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ABSTRACT

Jin Wang: Semiparametric Single-Index Models for Optimal
Treatment Regimens With Censored Outcomes

(Under the direction of Danyu Lin and Donglin Zeng)

There is a growing interest in precision medicine, where a potentially censored survival time

is often the most important outcome of interest. To discover optimal treatment regimens for

such an outcome, we propose a semiparametric proportional hazards model by incorporating

the interaction between treatment and a single index of covariates through an unknown

monotone link function. This model is flexible enough to allow non-linear treatment-covariate

interactions and yet provides a clinically interpretable linear rule for treatment decision. We

propose a sieve maximum likelihood estimation approach, under which the baseline hazard

function is estimated nonparametrically and the unknown link function is estimated via

monotone quadratic B-splines. We show that the resulting estimators are consistent and

asymptotically normal with a covariance matrix that attains the semiparametric efficiency

bound. The optimal treatment rule follows naturally as a linear combination of the maximum

likelihood estimators of the model parameters. Through extensive simulation studies and an

application to an AIDS clinical trial, we demonstrate that the treatment rule derived from

the single-index model outperforms the treatment rule under the standard Cox proportional

hazards model.

We extend the proposed method to transformation models so that optimal treatment rules

can be applied to flexible hazards relationships. The transformation model introduces new

challenges to both the estimation procedure and the asymptotic properties of the estimators.

We design an estimation procedure with the EM algorithm by recognizing the transformation

function as the distribution function of a corresponding missing random variable. We prove
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that the resulting estimators are consistent and asymptotically normal, with the covariance

matrix estimated using the profile likelihood theory. We demonstrate the performance of

the transformation single-index model in simulation studies. We show that the proposed

treatment rule under the single-index transformation model is more effective than that under

the single-index proportional hazards model in delaying the disease relapse of large-bowel

carcinoma in a real data analysis.

With improvements in technology, researchers are able to collect many clinical and genetic

variables; not all the covariates may contribute to the prediction of the optimal treatment

rules. We apply the adaptive Lasso penalty to the log-likelihood of the proposed model and let

the data automatically determine the important predictors in the optimal treatment regime.

We propose a simple computational approach by quadratic approximation of the original

objective function and utilization of the variable selection software package available for the

proportional hazards model. We show that the proposed variable selection approach displays

the oracle property. The performance of the variable selection procedure is demonstrated in

extensive simulations and the analysis of a multi-cancer clinical trial.
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CHAPTER 1: INTRODUCTION

There is tremendous variation in the way patients respond to medications, in terms of

both toxicity and treatment efficacy. Thus, when a treatment has an average positive effect in

a population, its benefit may vary across patients according to certain baseline characteristics.

Such phenomenon is demonstrated in many studies.

For example, the International Breast Cancer Study Group launched a randomized trial to

evaluate the role of adjuvant chemotherapy preceding treatment with tamoxifen for patients

with lymph node-negative disease (Castiglione-Gertsch et al., 2002). This study showed that,

in terms of the disease–free survival time, postmenopausal patients with lymph node-negative

breast cancer benefited significantly from adjuvant chemotherapy if their cancer type was

endocrine–nonresponsive. If their cancer was endocrine–responsive, they obtained no benefit

from the combination treatment compared with tamoxifen alone.

In a more extreme situation, a treatment may be beneficial to some patients but harmful to

others (Neumann et al., 2001). Researchers aimed to investigate whether or not treatment of

C pneumoniae infection with antibiotics prevented restenosis after coronary stent placement.

The findings showed that roxithromycin reduced the rate of restenosis after coronary stenting

in patients with high C pneumonia titres, but it performed worse than placebo for patients

with negative C pneumoniae titres. In other words, non-selective use of roxithromycin is

inadequate for prevention of restenosis after coronary stenting.

Instead of administering the same treatment regimen to all patients with a particular

disease, precision medicine aims to maximize clinical benefits by steering patients to the

right drug at the right dose at the right time according to their clinical and genetic profiles

(Lavori and Dawson, 2000; Hamburg and Collins, 2010). In various applications in different

fields, a treatment can represent not only a drug or a dose, but also a policy, an intervention,
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or a strategy. For example, economists are interested in predicting the outcome of each

labor market program and suggesting an optimal labor market for each unemployeed job

seeker (Behncke et al., 2009). Political science researchers are interested in the estimation

of heterogeneous effects of different voter mobilization strategies (Imai et al., 2013). In this

work, we design a novel approach to flexibly quantify the treatment-covariate interaction and

guide patients to their optimal treatment.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review all the literatures related to our topic, and outline our proposed

work.

