 

antibodies are 

included in the final 

result 

DNA sequencing data 

and RNA sequencing 

data 

Antigen.garnish VCF file and RNA 

count matrix 

Enumerate mutant 

peptides that cover the 

mutation. Use the 

features such as 

hydrophobic 

DNA sequencing data 

and RNA sequencing 

data 
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sequences and 

dissimilarity of 

neoantigen to self-

proteome to also 

predict neoantigen 

immunogenicity and 

clinical outcome 

Table 1.1 Algorithmic details of neoantigen prediction algorithms 
 

There are markedly fewer mutations and predicted neoantigens in the cancer genome in acute 

myeloid leukemia (AML) compared to other cancers, possibly due to a low number of mutations 

and relatively low strength of association with exposure to common mutagens such as tobacco 

smoke, alcohol, and UV radiation27,28. Rather, AML is thought to result from accumulation of 

random mutations in hematopoietic stem cells that confer a selective advantage in the bone 

marrow microenvironment, and as such the ratio of driver to passenger mutations in AML is 

higher than that in epithelial tumors more associated with mutagen exposure (e.g. melanoma, 

lung cancer, bladder cancer). However, mutations in spliceosomal genes and genome-wide 

aberrant splicing events are more common in patients with AML compared to epithelial 

malignancies29,30. RNA splicing is a process that removes non-coding introns and concatenate 

protein coding exons in premature messenger RNA molecules to form mature messenger RNA 

molecules ready for translation into proteins. RNA splicing is catalyzed by the spliceosome 

which is a molecular machinery that consists of small nuclear RNAs (snRNA) and associated 

protein factors. U1, U2, U4, U5, and U6 are the major snRNAs that form the spliceosome. 

Multiple mutations involving the formation and regulation of spliceosome are implicated in 
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AML31. For example, mutations in DDX41 gene that affect spliceosome assembly, mutations in 

SRSF2 that affect mRNA stabilization and binding of U1 and U2 snRNAs to 5' splice site and 

branch site, mutations in U2AF1 and SF3B1 that affect binding of U2 snRNAs to branch site 

have been reported in many AML cases31. Neoantigens could arise from novel peptides 

sequences derived from neo-junctions directly as well as frameshifts due to neo-junctions. 

Targeting neoantigens derived from tumor specific alternative splicing events could expand the 

therapeutic target space in patients with AML and other type of tumors with a low frequency of 

neoantigens derived from single nucleotide variations or indels. However, none of the published 

methods to detect neoantigens from genomics data is able to predict splice variant neoantigens. 

Transcript isoform assembly methods that have been used to evaluate splicing in large tumor 

datasets that could be used to predict splice variant neoantigens are not specific in the prediction 

of splice variant peptides: splice variant peptide producing transcript isoforms with multiple 

mutated features were not tested to exist in the tumor transcriptome in these methods32,33. 

Critically, they require additional somatic variant information from whole exome sequencing 

data32,33. In chapter 2, we present the NeoSplice method, which perform accurate prediction of 

splice variant neoantigens without requiring additional DNA sequencing data. 

Despite the ability of neoantigen therapeutic vaccines to promote tumor-specific T-cell 

responses in a number of pre-clinical models, clinical efficacy has yet to be demonstrated due to 

low patient numbers and short follow-up time in these phase I trials7,8,34–36. Though early in 

clinical development, there is tremendous excitement around therapeutic neoantigen vaccination 

with 24 clinical trials with plans to treat over a thousand patients registered at ClinicalTrials.gov. 

Challenges for translation of neoantigen therapies include manufacture of neoantigen peptide, 

delivery of neoantigen, identification of neoantigens derived from all genomic sources, and 
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filtering of clinically relevant epitopes including by predicting in vivo immunogenicity. Chapter 

2 of this thesis will describe our work to broaden neoantigen prediction by development of 

NeoSplice. We will focus on prediction of neoantigen immunogenicity in chapter 3, as an 

accurate selection of clinically relevant neoantigens could greatly reduce the cost of synthesizing 

large number of neoantigen candidates. The ability of neoantigen to induce anti-tumor immune 

response depends on the extent of T cells recognition of the neoantigen presented by major 

histocompatibility complex (MHC) proteins37. As described above, many neoantigen prediction 

algorithms ignored factors that can affect immunogenicity and rely heavily on peptide/MHC 

binding affinity predictions to rank epitopes17–25. Previous studies (Table 1.1) have shown that 

amino acid characteristics such as polarity, charge, hydrophobicity, and amino acid size can 

influence antigen immunogenicity6,16,38–41. For example, Chowell et al. discovered that 

immunogenic epitopes tend to contain more hydrophobic amino acids at T-cell receptor contact 

positions using an MHC class I peptide immunogenicity dataset6,42. One possible reason for this 

is that hydrophobic region will enhance peptide degradation and thus presentation42,43. Prior 

work by Cole et al. also indicated that alteration of antigen anchor residues which are residues 

bind to pocket of MHC can alter binding affinity of TCR to antigen using plasmon resonance and 

peptide–MHC tetramer binding experiments40. Moreover, the polarity and charge of amino acids 

in the center of a peptide can affect TCR recognition of peptide-MHC complex since it requires 

more energy and a higher structural precision of an engaging TCR to prevent the amino acid 

from interacting with water41. Hence, the development of an algorithm to predict the 

immunogenicity of neoantigens would be valuable for the selection of predicted neoantigens for 

clinical application. In chapter 3, we describe the development and validation of such an 

algorithm to predict neoantigen peptide immunogenicity. 
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Figure 1.1 Tumor neoantigens induce T cell mediated cytotoxicity. 

1.3 Immunogenomic characterization of the tumor immune microenvironment 

 Next-generation sequencing technology can be used to study the tumor immune 

microenvironment as well as genomics of tumor cells. Sequencing data can help elucidate 

molecular profiles and biomarkers that are associated with improved immune responses and 
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patient outcomes and also guide the development of novel immunotherapies. For example, Hugo 

et al. identified an innately resistant transcriptional signature to PD-1 (termed IPRES) in 

melanoma, comprised of genes with functions related to angiogenesis, wound healing, regulation 

of mesenchymal transition, and cell adhesion using RNA-seq data44. Iglesia et al. found that high 

expression of T-cell and B-cell signatures are associated with improved survival in many tumor 

types including breast, lung, and melanoma while expression of Macrophage signatures and B-

cell signatures predicted worse survival in GBM and renal tumors respectively using The Cancer 

Genome Atlas (TCGA) RNA-seq data from 11 tumor types45. As part of PhD training in 

bioinformatics analysis to complement training in methods development, we performed 

comprehensive genomic and immune characterizations of bladder tumors and triple-negative 

breast cancer brain metastases. Our goal in each of these studies was to understand the tumor 

immune microenvironment features that distinguish cancer subtypes, as well as to associate these 

with tissue of origin and survival outcomes. Results from these studies are shown in Chapter 4. 
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CHAPTER 2 NEOSPLICE: A BIOINFORMATICS METHOD FOR PREDICTION OF 

SPLICE VARIANT NEOANTIGENS 

2.1 Introduction 

Recent advances in immunotherapy drugs such as CTLA-4 and PD-1 blocking antibodies 

(called immune checkpoint inhibitors) have highlighted the capacity of induced anti-tumor 

immune responses to yield improved survival for cancer patients4,46,47. In parallel with the 

development of immune checkpoint inhibitors which broadly reverse effector T cell suppression, 

multiple groups are working on tumor-specific vaccines that selectively stimulate anti-tumor T 

cells to expand and kill tumor cells. Tumor- specific peptide epitopes that are generated from 

mutated genes and presented on cell surface MHC molecules, known as neoantigens, are 

attractive targets for therapeutic vaccination given the lack of central tolerance and 

corresponding presence of endogenous T cells that recognize them4. Recent studies have shown 

that neoantigen targeted therapy can yield improved anti-tumor immune responses in patients 

with advanced and metastatic tumors7,8. 

The vast majority of neoantigens in tumors are private rather than shared among patients, 

therefore it is essential for neoantigens to be predicted for each patient in a genome wide fashion 

for use in therapeutic vaccination4. Currently most available neoantigen prediction methods 

focus on predicting neoantigens derived from missense mutations or indels6,9–16. Typical 

neoantigen prediction pipelines involve identifying highly expressed tumor-specific mutations 

using whole-exome sequencing (WES) and RNA sequencing (RNA-seq) data of matched tumor- 
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and normal-cell samples and variant calling bioinformatics tools, and prioritizing mutation 

derived neo-epitopes using their predicted binding affinities to HLA I and HLA II molecules 

expressed by the patient5–16,28. 

In acute myeloid leukemia (AML), there are markedly fewer mutations and predicted 

neoantigens in the cancer genome than in most other adult cancers, so it is less feasible to target 

neoantigens derived from missense mutations and indels in AML27,28. However, mutations in 

spliceosomal genes and genome-wide aberrant splicing events are common in patients with 

AML29,30. The prediction of neoantigens from tumor-specific splice variations presents 

significant computational challenges. Recently, two splice variant neoantigen prediction methods 

were reported32,33. However, these tools are also not specific in the prediction of splice variant 

peptides: splice variant peptide producing transcript isoforms with multiple mutated features 

were not tested to exist in the tumor transcriptome in these methods32,33. Critically, they require 

additional somatic variant information from whole exome sequencing data32,33. We report the 

development of NeoSplice for specific and comprehensive prediction of splice variant 

neoantigens using tumor and matched normal RNA-seq data, without requiring matched DNA 

sequencing data. 

2.2 Methods  

The NeoSplice Method.  

Multiple steps are needed to identify a novel splice that occurs specifically in tumor cell 

transcripts whose translation will result in a neopeptide that can be targeted by T cells (Figure 

2.1).  
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1. Using one RNA-seq dataset T of tumor cells and one RNA-seq dataset N of normal 

cells, identify tumor-specific sequences present abundantly in the transcriptome of the 

tumor cell, but rarely if at all present in the normal cells.  

2. Generate the splice graph G from the tumor cell RNA-seq data and locate tumor 

specific k-mers that correspond to a novel splice. Use annotations to determine 

whether the novel splice lies within in a protein coding region of G. Use paired-end 

reads (or long read sequencing) and annotations to link the tumor-specific splice to 

the start codon to determine whether the splice results in a frame shift.  

3. Use further methods including an MHC binding affinity prediction tool and 

immunogenicity prediction tool to determine whether the coding sequence of the 

novel tumor transcript will yield a neopeptide detectable on the cell surface by T cells 

that will then be activated via signaling through the T cell receptor. 
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Figure 2.1 NeoSplice Overview: (A). The multi-string BWT tool based on a variant of the 
Burrows Wheeler transform (BWT) builds the multi-string BWT data structure for tumor and 
normal RNA-seq bam files. A depth-first search process operating in lockstep on the tumor and 
normal BWT data structures can find all tumor-specific k-mers. (B) The splice graphs are 
constructed from the tumor RNA-seq bam files. Graph traversal infers the tumor specific splice 
junction containing partial transcript isoforms within an open reading frame by taking advantage 
of using paired-end read information and annotated transcript information.  
 

Step 1a. Construction of the BWT data structure and K-mer counting method. To 

efficiently determine the number of occurrences of an arbitrary sequence s in an RNA-seq 

dataset D, we organize the reads from D into a suffix array48, a sorted array of all suffixes of 

every read in D. The suffix array enables the number of occurrences of an arbitrary sequence T 

to be determined in time O(|t|) where |t| is the sequence length. The time to create a suffix array 

is linear in the number of reads.  

As a suffix array for an RNA-seq dataset would be prohibitively large, we use the 

Burrows-Wheeler Transform (BWT) method. It provides the same functionality using a 

compressed representation of the suffix array. We used the multi-string BWT tool (MSBWT 

0.3.0)49 to build separate multi-string BWT indexes for the tumor and normal RNA-seq reads. 

The RNA-seq reads were extracted from aligned bam files and soft clipped portions of reads 

were removed. All reads were represented on the same reference strand. The FM index50 of the 
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BWT consists of counts information for the BWT data structure and rapidly locates the first 

index and last index of all occurrences of a given sequence (all occurrences appear consecutively 

in the suffix array). The number of occurrences of the sequence is the difference between the 

first and last index. 

Step 1b. Tumor specific K-mer searching algorithm. A sequence whose occurrence count 

in the tumor RNA-seq T exceeds a threshold T_min (i.e. occurs sufficiently frequently) while its 

occurrence in the normal RNA-seq N is less than a maximum count N_max (i.e. is sufficiently 

rare) is a considered tumor specific k-mer. A typical value for T_min is 20 and a typical value 

for N_max is 3. Tumor-specific sequences are discovered by a depth-first search process 

operating in parallel on the tumor and normal BWT data structures. 

The search is initialized starting from a 1-mer, e.g. "A". Clearly the sequence "A" will 

have a huge number of occurrences in both T and N, so will not satisfy the rarity condition in N. 

The search is then refined by adding a nucleotide from {A, T, C, G} in front of the current search 

sequence and recursively applying the search for the extended k-mer. The recursive search will 

either yield one or more tumor specific k-mers, or will backtrack from the refinement because 

the occurrence count of the search k-mer falls below T_min. In this fashion all possible tumor 

specific k-mers will be found. We may parallelize the algorithm by starting a separate search 

from each different 1-mer (4-way) or 2-mer (16 way) or 3-mer (64 way), etc. A sublinear speed 

up was observed when testing on typical illumina fastq files using 1 thread, 4-theads, and 16-

threads of parallelism. 

Tumor-specific k-mers of variable length are returned after the search terminates. An 

Aho–Corasick algorithm (pyahocorasick 1.4.0)51 was used to search for the reads that contain 
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tumor specific k-mers in the tumor RNA-seq bam file. This method runs in time linear in the size 

of the bam file. For each occurrence, the k-mer containing portion of the read along with 

corresponding quality scores and Cigar strings is written to a new bam file. 

Step 2a. Splice graph construction. The splice graph is a weighted, directed graph. Nodes 

in the splice graph represent genomic coordinates. Edges in the splice graph represent transcribed 

intervals (exons) or splices. In addition, splice graphs may carry additional information about 

insertions, deletions, and single nucleotide variants, as well as annotations like translation start 

sites for coding regions. The splice graph was constructed using an RNA-seq BAM file and 

GENCODE GFF3 file52. The splice junction, insertion, and deletion information were detected 

from CIGAR strings of reads in the BAM file using pysam 0.14.153. The exon and single-

nucleotide polymorphism information were retrieved by examining aligned reads at each 

genomic coordinate using pysam 0.14.153. Annotated translation initiation site information was 

retrieved from the GENCODE GFF3 file52. 

Step 2b. Splice graph traversal algorithm for predicting splice variant neoantigens. 

Tumor specific splice junctions were identified by taking the intersection of splice junctions 

identified within tumor specific k-mers and splice junctions found by RNA-seq quantification to 

be highly expressed in tumor but lowly expressed in normal RNA-seq data (with tumor 

expression threshold 20 and normal expression thresholds 2). Tumor-specific k-mers that include 

tumor specific splice junctions were mapped to splice graph using cigar strings. If any end of the 

k-mer was mapped inside an exon edge, the k-mer graph path included the whole exon edge.  

For each tumor-specific k-mer graph path supported by a sufficient number of k-mer 

containing reads, a depth first search algorithm was used for graph traversal upstream and 
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downstream of the tumor-specific k-mer graph path. The depth first search was restricted to 

edges supported by sufficient number of paired-end reads that contain a tumor-specific k-mer. If 

the depth first search did not reach an annotated transcript's start codon, reference transcripts that 

cover the k-mer graph path were used for open reading frame inference. Specifically, if an 

annotated transcript is supported by a path in the splice graph, graph traversal will start from the 

annotated start codon, follow the annotated exon and splice junction path, and stop when it 

reaches the upstream depth first search stop position.  

The transcript sequence identified by depth first search was then concatenated with the 

tumor specific k-mer sequence and translated into 8-11 mer peptides for MHC class I neoantigen 

prediction and 15 mer peptides MHC class II neoantigen prediction. Binding affinity to MHC 

molecules expressed by the tumor for in-silico generated peptides was predicted using 

NetMHCpan 4.020. The reference peptidome was generated by translating protein coding 

transcripts present in GENCODE GFF3 file52. Peptides with an IC50 value of less than 500 nM 

for at least 1 MHC allele and not present in the reference peptidome were considered predicted 

neoantigens. The NeoSplice software is available on the GitLab page 

https://sc.unc.edu/benjamin-vincent-lab/tools/NeoSplice. The Docker image for NeoSplice is 

available on https://cloud.docker.com/u/max111/repository/docker/max111/neosplice 

Performance comparison using simulated reads. 

1. Read simulation. Protein coding regions of annotated transcripts were modified to 

generate tumor specific splice junctions resulting in novel transcripts. For each 

chromosome, 5 protein coding genes were selected. One tumor specific splice 

junction per selected gene was then simulated by randomly choosing a combination 
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of donor splice site and acceptor splice site that does not exist in any annotated 

transcripts for that gene and forms an exon skipping splice junction, a partial exon 

loss splice junction, or a partial intron gain splice junction compared with the set of 

reference transcripts. The selected splice junction was then applied to all annotated 

transcripts of that gene. Genes with no possible tumor specific splice junctions were 

excluded. A random proportion of exon skipping, partial exon loss, and partial intron 

retention splice junctions were simulated. These events cover the splicing 

abnormalities observed in AML. For example, splice acceptor site changes and 3’ 

splicing changes due to mutations in SRSF2 gene and U2AF1 gene are included in 

partial exon loss events and partial intron retention events. Data sets with exon 

skipping only splice junctions, partial exon loss only splice junctions, and partial 

intron gain only splice junctions were also simulated. Reference transcripts 

corresponding to tumor transcripts were written to a separate GTF file and used as 

normal data. RNA-seq simulator Polyester 1.9.754 was used to simulate reads using 

the generated GTF file as input. 1000 100bp paired-end reads were simulated for each 

transcript in the GTF file. 20 random bootstrap Tumor-normal pair datasets were 

simulated in order to obtain more general results. Simulation code is available on 

GitLab page https://sc.unc.edu/benjamin-vincent-lab/tools/NeoSplice.  

2. Read alignment and transcript inference. A STAR 2.7.0e and Neosplice pipeline, 

TopHat 2.1.1 and Cufflinks 2.2.1 pipeline, HISAT2 2.1.0 and StringTie 1.3.3 pipeline, 

and MapSplice 2.2.1, Trinity 2.8.5, and GMAP 2018-05-30 pipeline were used for 

alignment and transcript inference of the simulated data55–62. The hg19 reference 

genome was used for all pipelines. Gencode GFF3 file (gencode.v19.annotation.gff3) 
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was used by NeoSplice. Methods and parameters are provided in Table 2.1. A tumor 

threshold of T_min = 16 and normal threshold of N_max = 3 was used in the tumor-

specific k-mer searching stage. Tumor specific k-mers length were restricted to be at 

most 90% of read length. Tumor specific k-mers that contained splice junction found 

by RNA-seq alignment to be supported by at least 20 reads in tumor RNA-seq data 

but supported by less than 3 reads in normal RNA-seq data were considered. K-mer 

graph paths supported by less than 10 tumor specific k-mer including reads were 

filtered. Only exon edges and splice junction edges were traversed using NeoSplice 

for ease of validation.  