In section 2.2, we review the existing works on estimation of the optimal treatment

strategy with non-censored and censored outcomes. In section 2.3, we review the single index

model and its application to data with censored outcomes. We conclude this chapter by

outlining the proposed work in section 2.4.

2.1 Statistical Methods for Censored outcomes

There have been extensive studies on estimating the optimal treatment regimes for non-

censored outcomes. There are three main types of approaches: Q-learning (Watkins, 1989;

Watkins and Dayan, 1992; Murphy, 2005; Song et al., 2015), A-learning (Murphy, 2003;

Robins, 2004), and model-free or policy search methods (Robins et al., 2008; Orellana et al.,

2010).

Q-learning and A-learning estimate optimal dynamic treatment rules based on regression-

type modelling. Q-learning involves postulating a regression model of the outcome of interest

on treatment assignment and patient covariates, with the optimization steps implemented

through a backward recursive fitting procedure. A-learning involves the same recursive

strategy, but requires only a model on the contrasts among outcome with different treatments

and the propensity scores, which are the probabilities of observed treatment assignment

conditional on the patient information at each decision point. This may make A-learning

more robust to model misspecification than Q-learning. Compared to Q-learning, which could

be sensitive to model misspecification, A-learning is doubly robust in that the corresponding

estimating equations are asymptotically unbiased as long as either the propensity score and
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the outcome model is correctly specified.

A concern with both Q-learning and A-learning is the potential model misspecification on

the regression relationship between the outcome and predictors. Zhao et al. (2009) proposed

to use nonparametric regression techniques for the estimation of optimal rules. However, the

resulting optimal rules may be complicated functions of patient information, which could

be potentially high dimensional. As a result, the estimated treatment regime is difficult to

interpret.

Alternatively, researchers have proposed the policy search methods. This class of methods

directly derives and maximizes a consistent estimator for the value function over a restricted

class of treatment regimes indexed by a finite number of parameters. Zhang et al. (2012)

used the policy search approach to estimate the optimal regime within a prespecified class of

treatment regimes by directly maximizing a doubly robust augmented inverse probability

weighted estimator for the population summary of outcome over all regimes in the class.

Zhang et al. (2013) adapted this approach to two or more decision point. The optimization

step in such methods is usually challenging because the value estimator is non-smooth,

which needs to be solved by non-standard optimization techniques. Zhao et al. (2012) and

Zhang et al. (2012) recast this problem into the weighted classification framework and used

readily-available classfication packages to solve the transformed problem. Matsouaka et al.

(2014) employed a kernel smoothing technique to estimate non-parametrically the conditional

mean for the difference of the potential outcomes in a subgroup of patients and derived its

associated treatment regime.

Recently, there have been many other machine learning methods proposed to quantify

the patient heterogeneity in response to treatment. For example, Wager and Athey (2018)

extended the random forest method (Breiman, 2001) to model the heterogeneous treatment

effects and estimate the optimal treatment regime. By building a large number of regression

trees and averaging their predictions with data-driven weights, the random forest method

allows for flexible modeling of potentially high dimensional interactions. Targeted Learning
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(Van der Laan and Rose, 2011) was used in van der Laan and Luedtke (2015) and Luedtke

and van der Laan (2016) to derive the two time-point treatment rule that maximizes the

mean outcome of interest under the dynamic treatment regime. The authors proposed data

adaptive estimators of the optimal treatment regime by sequential loss-based learning using

both the blip function and weighted classification frameworks.

For all the machine learning methods discussed above, there are several limitations.

First, black-box algorithms cannot completely provide interpretable understanding of the

interactions between treatment and covariates. Second, there is lack of inference for assessing

the distribution properties of the estimators. Risk bounds are usually crude for practical

trials of small size. Third, the recently developed inference on estimators is not necessarily

the most statistically efficient. Last, machine learning methods incorporate the censored

outcomes by optimizing the truncated mean, optimizing survival probability at a prespecified

time point, or discretizing the outcomes, which do not fully use all the information available.