3. Performance comparison. Simulated tumor transcripts that contained tumor specific 

splice junctions with 10 nucleotides reference sequence upstream and downstream of 

the splice junction that occurred more than 15 times in simulated tumor RNA-seq 

data and less than 4 times in simulated normal RNA-seq data were used as ground 

truth for performance comparison. For each simulated tumor specific splice junction, 

transcript features of neoantigen producing regions including exon coordinates, open 

reading frame of last nucleotide before splice junction, and strandedness of inferred 

transcripts were compared between inferred transcripts and ground truth tumor 

transcripts for validation. The neoantigen producing region was defined as at most 50 

nucleotides upstream and downstream of tumor specific splice junction. Open reading 

frames for Trinity, Cufflinks, and StringTie transcripts were inferred using annotated 

start codons. Sensitivity and precision were calculated for transcript isoforms inferred 

by NeoSplice, Trinity, Cufflinks, and StringTie. 

 



 

 24 

 

 

Bioinformatics tools Parameters 

MapSplice 2.2.1 Default parameters 

HISAT2 2.1.0 -f 

StringTie 1.3.3 Default parameters 

Trinity 2.8.5 --genome_guided_bam, --genome_guided_max_intron 10000 

GMAP 2018-05-30 -B 5, -n 2, --gff3-add-separators=0, -f 2 

TopHat 2.1.1 --library-type fr-unstranded 

Cufflinks 2.2.1 --library-type fr-unstranded  

STAR 2.7.0e --outSAMunmapped Within, --twopassMode Basic, --

outFilterScoreMinOverLread .45, --

outFilterMatchNminOverLread .45, --outSAMattrRGline ID:1 

LB:LB PL:PL SM:SIM PU:PU 

Table 2.1 Parameters used in transcript inference pipelines for simulated data. Default 
parameters were used for parameters not listed 

Performance comparison using long read sequencing data:  

1. Data generation. Short read RNA-seq data for U937-A2 cell line and FACS-sorted 

CD34+ hematopoietic stem cells derived from healthy donor bone marrow biopsy 

specimens were generated by illumina sequencing (HiSeq2500). The long-read RNA-

seq data for 15 genes predicted to have tumor-specific novel splicing events were 
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generated using PacBio RS and Oxford Nanopore MinION sequencing platforms. 

CD34+ hematopoietic stem cell RNA-seq data were used as reference normal data. 

2. Read alignment and transcript inference. A STAR 2.7.0e, ABRA2 2.19, and 

NeoSplice pipeline, TopHat 2.1.1 and Cufflinks 2.2.1 pipeline, HISAT2 2.1.0 and 

StringTie 1.3.3 pipeline, and MapSplice 2.2.1, Trinity 2.8.5, and GMAP 2018-05-30 

pipeline were used for alignment and transcript inference of the short read RNA-seq 

data55–63. Methods and parameters are provided in Table 2.2. The hg19 reference 

genome was used for all pipelines. Gencode GFF3 file (gencode.v19.annotation.gff3) 

was used by NeoSplice. In the tumor-specific k-mer searching stage, tumor thresholds 

of T_min = 21 and a normal threshold of N_max = 3 were used for U937 cell line. 

Tumor specific k-mers length were restricted to be at most 90% of read length. 

Tumor specific k-mer graph paths that contain splice junctions found by RNA-seq 

alignment to be supported by at least 20 reads in tumor RNA-seq data but supported 

by less than 3 reads in normal RNA-seq data were considered. Tumor specific k-mer 

graph paths supported by less than 10 tumor specific k-mer including reads were 

filtered in U937 cell line. Only exon edges and splice junction edges were traversed 

using NeoSplice for ease of validation. Long reads were aligned using the EDGAR 

tool developed by the Prins lab64.  

3. Performance comparison. Consensus tumor specific splice junctions determined by 

all four aligners (TopHat 2.1.1, STAR 2.7.0e, HISAT2 2.1.0, and MapSplice 2.2.1) to 

have at least 20 splice junction supporting reads in tumor and less than 3 splice 

junction supporting reads in normal and also discovered by tumor specific k-mer 

search were identified. Long read transcripts that contain consensus tumor specific 
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splice junctions were used as ground truth for performance comparison. Transcripts 

inferred by NeoSplice, Cufflinks, StringTie, and Trinity that contain consensus tumor 

specific splice junctions were validated for performance comparison. For each tumor 

specific splice junction, transcript features of neoantigen producing regions including 

exon coordinates, open reading frame of last nucleotide before splice junction, and 

strandedness were compared between inferred transcripts and ground truth tumor 

transcripts for validation. The neoantigen producing region was defined as above. 

Open reading frames for ground-truth long-read transcripts, Trinity, Cufflinks, and 

StringTie transcripts were inferred using annotated start codons. Sensitivity and 

precision were calculated for transcript isoforms as well as neoantigen producing 

regions inferred by NeoSplice, Trinity, Cufflinks, and StringTie. 

Bioinformatics tools Parameters 

MapSplice 2.2.1 --qual-scale phred33 (CD34+ samples only) 

HISAT2 2.1.0 -q, --phred64 (U937 sample only) 

StringTie 1.3.3 Default parameters 

Trinity 2.8.5 --genome_guided_bam, --genome_guided_max_intron 10000 

GMAP 2018-05-30 -B 5, -n 2, --gff3-add-separators=0, -f 2 

TopHat 2.1.1 --library-type fr-unstranded, --phred64-quals (U937 sample 

only) 

Cufflinks 2.2.1 --library-type fr-unstranded 

STAR 2.7.0e --outSAMunmapped Within, --twopassMode Basic, --

outFilterScoreMinOverLread .45, --
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outFilterMatchNminOverLread .45, --outSAMattrRGline ID:1 

LB:LB PL:PL SM:SIM PU:PU 

ABRA2 2.19 --junctions bam, --cl 1, --dist 500000, --sua 

Table 2.2 Parameters used in transcript inference pipelines for short read RNA-seq data. Default 
parameters were used for parameters not listed. 
Splice variant neoantigen prediction for U937 and K562 cell lines.  

STAR 2.7.0e and ABRA2 2.19 were used for RNA-seq read alignment55,63. CD34+ 

hematopoietic stem cell RNA-seq data were used as reference normal data. NeoSplice was run 

on U937 and K562 cell lines RNA-seq bam file to predict splice variant neoantigens. The Hg19 

reference genome was used for all pipelines. In the tumor-specific k-mer searching stage, tumor 

thresholds of T_min = 21 and T_min = 26 were used for U937 cell line and K562 cell line 

respectively, and a normal threshold of N_max = 3 was used for both U937 cell line and K562 

cell line. Higher T_min was used for K562 cell line because the RNA-seq coverage of K562 cell 

line is higher. Tumor specific k-mers length were restricted to be at most 90% of read length. 

Tumor specific k-mer graph paths that contain splice junctions found by RNA-seq alignment to 

be supported by at least 20 reads in tumor RNA-seq data but supported by less than 3 reads in 

normal RNA-seq data were considered. Tumor specific k-mer graph paths supported by less than 

10 and 15 tumor specific k-mer including reads were filtered in U937 and K562 cell line 

respectively. Peptides that were also present in hg19 reference peptidome generated by 

translating reference protein coding transcripts in Gencode GFF3 file 

(gencode.v19.annotation.gff3) were filtered. 

Splice variant neoantigen prediction for Pan-TCGA data.  

Hg38 STAR two-pass mode aligned RNA-seq bam files for TCGA tumor and adjacent 

normal pairs were downloaded from GDC (https://portal.gdc.cancer.gov) (N= 503). Hg38 Star 
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two-pass mode aligned RNA-seq bam files of TCGA-LAML cohort were also downloaded from 

GDC (N=136). CD34+ hematopoietic stem cell RNA-seq data were used as reference normal 

data for TCGA-LAML cohort. The NeoSplice algorithm was run on pan-TCGA data to predict 

splice variant neoantigens. Gencode GFF3 file (gencode.v22.annotation.gff3) was used by 

NeoSplice. A tumor threshold of T_min = 21 and normal threshold of N_max = 3 was used in 

the tumor-specific k-mer searching stage. Tumor specific k-mers length were restricted to be at 

most 90% of read length. Tumor specific k-mer graph paths that contain splice junctions found 

by RNA-seq aligner to be supported by at least 20 reads in tumor RNA-seq data but supported by 

less than 3 reads in normal RNA-seq data were considered. k-mer graph paths supported by less 

than 10 tumor specific k-mer including reads were excluded. Peptides that were also present in 

hg38 reference peptidome generated by translating reference protein coding transcripts in 

Gencode GFF3 file (gencode.v22.annotation.gff3) were filtered. SNV derived neoantigens for 

TCGA LAML samples were predicted using method described in Chapter 4. INDEL derived 

neoantigens for TCGA LAML samples were not included in the analysis because a lack of data 

availability. INDEL derived neoantigen counts and SNV derived neoantigen counts for other 

TCGA samples were obtained from Thorsson et al65. Immune signatures for TCGA samples 

were calculated using method described in Chapter 4. Spearman correlation coefficients as well 

as benjamini-hochberg adjusted p-values were calculated for immune signatures and predicted 

splice variant neoantigen counts for TCGA LAML samples. 

2.3 Results 

Performance comparison using simulated RNA-seq data. 
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 The main computational challenge for prediction of splice variant neoantigens is to infer 

tumor specific splice junction containing transcripts. To assess the performance of NeoSplice, we 

simulated 20 RNA-seq datasets to include novel, unannotated splice junctions for each of the 

splice junction types including exon skipping splice junctions, partial intron gain splice junctions, 

partial exon loss splice junction, and mixed random types of splice junctions. Five protein coding 

genes were selected for each chromosome. One tumor specific splice junction per was selected 

for each gene if tumor specific splice junction is supported. Genes with no possible tumor 

specific splice junctions were excluded. We then used Polyester to simulated 100bp paired-end 

reads from the generated transcript GTF files. 8000 reads were simulated per transcript. 

Performance comparison results were compared with StringTie, Trinity, and Cufflinks since they 

are the most widely used transcript inference tools. The inferred transcripts were validated by 

assessing prediction of the neoantigen producing region (defined in the method section). The 

comprehensive simulation result demonstrated that NeoSplice performed better in the simulated 

data that contains mixture of tumor specific splice junction types (Figure 2.2). NeoSplice 

performed better in terms of sensitivity for mixed type of splice junctions, partial intron gain 

splice junctions, and exon skipping splice junctions, and performed better in terms of precision 

for mixed type of splice junctions, partial intron gain splice junctions when compared with 

StringTie, Trinity, and Cufflinks. Notably, the sensitivity values and precision values of 

NeoSplice are almost always greater than 0.8 for all types of splice junctions while the sensitivity 

values and precision values for other transcript inference tools generally lower and varied for 

different types of splice junctions. 



 

 30 

 
Figure 2.2 Performance comparison on simulated data. The precision values and sensitivity 
values for predicting splice variant neoantigen producing regions (50 nucleotides upstream and 
downstream of the tumor specific splice junction) are shown in the box plot for the NeoSplice 
(shown in Cyan), Cufflinks (shown in Blue), Trinity (shown in yellow), and StringTie (shown in 
Green). (A)-(D), The sensitivity values for simulated data sets with mixed splice junction type, 
exon skipping splice junction type, partial intron gain splice junction type, and partial exon loss 
splice junction type are shown. (E)-(H), The precision values for simulated data sets with mixed 
splice junction type, exon skipping splice junction type, partial intron gain splice junction type, 
and partial exon loss splice junction type are shown. 
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Performance comparison using short read RNA-seq data and long read RNA-seq data. 

We also evaluated the performance of NeoSplice on real RNA-seq data. We generated 

short-read RNA-seq data of the U937-A2 cell line which is a human acute myeloid leukemia 

(AML) cell line which has been engineered to express HLA-A*0201, the most common HLA 

allele in the US population66. Long-read RNA-seq data that can be used for validation of 

transcript identification of 15 genes predicted to have tumor-specific novel splicing events were 

generated using PacBio and Oxford Nanopore sequencing platforms. NeoSplice, StringTie, 

Trinity, and Cufflinks made predictions for 7 genes. Since many long reads are highly similar 

due to coverage difference during sequencing, the count of full-length inferred transcripts, full-

length long reads, as well as just the neoantigen producing regions of full-length inferred 

transcripts and full-length long reads are shown (Figure 2.3). The performance comparison 

results are similar to the results seen for the simulated data. NeoSplice inferred more splice 

variant neoantigen producing regions and had higher positive prediction values compared with 

StringTie, Trinity, and Cufflinks. 
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Figure 2.3 Performance comparison on experimental RNA-seq data in U937-A2 cell line. The 
counts of total and validated neoantigen producing regions of full-length inferred transcripts and 
full-length long (A, C), as well as just full-length inferred transcripts, full-length long reads (B, 
D) are shown for NeoSplice method, the TopHat2 + Cufflinks method, the MapSplice + Trinity 
+ GMAP method, and Hisat2 + StringTie method. 
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Computation resource utilization of NeoSplice. 

To measure CPU and memory requirements of NeoSplice, we measured the running time 

and memory consumption of NeoSplice using three simulated transcript sets generated in the 

previous performance comparison section. 1000, 4000, or 8000 reads per transcript were 

simulated for three transcript sets. The maximum Resident-Shared Size (RSS) and elapsed 

runtime were recorded using ‘sacct’ command. Runtime and memory consumption increase 

linearly in proportion to number of reads simulated per transcript (Fig 2.4), which is expected for 

NeoSplice. 

 

Figure 2.4 Computation resource utilization of NeoSplice. (A) Average time to run NeoSplice on 
simulated data. Error bars represent the maximum and minimum times across 3 simulated 
samples. Runtime is defined as the elapsed time as reported by the ‘sacct’ command as measured 
on an Intel Xenon ES-E5620 2.4GHz CPU and Intel Xenon ES-E5520 2.27GHz CPU. (B) 
Average memory required to run NeoSplice on simulated data. RSS is amount of memory 
requested by NeoSplice from the operating system as reported by the ‘sacct’ command. 
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Pan-TCGA analysis of splice variant neoantigens. 

We hypothesized that splice variant neoantigens may be common in many types of 

cancer. To access the distribution of splice variant neoantigens in different types of cancer, 

NeoSplice was run on pan-TCGA data with available tumor and matched normal pairs and also 

TCGA LAML samples using CD34+ hematopoietic stem cell as reference normal. There is 

abundant predicted splice variant neoantigens for all type of cancers and the splice variant 

neoantigen burden is generally comparable with SNV derived neoantigen burden. Notably, the 

splice variant neoantigen count is much higher than SNV derived neoantigen count in AML, 

consistent with our hypothesis that splice variant neoantigen will expand therapeutic target space 

in patients with AML (Figure 2.5A). We further investigated the association of immune 

signatures in TCGA LAML samples with predicted splice variant neoantigen burden. 17 immune 

signatures including B_cells_naive immune signature, Monocytes immune signature, CD68 

immune signature, and IFNG_score immune signature are found to be significantly associated 

with predicted splice variant neoantigen count in TCGA LAML samples (Figure 2.5B-E). We 

also assessed the frequency of neoantigens producing tumor splice junctions and predicted splice 

variant neoantigens across TCGA samples (Figure 2.6). Many neoantigens producing tumor 

splice junctions and predicted splice variant neoantigens are shared in about 10% of all TCGA 

samples (N=639) included in the analysis, suggesting the feasibility to develop an off-the-shelf 

splice variant neoantigen therapeutic. 
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Figure 2.5 Pan-TCGA analysis of splice variant neoantigens. (A) Radial plot showing average 
Log2 count of predicted splice variant neoantigen (pink), SNV-derived neoantigen (green), and 
INDEL derived neoantigen (blue) for 20 cancer types in TCGA data. SNV and INDEL 
neoantigens are derived from Thorsson et al. (Immunity, 2018). INDEL neoantigens for LAML 
samples are not shown. (B-E) Scatter plots showing correlation of predicted splice variant 
neoantigen count with expression level of B_cells_naive (B), Monocytes (C), CD68 (D), and 
IFNG_score (E) immune signatures.  
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Figure 2.6 Frequency of neoantigen producing tumor splice junctions and predicted splice 
variant neoantigens across TCGA samples. (A) Number of TCGA samples expressing shared 
neoantigen producing tumor splice junctions. (B) Number of TCGA samples expressing shared 
splice variant neoantigens. 

2.4 Discussion 

In summary, we developed NeoSplice, a bioinformatics tool that predicts splice variant 

neoantigens from RNA-seq data, without need of additional DNA sequencing data. Although 

currently two splice variant neoantigen prediction tools have been reported, neither of them 

utilizes transcript level information in the RNA-seq data and both require DNA sequencing data 

along with RNA-seq data. The performance comparison results from both the simulated data and 

U937-A2 long read RNA-seq data indicate that predictions made by NeoSplice are highly 

comprehensive and specific. Moreover, NeoSplice is a time and space efficient algorithm. Our 

novel BWT based tumor specific k-mer searching algorithm does not need to examine all 

possible k-mers in tumor and normal RNA-seq data, and the BWT method required less memory 
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compared to hash-table based methods that usually require large memory to build an index. The 

splice graph building step requires time proportional to number of reads in the data set and splice 

variant peptide prediction step requires time proportional to number of edges and nodes in the 

graph. Moreover, NeoSplice can be expanded to predict neoantigens derived from other types of 

mutations such as SNVs, indels, and gene fusions as identification of tumor-specific k-mers 

should capture each of these and the splice graph traversal will identify the transcripts that 

contain tumor specific mutations. Apart from AML, splice variant neoantigens are also predicted 

to exist in many types of cancer as shown by Kahles et al, Jayasinghe et al32,33 as well as our pan-

TCGA splice variant neoantigens analysis. Unlike SNV-derived neoantigens, many splice variant 

neoantigens are found to be shared among different tumors in our pan-TCGA analysis, 

suggesting the feasibility to develop an off-the-shelf splice variant neoantigen therapeutic. Many 

immune signatures also correlate with predicted splice variant neoantigen count in TCGA LAML 

data. We expect that NeoSplice will expand the neoantigen therapeutic target space for cancer 

patients. Currently there are over 20 clinical trials of therapeutic neoantigen vaccines in cancer 

registered on ClinicalTrials.gov. Multiple companies have others, along with neoantigen specific 

adoptive cellular therapy approaches, in development. Accurate identification of splice variant 

neoantigens will become more important as additional neoantigen specific therapeutic platforms 

enter clinical trials, especially for those tumors like AML where neoantigens derived from SNVs 

and Indels are rare. 
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CHAPTER 3 MACHINE-LEARNING PREDICTION OF TUMOR ANTIGEN 

IMMUNOGENICITY IN THE SELECTION OF THERAPEUTIC EPITOPES1 

3.1 Introduction 

T cells can affect antitumor immune responses through recognition of tumor-specific 

antigens (TSAs) presented by major histocompatibility complex (MHC) proteins. These peptides 

include tumor neoantigens, which are classically thought of as derived from mutation-containing 

proteins that generate novel immunogenic epitopes37. Despite the ability of neoantigen 

therapeutic vaccines to promote tumor-specific T-cell responses in a number of pre-clinical 

models34–36, clinical efficacy has yet to be demonstrated7,8. A significant challenge for translation 

of TSA therapies is the ability to select the subset of clinically relevant epitopes from all 

computationally predicted neoantigens. Many neoantigen prediction algorithms rely heavily on 

peptide/MHC binding affinity predictions to rank epitopes17–20,22–25. Unlike murine pre-clinical 

models, where in vivo/ex vivo methods to further screen for immunogenicity can be applied35,67, 

no such benchtop prediction method for immunogenicity is currently available for humans. We 

have previously demonstrated in multiple murine models that the number of predicted 

neoantigens is much higher than the number of confirmed immunogenic neoantigens67. Studies 

demonstrate that in some tumors, the number of predicted neoantigens is far greater than the 

number of immunogenic neoantigens which have been identified in mouse models65,68. As such, 

the development of an algorithm to predict the immunogenicity of neoantigen peptides (i.e. 

                                                
1Chapter 3 was originally published as Smith, C. C. et al. Machine-Learning Prediction of Tumor Antigen 
Immunogenicity in the Selection of Therapeutic Epitopes. Cancer Immunol. Res. (2019) 
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variant peptides predicted to bind MHC) would be valuable for screening predicted neoantigens 

for clinical application. 

In addition to conventional single nucleotide variant (SNV) neoantigens, studies have 

suggested the presence of tumor-specific mRNA splice variants32,33, expression of non-coding 

regions69, and alternative ribosomal products70–77, allowing an out-of-frame translation to occur 

outside the setting of an insertion/deletion (INDEL) mutation. An increasing need exists to 

define frequencies of predicted TSAs existing in an out-of-frame context, their clinical 

implications, and whether frame-filtering should be applied for computational neoantigen 

prediction. In the context of SNV tumor antigen prediction, allowing for out-of-frame calls may 

identify “pseudo-SNV” antigens (i.e. out-of-frame antigens that contain concurrent SNV 

mutations) with immunogenicity responses similar to what is observed in frameshift neoantigens. 

As a preliminary approach to identify both in- and out-of-frame neoantigens, we performed SNV 

tumor-antigen computational screening across all open reading frames, looking for: 1) the 

correlates of immunogenicity for these predicted neoantigens, and 2) the capacity for out-of-

frame epitopes to drive antitumor immunity. 

Features associated with neoantigen immunogenicity remain unclear. Here, we have 

elucidated peptide-intrinsic features significantly associated with vaccine/IFNγ ELISpot–derived 

immunogenicity scores of MHC class I and class II TSAs. Using gradient boosting with cross-

validation, we developed an algorithm to predict MHC I TSA peptide immunogenicity based on 

peptide-intrinsic biochemical features. We modeled the immunogenicity of predicted 

neoantigens in the BBN963 basal-like bladder cancer model and demonstrated the capacity of 

epitopes with high predicted immunogenicity to control tumor growth significantly better than 
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those with low predicted immunogenicity. This algorithm was additionally validated using graft-

versus-leukemia (GvL) minor histocompatibility mismatch antigens (mHA) in the P815 

mastocytoma allogeneic transplant model. Applying this algorithm to predicted MHC I 

neoantigens from a TCGA pan-cancer dataset, we observed significant positive association 

between highly immunogenic neoantigens (HINs; in the top 95th percentile of predicted 

immunogenicity score) and microsatellite instability (MSI) high–driven immune features in 

colon adenocarcinoma (COAD) and significant negative association between signatures of anti–

PD-1 therapy responsiveness and HIN numbers in lung adenocarcinoma (LUAD) cancer types. 

Lastly, we provide evidence in favor of antitumor cytotoxic T-cell responses generated against a 

predicted out-of-frame neoantigen, suggesting a proportion of predicted out-of-frame SNV tumor 

antigens may be presented by the tumor to generate an immune response. Prediction of peptide 

immunogenicity on a framework of peptide/MHC binding should improve understanding of 

antitumor T-cell responses and neoantigen selection for therapeutic vaccine applications. 

3.2 Results 

Correlates of immunogenicity in class I MHC epitopes. 

Neoantigens and mHA were predicted in six tumor models (B16F10, BBN963, MB49, 

UPPL1541, P815, and T11), allowing us to characterize neoantigens in the H2b and H2d 

haplotypes (Figure 3.1B). We predicted a total of 210 MHC I epitopes and 68 MHC II epitopes 

and determined their immunogenicity using a vaccine/ELISpot screening approach. Distribution 

of epitope ELISpot scores (SFC) varied by model, with MB49, B16F10, and P815 tumors 

including nine of the 10 most immunogenic epitopes, and BBN963 including seven of the 10 

least immunogenic epitopes (Supplementary Fig. S1). MHC II epitopes were not predicted for 
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P815 GvL mHA. With the goal of identifying peptide-intrinsic features that associated with and 

predicted for immunogenicity, we derived a set of features for each peptide, including the amino 

acid sequence and characteristic at each I) absolute position, II) relative site, III) site of mutation 

and changes in amino acid sequence and characteristic at mutational site, and IV) presence of 

amino acid or characteristic at the beginning, middle, or end of each peptide (Figure 3.1C). 

 

Figure 3.1 Summary of tumor antigen prediction and identification of peptide-intrinsic features. 
(A) Number of MHC class I and II neoantigens/mHA per tumor model contained within the 

a b

c

Model Haplotype Class I Class II

B16F10 b 37 36

BBN963 b 34 18

MB49 b 29 8
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study. (B) Schematic of neoantigen/mHA prediction and ELISpot validation workflow. (C) 
Summary of the major classes of peptide-intrinsic features identified for each antigen, including 
amino acid sequence and characteristics at I) each absolute position, II) each relative site, III) the 
mutation position, and IV) the start, middle, and end of each peptide. Red boxes around columns 
in I) demonstrate each absolute position and in IV) demonstrate the start, middle, and end 
distinctions. Red lettering in III) provides an example for SNV mutation site between reference 
and antigenic sequences. 

Univariable regression considering intrinsic peptide features as the predictor variable and 

immunogenicity (measured as IFNγ ELISpot values of T cells derived from vaccinated mice) of 

class I antigens demonstrated 38 significant features (q-value <0.05; Figure 3.2A) associated 

with ELISpot immunogenicity. Among these features, the most significant positive associations 

were changes in the mutation position to a small amino acid 

(Mutated_position_change_of_Small_feature), valine at relative site 2 (“Relative_site_2_V”), 

and basic amino acids of the reference sequence at the mutated position 

(Reference_AA_at_mutated_position_Basic). In contrast, the most signficant negative 

associations were small amino acids of the reference sequence at the mutated position 

(Reference_AA_at_mutated_position_Small), changes in the mutation position to a basic amino 

acid (Mutated_position_change_of_Basic_feature), and polar amino acids at position 6 

(Absolute_position_6_Polar). We additionally sought to determine the correlation among the 38 

significant features, observing relatively low correlation (Figure 3.2B). Features that 

demonstrated significant correlation were related, such as 1) the amino acid at the mutated 

position of the reference sequence with charged or basic features, 2) valine or small amino acids 

at absolute position 11, and 3) the presence of a valine or small amino acid at the last position 

and valine at relative site 8.  

Next, we evaluated the independence of the variables identified using univariable 

analysis using multivariable regression. To increase confidence of our multivariable regression, 
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we performed backward stepwise regression, optimizing on Akaike Information Criterion (AIC), 

as described in the Methods. Variables whose loss resulted in an insignificant change to the 

model performance (as measured by the AIC) were removed from the set of variables until no 

further variables could be removed without a significant decrease in model fit. Sixteen 

significant features from this step were inputted into multivariable regression. The resulting 

model of 8 features indicated 33.4% variation (p<0.0001) in immunogenicity was explained by 

the prediction (Supplementary Fig. S2A). Significant features of the multivariable model 

included valine at the last position (Last_position_V (p=0.0001)), tyrosine at position 3 

(Absolute_position_3_Y (p=0.003)), changes in the mutated position to a small amino acid 

(Mutated_position_change_of_Small_feature (p=0.007)), cysteine at relative site 4 

(Relative_site_4_C (p=0.012)), lysine at relative site 5 (Relative_site_5_K (p=0.015)), tiny 

amino acids at relative site 6 (Relative_site_6_Tiny (p=0.016)), basic amino acids of the 

reference sequence at the mutated position (Reference_AA_at_mutated_position_Basic 

(p=0.027)), and valine at relative site 2 (Relative_site_2_V (p=0.041) ; Supplementary Fig. S2B; 

Supplementary Table S1). To ensure this model was accurately representing both Hb and Hd 

haplotypes, we tested the immunogenicity for each of these five significant features, split 

categorically, which demonstrated similar trends between both haplotypes (Supplementary Fig. 

S3). We did not observe significant differences in ELISpot immunogenicity among predicted in-

frame (n=131) and out-of-frame (n=79) epitopes, emphasizing that peptide-intrinsic features 

were the primary driver for immunogenicity (p>0.05; Supplementary Fig. S4). 

Correlates of immunogenicity in class II MHC epitopes. 
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Among class II epitopes, 15 peptide-intrinsic features were significantly associated with 

ELISpot immunogenicity (GLM q-value <0.05; Figure 3.2C). Among the most significant 

positively associated included changes in the mutation position to a non-polar amino acid 

(Mutated_position_change_of_NonPolar_feature), valine at position 1, tyrosine at position 6, and 

basic amino acid at position 2. the more significant negatively correlated feature was a change in 

the mutation position into a small amino acid (Mutated_position_change_of_Small_feature), 

which was positively correlated in class I epitopes. Negatively correlated features also included 

changes in the mutation position to a polar amino acid 

(Mutated_position_change_of_Polar_feature), and small/tiny amino acids at the mutated site. 

Among the significant features (Figure 3.2D), we observed one cluster of closely inter-correlated 

features (Sig 1; n=7, right-hand side of dendrogram), as well as a second cluster of loosely inter-

correlated features (Sig 2; n=8, left-hand side of dendrogram). With each respective tumor model 

defined as a binary variable (1 = true, 0 = false), the mean expression of cluster 1 features was 

significantly correlated with the B16F10 model and inversely correlated with MB49, whereas the 

mean expression of cluster 2 was significantly correlated with MB49 tumors (Supplementary Fig. 

S5; Spearman q-value <0.05). This corroborated with the greater burden of immunogenic class II 

neoantigens identified in these two models, suggesting relatively greater contribution of these 

two models (particularly MB49) in the regression outcomes. Using the same backwards AIC 

stepwise regression approach described above, multivariable GLM regression was performed on 

six features. The resulting model indicated that 50.7% variation (p<0.0001) in immunogenicity 

was explained by the prediction (Supplementary Fig. S6; Supplementary Table S2), with three 

significant features (tyrosine at positive 6 (Absolute_position_6_Y), valine at positive 1 

(Absolute_position_1_V) and changes in the mutated position to a small amino acid 
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(Mutated_position_change_of_Small_feature)) primarily driving the fit (p=0.024, 0.002, and 

1.6x10-5, respectively). As with class I epitopes, we did not observe significant differences in 

immunogenicity among predicted in-frame (n=59) and out-of-frame (n=9) epitopes (p>0.05; 

Supplementary Fig. S3). 
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Figure 3.2 Linear regression analysis between peptide-intrinsic features and tumor antigen 
immunogenicity. (A and C) Volcano plots representing the generalized linear method (GLM) 
coefficient (x-axis) and –log10(q-value)(y-axis) for each peptide-intrinsic feature as a predictor 
for immunogenicity in (A) class I and (C) class II neoantigens/mHA. Dashed line represents q-
value=0.05. Spot color represents –log10(q-value) magnitude and size represents magnitude of 
the coefficient. (B,D) Heatmap representing Spearman correlations between each significantly 
correlated feature from (A,C) for (B) class I and (D) class II neoantigens/mHA, respectively. 
Colored cells represent significantly correlated features (q<0.05), with magnitude of the 
correlation coefficient represented by color. (E) ELISpot-derived immunogenicity scores for 
class I neoantigens/mHA classified as predicted high (>100) or low (<100) immunogenic by 
multivariable GLM regression. Data represent median (middle line), with boxes encompassing 
the 25th to 75th percentile, whiskers encompassing 1.5× the interquartile range from the box, and 

Figure 2
a b

e

c d

-lo
g1

0(
q-

va
lu

e)
0

1
2

3

-150 -100 -50 0 50 100 150
Coefficient

0

2

4Mutated position change 
of small feature

Relative site 2 V

Reference AA at 
mutated position 
basic

Reference AA at 
mutated position small

Mutated position change 
of basic feature

Absolute position 6 polar

-0.5 0 0.5
-lo

g1
0(

q-
va

lu
e)

0
1

2
3

4

-200 -100 0 100 200
Coefficient

Mutated AA small

Mutated position 
change of small feature

Mutated position change 
of polar feature

Mutated AA tiny

Mutated position 
change of non-polar 
feature
Absolute position 1 V

Absolute position 6 Y
Absolute 
position 2 basic

-0.5 0 0.5

0

100

200

300

400

500

Predicted high
(>100)

Predicted low
(<100)

P < 0.0001

EL
IS

po
t s

co
re

Coefficient

Coefficient

-lo
g1

0(
q-

va
lu

e)

0

2

4

-lo
g1

0(
q-

va
lu

e)



 

 47 

independent values shown by dots. Statistics performed with Mann-Whitney U-test, with 
significance defined as p<0.05. 

Machine-learning algorithm for immunogenicity prediction in class I MHC epitopes. 

Our analysis of class I epitopes using multivariable GLM suggested an optimized 

multivariable model may be able to discriminate between high- and low-immunogenicity 

peptides (Figure 3.2E). With the goal of designing a predictive model for neoantigen and mHA 

immunogenicity, we split our class I epitope database into an exploration (2/3 of epitopes, n=141) 

and validation (1/3 of epitopes, n=69) set (Figure 3.3A). Class II modeling was not attempted 

due to the low number of epitopes available within our database (n=68). In order to reduce noise 

within our model, we collapsed ELISpot scores with absolute values less than or equal to the 

absolute value of the most negative count (¬–53 spots) to zero. This was performed because we 

were not focused on the ability of the model to characterize exact immunogenicity values within 

the low immunogenicity range. Within the exploration set, we used a 10,000-fold cross-

validation (2/3rd random resampling) approach, which demonstrated that only gradient boosting 

consistently performed better than chance. Our final gradient boosting algorithm contained seven 

predictive features: valine at position 1 (Absolute_position_1_V), valine at the last position 

(Last_position_V), small amino acids at the last position (Last_position_Small), basic amino 

acids of the reference sequence at the mutated position 

(Reference_AA_at_mutated_position_Basic), changes in the mutated position to a small amino 

acid (Mutated_position_change_of_Small_feature), lysine at relative site 1 

("Relative_site_1_K"), and presence of valine within the first 3 positions (First_three_AA_V). 

The class I validation set was run through this final gradient boosting algorithm, demonstrating 

significantly accurate performance when comparing the linear fit between the actual 
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immunogenicity by ELISpot and the predicted immunogenicity by modeling (p=0.01893, 

coefficient=0.30, Figure 3.3B). This model provided a high negative predictive value (83.6% 

predicted values <53), ideal in the setting for filtering out a large pool of predicted tumor 

antigens in order to select epitopes for therapeutic targeting. 

In vivo validation of the class I immunogenicity prediction model 

To test whether our final algorithm increased the likelihood of identifying clinically 

relevant, immunogenic epitopes for antitumor vaccine responses, we used two tumor models 

within our validation set: BBN963 basal-like bladder cancer neoantigens (epithelial tumor) and 

P815 mastocytoma GvL mHA (hematopietic tumor). Epitopes were binned into predicted high 

immunogenicity (top quartile) and predicted low immunogenicity (bottom quartile) groups for 

comparison of relative efficacy (Supplementary Table S3). In BBN963 tumors, three predicted 

high (B2: VALLPSVML; C2: VSLTLFSSWL; A5: SNVMQLLL) and two predicted low (B5: 

ETLLNSATI; B12: MISRNRHTL) immunogenicity neoantigens were identified. Animals were 

vaccinated with 30 µg of one peptide (or no-peptide control) alongside 50 µg poly(I:C) as 

adjuvant, challenged with tumor 12 days after vaccination, then given a 30 µg peptide boost on 

day 21 after the initial vaccination (Figure 3.3C). Animals vaccinated with predicted a high 

immunogenicity peptide survived longer than those vaccinated with either predicted low 

immunogenicity peptide (p=0.0006) or no-peptide control (p=0.0031; Figure 3.3D ; 

Supplementary Fig. S7A). In contrast, no significant difference in survival was observed 

between predicted low immunogenicity peptide and no-peptide control groups (p=0.9674). We 

additionally observed better control of tumor size in animals vaccinated with predicted high 

immunogenicity peptide (Supplementary Fig. S7B–S7D).  
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In P815 tumors, two predicted high (AFQRVTCTTL and QYSSANDWTV) and three 

predicted low (HYAANEWI, KFFPNCIFL, and LYISPNPEVL) immunogenicity GvL mHAs 

were identified. BALB/c donor animals were vaccinated with a pool of predicted high or low 

immunogenicity peptides (100 µg each peptide) or no-peptide control, with 50 µg poly(I:C) as 

adjuvant on days 0 and 7. DBA/2 recipient animals were lethally irradiated on day 13; 

transplanted with 3x106 BALB/c T cells, 3x106 BALC/c bone marrow cells, and 3x105 P815 

tumor cells on day 14; and finally given a 3rd booster vaccine on day 21 (Figure 3.3E). Animals 

given predicted high immunogenicity T cells survived longer than those given predicted low 

immunogenicity T cells (median survival 44.5 and 28 days, respectively), both of which survived 

longer than no-peptide control T cells (median survival 19 days, Figure 3.3F). Additionally, we 

observed significantly lower tumor burden in high immunogenicity versus low immunogenicity 

peptide vaccinated animals by luciferase imaging on day 26 (p < 0.05, Mann-Whitney u-test; 

Supplementary Figs. S8 and S9). All groups receiving donor T cells demonstrated measurable 

graft-versus-host disease (GvHD) clinically after transplant, without significant differences in 

weight loss or GvHD clinical scores between groups up to day 30 (Supplementary Fig. S10). In 

summary, these experiments demonstrated the in vivo biological relevance of our 

immunogenicity prediction model, with significant differences observed between predicted high 

and low immunogenicity epitopes. 
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Figure 3.3 Performance and validation of the gradient boosting model (GBM) approach for 
predicting neoantigen/mHA immunogenicity. (A) Schema of the cross-validation approach used 
for GBM model building. (B) Performance of the final GBM model in validation set, showing 
actual (x-axis) versus predicted (y-axis) immunogenicity scores. Size of each point represents 
number of antigens at each coordinate. Red line represents the line of best fit, with p-value of fit 
shown above the graph. (C, E) Schema for in vivo validation experiments, with tumor vaccine 
studies performed in (C) BBN963 basal-like bladder cancer and (E) the P815 mastocytoma 
syngeneic transplant model. (D, F) Kaplan-Meier survival curves for animals bearing (D) 
BBN963 basal-like bladder cancer and (F) P815 mastocytoma syngeneic transplants. Animals 
treated with predicted high (red) or low (blue) immunogenicity antigens, no-peptide control 
(black), or bone marrow only control (grey). Data in (D) represents two independent experiments. 
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Data in (F) represents one independent experiment. Statistics performed with log-ranked testing 
(**p<0.01; ***p<0.001). 

Correlates of predicted immunogenicity in human class I epitopes. 

Although the immunogenicity prediction algorithm was designed and validated in mice, 

we hypothesized that similar rules of immunogenicity may exist among human neoantigens. To 

study this, we ran previously predicted MHC I neoantigens from TCGA through our machine-

learning algorithm, generating immunogenicity scores for each epitope65. As expected, we 

observed a correlation between the number of HINs identified by our model (>95th percentile) 

with number of total neoantigens (Pearson correlation p<0.0001; Supplementary Fig. S11). 