It is necessary for these methods to model the censoring distribution.

2.2 Statistical Methods for Personalized Medicine

2.2.1 Personalized Treatment Regime with Non-censored Outcomes

There have been extensive studies on estimating the optimal treatment regimes for non-

censored outcomes. There are three main types of approaches: Q-learning (Watkins, 1989;

Watkins and Dayan, 1992; Murphy, 2005; Song et al., 2015), A-learning (Murphy, 2003;

Robins, 2004), and model-free or policy search methods (Robins et al., 2008; Orellana et al.,

2010).

Q-learning and A-learning estimate optimal dynamic treatment rules based on regression-

type modelling. Q-learning involves postulating a regression model of the outcome of interest

on treatment assignment and patient covariates, with the optimization steps implemented

through a backward recursive fitting procedure. A-learning involves the same recursive

strategy, but requires only a model on the contrasts among outcome with different treatments
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and the propensity scores, which are the probabilities of observed treatment assignment

conditional on the patient information at each decision point. This may make A-learning

more robust to model misspecification than Q-learning. Compared to Q-learning, which could

be sensitive to model misspecification, A-learning is doubly robust in that the corresponding

estimating equations are asymptotically unbiased as long as either the propensity score and

the outcome model is correctly specified.

A concern with both Q-learning and A-learning is the potential model misspecification on

the regression relationship between the outcome and predictors. Zhao et al. (2009) proposed

to use nonparametric regression techniques for the estimation of optimal rules. However, the

resulting optimal rules may be complicated functions of patient information, which could

be potentially high dimensional. As a result, the estimated treatment regime is difficult to

interpret.

Alternatively, researchers have proposed the policy search methods. This class of methods

directly derives and maximizes a consistent estimator for the value function over a restricted

class of treatment regimes indexed by a finite number of parameters. Zhang et al. (2012)

used the policy search approach to estimate the optimal regime within a prespecified class of

treatment regimes by directly maximizing a doubly robust augmented inverse probability

weighted estimator for the population summary of outcome over all regimes in the class.

Zhang et al. (2013) adapted this approach to two or more decision point. The optimization

step in such methods is usually challenging because the value estimator is non-smooth,

which needs to be solved by non-standard optimization techniques. Zhao et al. (2012) and

Zhang et al. (2012) recast this problem into the weighted classification framework and used

readily-available classfication packages to solve the transformed problem. Matsouaka et al.

(2014) employed a kernel smoothing technique to estimate non-parametrically the conditional

mean for the difference of the potential outcomes in a subgroup of patients and derived its

associated treatment regime.

Recently, there have been many other machine learning methods proposed to quantify
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the patient heterogeneity in response to treatment. For example, Wager and Athey (2018)

extended the random forest method (Breiman, 2001) to model the heterogeneous treatment

effects and estimate the optimal treatment regime. By building a large number of regression

trees and averaging their predictions with data-driven weights, the random forest method

allows for flexible modeling of potentially high dimensional interactions. Targeted Learning

(Van der Laan and Rose, 2011) was used in van der Laan and Luedtke (2015) and Luedtke

and van der Laan (2016) to derive the two time-point treatment rule that maximizes the

mean outcome of interest under the dynamic treatment regime. The authors proposed data

adaptive estimators of the optimal treatment regime by sequential loss-based learning using

both the blip function and weighted classification frameworks.

For all the machine learning methods discussed above, there are several limitations.

First, black-box algorithms cannot completely provide interpretable understanding of the

interactions between treatment and covariates. Second, there is lack of inference for assessing

the distribution properties of the estimators. Risk bounds are usually crude for practical

trials of small size. Third, the recently developed inference on estimators is not necessarily

the most statistically efficient. Last, machine learning methods incorporate the censored

outcomes by optimizing the truncated mean, optimizing survival probability at a prespecified

time point, or discretizing the outcomes, which do not fully use all the information available.

It is necessary for these methods to model the censoring distribution.

2.2.2 Personalized Treatment Regime with Failure Outcomes

Potentially censored survival times, such as times to disease occurrence and death, are

clinically more important than non-censored outcomes, but more challenging to deal with

statistically. The estimation of optimal treatment regimes dealing with potentially censored

outcomes is relatively less developed. To illustrate the methods, we define a few notations.