Therefore, we performed regression studies between HIN count and immune features without 

controlling for total neoantigen burden. We observed significant association between HIN count 

and IFNγ, cytotoxicity, CD8+ T-cell and total T cell, and B-cell immune gene signatures (IGS) 

among the dataset (not controlling for cancer type; Figure 3.4A). Assessing these associations 

individually by tumor type, we observed that the most significant associations were encompassed 

by the colon (COAD) and lung (LUAD) adenocarcinoma cancer types (Figure 3.4B). Within 

COAD, ta positive association between HIN count and many T-cell and cytotoxicity signatures. 

To identify potential drivers of this pattern, we looked for the association between HIN count 

and MSI status, observing that MSI-high COAD tumors had significantly higher HIN counts 

(Figure 3.4C; Supplementary Fig. S12).  

In contrast, LUAD demonstrated a negative association with signatures of anti–PD-1 

responsiveness and several immune cell signatures. Regression analysis between these negative 

IGS features and LUAD oncogene/tumor suppressor copy numbers demonstrated preferential 

association with MYC copy number (q-value <0.05; Figure 3.4D; Supplementary Fig. S13). To 
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demonstrate that MYC amplification provided a pro-tumorigenic signal in LUAD, we observed 

significantly greater expression of genes corresponding with cell cycle gene patterns 

(Supplementary Fig. S14A, S14C, and S14D), as well as enrichment of downstream genes 

involved in the MYC pathway (Supplementary Fig. S14B) among MYC-amplified tumors. This 

increased proliferation pattern was additionally associated with decreased sharing of T-cell 

receptor sequences from tumor-infiltrating T cells in MYC-amplified tumors, suggesting a 

potentially altered antitumor immune response (Supplementary Fig. S14E). We did not find HIN 

count to correlate with MYC copy number (Pearson p>0.5), suggesting tumor immunogenicity 

burden and MYC target expression may be independent predictors for immune exclusion and 

checkpoint inhibition resistance. 
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Figure 3.4 Correlative analysis of predicted neoantigen immunogenicity in TCGA human 
datasets. (A) Volcano plot representing generalized linear method generalized linear method 
(GLM) coefficient (x-axis) and –log10(q-value)(y-axis) between numbers of highly 
immunogenic neoantigens (HINs) and immune gene signatures (IGSs) in TCGA pan-cancer 
datasets. (B) Heatmap representing GLM regression between numbers of HINs and IGS for each 
TCGA cancer subset. Color represents direction of coefficient (red: positive; blue: negative), and 
shade represents –log10(q-value) magnitude. (C) Number of HINs (x-axis) versus microsatellite 
instability (MSI) score (y-axis) for a TCGA colorectal carcinoma (COAD) dataset. (D) Volcano 
plot representing GLM coefficient (x-axis) and –log10(q-value)(y-axis) between average 
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expression of IGS in (B) with significantly negative association with HIN burden and 
oncogene/tumor suppressor copy numbers in a TCGA lung adenocarcinoma (LUAD) dataset. (A, 
D) Dashed line represents q-value=0.05. 

Out-of-frame neoantigen epitopes promote anti-tumor immunity. 

Through the design of our neoantigen prediction algorithm, we considered predicted tumor 

epitopes across all open reading frames. As such, subsets of our predicted neoantigens were 

frameshifted epitopes that contained a mutation. We hypothesized that through mechanisms, 

such as novel splice variants and ribosomal dysfunction, a subset of these out-of-frame predicted 

antigens could arise in the tumor, allowing for a viable target with greater heterogeneity from 

self-antigen. Indeed, two of the predicted high immunogenicity neoantigens used in our BBN963 

vaccine studies were predicted to be out-of-frame (B2, C2), although still providing therapeutic 

efficacy over predicted low immunogenicity and no-peptide controls. One of these antigens (B2) 

demonstrated computational evidence of translation in the out-of-frame context using two de 

novo transcriptome assemblers Trinity78 and StringTie61, whereby the presence of a 5’ start 

codon was identified with no intervening stop codon up to the B2 antigen site. 

With therapeutic and computational evidence in favor of B2 antigen-mediated antitumor 

immune responses against BBN963 tumors, we next confirmed the presence of B2/MHC 

tetramer–specific CD8+ T cells infiltrating within the tumor of BBN963-bearing animals, 

suggesting an antigen-driven T-cell response (Figure 3.5A; Supplementary Fig. S15). Tetramer 

sorting and peptide-pulsed dendritic cell cocultures of B2-specific T cells demonstrated 

approximately 40-fold expansion of T cells within 10 days (<5x105 to >2x106), with 

maintenance of a B2-enriched population Supplementary Fig. S16). Using a flow cytometric 

cytotoxicity assay, coculture of B2-specific T cells with the BBN963 cell line 
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demonstrated >1.7x increase in killing of target cells (15.25%) compared to the OTI T-cell 

irrelevant control (8.85%). Neither B2-specific nor OTI T cells demonstrated killing of irrelevant 

splenocytes control cells (1.1% and 0.85%, respectively; Figure 3.5B; Supplementary Fig. S17). 

B2-specific T-cell killing of BBN963 over that of OTI T-cell controls was additionally 

confirmed using a 51Cr-release cytotoxicity assay (Figure 3.5C). Altogether, these results 

suggested the presence of a cytotoxic CD8+ T-cell response against the out-of-frame B2 

neoantigen in BBN963. 
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Figure 3.5 Analysis of out-of-frame epitope B2-specific T cells. (A) Percent B2 tetramer–
positive (left) versus irrelevant SIINFEKL-tetramer control (right) BBN963 tumor-infiltrating 
CD8+ T cells. Statistics performed with Mann-Whitney u-test (*p<0.05). (B) 4-hour flow 
cytometric cytotoxicity assay, comparing percent specific killing in 1:1 cocultures of B2 
tetramer–specific T cells or OTI irrelevant T-cell controls versus BBN963 target or irrelevant 
splenocyte target control. Percent killing represents spontaneous target death background 
subtracted values. Statistics not performed for (B) due to n=2 sample size across all groups. (C) 
4-hour chromium-51 release assay, comparing percent specific killing in cocultures of B2 
tetramer–specific T cells or OTI irrelevant T-cell controls versus BBN963 targets at 10:1 and 5:1 
effector-to-target ratios. (A-C) Error bars represent mean±standard deviation. Data from each 
graph represents one independent experiment, respectively. Statistics performed with Welch’s t-
test (**p<0.01; *p<0.05). 
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3.3 Discussion 

The study presented here addressed two unanswered questions regarding tumor antigens: 

1) what features of a tumor antigen sequence are associated with immunogenicity, and 2) can 

inclusion of non-canonical, out-of-frame epitopes provide viable targets for anti-tumor 

therapeutic vaccination? We demonstrated that peptide-intrinsic features of predicted tumor 

antigens could discriminate epitopes with therapeutic efficacy, and that inclusion of out-of-frame 

epitopes among this pool could provide antitumor immunity against these alternative antigens. 

We showed that reading frame was not a significant determinant for immunogenicity (at least 

among peptides with predicted binding affinity <500 nM), and that exclusion of frame-filtering 

could identify out-of-frame epitopes with therapeutic antitumor, cytotoxic activity. Although the 

optimal rules for immunogenicity may differ between in-frame and out-of-frame tumor antigens, 

our relatively limited training set was underpowered to discriminate between these two classes. 

As such, future studies should be performed to address the biological differences between in- and 

out-of-frame tumor antigens, and what methods can most optimally identify clinically relevant 

epitopes in each class. 

Our analysis of class I epitopes demonstrated similar trends in expression of features 

significantly associated with immunogenicity, as well as potential generalizability of our final 

gradient boosting algorithm for human MHC. We were unable to demonstrate here whether 

MHC haplotype may influence immunogenicity prediction, given our murine models were 

limited to two haplotypes. That said, it may be the case that certain features may significantly 

impact immunogenicity in a way that is conserved across haplotypes. A potential bias in our 

analysis is the variation in distribution of ELISpot scores among various models. This variation 

is likely a product of both our selection process (i.e. peptide selection based on a threshold 
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predicted MHC binding affinity) as well as the number of predicted epitopes available for 

screening in each model. As methodology for antigen prediction and validation was conserved 

across all models, as well as biological validation performed across two independent tumor 

models, we do not believe there to be significant underlying biological differences among 

epitopes identified between different tumor models. 

Despite the increased interest in neoantigen-based therapeutic tumor vaccine therapy, 

prediction algorithms capable of directly predicting for neoantigen immunogenicity are lacking6, 

and no neoantigen immunogenicity predictor trained specifically on tumor antigen data exists. 

Current neoantigen immunogenicity predictors are instead trained on databases containing 

immunogenicity scores from all potential MHC-binding epitopes, of which the biology may not 

closely match that of mutation-derived tumor antigens. An example of this biological disparity is 

observed in the vastly different immune response rates between neoantigens and tumor-specific 

endogenous retroviral epitopes79, whereby the concept of a “self” and “non-self” antigen is not 

considered as a feature for immunogenicity prediction among current algorithms. Training our 

model specifically on “self” tumor antigenic sources instead allows for greater specificity of 

selection for peptide-intrinsic features which correlated with ex vivo validated IFNγ release 

scores. Our final predictive algorithm demonstrated capacity to select for therapeutically relevant 

epitopes, as observed in our treatment studies where predicted high immunogenicity peptides 

controlled tumor burden significantly better than predicted low immunogenicity peptides and no-

peptide control groups. This model demonstrated a high true-negative rate, which is ideal in the 

setting of filtering out many weakly immunogenic epitopes to select for a small pool of targets 

for therapy. 
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Validation experiments in BBN963 and P815 models were performed as a combination 

of prophylactic and therapeutic vaccines, rather than strictly treating animals after tumor 

injection. This method was selected due to the intrinsically low efficacy of free-peptide vaccines, 

whereby differences in therapeutic efficacy may not be observed between predicted high and low 

immunogenicity antigens80. As such, although these experiments provided evidence for the 

biological relevance of our computational model, development of more robust therapeutic 

vaccine platforms are still necessary for improving response rates to peptide-based, tumor-

specific antigen vaccines. From these studies, we observed that predicted high immunogenicity 

peptides had greater benefit in the therapeutic vaccine setting than predicted low immunogenicity 

peptides. As such, we reasoned that although HIN count and total neoantigen burden were 

correlated, the most HINs were the key drivers of immunity. Thus, we performed regression 

studies between HIN count and immune features without controlling for total neoantigen burden. 

Analysis of human neoantigen data from TCGA demonstrated association between presence of 

HINs with features of immune response in colon and lung adenocarcinoma. Although the 

association between HIN count and immune gene signature expression, as well as MSI-status, in 

COAD agreed with the classical view of a tumor-antigen driven immune response, the negative 

association with immune features (including signatures of anti–PD-1 responsiveness) in LUAD 

is less clear. A report from Jerby-Arnon and colleagues demonstrates an association between 

resistance to immune checkpoint inhibition and MYC target expression81. As such, we initially 

hypothesized that MYC target expression may be the common driver for immune exclusion, 

anti–PD-1 non-responsiveness, as well as high HIN burden. However, MYC copy number did 

not correlate with HIN count, suggesting MYC expression and HIN burden are independent 

pathways of immune exclusion and checkpoint inhibitor resistance in LUAD. Further studies are 
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necessary to more closely examine the relationship between tumor immunogenic neoantigen 

burden and immune features, elucidating why higher immunogenicity burden is unexpectedly 

negatively associated with IGS patterns. 

Currently, it is not well understood what frequency of tumor antigens arise from 

conventional in-frame antigens versus non-conventional antigenic sources, such as 

retroviral/retrotransponson expression, intron expression, and out-of-frame translation. A study 

from Laumont et al. suggests that non-coding regions are the main source of tumor-specific 

antigens in acute lymphoblastic leukemia patient samples69, providing evidence that current 

methods for neoantigen prediction may be limited by filtering for in-frame exon regions. 

Laumont and colleagues used an RNA-based screening approach whereby k-mers derived from 

tumor RNA-seq reads were directly screened against matched-normal RNA k-mers, keeping only 

tumor specific regions. Compared to conventional exome-based TSA calling, this RNA-based 

screening approach allowed for identification of a broader repertoire of epitopes, consistent with 

the increased frequency of non-canonical TSAs identified by Laumont et al. compared to this 

current study69. Although Laumont and colleagues used a mass spectrometry approach to 

confirm expression of out-of-frame epitopes, no computational methods have been used to 

identify such non-canonical epitopes. As such, our study relies upon a naïve, non-biased 

approach for screening out-of-frame antigens, whereby we combined conventional exome-based 

SNP antigen calling with identification of potential epitopes across all open reading frames. We 

demonstrated that the frame of an epitope did not associate with immunogenicity, but inclusion 

of out-of-frame epitopes could provide therapeutic benefit. This analysis highlighted how some 

proportion of SNV neoantigens predicted to be out-of-frame may still maintain expression and 

capacity to trigger a cytotoxic T-cell response against the tumor. If such antigens are further 
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confirmed in human cancers, there are important implications that will need to be addressed: 1) 

whether the biology and immunogenicity of these out-of-frame “SNV” antigens more closely 

mirrors that of classical SNV-neoantigens or whether they are instead more similar to INDEL-

derived neoantigens or alternative neoantigens, such as tumor-specific endogenous retroviral 

antigens; and 2) if reading frame filters should be applied to current neoantigen calling 

algorithms in order to most effectively capture the targetable antigen landscape of a tumor.  

3.4 Materials and Methods 

Cell lines. 

The B16F10 cell line was purchased from ATCC (CLR-6475) and cultured according to 

the ATCC protocol. The P815 cell line was purchased from ATCC (TIB-64), transduced with 

luciferase as previously described82, and cultured according to the ATCC protocol. The BBN963, 

UPPL1541, and MB49 cell lines were obtained and passaged as previously described 67. The T11 

model was obtained and passaged as previously described83. All cells used in this study were 

derived from viably frozen stocks of the above cell lines, with aliquots derived within ≤5 

passages of the original stock. No mycoplasma testing was performed. No further authentication 

was performed on cell lines directly purchased from ATCC (B16F10, P815) or those received 

directly from the deriving lab (T11: Charles M. Perou, UNC Lineberger; BBN963, UPPL1541: 

William Y. Kim, UNC Lineberger). MB49 cell line was authenticated through transcriptomic 

analysis, as previously described67. 

Animal studies. 
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All experiments described in this study were approved by the UNC Institutional Animal 

Care and Use Committee (IACUC). Animals used in this study, their vendor source, and 

respective tumor cell lines included: C57BL/6J (Jackson Laboratories; B16F10), C57BL/6 

(Charles River Laboratories; BBN963, MB49, UPPL1541), DBA/2J (Jackson Laboratories; 

P815), and BALC/c (Jackson Laboratories; T11). Tumor injection routes and cell numbers for all 

models and experiments included: B16F10: Flank subcutaneous (s.c.),105 cells; BBN963: Flank 

s.c., 107 cells; MB49: Flank s.c., 105, UPPL1541: Flank s.c., 106, T11: Mammary fat pad 

intradermal, 104, P815: Tail vein intravenous, 3x105. Tissue collection and DNA/RNA isolation 

is described in the “Neoantigen and mHA prediction” section below. Graft-versus-Host disease 

(GvHD) scoring was performed as previously described84, with score defined as the sum of five 

components of posture, fur, activity, skin, and weight loss on a 0-2 scale. 

Tissue Dissociation. 

All single-cell suspensions mentioned in the below methods sections were derived using 

the below listed protocol. Tissues were homogenized in cold PBS using the GentleMACs 

Dissociator and the samples were passed through a 70 µM cell strainer using a 5 mL syringe 

plunger. The samples were centrifuged for seven minutes at 290 RCF, 4°C, decanting the 

supernatant. The remaining pellet was resuspended into 1 mL of ACK lysis buffer (150 mM 

NH4Cl, 10 mM, KHCO3, 0.1 nM Na2EDTA in DPBS, pH 7.3) for 2 minutes at room 

temperature before quenching with 10 mL of cold media. The samples were centrifuged for 

seven minutes at 290 RCF, 4°C, resuspended in 10 mL of cold media, and passed through a 40 

µM cell strainer. 

Neoantigen and mHA prediction.  
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Neoantigen prediction was performed as previously described67. Briefly, mice were 

injection with tumors (Figure 3.1A) in the route and counts listed above, and monitored until 

tumor size reached 100mm3 by caliper measurement ((l x w^2)/2, where w is the smaller of two 

perpendicular tumor axes), at which point mice were humanely sacrificed with CO2 asphyxiation 

followed by cervical dislocation. P815 tumor samples were collected directly from cell line 

culture (105 cells per sample). RNA was extracted from single-cell suspensions of tumors using 

Qiagen RNeasy Mini kit (cat. # 74104), and DNA was extracted from single-cell suspensions of 

tumors and matched-normal tail clippings or livers using Qiagen DNeasy kit (cat. # 69504), all 

according to manufacturer’s protocol. Whole exome and transcriptome library preparation was 

performed using Agilent SureSelect XT All Exon and Illumina TruSeq Stranded mRNA library 

preparation kits, respectively. Libraries were sequenced via 2x100 runs on an Illumina HiSeq 

2500 at the UNC High Throughput Sequencing Facility (HTSF). Tumor mutations were called 

using UNCeqR (https://lbc.unc.edu/~mwilkers/unceqr_dist/)85, filtering for SNV mutations with 

at least 5x coverage by RNA-seq. Translated 8-11mer (class I) or 15mer (class II) peptides were 

derived across all open reading frames, and then predicted for MHC binding affinity using 

NetMHCPan3.0 (http://www.cbs.dtu.dk/services/NetMHCpan-3.0/)17. Class I minor mismatch 

antigens were predicted similarly in the P815 model against the BALB/c histocompatible donor. 

Predicted binders were filtered by binding affinity <500 nM, generally accepted cutoff for 

immunogenicity as previously noted8,20,28, with top epitopes screened for immunogenicity using 

a vaccine/ELISpot approach, as described below. 

Vaccine/ELISpot screening.  
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Predicted neoantigen peptides (MHC I: n = 210; MHC II: n = 68) were synthesized by 

New England Peptide (Gardner, MA), using custom peptide array technology (Supplemental 

Data File 1). Non-tumor bearing wildtype animals were vaccinated with predicted neoantigen 

peptides of their respective predicted haplotype, given as a subcutaneous injection of a pool of 8 

equimolar peptides (5 nmol total peptide) and 50 µg poly(I:C) (Sigma, cat. # P1530) in PBS. A 

second identical injection was repeated 6 to 7 days after primary injection. Mice were humanely 

sacrificed with CO2 asphyxiation followed by cervical dislocation 5 to 6 days after the second 

injection. Spleens were harvested and prepared into single cell suspension, as described above. 

Splenocytes were plated in triplicate at 5 × 105 cells per 100 µL media (RPMI 1640 (Gibco cat. 

# 11875-093) with 10% FBS (Gemini cat. # 900-108) onto an IFNγ capture antibody-coated 

ELISPOT plate (BD Biosciences, cat. # 551083) according to manufacturer protocol for 48-72 

hours, along with 1 nmol of a single peptide against which the respective mouse was vaccinated. 

Immunogenicity was defined as the average number of spot-forming cells (SFC) identified using 

an ELISpot plate reader (AID Classic ERL07), with no-peptide background subtracted from each 

epitope. 