Let T denote the survival time, A the treatment indicator (with values 1 versus 0), and X

a p-vector of baseline covariates. The optimal treatment regime could be constructed by

estimating the treatment-covariate interaction in the Cox (1972) proportional hazards model.
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In this framework, the hazard function of T conditional on A and X

λpt|A,Xq “ λptq exptαTX ` AβTXu, (2.1)

where α and β are unknown regression parameters, and λp¨q is an arbitrary baseline function.

However, parametric forms of interactions are inflexible and likely to be misspecified due to

the inherent complexity of the interactions between treatment and covariates. The resulting

treatment rule suffers from the modeling bias.

Goldberg and Kosorok (2012) generalized the Q-learning (Zhao et al., 2009, 2011) method

by modeling the completely observed survival time and adjusting for censoring by inverse-

probability-of-censoring weighting (Robins et al., 1994). Suppose the censoring time C P r0, τ s

with probability 1. Let T be the maximal number of decision time-points for a given multistage

time-dependent decision problem and T denote the random number of stages for an individual

(T ă T ). For each t “ 1, ¨ ¨ ¨ , T , let Rt´1 denote the length of the interval between decision

time-points t´ 1 and t with R0 “ 0. The goal was to find a policy π, which is defined as a

sequence of deterministic decision rules, π1, ..., πT , that maximizes the truncated-by-τ mean

survival time

Eπ

«

max
˜

T
ÿ

t“1
Rt, τ

¸ff

.

They developed a methodology to solve the backward recursion in reinforcement learning

when the number and timing of stages are flexible and derived the associated finite sample

risk bounds on the generalization error of the learned treatment regime.

Zhao et al. (2015) extended the outcome-weighted learning approach (Zhao et al., 2012)

to accommodate potentially censored outcomes. They showed that maximization of the

mean survival time is equivalent to solving a weighted misclassification problem with weights

involving both the observed outcome and the inverse probability of censoring. They further

proposed a doubly robust version of outcome-weighted learning so that the obtained individ-

ualized treatment rule is consistent for the optimal rule if either the survival model or the
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censoring model is correct. In this way, it avoids potential model misspecification and the

numerical instability with high censoring rate in Goldberg and Kosorok (2012).

Adopting the outcome-weighted learning approach, Bai et al. (2017a) showed that opti-

mization of the patient survival probability could also be cast into the weighted classification

framework. They derived a doubly robust estimator for the value of a treatment regime,

and estimated the optimal rule using a value search method. This approach is extended

by Jiang et al. (2017) to more than one decision point. Jiang et al. (2017) proposed a

value-search method to maximize the survival probability to derive an optimal treatment

rule that maximizes the t-year survival probability, with potential multiple stages of decision

making. In this work, the authors introduced the inverse propensity score weighted (IPSW)

and augmented inverse propensity score weighted (AIPSW) Kaplan-Meier estimators of the

t-year survival probability, where the AIPSW estimator is doubly robust, which is consistent if

either the treatment assignment probability or the censoring distribution is modeled correctly.

Kernel smoothing techniques were used to smooth the estimator of the value before the

optimization step, which improved the finite sample performance of the treatment rule. In

both works, the time point at which the survival probability is optimized needs to be specified

before the analysis, which could be highly subjective and does not take into account the

complete survival profile. Jiang et al. (2017) extended Jiang et al. (2017) to maximize a

prespecified function of the survival function, including the truncated mean survival time and

median survival time, t´year survival probability as special cases. However, these quantities

are still a single summary measuring the survival performance and may be incomplete to

describe the whole picture of survival profiles.

Diaz et al. (2018) proposed methods for constructing an ensemble of decision functions

for the optimal rule with survival outcomes. These ensembles are linear combinations of

estimators from a user-supplied library, with the linear combination coefficients chosen

as the minimizer of the cross-validated risk. The authors proposed a doubly robust loss

function so that the estimated rules will remain optimal if either the survival time or the
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censoring distribution is modeled correctly. By the no-free-lunch theorems (Wolpert, 2002)

for supervised learning, the generalization error of ensembles constructed from a library were

shown to be smaller or at least equal to the error of any individual candidate in the library.