Computational analysis. 

Variables used in neoantigen immunogenicity regression and modelling were derived 

using the “aaComp” command of the R package “Peptides” (v2.4; https://cran.r-

project.org/web/packages/Peptides/index.html). Using features derived from this command (Tiny, 

Small, Aliphatic, Aromatic, Non-polar, Polar, Charged, Basic, Acidic), variables were derived by 

the presence (1) or absence (0) of each feature at each absolute and relative position along each 

antigen, at the site of SNV mutation along each antigen, at the first or last 3 amino acid residues 
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(beginning/end) or middle residues (middle) of each antigen, or difference (loss: -1, gain: 1, or 

no change: 0) of each feature in the mutated versus reference antigen along SNV mutation site. 

For all GLM and predictive modeling analyses, low variance variables (defined by the 

“nearZeroVar” function of the “caret” package) were removed prior to further analysis. 

Generalized linear models (GLM) using the R “glm” function were used for all non-modeling 

univariable and multivariable linear regression analyses, with significance reported as false 

discovery rate (FDR)-adjusted p-values (q-value) using the R “p.adjust” command. Backward 

stepwise regression for multivariable modelling was performed using the R “stepAIC” command 

of the “MASS” package (https://cran.r-project.org/web/packages/MASS/index.html), optimized 

on Akaike Information Criterion (AIC). Backward stepwise regression was performed by starting 

with all variable candidates and testing the deterioration of the model with removal of each 

variable.  

For immunogenicity prediction modeling, analyses were performed using the R package 

“caret” as a wrapper for running each multivariable approach: GLM, elastic net, random forest, 

gradient boosting, and linear and radial support vector machine methods. For cross validation, 

data were split into exploration (n = 141) and validation (n = 69) sets using the caret 

“createDataPartition” function, confirming statistically non-significant differences in measured 

immunogenicity between exploration and validation sets (Mann-Whitney p > 0.2). Model 

performance was derived from Pearson correlation coefficients between ELISpot 

immunogenicity and predicted immunogenicity scores, using a 10,000-fold cross-validation 

(2/3rd random resampling) approach within the exploration set, with the input predictor variables 

limited to those that demonstrated significant univariable correlation in >50% of 1000-fold 
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bootstrapping iterations (2/3rd resampling) within the exploration set. The final gradient boosting 

machine-learning algorithm immunogenicity prediction of MHC I epitopes can be accessed at 

https://github.com/vincentlaboratories/neoag. 

To explore for computation evidence of out-of-frame transcripts, StringTie 

(https://ccb.jhu.edu/software/stringtie/)61 and Trinity 

(https://github.com/trinityrnaseq/trinityrnaseq/wiki)78 were used for de novo assembly of 

transcripts from BBN963 RNA-seq data, according to standard workflow provided in the above 

links.  

Peptide treatment studies. 

BBN963 basal-like bladder cancer model treatment began with pre-tumor vaccination 

with 30 µg of a single peptide (or no-peptide control) and 50 µg poly(I:C) adjuvant injected in 

100 µL PBS intradermally in the flank of 8-10 week old female C57BL/6 mice (Charles River). 

Twelve days after vaccination, 1x107 BBN963 cells were injected in 100 µL PBS 

subcutaneously in the flank, ipsilateral to the vaccine site. On day 21 post primary vaccination, 

animals were given a vaccine booster with 30 µg of the initial respective peptide with no 

poly(I:C) adjuvant. This booster was delivered in 100 µL PBS intradermally in the skin directly 

adjacent to the tumor. Animals were monitored for tumor growth via caliper measurement and 

survival every 2-3 days for the remainder of the study, with UNC IACUC defined endpoints of 

area >200 mm2 or ulceration >5 mm in the longest diameter.  

For P815 treatment studies, 8-12 week old male BALB/c donors (Jackson Laboratory) 

were vaccinated on days 0 and 7 with 100 µg total peptide (3-4 pooled equimolar peptides, or 
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no-peptide control) and 50 µg poly(I:C) adjuvant in 100 µL PBS intradermally in the flank. 

DBA/2 recipients were treated with 800 rad total body irradiation on day 13. On day 14, splenic-

derived T cells and bone marrow cells were isolated from donor BALB/c animals. T cells were 

isolated from single-cell splenocyte suspensions uisng the Miltenyi Pan T Cell Isolation Kit II 

(cat. #130-095-130), according to manufacturer’s protocol. Bone marrow cells were isolated as 

previously described86. Recipient DBA/2 animals were given tail-vein IV injections of 3x106 T 

cells, 3x106 bone marrow cells, and 3x105 P815-luciferase tumor cells (or bone-marrow only 

control). DBA/2 recipients were given a booster vaccine on day 21 after primary vaccine (100 µg 

total peptide, 50 µg poly(I:C)), with animals monitored every 2-3 days for survival, with UNC 

IACUC defined endpoints of bilateral hind-limb paralysis. Luciferase imaging studies were 

performed on days 8, 13, 22, 26, and 35 after transplant, using an IVIS imaging system on 

animals given 3 mg intraperitoneal D-luciferin (Perkin Elmer, cat. # 122799) 10 minutes prior to 

imaging. 

Tetramer studies. 

Peptide/MHC tetramer and cell surface protein staining were performed as described 

previously87. Briefly, viable, single-cell suspensions derived from tumors (approximately 107 

total cells) were treated with 50 nM dasatinib (Sigma-Aldrich, cat. # CDS023389) for 30 minutes 

at 37°C, and then stained using approximately 10 µg/mL tetramer on ice for 30 minutes. 

Tetramers were generated using the MBL Quickswitch Quant H-2 Kb Tetramer Kit-PE (cat. # 

TB-7400-K1), using peptides VALLPSVMNL or SIINFEKL irrelevant control, according to 

manufacturer protocol. Cells were then washed and incubated on ice with biotin-conjugated anti-

PE antibody (5 µg/ml; BioLegend; PE001) for 20 minutes, followed by 2 washes, then further 
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incubation with streptavidin, R-PE conjugate (SAPE, 5 µg/mL) for 10 minutes on ice. Cells were 

then washed and stained for viability using BD fixable viability dye FVS620 according to the 

manufacturer’s directions. Last, cells were Fc blocked (anti-mouse CD16/CD32; 2.4G2, BD 

Biosciences) for 10 minutes on ice, followed by surface staining for 20 minutes on ice with the 

following markers: CD45 (BV510; 30-F11), CD4 (FITC; RM4-5), CD8 (APC/Fire-750; 53-6.7) 

(All antibodies purchased from BD Biosciences). Aquisition was performed using a BD 

LSRFortessa flow cytometer. FlowJo flow cytometry software version 10 was used for analyses 

of all flow cytometric data. Cells were selected using gates defined by single color controls and 

FMO or irrelevant tetramer controls, with tetramer-positive/negative CD8+ T cells defined 

within live, singlet (by FSC-A versus FSC-H), CD45+, CD4–/CD8+ gates. 

Ex vivo T-cell expansion and cytotoxicity assays 

For tetramer-sorted T-cell isolation, CD8+ T cells were isolated from BBN963 tumor 

single-cell suspensions (as described above) using the Miltenyi Dead Cell Removal Kit (130-

090-101) followed by the Miltenyi CD8a+ T Cell Isolation Kit (130-104-075), both according to 

manufacturer protocol. CD8+ T cells stained with tetramer as described above and sorted on the 

BD FACSJazz. Tetramer sorted T cells or column-sorted (Miltenyi CD8a+ T Cell Isolation Kit) 

CD8+ T cells from OT1 (C57BL/6-Tg(TcraTcrb)1100Mjb/J, Jackson Laboratories cat. # 003831) 

splenocytes were cultured in complete RPMI media (RPMI 1640 (Gibco cat. # 11875-093) with 

10% FBS (Gemini cat. # 900-108), 1% sodium pyruvate (100nM; Gibco cat. # 11360-070), 1% 

non-essential amino acids (10mM; Gibco cat. # 11140-050), 1% l-glutamine (Gemini cat. # 400-

106), 1% HEPES buffer (1Ml Corning cat. # 25-060-Cl), and .1% 2-mercaptoethanol (55nM; 

Gibco cat. # 2198502)) in the presence of recombinant murine IL7 (10 ng/mL, Peprotech cat. # 
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217-17), IL15 (10 ng/mL, Peprotech cat. # 210-15), and IL2 (100 IU/mL, Peprotech cat. # 212-

12) for 72 hours. Antigen-specific T-cell expansion was performed using a previously described 

protocol88. Briefly, all sorted T cells were recovered at 106 cells/mL for 72 hr in RPMI complete 

media in the presence of IL7 (10 ng/mL), IL15 (10 ng/mL), and IL2 (10 ng/mL) at 37°C and 5% 

CO2. T cells were then cocultured in RPMI complete media and IL7, IL15, and IL2, alongside 

peptide-pulsed DCs (2.5 µg/mL peptide) which had been pulsed approximately 18 hr prior to 

coculture. Media and cytokines were changed every 2-3 days, letting cells expand for 7-10 days 

after coculture with peptide-pulsed dendritic cells before downstream assays. 

For flow cytometric-based cytotoxicity assays, target cells (BBN963 or an irrelevant 

splenocyte control) were pre-labelled in 5 µM CFSE for 15 minutes prior to co-culture. 

Tetramer-sorted and antigen-expanded T cells (per above section) were cocultured alongside 

targets at a 1:1 ratio, with 1x105 of each target and effector population. Cells were plated on a v-

bottom 96-well polypropylene plate, centrifuged at 300 x g for 1 minute, and incubated at 37°C, 

5% CO2 for 4 hours. After incubation, cells were stained using FVS700 viability dye (BD 

Biosciences, cat. # 564997) according to manufacturer’s directions. Aquisition was performed on 

a BD LSRFortessa flow cytometer. FlowJo flow cytometry software version 10 was used for 

analyses of all flow cytometric data. Cells were identified as targets (CFSE+) or effectors 

(CFSE–), looking for percent viability among targets. Percent killing was reported as frequency 

of dead targets, background subtracted from no-effector control wells. 

The cytotoxic activity of T cells was evaluated using a standard 4-hour 51Cr release 

assay89. In brief, 5x103 51Cr-labeled (Perkin Elmer cat. # NEZ030001MC) BBN963 target cells 

per well were plated in triplicate in a 96 well v-bottom plate with different ratios (10:1 and 5:1 
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effector:target) of effector cells and incubated for 4 hours at 37°C. The supernatant was collected 

and analyzed with a gamma-counter (Perkin Elmer). Before labeling, target cells were incubated 

for 2 hours at 37°C with the specific peptides (100 nM) and washed twice with complete 

medium. Target cells were incubated with medium alone or in 1% Triton X-100 (Sigma-Aldrich) 

to determine the spontaneous and maximum 51Cr release, respectively. The mean percentage of 

specific lysis of triplicate wells was calculated as follows: [(test counts - spontaneous counts) / 

(maximum counts - spontaneous counts)] x 100%. 

TCGA data analyses 

MapSplice-aligned, RSEM-quantified RNA-Seq expression matrices and survival data 

were downloaded from FireBrowse (http://firebrowse.org/). Expression matrices were merged 

between all cancer types, upper quartile normalized within each sample, and log2 transformed. 

Immune gene signatures (IGS) were derived from previously described signatures12,90–93, with 

expression calculated as the mean expression of each gene within the signature. TCGA LAML 

samples were omitted from analysis in order to prevent skewing of IGS patterns. Inclusion 

criteria were those defined by TCGA pan-immune working group, according to previous 

studies65. MHC I neoantigen expression used for machine-learning algorithm immunogenicity 

prediction were obtained from publicly available data derived in previous studies65. TCGA pan-

cancer dataset (n = 11,092; LUAD n = 515, COAD n = 283) analyses were performed according 

to the above “Computational analysis” methods section. 

Differential gene expression analysis was performed using DESeq2 

(https://bioconductor.org/packages/release/bioc/html/DESeq2.html)94. Gene set enrichment 

analysis (http://software.broadinstitute.org/gsea/index.jsp)95, Ingenuity pathway analysis 
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(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/)96, and DAVID 

gene ontology analysis (https://david.ncifcrf.gov/)97 were performed from respective web portals. 

T-cell receptor diversity analysis was performed from previously published MiXCR-derived 

TCR reads65 – MiXCR is an analytic tool for TCR inference from whole transcriptome RNA-seq 

data98.  

Statistical analyses 

Statistical analyses for survival (displayed as Kaplan-Meier plots) were performed using 

log rank test, with no statistical correction. Differences in cytotoxicity in tetramer-sorted 

cytotoxicity assays were determined via Welch’s t-test, with no statistical correction. Differences 

in tetramer-positive T cell populations were determined via Mann-Whitney u-test, with no 

statistical correction. All above analyses were performed in Graphpad Prism 8. All other 

analyses and corresponding statistical tests are described in the above “Computational analysis” 

methods section. 

Supplemental material 

All supplemental figures and tables cited in Chapter 3 are listed according to the original 

published manuscript, which can be found at 

https://cancerimmunolres.aacrjournals.org/content/7/10/1591.figures-only.
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CHAPTER 4  BIOINFORMATICS ANALYSIS OF BLADDER TUMORS AND BREAST 

CANCER BRAIN METASTASES2 

4.1 Immunogenomic characterization of Bladder Tumors 

4.1.1 Introduction 

In the United States, bladder cancer is the fourth most common malignancy in men, with 

approximately 74,000 new cases and 16,000 deaths expected in 2015. Bladder cancer is 

histologically divided into low-grade or high-grade tumors that are associated with distinct 

genomic alterations and differences in prognosis99. Low-grade tumors are almost uniformly 

noninvasive (Ta) and have a 5-year survival rate of 96%. In contrast, high-grade tumors can 

become muscle-invasive and metastatic and are associated with a 5-year survival rate ranging 

from 70% (muscle-invasive) to 5% (metastatic). 

Multiple studies have now identified distinct RNA expression subtypes within both low- 

and high-grade bladder cancer100–106. Building upon the work of our colleagues, we and others 

have recently described distinct subtypes of high-grade muscle-invasive urothelial carcinoma 

(UC), luminal and basal, that reflect attributes of their corresponding breast cancer subtypes. 

These studies highlight the similarities in the underlying biology between breast and bladder 

cancer101,106. In addition to the originally reported molecular subtypes of breast cancer (luminal 

A, luminal B, her2-enriched, and basal-like), a claudin-low subtype of breast cancer has been 

                                                
2Chapter 4.1 has been was originally published as Kardos J, Chai S, Mose LE, Selitsky SR, Krishnan B, Saito R, et 
al. Claudin-Low Bladder Tumors are Immune Infiltrated and Actively Immune Suppressed. JCI Insight 1, (2016) 
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more recently identified and is characterized by a stromal phenotype, lack of luminal 

differentiation marker expression, enrichment for epithelial-to-mesenchymal transition (EMT) 

markers, cancer stem cell–like features, and immune response genes92. 

Clinical trials using immune checkpoint Abs targeting the PD1/PD-L1 axis have recently 

shown promise in a portion of patients with advanced UC, with the premise that activation of 

immune checkpoint pathways, including PD-L1, results in active immunosuppression107. Despite 

the excitement surrounding PD1/PD-L1 axis inhibition in treating advanced UC, only 

approximately 30% of patients respond. Therefore, the majority of patients display intrinsic 

resistance to PD1/PD-L1 inhibition, and a priori identification of these patients would clearly be 

beneficial. 

We report here the discovery of a claudin-low subtype of high-grade, muscle-invasive 

UC defined by biologic characteristics of the claudin-low subtype of breast cancer. Claudin-low 

tumors were uniformly enriched for immune gene signatures but simultaneously expressed 

immune checkpoint molecules, demonstrating that, despite being immune infiltrated, claudin-low 

tumors are also actively immunosuppressed. Interestingly, the predicted neoantigen burden was 

not significantly increased in claudin-low tumors. Instead, they highly expressed cytokines and 

chemokines associated with leukocyte chemotaxis into the tumor immune microenvironment as a 

result of an imbalance between PPARγ and NF-κB signaling. These results highlight the 

association between molecular subtype and the degree of immune infiltration and immune 

suppression and suggest that mechanisms other than neoantigen burden can drive the 

development of immune infiltrated tumors and also that claudin-low tumors are poised to 

respond to immune checkpoint inhibition. 
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4.1.2 Results 

Identification of a claudin-low subtype in bladder cancer.  

Previous studies have identified a claudin-low molecular subtype of breast cancer108. 

Given the previously documented similarities in gene expression patterns between breast and 

bladder cancer101,106, we asked whether a claudin-low subtype also exists in bladder cancer. To 

this end, we performed unsupervised hierarchical clustering on 408 high-grade, muscle-invasive 

bladder tumors from the The Cancer Genome Atlas (TCGA) urothelial bladder carcinoma 

(BLCA) data set using gene signatures representative of biologic characteristics that are known 

to define breast cancer claudin-low tumors such as an enrichment for tumor-initiating cells (TICs) 

and an EMT (Figure 4.1A)92,108. Specifically, we used gene lists of the tight-junction claudins 

(CLDN3, CLDN4, and CLDN7) and a previously published bladder cancer–derived TIC 

signature90. In addition, we derived a bidirectional (EMT_UP and EMT_DOWN), bladder 

cancer–specific, notch-dependent EMT gene signature from the publicly available Gene 

Expression Omnibus (GEO) gene expression data set (GEO GSE60564) (Supplemental Table 1). 

Unsupervised hierarchical clustering with these gene signatures revealed a distinct cluster that 

had characteristics of a claudin-low subtype (Figure 4.1A, highlighted in green).  
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Figure 4.1 Identification of a claudin-low subtype in bladder cancer. (A) Unsupervised clustering 
of TCGA muscle-invasive UC samples. Samples were clustered on the basis of expression of 
tight-junction claudins, a bidirectional EMT signature, and a TIC signature. The tumors 
identified as claudin-low are highlighted in green on the dendogram. n = 408. (B) Waterfall plot 
showing correlation with the basal and luminal centroids as defined by BASE47 classification; 
claudin-low tumors are highlighted in green. Claudin-low tumors were significantly enriched in 
the BASE47 basal subtype (Fisher’s exact test P = 1.18 × 10–16) and were highly correlated with 
the basal centroid (Pearson’s correlation P = 9.33 × 10–15). n = 408. (C) Kaplan-Meier plot 
showing overall survival of bladder cancer by molecular subtype. Significance was determined 
by log-rank testing with a Bonferroni correction. n = 408. (D and E) Bar graphs showing the 
classification of TCGA UC tumors by TCGA mRNA cluster subtype (x axis) and our subtype 
classifications (y axis) by count and percentage. n = 129. EMT, epithelial-to-mesenchymal 
transition; TCGA, The Cancer Genome Atlas; TIC, tumor-initiating cell; UC, urothelial 
carcinoma. 
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To ensure that the set of tumors within the presumed claudin-low cluster were 

homogeneous and distinct from adjacent clusters of tumors, we performed a Gaussian 

distribution analysis, starting with the smallest cluster and iteratively repeated the analysis with 

the addition of adjacent clusters using SigClust R software (Supplemental Figure 1A)109. This 

method identified a conserved node of 48 tumors that had consensus enrichment for claudin-low 

features, and these tumors were therefore defined as claudin- low. All 48 claudin-low tumors 

were classified as basal by our BASE47 subtype classifier (Fisher’s exact P = 1.18 × 10–16)101, 

and when examined for their correlation to the BASE47 basal or luminal centroid, they were 

found to be highly basal (Figure 4.1B). Further supporting the notion that these tumors exhibit 

features of claudin-low breast cancer, we applied the previously defined breast cancer–specific 

claudin-low classifier to the TCGA BLCA tumors and found a significant enrichment (Fisher’s 

exact P = 1.10 × 10–18) of the breast cancer–defined claudin-low tumors within the bladder 

claudin-low cluster (Supplemental Table 2). Given these findings, we propose a 3-subtype 

classification of bladder cancer consisting of basal (~40%), luminal (~50%), and claudin-low 

(~10%) tumors. While basal-like bladder cancer consistently has a worse clinical outcome 

100,101,105,106, consistent with previous work on breast cancer92, we did not find an observable 

significant difference in overall survival rates between patients with claudin-low tumors and 

those with basal tumors (Figure 4.1C).  