With a list of prespecified time points t1, ¨ ¨ ¨ , Ku, the time-to-event outcome T takes values

in t1, ¨ ¨ ¨ , KuY8, where T “ 8 denotes no event observed during time r0, Ks. The censoring

time C takes values in t1, ¨ ¨ ¨ , Ku. Due to the assumed longitudinal data structure, the exact

observation time is not used. Instead, information is only available on the patient status

at the prespecified time points. Although there are certain studies that use such follow-up

approach, in most of the clinical studies, the exact observed time is recorded. Throwing

such information away results in information loss and the obtained estimator is not the most

efficient one.

Kang et al. (2018) adapted an A-learning approach to estimate the optimal treatment

regime estimation for censored data using a flexible additive hazards regression model. The

additive hazard model allowed flexible baseline covariate effects in the control group and

gave a closed form estimator for the optimal treatment regime. The authors modified the

standard A-learning estimating equation (Robins et al., 1994) by introducing a time-dependent

propensity score, which is defined as the probability of receiving the treatment for patients at

risk conditional on their covariates. With the time-dependent propensity score, the estimator

was shown to have improved robustness against misspecification of the baseline covariate

effect model. A resampling method was proposed to estimate the asymptotic variance of

the estimator. Extensions of this method to the Cox proportional hazards model is possible.

However, the corresponding estimation is much more complicated and was not studied in

this paper.
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2.3 Single Index Models

2.3.1 Model and Estimation

The single index model was first proposed by Brillinger (1982) for flexible modeling of the

outcome on covariates in the linear regression setting. Let Y denote the outcome of interest,

X denote the covariates, and β denote the unknown coefficient. The ordinary least square

regression problem takes the form

Y “XTβ ` ε,

where Epε|Xq “ 0 and ε is independent and identically distributed for each observation.

Single index models were introduced to generalize linear regression by replacing the linear

predictor with a semi-parametric component:

Y “ ψpXTβq ` ε,

where Epε|Xq “ 0 and ψ is an arbitrary smooth function. For identifiability reasons, usually

it is required that ||β|| “ 1 and the first element of β is positive. Due to their flexibility and

interpretability of the coefficients, as well as the ability to model flexible interactions among

predictors, single index models have become increasingly popular in many scientific fields.

Compared to alternative fully-nonparmetric methods such as the additive model, single index

model effectively circumvents the curse of dimensionality.

There has been extensive research on the single model on the estimation procedure (Stoker,

1986; Powell et al., 1989; Duan and Li, 1991; Ichimura, 1993; Hardle et al., 1993; Weisberg

and Welsh, 1994), and variable selection (Peng and Huang, 2011; Radchenko, 2015). The

single index models were extended to generalized linear model framework (Carroll et al., 1997;

Chiou and Müller, 1998; Chiou et al., 1999) and partially linear single-index models (Luo

and Ghosal, 2016). However, extending the single index model to accommodate censored
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outcomes has been challenging both theoretically and computationally. Popular models

that deal with censored outcomes, such as the Cox proportional hazards model, contain a

non-parametric baseline hazard function itself. When introducing the smooth link function

into the model, the extra semiparametric component imposes challenges for the development

of asymptotic theory. Estimation techniques in the standard single index model such as the

slice inversion regression (Duan and Li, 1991) and the average derivative estimation (Stoker,

1986; Powell et al., 1989; Hardle et al., 1993) could not be directly applied. Therefore, novel

algorithms is needed to compute the estimators.

2.3.2 Application of Single Index Models to Failure Outcomes

Single-index functions in the proportional hazards model have previously been used to

account for nonlinear main effects of predictors on failure time outcomes. Wang (2004)

proposed to use the single index function to relax the log-linear assumption in the Cox

model. Let T and C be defined as in section 2.2.2. Let T̃ “ mintT,Cu denote the observed

time, ∆ “ IpT ď Cq denote the censoring indicator, and Zptq denote the covariates which

could be time-dependent. With the independent censoring assumption, the hazard function

for the failure time rT with covariates Zptq under the Cox model is given by λpt|Zptqq “

λ0ptq exptβTZptqu. Wang (2004) considers a more general class of models with the hazard

relationship

λpt|Zptqq “ λ0ptqψtβ
TZptqu

with ||β|| “ 1, where ψ dose not necessarily take the log-linear form. When the covariate

is one-dimensional time-independent, the form of the link function could be checked using

alternative approaches in Tibshirani and Hastie (1987) and Fan et al. (1997). The methods by

Wang (2004) could deal with time-dependent multi-covariates. The estimation for ψ followed

from the local likelihood approach in Fan et al. (1997) by the p-th order Taylor expansion of

ψtβTZptqu around ψtrβTZptqu, where rβ is an initial estimate and p is a prespecified order

of expansion. With the estimated derivatives of ψ, pψ is obtained by the trapezoidal rule
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in numerical integration. Finally, β is estimated by optimizing the likelihood with the link

function replaced with pψ.