A 40-gene classifier, bladder claudin-low 40, accurately predicts claudin-low tumors.  

To define a minimal set of genes that could accurately classify claudin-low bladder 

tumors, we applied prediction analysis of microar- rays (PAMs) to the TCGA BLCA tumors and 

derived a 40-gene signature, bladder claudin-low 40 (BCL40) (Supplemental Table 3), which 

accurately classifies bladder tumors into claudin-low and non–claudin-low subtypes, with a 
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training error rate of 0.23 and 0.13, respectively. When combined with the previously validated 

bladder cancer analysis of subtypes by gene expression (BASE47) predictor101, this provides a 3-

class predictor that can accurately classify bladder tumors as claudin-low, basal, or luminal.  

In order to validate the predictor, we compiled a 130-tumor metadata set from 2 

previously compiled published data sets (GEO GSE48277)106. The BASE47 and BCL40 

predictors identified 36 claudin-low tumors (~30%), 27 basal tumors (~20%), and 67 luminal 

tumors (~50%). We found that these subtypes were phenotypically similar to the initially derived 

subtypes in our discovery set of TCGA bladder tumors as measured by expression of the EMT, 

TIC, and claudin gene signatures (Supplemental Figure 1, B–E). Furthermore, we ran a 

transcriptome-wide correlation analysis between the basal, luminal, and claudin-low tumors 

identified in the discovery (TCGA BLCA) and validation data sets (GEO GSE48277) and found 

a strong correlation in gene expression between the subtypes identified in the discovery and 

validation data sets (basal [Pearson’s R = 0.459, P < 2.2 × 10–16], claudin-low [Pearson’s R = 

0.805, P < 2.2 × 10–16], and luminal [Pearson’s R = 0.809, P < 2.2 × 10–16]) (data not shown). 

This further confirmed that the subtypes identified across separate data sets had consistent 

genome-wide RNA expression profiles. 

Comparison with MD Anderson and TCGA UC intrinsic molecular subtype classifications.  

We next examined whether our claudin-low subtype merely recapitulated any of the 

existing molecular subtypes of UC published by MD Anderson or TCGA. A comparison of our 

claudin-low, basal, and luminal predictions on the 408 provisional TCGA BLCA tumors with the 

MD Anderson oneNN classification system (p53-like, basal, and luminal)106 re-demonstrated the 

high concordance of luminal subtype designations110 as well as the notion that claudin-low 
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tumors arise primarily from basal tumors (Supplemental Figure 2, A and B). We further 

compared our claudin-low, basal, and luminal predictions on the 129 published TCGA BLCA 

tumors with TCGA 4-subtype classification (clusters I, II, III, and IV)102. Our claudin-low 

tumors were primarily found in TCGA clusters III and IV (Figure 4.1, D and E). These 

comparisons further strengthen the notion that claudin-low tumors do not merely recapitulate a 

previously described molecular subtype of bladder cancer. 

The claudin-low subtype displays unique, intrinsic genomic alterations and gene expression 

patterns.  

We next examined the association between molecular subtype and genomic events within 

significantly mutated or copy number–altered genes identified as being altered at a greater than 5% 

frequency within TCGA BLCA data set102. A comparison of claudin-low and basal subtypes 

revealed that claudin-low tumors had significantly increased rates of RB1, EP300, and NCOR1 

mutations, an increased percentage of tumors with EGFR amplification, as well as decreased 

rates of mutations in FGFR3 and ELF3 (Figure 4.2, A and B). Relative to the luminal subtype, 

claudin-low tumors revealed a significantly higher rate of mutation of TP53, RB1, and EP300 

and an increased percentage of tumors with EGFR amplification. Conversely, luminal tumors 

(compared with claudin-low tumors) had a significantly higher rate of PPARG amplification and 

mutation of KDM6A, ELF3, and FGFR3. These results are in keeping with the notion that 

genomic alterations and their subsequent effects on signal transduction and transcription may be 

partially responsible for differences in gene expression subtypes. 
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Figure 4.2 Genomic characterization of bladder cancer subtypes. (A) Oncoprint of genomic copy 
number alterations and mutations by bladder cancer subtype for genes previously identified as 
significantly mutated or copy number altered in more than 5% of bladder tumors. n = 408. (B) 
Bar plots of genes that were identified to have a significant (P < 0.05) difference in either gene 
mutation or copy number alteration (CNA) between the claudin-low and basal and/or luminal 
subtypes. *P < 0.05, **P < 0.01, and ***P < 0.001, by Fisher’s exact test. 
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To further understand the gene expression patterns that differentiate claudin-low tumors, 

we performed 2-class significance analysis of microarrays (SAMs), comparing each subtype 

against all of the other tumors (e.g., claudin-low vs. basal plus luminal). We detected a 

significant number of differentially expressed genes (FDR = 0.05) (Supplemental Figure 3A and 

Supplemental Table 4) by this comparison as well as by a direct comparison of each subtype 

with another (e.g., claudin-low vs. basal) (Figure 4.3A and Supplemental Table 5). Ingenuity 

Pathway Analysis (IPA) revealed that, compared with both basal and luminal tumors, claudin-

low tumors had significant enrichment in the upstream regulators IFNG, TNF, and TGFB1, 

which are well-known proinflammatory cytokines (IFN-γ and TNF-α) and pro-EMT (TGF-β) 

growth factors (Supplemental Table 6). Additionally, claudin-low tumors had higher levels of 

IL4 and IL13 signaling relative to signaling levels in basal and luminal tumors, respectively. 

Further IPA analysis demonstrated enrichment of other immune-associated pathways in claudin-

low tumors (Supplemental Figure 3B). These observations are in keeping with the EMT 

phenotype, which is a defining characteristic of claudin-low tumors, but are also strongly suggest 

that these tumors are heavily immune infiltrated. 
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Figure 4.3 Immune characterization of bladder cancer subtypes. (A) Volcano plot of log2 fold 
change of median gene expression and –log10 P value of gene expression across bladder tumor 
subtypes. Dashed line across the plots corresponds to a significance threshold of P = 0.05. n = 
408. Significance was calculated using Student’s t test with a Bonferroni correction. (B) 
Heatmaps of supervised clustering of bladder tumor subtypes across previously identified 
immune signatures. n = 408. (C) Heatmap of supervised clustering of bladder tumor subtypes 
across an immune suppression gene signature. n = 408. (D) Box plot of immune suppression 
gene signature z score across bladder tumor subtypes. n = 408. (E) Box plot of PD-L1 gene 
expression across the Pan-Cancer tumor types. n = 3,602. (F) Box plot of immune suppression 
gene signature z scores across the Pan-Cancer tumor types. n = 3,602. The box plots denote the 
interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, and the 
whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots represent data 
points. BLCA, bladder urothelial carcinoma; BRCA, breast cancer; COAD, colon 
adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell 
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carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous 
cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus endometrial 
carcinoma; LUM, luminal; TCGA, The Cancer Genome Atlas; PanCan, Pan-Cancer. 

Claudin-low tumors are enriched in immune gene signature expression.  

To better characterize the immune cell populations present within claudin-low tumors, we 

used previously defined gene signatures indicative of specific cellular immune populations91 and 

examined their expression by molecular subtype. All examined signatures appeared to be and 

were statistically enriched in the claudin-low subtype when each signature was collapsed into a 

single value per tumor (z score) (Figure 4.3B and Supplemental Figure 4). To assess the level of 

immunosuppression, we examined the expression of a panel of immune checkpoint molecules 

(immunosuppression score) derived from the literature and found that they were uniformly 

highly expressed in claudin-low tumors compared with expression levels in both basal and 

luminal tumors, respectively (Figure 3.3, C and D). 

Bladder cancer as a whole expressed moderate levels of PD-L1 and our 

immunosuppression score relative to the spectrum of 12 tumors in TCGA Pan-Cancer analysis 

(Supplemental Figure 5, A and B)111. When broken down by subtype, however, claudin-low 

tumors in particular had very high levels of PD-L1 expression (Figure 4.3E) and high expression 

of the immunosuppression score (Figure 4.3F). In aggregate, these findings indicate that claudin-

low tumors consistently harbor a high level of immune infiltration that is matched by a high level 

of active immune suppression. Basal tumors, in contrast, have a more heterogeneous phenotype, 

while luminal tumors appear to have a paucity of immune cells or immune checkpoint expression. 

In keeping with this notion, there was a strong correlation between the immune signatures and 

the immunosuppression signature (Supplemental Figure 5C) across all tumors. 
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The presence of an immune infiltrate has been shown to be prognostic in other cancers112. 

In muscle-invasive bladder cancer, specifically, the presence of CD8+ tumor-infiltrating 

lymphocytes (TILs)113 and a low ratio of FOXP3 to CD4 or CD8 expression on TILs114 have 

been associated with improved disease-free and overall survival rates. In keeping with the work 

by Sharma et al.113, Cox proportional hazards (Cox PH) modeling for each immune gene 

signature across all tumors in TCGA BLCA data set showed that only the CD8_T_Cell signature 

was prognostic (Cox PH = 0.846, P = 0.047) (Figure 4.4A), further supporting the unique 

importance of CD8+ TILs. When Cox PH modeling was performed within each subtype, none of 

the signatures were prognostic within the claudin-low and luminal subtypes. However, within the 

basal subtype, numerous signatures were prognostic, including the Ig signature, macrophage 

signature, T cell signature, CD8+ T cell signature, and immunosuppression signature (Figure 

4.4B). We believe these findings are consistent with immune gene signatures being consistently 

upregulated in the claudin-low subtype and downregulated in the luminal subtype, respectively, 

while the basal subtype has a more heterogeneous range of gene signature expression, allowing 

for a more dynamic range across which these subtypes can be prognostic. Supporting this, the 

basal subtype had the largest SD of immune signature expression across all signatures (basal vs. 

claudin: P = 0.007; basal vs. luminal: P = 0.097, Bonferroni-corrected Student’s t test). 
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Figure 4.4 Immune gene signatures have prognostic value across bladder cancer subtypes. (A) 
Forest plot of Cox PH ratios of the immune gene signatures across all tumors, with a 95% CI 
indicated around the values. n = 408. (B) Forest plot of Cox PH ratios of the immune gene 
signatures within defined tumor subtypes, with a 95% CI indicated around the values. n = 408. 
*P < 0.05, prognostically significant signatures by Cox PH modeling. Cox PH, Cox proportional 
hazard. 
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Specific T cell receptor and B cell receptor gene segment expression levels are prognostic in 

bladder cancer subtypes.  

An antigen-driven T cell and/or B cell response would be expected to drive clonal 

expansion of T cells and/or B cells, resulting in decreased diversity of T cell receptor (TCR) 

and/or B cell receptor (BCR) repertoires. In addition, if a clonally expanded immune response 

was active intratumorally, this should be reflected in associations of specific TCR and/or BCR 

gene segment expression with improved survival. For example, decreased TCR diversity has 

been associated with response to immune checkpoint inhibition in melanoma115 and has been 

shown to be prognostic in bladder cancer116. To evaluate this concept in TCGA bladder samples, 

we fit Cox PH models to test the association of expression of each TCR or BCR gene segment 

with survival and calculated the number of prognostic gene segments by subtype. To establish 

null distributions for the number of gene segments expected in each subtype, we used the 

bootstrap resampling method previously published by our group91. For both TCR gene segments 

(Figure 4.5A) and BCR gene segments (Figure 4.5B), a significantly higher number of gene 

segments than expected by chance were prognostic in the basal subtype, but not in the claudin-

low or luminal subtype. Figure 4.5, C and D show the specific gene segments that were 

prognostic in each subtype. Prognostic segments were found in multiple TCR and BCR families, 

with a small number of gene segments discovered in multiple subtypes (i.e., TRBV11-2). This 

suggests that adaptive immune responses important in endogenous antitumor immunity are not 

uniform in TCR and BCR usage between the subtypes. 
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Figure 4.5 BCR and TCR segment expression is prognostic. (A) Number of TCR gene segments 
by subtype in which increased expression was significantly associated with improved survival by 
Cox PH model fit. Null distributions (gray bars) with 95% CIs were generated for each by 
bootstrap resampling of non-TCR genes and calculation of the number of significant P values 
that were similarly associated with prolonged survival. n= 292. (B) Number of BCR gene 
segments by subtype in which increased expression was significantly associated with improved 
survival by Cox PH model fit. Null distributions (gray bars) with 95% CIs were generated for 
each by bootstrap resampling of non-TCR genes and calculation of the number of 
significant P values that were similarly associated with prolonged survival. n = 292. (C) Specific 
TCR gene segments in which increased expression was significantly associated with improved 
survival by Cox PH model fit for all tumors (gray boxes), basal tumors (red boxes), claudin-low 
tumors (green boxes), and luminal tumors (blue boxes). (D) Specific BCR gene segments in 
which increased expression was significantly associated with improved survival by Cox PH 
model fit for all tumors (gray boxes), basal tumors (red boxes), claudin-low tumors (green boxes), 
and luminal tumors (blue boxes). (E) Log base 10 number of reads supporting any BCR V(D)J 
rearrangement are shown by subtype. n = 181. Mann-Whitney U–Wilcoxon test with an FDR 
multiple testing correction was used to determine significance. (F) Repertoire diversity by 
subtype. The box plots in E and F denote the interquartile range (IQR), with the box representing 
Q1 to Q3, the line denoting Q2, and the whiskers extending an additional 1.5 times the IQR 
beyond Q1 and Q3. The dots represent data points. n = 150. Mann-Whitney U–Wilcoxon test 
with an FDR multiple testing correction was used to determine significance. BCR, B cell 
receptor; Cox PH, Cox proportional hazard; TCR, T cell receptor. 
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Despite the presumed importance of assessing T cell and B cell clonality in tumor 

immunology, at present, this can only be done by direct TCR or BCR sequencing. Our group has 

developed a bioinformatics method (VDJician) to accurately and efficiently reconstruct 

rearranged BCR V(D)J sequence repertoires from short-read RNA-sequencing data. We applied 

this to TCGA bladder data to evaluate whether overall BCR expression (Figure 4.5E) and/or 

repertoire diversity (Figure 4.5F) varied by subtype. BCR expression was higher and repertoire 

diversity lower (indicative of clonal expansion) in the claudin-low subtype relative to that 

observed in the luminal subtype, which is consistent with the presence of a selective antigen-

directed response in claudin-low tumors. These results, in conjunction with our previous findings, 

indicate that claudin-low tumors are immune infiltrated and have an active immune response 

within the tumor microenvironment. 

Predicted neoantigen burden does not vary significantly by bladder cancer subtype but is 

selectively associated with survival in basal tumors.  

Neoantigens are altered peptides derived from tumor-intrinsic mutant proteins that are 

presented by MHC molecules and can drive robust antitumor T cell responses4. This is in 

contrast to self-antigens that may be overexpressed in tumors but have been subjected to central 

immune tolerance 117. Neoantigens derived from tumor-specific genomic aberrations can be 

predicted using whole-exome sequencing of paired tumor and matched normal samples, and 

expression is confirmed by incorporation of RNA expression data. The predicted neoantigen 

number has been positively associated with favorable clinical outcomes in multiple tumor 

types118 as well as with response to immune checkpoint inhibition in melanoma10,119 and non–

small-cell lung cancer120. These results suggest an important protective role for the endogenous 
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repertoire of T cells able to target tumor cells. In order to determine whether neoantigen burden 

varied by bladder tumor subtype, we implemented an informatics pipeline based on the approach 

published by Rajasagi et al.28 and applied this to TCGA bladder data (Figure 4.6). There was a 

noisy but clear correlation between predicted neoantigen burden and the number of somatic 

mutations (Figure 4.6A: left y axis and right y axis, respectively) (Spearman’s R = 0.79, P < 2 × 

10–16, Figure 4.6B). Interestingly, claudin-low tumors, despite having a high level of immune 

infiltration and active immunosuppression, did not have a significantly different level of 

predicted neoantigens compared with that of basal or luminal subtypes (Figure 4.6C). 

 

 
Figure 4.6 Predicted neoantigen burden by bladder cancer subtype. (A) Stacked bar plot showing 
the number of predicted neoantigens in each bladder tumor with a predicted IC50 of less than 50 
nm (red bars) and less than 150 nm (yellow bars). Numbers of predicted neoantigens are shown 
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in the left y axis. Blue line and right y axis show the number of missense mutations per 
tumor. n = 289. (B) Scatter plot of somatic missense mutations (log2) versus predicted 
neoantigen burden (log2) across TCGA data set. Significance and correlation were determined 
using Spearman’s rank test. n = 289. (C) Box plot showing the number of predicted neoantigens 
with an IC50 of less than 50 nm by tumor molecular subtype. Subtypes were not significantly 
different (P > 0.05). Significance was determined by 1-way ANOVA. n = 289. The box plots 
denote the interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, 
and the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots 
represent data points. (D) Kaplan-Meier plot showing survival of bladder cancer patients with 
high (greater than median value, blue line) versus low (less than median value, red line) 
predicted numbers of neoantigens. Vertical hash marks indicate censored data. Significance was 
determined by log-rank test. n = 289. TCGA, The Cancer Genome Atlas. 

To assess the association between predicted neoantigen burden and subtype, we 

performed Cox PH analysis with the predicted neoantigen count as the potential explanatory 

variable. In the basal but not claudin-low or luminal subtypes, an increased number of predicted 

neoantigens was associated with prolonged survival (P = 0.025). For all bladder tumors taken 

together, the association was significant as well (P = 0.005). Figure 4.6D shows survival curves 

for all bladder tumors divided by the median predicted neoantigen count into high versus low 

neoantigen burden. Analyzed in this way as well, high neoantigen burden was associated with 

prolonged overall survival. Therefore, while there is a high correlation between bladder cancer 

molecular subtype and immune signature expression, this does not appear to be explained by the 

predicted neoantigen number. 

Claudin-low tumors express high levels of cytokines and chemokines normally repressed by 

PPARG.  