Researchers have proposed various methods to model the (partially) nonparametric

covariate effects on the log hazard ratio with potentially censored outcomes (Sasieni, 1992b,a;

Nielsen et al., 1995; Huang et al., 1999; Lu et al., 2001). These methods suffer from the curse

of dimentionality as the covariate effect is modeled in an unstructured nonparametric manner.

Because of the sparsity of the data in even moderately large dimensions, accurate estimation

under these models is usually difficult with the sample sizes in practical data set. Lu et al.

(2006) proposed a class of partially linear single-index survival models in order to address this

question with automatic dimension reduction achieved by the semiparametric single-index

component. With the same notations in section 2.2.2, let covariates X be partitioned into

two parts: p-dimensional covariates X1 assumed to have linear effects and q-dimensional

covariates X2 assumed to have non-linear effects. Similarly, define β1 and β2 that correspond

to X1 and X2. Let σ be an unknown parameter indexing the baseline hazard function. Lu

et al. (2006) considered a class of semiparametric models defined by

λpt;Xq “ λ0pt;σq exptβT
1X1 ` ψpβ

T
2X2qu,

with ||β2|| “ 1. Note that in this model, the baseline hazard function was modelled

parametrically. The link function ψ is estimated using a quasi-likelihood approach using local

linear kernels, which could be regarded as a generalization of Carroll et al. (1997). Due to

the local kernel approximation approach, there is no shape constraint on the covariate effect.

In addition, in this work as well as in Wang (2004), the authors treated the link function as

a parametric component in the variance estimation and the asymptotic theory.

Huang and Liu (2006) considered an alternative way to model the possible nonlinearity of

the covariate effects on the log hazard ratio in the proportional hazards model. With the
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same notations defined in section 2.2.2, they specified the model as

λpt|Zq “ λ0ptq exptψpβTXqu

with ||β|| “ 1. Unlike the local polynomial smoother approach adopted in the Wang (2004)

and Lu et al. (2006), Huang and Liu (2006) estimated the unknown function ψ through a

polynomial spline. With a chosen spline basis, the spline coefficients that corresponds to the

basis expansion and the regression coefficients are simultaneously estimated by maximizing

the partial likelihood. They treated the link function as a parametric component and derived

asymptotic variance-covariance matrix following the partial likelihood theory in the standard

Cox model. This approach is only valid conditional on the spline basis chosen in the estimation

step. Since the fitted link function is not monotone, the interpretation of covariate effects is

not straightforward.

2.4 Outline of Proposed Work

In the first project, we propose a flexible semiparametric single-index model to assess how

the effect of treatment on the survival distribution depends on patient characteristics. The

proposed model naturally extends the familiar Cox (1972) proportional hazards model by

including the product of treatment and an arbitrary monotone function of the linear predictor.

By using an arbitrary monotone regression function, the proposed model is flexible enough

to allow complex treatment-covariate interactions while providing a computationally simple

and clinically interpretable linear rule for personalized treatment decisions. To estimate the

model parameters, we combine nonparametric maximum likelihood estimation with sieve

estimation and develop an iterative alternating optimization procedure. We establish the

asymptotic properties of the resulting estimators by novel applications of modern empirical

process theory, seive estimation theory, and semiparametric efficiency theory. We demonstrate

the usefulness of the proposed methods through simulation studies and an application to the
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AIDS Clinical Trials Group (ACTG) 175 study (Hammer et al., 1996).

In the second project, we propose to extend the single-index model to transformation

models to account for more flexible dependency of survival time on covariates. We show

that if we cast the transformation function into the missing value framework, this problem

could be solved by an EM algorithm. In each iteration, the maximization step is equivalent

to optimizing a weighted proportional hazard model, with weights determined by posterior

expectation of the missing data conditional on the observed data and the parameter value.