Given that predicted neoantigen burden was relatively similar across molecular subtypes, 

we explored the possibility that claudin-low tumors harbor an immune infiltrate because of 

increased production of proinflammatory cytokines and chemokines. To this end, we examined 

the relative expression of a panel of cytokines and chemokines (Supplemental Table 7) and their 
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receptors among bladder subtypes and found that the majority of them were significantly 

upregulated in claudin-low tumors relative to expression levels in both basal and luminal tumors 

(Figure 4.7, A and B). We noted that NF-κB target genes in particular were significantly 

upregulated in the claudin-low subtype compared with expression in both the basal and luminal 

subtypes (Fisher’s exact P value = 1.885 × 10–8, data not shown). 
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Figure 4.7 Predicted neoantigen burden by bladder cancer subtype. (A) Stacked bar plot showing 
the number of predicted neoantigens in each bladder tumor with a predicted IC50 of less than 50 
nm (red bars) and less than 150 nm (yellow bars). Numbers of predicted neoantigens are shown 
in the left y axis. Blue line and right y axis show the number of missense mutations per 
tumor. n = 289. (B) Scatter plot of somatic missense mutations (log2) versus predicted 
neoantigen burden (log2) across TCGA data set. Significance and correlation were determined 
using Spearman’s rank test. n = 289. (C) Box plot showing the number of predicted neoantigens 
with an IC50 of less than 50 nm by tumor molecular subtype. Subtypes were not significantly 
different (P > 0.05). Significance was determined by 1-way ANOVA. n = 289. The box plots 
denote the interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, 
and the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots 
represent data points. (D) Kaplan-Meier plot showing survival of bladder cancer patients with 
high (greater than median value, blue line) versus low (less than median value, red line) 
predicted numbers of neoantigens. Vertical hash marks indicate censored data. Significance was 
determined by log-rank test. n = 289. TCGA, The Cancer Genome Atlas. 
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A defining transcriptional program of urothelial differentiation and of luminal bladder 

tumors is activation of peroxisome proliferator-activated receptor γ (PPARG) signaling121. 

Consistent with this, we noted that PPARG was significantly amplified in luminal relative to 

claudin-low tumors (Figure 4.2B). Because PPARG is known to directly inhibit NF-κB 

signaling122, we hypothesized that heightened PPARG activity might play a role in restraining 

the proinflammatory effects of NF-κB. Using a publicly available gene expression data set (GEO 

GSE48124), we noted that the expression changes induced by treatment with rosiglitazone, a 

PPARγ agonist, in UMUC7 and UMUC9 bladder cancer cells predicted suppression of the 

upstream regulator NFKB1 as well as a number of genes known to be activated by NF-κB 

(STAT5A, IL6, TNF, CCL5) (Supplemental Table 8). Furthermore, rosiglitazone-treated 

UMUC7 and UMUC9 cells had downregulation in gene signatures of NF-κB activation as 

assessed by gene set enrichment analysis (GSEA) (Figure 4.7C). Interestingly, we saw that 

rosiglitazone treatment resulted in significant downregulation of immune checkpoint molecules 

(such as PDL1, PDL2, IL12, and PGSL2) found in our immunosuppression signature (Figure 

4.7D). In aggregate, these data support the notion that downregulation of PPARγ activity results 

in unopposed NF-κB signaling, which contributes to the proinflammatory milieu of claudin-low 

tumors as well as to their high level of active immune suppression. 

Finally, in keeping with recent work demonstrating that EMT is associated with immune 

checkpoint molecule expression123,124, we observed a strong correlation between our bladder 

cancer–derived EMT signatures and multiple immune signatures including our 

immunosuppression score: R = 0.462 [EMT (Up)] and R = –0.471 [EMT (Down)]; P < 2.2 × 10–

16 (both “Up” and “Down”) (Figure 4.7E). Furthermore, given the important role of PPARγ in 

terminal urothelial differentiation122, we hypothesized that it may be a critical regulator of 
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epithelial-mesenchymal balance in urothelial cancers. Indeed, we found that PPARγ activation 

(by rosiglitazone) in UMUC7 and UMUC9 cells decreased levels of our EMT (Up) signature 

(Figure 4.7F). 

4.1.3 Discussion 

Herein, we characterize the claudin-low, molecular subtype of high-grade UC. Claudin-

low bladder tumors are defined by high levels of EMT, enrichment for TIC signatures, and low 

expression levels of tight-junction claudins. In addition, claudin-low tumors are enriched in 

specific genomic alterations (e.g., mutations in EP300 and NCOR1 as well as amplification in 

EGFR) and have a distinct transcriptional profile. Furthermore, we found that claudin-low 

tumors are highly enriched in all immune gene signatures examined, but also express high levels 

of immune checkpoint molecules. In contrast to melanoma and non–small-cell lung cancer, the 

predicted neoantigen burden did not appear to correlate with immune infiltration in bladder 

cancer. Instead, claudin-low tumors appeared to downregulate PPARγ signaling, resulting in 

unopposed NF-κB activity and contributing to a proinflammatory milieu (Figure 4.8). 



 

 94 

 
Figure 4.8 Model of immune infiltration across bladder cancer subtype. Proposed model of 
immune response regulation through PPARγ and NF-κB signaling. 

In our study, as in previous studies, expression of the various immune gene signatures 

was highly correlated, including high correlations between gene signatures associated with 

specific cellular subpopulations (CD8+ T cells, B cell lineage, Th1-polarizing macrophages) and 

the immunosuppression gene signature. This supports the claim that tumors growing in the 

presence of immune cell influx must adaptively suppress the antitumor response in order to 

survive. Immune gene signature expression levels, the prognostic value of immune gene 

signatures, and TCR and BCR gene segment expression divide the bladder cancer subtypes into 

3 groups: (a) low infiltrate with nonsignificant prognostic value (luminal); (b) heterogeneous 

infiltrate with significant prognostic value (basal); and (c) high infiltrate with nonsignificant 

prognostic value (claudin-low). We hypothesize that the lack of prognostic benefit in claudin-

low and luminal tumors is driven by different mechanisms. Luminal tumors were sparsely 
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infiltrated and showed low expression levels of molecules associated with immunosuppression 

(Supplemental Table 9). In contrast, claudin-low tumors showed a substantial but ineffective 

infiltrate in the context of high expression levels of immunosuppression markers. Immune 

features may fail to be prognostic in luminal tumors because no infiltrate is present, whereas they 

fail in claudin-low tumors because, despite a dense infiltrate, the level of immunosuppression 

overwhelms active antitumor immunity. Basal tumors have the highest degree of variability in 

immune gene signature expression, and in this model, some basal tumors will have generated an 

immune response that is competing more effectively (though ultimately insufficiently to clear 

tumor) with tumor-driven immune suppression. While additional studies are required to test this 

hypothesis, our data suggest that claudin-low tumors as a whole, as well as a subset of basal 

tumors, are poised for response to immune checkpoint blockade. 

The different molecular aberrations that characterize the bladder cancer subtypes may 

yield differential exposure of antigens to the immune system, resulting in skewing of the tumor-

infiltrating TCR and/or BCR repertoires in predictable ways should the antigens be public (i.e., 

shared between multiple patients). Though our study was not designed to formally test this, we 

report here a high degree of variability, in which adaptive immune gene segments were 

prognostic among the bladder cancer subtypes, an effect that would be expected if TCR/BCR 

repertoire features associated with tumor targeting were to vary by tumor subtype. Interestingly, 

in the basal subtype, multiple TCR gene segments associated with γδ T cells were found to be 

significantly prognostic (P < 0.05 by Cox PH). As this specific subset of T cells is involved in 

adaptive immunity at mucosal surfaces and able to respond to mycobacteria, γδ T cells may be 

involved in antitumor immunity and an attractive target for the development of biomarkers of 
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response to bladder cancer immunotherapy, including bacille Calmette-Guérin (BCG), which is 

commonly given for nonmuscle invasive disease. 

We report here the VDJician algorithm that performs de novo assembly of repertoires of 

fully rearranged BCR VDJ sequences. When analyzed, the claudin-low subtype showed the 

highest expression levels but the lowest repertoire diversity compared with basal and luminal 

subtypes. This is consistent with the presence of an antigen-driven response in the claudin-low 

tumors, leading to clonal expansion of antigen-reactive B cell–lineage cells. Plasma cells are 

known to express high levels of BCR mRNA, and these results would also be consistent with a 

restricted plasma cell infiltrate. In addition, as plasma cells represent a terminal differentiation in 

the B cell lineage in response to antigenic stimulation, their presence would also be expected in 

an antigen-driven response. Future experiments will be necessary to confirm these findings and 

attempt to map immunogenic epitopes in claudin-low tumors. 

In melanoma and a subset of solid tumors, neoantigen burden correlates with expression 

of perforin and granzyme A (a measure of cytolytic activity)10,125 and tumors with these 

attributes appear to be more responsive to CTLA4 checkpoint blockade. In bladder cancers 

examined in that study, there was a trend toward increased cytolytic activity, with increased 

predicted neoantigen burden (P = 0.096, data not shown)125. In contrast, we did not see 

significant correlations between neoantigen burden and predicted features such as T cell or 

CD8+ T cell gene signatures, immunosuppression score, or molecular subtype, suggesting that 

alternate etiologies exist to explain the proinflammatory state of claudin-low and basal tumors 

relative to that of luminal tumors. In this regard, we observed significant upregulation of 

cytokines and chemokines in claudin-low tumors and hypothesize that this cytokine milieu is 
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favorable to a proinflammatory state and immune cell influx. We propose that PPARγ activity, 

through its ability to repress NF-κB, is inversely correlated with this proinflammatory milieu and, 

therefore, that luminal tumors, which are enriched in PPARG amplification and activation of 

PPARG gene signatures, have very little inflammation. Conversely, we found that claudin-low 

tumors, which have relatively low levels of PPARG pathway activation, have high levels of 

immune infiltration. Therefore, in contrast to the inflamed tumors found in melanoma and non–

small-cell lung cancer, which appear driven by neoantigen expression, inflamed bladder cancers 

have a proinflammatory state induced by an enhanced cytokine/chemokine milieu. It will be 

important to determine whether altering the balance between PPARγ and NF-κB activity can be 

used to alter the immune milieu toward a more favorable response to immune therapy and 

whether other transcriptional programs can be harnessed as well. 

Finally, while immune checkpoint inhibition holds great promise, the response rates of 

various solid tumors remain approximately 20% to 30%, suggesting that many patients will not 

derive benefit. Our BASE47 and BCL40 gene classifiers, which can accurately subtype high-

grade bladder tumors, may serve to identify useful predictive biomarkers of response (i.e., 

claudin-low) or lack of response (i.e., luminal) to PD1 axis inhibition. Moreover, our studies 

further validate the notion of subtype-specific therapy in bladder cancer (i.e., basal = 

chemotherapy; claudin-low = immune checkpoint blockade) and advance the possibility that 

claudin-low breast tumors may have similar immune features. 

4.1.4 Methods 

TCGA data set manipulation.  
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TCGA Bladder Urothelial Carcinoma RNA Expression data set was downloaded from 

the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org) on August, 27, 2015. RNA 

expression was downloaded in a normalized RSEM file. Expression values were log2 

transformed, and genes with less than 80% expression across all samples were filtered out. 

Missing values were imputed using the K-nearest neighbor imputation method. Tumor-adjacent 

normal samples were removed, and gene expression values were median centered across each 

gene. TCGA Pan-Cancer data set was downloaded from the Synapse website 

(https://www.synapse.org) from data set syn 2468297111. Genes with less than 80% expression 

across all samples were filtered out. Missing values were imputed using K-nearest neighbor 

imputation. 

Gene signatures.  

Bladder TIC, EMT, and tight-junction claudin gene signatures were used in the 

classification of a claudin-low subtype. The TIC signature was derived by Chan et al.90. The set 

of claudins used was identified by Prat et al.92. The EMT signature is a bidirectional signature 

derived on the GEO (GEO GSE60564) data set of Notch2 overexpression in a urinary bladder 

RT4V6 cell line. The data set was mean collapsed onto genes. Genes were filtered for a 

significant difference (Student’s t test, P < 0.05) between the control and Notch2-overexpressed 

(EMT-induced) cell lines and also for their presence in TCGA bladder UC data set. Genes were 

then ranked on the basis of median difference between the 2 groups. The top 50 genes with the 

most increased expression in the EMT-induced cells and the top 50 genes with the most 

decreased expression in the EMT-induced cells were used to create the bladder cancer–specific 

EMT_UP and EMT_DOWN signatures, respectively. Immune gene signatures used to describe 
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immune cell processes were derived by Iglesia et al.91. Z scores were calculated for each claudin, 

basal, and luminal subtype and box plots made of the distributions. Gene signature z scores were 

obtained by calculating the z score of each gene within a signature across all samples and taking 

the median of all gene z scores within a gene signature as the z score of the gene signature. 

Identification of a claudin-low class.  

Bladder basal and luminal predictions and centroid distances were made using the 

BASE47 PAM Classifier derived by Damrauer et al.101. Breast cancer claudin predictions were 

made using the Distance-Weighted Discrimination (DWD) Claudin Classifier provided by Prat et 

al.92. 

Data were clustered on the TIC/EMT (Up and Down)/claudin gene sets using average 

linkage clustering with a centered correlation similarity metric on the Cluster 3.0 platform. Each 

gene set was individually clustered across genes using average linkage clustering. Gene sets were 

collapsed down to z scores, and a conservative node with high TIC/high EMT UP/low EMT 

DOWN/low claudin gene set was selected. SigClust was run on the node, expanding out to the 

entire gene set for each increasing node. Differences in gene expression subtypes were 

determined using SAMs run on R, with an FDR of 0.05. A PAM predictor (BCL40) was derived 

on the 408 tumor TCGA data set for a claudin/other subtype classifier. A threshold of 6.4 was 

selected, giving a 40-gene predictor with an overall error rate of 0.14 

A validation data set of 130 muscle-invasive UC samples was compiled from 73-sample 

and 57-sample data sets from GEO (GEO GSE48277]106. Each data set was mean collapsed onto 

genes. The data set was combined and batch effect adjusted using parametric empirical Bayesian 
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adjustments through the ComBat function in the sva R package and was then median centered. 

Genome-wide correlations and significance were calculated using a Pearson’s correlation test. 

Clinical, mutation, and copy number alteration analysis.  

Mutation, copy number, and clinical data were downloaded as mutation packager calls 

through the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org) on September 3, 

2015. Survival status and overall survival were determined on the basis of the data provided. 

Oncoprint figures were produced using the downloaded TCGA mutation and copy number 

alteration (CNA) data. Genes were selected on the basis of previously being identified as having 

significant mutations or CNAs within the gene102. Significance in CNA and mutation across 

subtypes was determined using Fisher’s exact test. Cox PH ratios and CIs were derived using the 

survival package on the R platform. 

Pathway analysis.  

Cellular pathway analysis across subtypes was performed using QIAGEN’s IPA 

(www.qiagen.com/ingenuity). Comparison across subtypes was done using the gene list with an 

FDR of 0.00 as determined by SAM analysis across subtypes. 

Gene signature expression analysis.  

Supervised clustering of samples was performed across all tumor samples by claudin, 

basal, and luminal subtypes. Genes within each signature were clustered using average linkage 

on Cluster 3.0. Significance across gene signature z scores was calculated using Student’s t test. 

Cytokines and chemokines were identified using a RegEx search to capture all members of the 
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molecular families (Supplemental Table 7). Volcano plots were produced using Bonferroni-

adjusted Student’s t test P values, and fold change was calculated using normalized RSEM 

expression values. NF-κB gene signatures were accessed through Molecular Signatures Database 

(MSigDB) or compiled by the Broad Institute. GSEA software was used to produce enrichment 

plots (http://www.broad.mit.edu/gsea/)95. UMUC7 and UMUC9 cell line data were accessed 

through GEO data sets GSE48124 and GSE47993, respectively. Expression values were mean 

collapsed onto genes. Gene signatures were compiled on the basis of existing gene lists. 

Significance was calculated by collapsing gene signatures into z scores as described above, and 

2-tailed Student’s t tests were performed across gene signatures. 

TCR and BCR gene segment expression analysis. Expression levels of 353 BCR gene 

segments and 240 TCR gene segments were determined for TCGA bladder tumor samples with 

available TCGA mRNA-sequencing data and survival data using bedtools (version 2.17.0). Gene 

expression values were normalized to the upper quartile of total reads within a sample as 

previously described126. Survival analyses were performed using a Cox PH model to derive P 

values and coefficients for each gene segment using the Cox PH function in the survival package 

in R. The number of gene segments that were significantly associated with improved survival (P 

< 0.05 and coefficient <0) was calculated for each bladder tumor subtype. Null distributions 

describing the expected number of prognostic gene segments for each subtype were estimated 

with 95% CIs according to the bootstrap method previously published by our group91. 

Fisher’s exact test was used to compare the number of BCR segments and TCR segments 

significantly associated with improved survival among all subtypes. 

Analysis of rearranged BCR repertoires using VDJician.  
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The VDJician software accepts mRNA-sequencing data mapped to the genome as input 

and builds a deBruijn graph of read pairs that map to IgH loci or have similarity with germline 

IgH alleles as well as all unmapped reads. The graph is traversed exhaustively, resulting in a set 

of putative contigs. Anchor sequences near the 3′ end of V segments and the 5′ end of J segments 

are identified in an up-front indexing step. If a contig contains a sequence within a configurable 

distance of a V anchor and a J anchor, the anchors are a reasonable distance apart, and conserved 

amino acids that typically bind a CDR3 segment are present (cysteine and tryptophan for IgH), 

the contig is considered a candidate. The original set of reads is mapped to candidate contigs, 

which are then further filtered on the basis of coverage and read pair information. VDJician 

outputs a final set of contigs along with alignments of the original reads mapped to these contigs. 

This output was passed to RSEM for transcript quantification. The total BCR count was 

calculated by summing the read count values for all predicted BCR sequences for each sample. 

Evenness was calculated by dividing the Shannon-Wiener diversity index by the number of BCR 

sequences for each sample (example expression in R): -sum( (read count/sum(read count)) * 

log(read count/sum(read count)) ) )/log(number of BCR sequences). P values were determined 

using a Mann-Whitney U–Wilcoxon test. 

Neoantigen prediction.  

The bladder cancer data set used for neoantigen prediction consisted of 289 samples with 

available TCGA mRNA-sequencing data, exome-sequencing data, and tumor-specific mutation 

annotation data102. Neoantigens were predicted using a bioinformatics pipeline similar to that 

developed by Rajasagi et al.28. Tumor-specific single nucleotide variant annotation data were 

downloaded from the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org). Pysam 
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was used to determine RNA-sequencing read coverage of missense mutations, and bedtools 

(version 2.17.0) was used to determine the exome-sequencing read coverage of missense 

mutations. Nine- and ten-mer peptides derived from 3 ORFs with all possible combinations of 

missense mutations that overlap the genomic location of peptide in the ENCODE reference 

transcript set were considered in the peptide generation pipeline. DNA sequences corresponding 

to peptides were retrieved and translated in silico into protein sequences. The expression levels 

of each peptide generated were determined by the lowest missense mutation RNA-sequencing 

read coverage. PHLAT was used to identify the HLA class I (HLA-A, HLA-B, HLA-C) type of 

each tumor sample127. Binding affinity to MHC molecules expressed by the tumor for all 

possible 9- and 10-mer peptides generated from missense mutations was predicted using 

NetMHCpan (version 2.8). Binding affinity of peptides to null alleles, alternatively expressed 

alleles, and alleles not supported by NetMHCpan were not predicted. Peptides were then filtered 

by their binding affinities (IC50 nM) to each class I allele in the tumor sample’s HLA type and 

RNA expression level of the predicted source transcript(s). Peptides with an IC50 value of less 

than 150 nM for at least 1 class I allele and RNA read support of at least 2 reads were considered 

predicted neoantigens. 

Statistics.  

A P value of less than 0.05 was considered significant across all analyses performed. 

SigClust statistical analysis software was used to determine significance in Figure 4.1A and 

Supplemental Figure 1A. A Fisher’s exact test was used in Figure 4.1B; Figure 4.2, A and B; and 

Supplemental Table 2. A Pearson’s correlation was performed in Figure 4.1B. A log-rank test of 

survival difference was performed in Figure 4.1C (Bonferroni-corrected) and Figure 4.6B. A 
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Bonferroni-corrected 2-tailed Student’s t test was performed in Figure 4.3A; Figure 4.7, A, B, D, 

and F; Supplemental Figure 1, B–E; and Supplemental Figure 4. Cox PH modeling was 

performed in Figure 4.4, A and B, and Figure 4.5, A–D. A Mann-Whitney U–Wilcoxon test with 

an FDR multiple testing correction was performed in Figure 4.5, E and F. A Spearman’s rank 

correlation was used in Figure 4.6B, Figure 4.7E, and Supplemental Figure 5C. A 1-way 

ANOVA was used in Figure 4.6C. GSEA significance testing was used in Figure 4.7C. SAM 

significance testing was performed in Supplemental Figure 3A and Supplemental Tables 4 and 5. 

IPA significance testing was used in Supplemental Figure 3B and Supplemental Tables 6 and 8. 

Study approval. 

 No experiments included in the manuscript used animal or human subjects and, as such, 

did not require IRB approval. 

Supplemental material 

All supplemental figures and tables cited in Chapter 4.1 are listed according to the 

original published manuscript, which can be found at https://insight.jci.org/articles/view/85902. 

4.2 Immunogenomic characterization of Triple Negative Breast Cancer Brain 
Metastases 

4.2.1 Introduction 

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high 

metastatic potential. African-American women are more likely to present with TNBC than 

Caucasian women. Once metastatic, half of patients with TNBC will develop brain metastases 

(BM)128. Regardless of treatment strategy, African-American women have shorter survival times, 
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highlighting disparities in TNBC incidence and clinical outcomes129,130. While TNBC BM are 

routinely treated with radiotherapy, early responses are not durable and expected survival 

remains less than one year131. There are no approved systemic therapies to treat TNBC BM. 

Against this background, monoclonal antibodies that boost adaptive immune responses have 

yielded durable responses in incurable solid tumors, including metastatic TNBC132,133. To 

enhance this activity, novel strategies combine co-stimulatory agonists with co-inhibition 

repressors, including targeting 4-1BB to increase cytolytic T-lymphocyte activity134. To target 

immune suppressive phenotypes of tumor-associated macrophages, small molecule inhibitors 

against CSF1R are in early phase clinical trials. Some CSF1R inhibitors, such as BLZ945, cross 

the blood brain barrier (BBB) and are active against preclinical brain tumor models135. 

Radiotherapy not only transiently disrupts the BBB, but also synergizes with immunotherapy in 

murine models of several cancers, including breast cancer136. 

Despite the early successes of immunotherapy and synergy with radiotherapy, patients 

with brain metastases have largely been excluded from immunotherapy trials. Reasons for 

exclusion include several assumptions: (1) monoclonal antibodies cannot cross the BBB, (2) 

immune responses in the immune-privileged CNS may be prohibitively toxic, and (3) evidence 

of productive immune responses against TNBC BM is lacking.  

Both the challenge of the blood brain barrier and the paucity of data on the biologic 

underpinnings and immune response of BCBM contribute to inadequate therapies for this disease. 

We sought to characterize the genomic and immune landscape of TNBC BM to foster the 

development of effective brain permeable anti-cancer agents, including immunotherapy. Our 

result challenge these assumptions by showing: (1) immune infiltration of TNBC BM is 
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correlated with improved patient survival, (2) immune signatures including a T cell signature 

correlate positively with improved survival in brain metastases, and (3) gene signatures 

associated with response to immunotherapy are upregulated in TNBC BM. Collectively, our data 

support exploration of immunotherapy in patients with TNBC BM.  

4.2.2 Results 

Mutational Analysis of TNBC brain metastasis and primary breast tumors. 

We evaluated the specific mutations present in TNBC brain metastases and primary 

tumors that metastasize to the brain via whole exome sequencing (Figure 4.9). Among the brain 

metastases and primary tumors, TP53 was found to be one of the most commonly mutated genes, 

a hallmark of TNBC. Notably, many other genes associated with DNA damage repair processes 

were also mutated in brain metastases, including ATM and ATR. This is of interest as currently 

ATM and ATR inhibitors are in clinical development and several inhibitors of these pathways 

are brain permeable. In addition, several genes associated with PI3K signaling were mutated in 

brain metastases tissues, including PIK3R1; in primary tumors, PIK3R1 and PIK3CA. This 

finding is also clinically-relevant as inhibitors of the PI3K and AKT pathway are in development 

and brain permeable. Finally, FAT1, which functions as an adhesion molecule and/or signaling 

receptor likely important in developmental processes and cell communication, and GNAS were 

altered in both brain and primary tumor tissues. We believe that further exploration inhibiting 

these pathways in preclinical models of TNBC would be prudent as a next step in investigation.  
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Figure 4.9 Genomic characterization of primary breast and brain metastasis tumors. Brain 
metastases (A) and primary tumor (B) samples with matched normal tissues were analyzed for 
single nucleotide mutations, small insertions/deletions, and copy number variations. Oncoprints 
of genes that were identified to be mutated in at least 21% of brain metastases and primary breast 
tumors, respectively. The copy number variation landscape analysis was also performed, but no 
significant differences were found between primary breast tumors and brain metastases. 

Lower immune gene signature expression in brain metastasis compared with primary breast 

tumors. 

 To characterize the immune microenvironment of primary breast tumor and breast cancer 

brain metastasis, the expression levels for 56 immune signatures were calculated (Figure 4.10). 

Globally, immune gene signatures were lower in brain metastases (*P < 0.05, **P < 0.01, and 

*** P < 0.001). Notably, gene signatures involved in B cell signaling, dendritic cells, mast cells, 

T central memory cell, T effector memory cells and regulatory T cells were statistically lower in 

brain metastases tissues compared to primary TNBC that eventually metastasized to the brain. 

On the contrary, an IPRES-derived responder signature was higher in brain metastases tissues, 

while the non-responder signature was higher in primary TNBC’s. This observation supports our 
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hypothesis that breast cancer brain metastases will respond to immune checkpoint blockade, 

perhaps more robustly than response of primary tumors, supporting continued evaluation of 

immunotherapy in TNBC brain metastases in the preclinical and clinical settings.  

 

Figure 4.10 Immune gene signatures are differentially expressed between brain metastasis and 
primary breast tumors. 56 immune gene signatures were used for this analysis. Boxplots show 
most significantly different signatures. The mean expression levels of all genes in the signature 
defines the signature score for a given tumor. Significance was determined by 1-way ANOVA 
(*P < 0.05, **P < 0.01, and *** P < 0.001). Many signatures (IGG Cluster, B cell, effector 
memory T cell, dendritic cells) were lower in brain metastases compared to primary tumors, 
indicating the brain metastases are less immune infiltrated. A signature of responsiveness to PD-1 
inhibition in melanoma was higher in brain metastases compared with primary tumors. DC, 
dendritic cell; aDC, activated dendritic cell; iDC, intestinal dendritic cell; pDC, plasmacytoid 
dendritic cell; Tem, effector memory T cell; Tcm, Central memory T cells; Tgd, Gamma delta T 
cells; TReg, Regulatory T cell; TIC, tumor initiating cell; IPRES derived responder and non-
responder to PD1 inhibition; Th1, T helper type 1 cells; Th2, T helper type 2 cells; Th17, T 
helper type 17 cells; TFH, T follicular helper cells; EMT, epithelial-to-mesenchymal transition. 
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T cell receptor is less diverse with higher reads counts in primary tumors compared to brain 

metastases.  

An antigen-driven T cell response would be expected to lead to clonal expansion of T 

cells, causing decreased diversity of TCR repertoires. To evaluate this concept in our samples, 

we used MiXCR to infer and quantify expression levels of rearranged TCR V(D)J sequences 

from RNA-seq data. The result (Figure 4.11) clearly shows a decreased diversity of T cell 

receptor with increased read count in in primary tumors compared to brain metastases (*P < 0.05 

and **P < 0.01), consistent with the presence of less antigen-driven T cell responses in brain 

metastases than in primary tumors. 

 

Figure 4.11 TCR segment expression is significantly different between tumors and brain 
metastasis. Number of reads supporting rearranged TCR V(D)J sequence repertoires and 
repertoires diversity were analyzed by tissue. In tumors T-cell repertoires were less diverse with 
higher counts compared to brain metastases. The difference was statistically significant using 
Wilcoxon rank-sum test for both diversity and counts in T-cells, shown in A and B. 
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Differential gene and pathway expression between primary breast and brain metastasis tumors 

Next, we evaluated differential gene expression between TNBC brain metastases tissues 

and primary TNBC that eventually metastasize to the brain (Figure 4.12A). From this analysis, 

we found that many genes involved in neuronal processes were higher in the brain metastases 

compared to primaries (i.e. GFAP – astrocyte marker, MOBP – involved in myelin sheath, 

GAP43 – involved in neuronal plasticity). We also used single sample GSEA (ssGSEA) to 

evaluate differentially expressed signaling pathways between TNBC brain metastases and 

primary tumors (Figure 4.12B). Our results also illustrated many neurologic signaling pathways 

were differentially-expressed in brain metastases tumors; oncogenic signatures such as BRCA1, 

AKT, mTOR, and KRAS were differentially expressed in primary tumors while RB, cyclic AMP, 

mTOR and EIF4E were differentially expressed in brain metastases. 
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Figure 4.12 Differentially expressed genes and pathways between primary breast and brain 
metastasis tumors. (A) Volcano plot of log2 fold change of gene expression levels with -log10 
unadjusted P value of gene expression shown. The 20 genes with lowest P values were labeled. 
Many genes involved in neuronal processes were high in brain metastases as compared to 
primary breast tumor, indicating possible normal brain tissue admixed within brain metastases. 
(B). Volcano plots of log2 fold change of ssGSEA canonical pathway and oncogenic signature 
expression values with –log10 unadjusted P value of gene expression were analyzed. The 
oncogenic signature, with 20 lowest P values were labeled. Oncogenic signatures such as 
BRCA1, AKT, CtIP, and KRAS were differentially expressed in primary tumors while MTOR, 
EIF4E, and RB family members were differentially expressed in brain metastases. 

Immune signatures correlate with improved survival in primary tumors and to brain metastases. 

We examined the prognostic implications of immune gene signatures in TNBC brain 

metastases and primary tumors using Cox proportional hazards regression with 

immunogenomics features as predictor variables and overall survival as the response variable. A 

forest plot of Cox PH ratios of a subset is shown, with a 95% CI indicated around the values 

(Figure 4.13). Immune signatures such as macrophage, Th1 cell, IPRES responder, and low EMT 

correlated positively with survival in primary tumors (Figure 4.13A) and immune signatures 
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such as central memory T cell and IPRES responder correlated positively with survival when 

expressed in brain metastases tissues (Figure 4.13B). The positive correlation of IPRES 

responder signature with survival suggest brain metastases might respond well to 

immunotherapies such as anti-PD-1 therapy. 

 

Figure 4.13 Prognostic immune gene signatures in primary breast tumors and brain metastasis. 
Cox PH ratios were determined for immune gene signatures correlated with survival in primary 
breast tumors (A.) and brain metastases (B.). Shown are Forest plots of Cox PH ratios of a subset 
that are significantly correlated, with a 95% CI indicated around the values. 

Neoantigen burden in primary tumors and brain metastases. 

Neoantigens are peptides derived from tumor specific mutations and are presented by 

MHC molecules4. They can drive robust antitumor T cell responses4. Neoantigens are predicted 

using whole-exome sequencing of paired tumor and matched normal samples, and expression is 

confirmed by using RNA expression data. The predicted neoantigen number has been positively 

associated with favorable clinical outcomes in many tumor types118. Our neoantigen prediction 

results suggest that the neoantigen burden is higher in primary tumors compared with brain 
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metastases samples (Figure 4.14). The low level of immune infiltration in brain metastases 

samples might explain the lower level of antigen-driven T cell response in brain metastases. 

 
Figure 4.14 Predicted neoantigen burden in breast cancer brain metastases. Stacked bar plot 
showing the number of predicted neoantigens in each tumor sample with a predicted IC50 of less 
than 50 nm (dark purple bars), less than 150 nm (dark green bars), and l3e0ss than 500nm 
(yellow bars). Blue line and right y axis show the number of somatic mutations per tumor. 

4.2.3 Discussion 

Our results illustrate several key findings and enrich our understanding of the genetic and 

immunologic landscape of TNBC brain metastases. First, we illustrate a lower immune gene 

signature globally in TNBC brain metastases when compared to primaries that eventually 

metastasize to the brain. We also learned that (1) the capacity to respond to immunotherapy (as 

illustrated by higher expression of the IPRES-derived responder signature in brain metastases 

tissues), coupled with (2) a higher mutational and neoantigen burden (3) improved prognosis 

among those whose tissues illustrate higher expression of the IPRES- derived responder 

signature all lead to the conclusion that immunotherapy to treat TNBC brain metastases is a 
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promising therapeutic strategy worthy of continued investigation. We will continue to investigate 

immunotherapy in preclinical TNBC intracranial models, and ultimately, in patients with 

progressive TNBC brain metastases. While we found several neuronal genes and pathways with 

increased expression in TNBC brain metastases, we are unable to ascertain from bulk tissue 

RNA sequencing data the contribution of non-malignant neuronal tissue to these results. As such 

we do not interpret them as necessarily indicative of TNBC biology. In addition, our WES data 

points to mutations in several DNA damage repair pathways in TNBC brain metastases, thus 

combination immunotherapy with PARP inhibitors is of interest, and has shown respectable 

activity in extracranial metastatic TNBC137. Thus, we have developed and have approval for a 

phase II study of the PARP inhibitor, niraparib, in combination with the PD1 antibody (TSR-042) 

to treat patients with stable or progressive TNBC brain metastases. This analysis is the largest 

genomic and immune analysis of TNBC brain metastases to date. Our results provide valuable 

insight into the molecular underpinnings of this aggressive disease and will certainly lead to 

additional preclinical work and clinical trials for patients with TNBC brain metastases. 

4.2.4 Methods 

Data processing.  

RNA-seq pipeline: The mRNA sequencing data for 49 tumor samples were aligned to 

hg19 reference genome using MapSplice 2.0.1.962. Gene expression was quantified using RSEM 

1.1.13138. Gene expression values were upper quartile normalized, log2 transformed. Missing 

values were converted to zero.  

Whole exome pipeline. 



 

 115 

 The Whole Exome Sequencing Data for 33 tumor and matched normal samples were 

aligned to hg19 reference genome using BWA 0.7.9a139. The generated bam files were realigned 

with ABRA 0.96140. Somatic variant calling results generated from Strelka 1, UNCeqR 0.1.14, 

and Cadabra 0.96 were merged together and annotated with SnpSift 1.3.4 and snpEff 3.363,85,141–

143. Annotation information was retrieved from COSMIC 20150210, ExAC 0.3, and dbSNP 

132144–146. 

Genomic mutation analysis.  

Pysam 0.8353 was used to parse mutation information from VCF files generated by the 

whole exome pipeline. Circos plot was generated using R package circlize147. Oncoprint figures 

were generated using mutation information and R package ComplexHeatmap148. 

Immune signature expression analysis.  

The expression values of 56 immune signatures were calculated by averaging the 

expression values of genes in the signature. Genes with less than 70% expression across all 

samples were filtered out. Significance was determined by 1-way ANOVA. 

Analysis of rearranged TCR and BCR repertoires.  

MiXCR 2.1.2 was used for inference of TCR repertoires98. And V'DJer 0.12 was used for 

estimation of BCR repertoire149. V'DJer 0.12 outputs a set of assembled contigs along with a bam 

file that contains alignment information of the original reads to these contigs. The output files 

were passed to salmon 0.13.1 for transcript quantification150. Evenness was calculated by 
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dividing the Shannon-Wiener diversity index by the number of TCR or BCR sequences for each 

sample. P values were determined using a Wilcoxon Rank Sum test. 

Neoantigen prediction.  

The data set used for neoantigen prediction consisted of 26 samples with available paired 

tumor and normal exome-sequencing data along with tumor mRNA-sequencing data. 

Neoantigens derived from DNA variants were predicted using a bioinformatics pipeline similar 

to that developed by Rajasagi et al28. Pysam 0.83 was used to determine RNA-sequencing read 

coverage and exome-sequencing read coverage of missense mutations53. Eight-, Nine-, ten-, and 

eleven-mer peptides derived from 3 ORFs with all possible combinations of missense mutations 

that overlap the genomic location of peptide in the GENCODE reference transcript set were 

considered in the peptide generation pipeline52. DNA sequences corresponding to peptides were 

retrieved and translated in silico into protein sequences. The expression levels of each peptide 

generated were determined by the lowest missense mutation RNA-sequencing read coverage. 

PHLAT was used to identify the HLA class I (HLA-A, HLA-B, HLA-C) type of each tumor 

sample127. Binding affinity to MHC molecules expressed by the tumor for all possible 9- and 10-

mer peptides generated from missense mutations was predicted using NetMHCpan (version 

4.0)20. Binding affinity of peptides to null alleles, alternatively expressed alleles, and alleles not 

supported by NetMHCpan were not predicted. Peptides were then filtered by their binding 

affinities (IC50 nM) to each class I allele in the tumor sample’s HLA type and RNA expression 

level of the predicted source transcript(s). Peptides with an IC50 value of less than 150 nM for at 

least 1 class I allele and RNA read support of at least 2 reads were considered predicted 

neoantigens. 
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Differential gene expression and pathway analysis.  

The differential gene expression analysis was performed using DESeq294. The 

differential pathway analysis was performed using Single Sample GSEA95. Comparison between 

brest cancer and brain metastases was done using MSigDB oncogenic gene signatures151. 

Survival analyses.  

Survival analyses was performed using Cox Proportional-Hazards model for brain and 

primary breast tumors and brain metastasis. Hazard ratios were derived from the Cox 

proportional hazards model for 56 immune signatures, gender, and race. Features with a P value 

less than 0.05 were reported. 
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CHAPTER 5 CONCLUDING REMARKS 

In this dissertation, we presented two algorithms that were developed to facilitate the 

identification of neoantigens as well as bioinformatics analyses of bladder tumors and breast 

cancer brain metastases. While different studies were made for each chapter and different 

bioinformatics algorithms and tools were involved, the central goal remains the same: to identify 

tumor specific neoantigens using computational analysis of genomics data. For splice variant 

neoantigens, we developed NeoSplice for specific and comprehensive prediction of splice variant 

neoantigens using tumor and matched normal RNA-seq data. To access the immunogenicity of 

tumor specific antigen, we developed a gradient boosting model for predicting immunogenicity 

using peptide-intrinsic features and demonstrated that out of frame neoepitopes could provide 

antitumor immunity. We also performed comprehensive genomic and immune characterizations 

to gain novel insight about immunogenomic features of bladder tumors and triple-negative breast 

cancer brain metastases. 

In general, we have made key progress in the accurate identification of neoantigens that 

are potentially therapeutic targets. Accurate identification of splice variant neoantigens will 

expand therapeutic target space for tumors, especially for those tumors like AML where 

neoantigens derived from SNVs and Indels are few. Understanding of peptide-intrinsic features 

of predicted tumor antigens that could discriminate epitopes with therapeutic will improve the 

accuracy of identification of therapeutic effective neoantigens. We expect the 
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work described in this dissertation will become more important as additional neoantigen specific 

therapeutic platforms enter clinical trials.  
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