We develop the associate asymptotic theory and show that the resulting estimators are

semiparametrically efficient. The performance of the proposed methods is illustrated in

simulation studies and a real data application to a clinical trial on patients with large-bowel

carcinoma.

Last, we consider the variable selection issue in applying the single-index model to censored

outcomes for the estimation of the optimal treatment regime. Recent technology advances

make thousands or even millions of data available for each patient. In estimation of the optimal

treatment rule, it is of great importance to tell the important feature from unimportant

ones. Therefore the next question is to design a procedure that handles high-dimensional

patient characteristics as input and select the relevant factors. We propose the adaptive

lasso estimator for the single-index term to select such relevant coefficients, with the tuning

parameter determined in a data-adaptive manner. We design an algorithm that computes the

adaptive lasso estimate in a computationally efficient way. This proposed method is shown to

have the oracle property. We conduct simulations to examine the performance of the variable

selection procedure. A data application is included to show the effectiveness of the method.
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CHAPTER 3: SINGLE-INDEX MODELS FOR OPTIMAL TREATMENT
REGIMENS WITH THE COX MODEL

3.1 Introduction

There is tremendous variation in the way patients respond to medications, in terms of

both toxicity and treatment efficacy. Thus, when a treatment has an average positive effect in

a population, its benefit may vary across patients according to certain baseline characteristics.

For example, the benefit of chemotherapy prior to hormone therapy with tamoxifen is much

higher for postmenopausal women with lymph node–negative, estrogen receptor–negative

breast cancer than for those with lymph node–negative, estrogen receptor–positive breast

cancer (Castiglione-Gertsch et al., 2002). In a more extreme situation, a treatment may

be beneficial to some patients but harmful to others (Neumann et al., 2001). Instead of

administering the same treatment regimen to all patients with a particular disease, precision

medicine aims to maximize clinical benefits by steering patients to the right drug at the right

dose at the right time according to their clinical and genetic profiles (Lavori and Dawson,

2000; Hamburg and Collins, 2010).

Several methods are available to estimate personalized treatment strategies for non-

censored outcomes, including parametric and semiparametric regression models (Murphy,

2003; Zhang et al., 2012, 2013) and machine learning methods (Zhao et al., 2012). Potentially

censored survival times, such as times to disease occurrence and death, are clinically more

important than non-censored outcomes, but more challenging to deal with statistically.

The incorporation of treatment-covariate interactions into commonly used survival models,

particularly the Cox (1972) proportional hazards model, can lead to estimation of the

treatment strategy with the lowest hazard for each patient. However, parametric forms of

interactions are inflexible and likely to be misspecified due to the inherent complexity of
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the interactions between treatment and covariates. Several authors have modified machine

learning methods to accommodate censoring. For example, Goldberg and Kosorok (2012)

adopted the inverse-probability-of-censoring-weighting technique, which requires correct

specification of the censoring distribution, and Zhao et al. (2015) derived outcome-weighted

learning with doubly robust weights. These methods are focused on the (truncated) mean

survival time, rather than the entire distribution function, and the treatment-covariate

interactions are derived from a black box with no clinical interpretation.

Recently, Jiang et al. (2017) proposed a value-search method in order to derive an

optimal treatment rule that maximizes the t-year survival probability. Their method requires

estimation of the censoring distribution. By contrast, our approach does not require modeling

the censoring distribution and provides the optimal treatment rules that lead to larger

survival probabilities over time instead of at a pre-specified time point. In addition, our

estimation procedure can be viewed as a value-search method for the optimal treatment rule

even when the proportional hazards model is misspecified. In that case, the value function is

the logarithm of the partial likelihood function, which essentially is the sum of the log-ratio

between an exponential loss for each failure and the average loss for non-failures in the risk

set. The parameters estimated by maximization of this value function distinguishes failures

from non-failures the most and thus can lead to a beneficial treatment rule.

In this paper, we propose a flexible semiparametric single-index model to assess how

the effect of treatment on the survival distribution depends on covariates. The proposed

model naturally extends the familiar Cox (1972) proportional hazards model by including

the product of treatment and an arbitrary monotone function of the linear predictor. By

using an arbitrary monotone regression function, the proposed model is flexible enough to

allow complex treatment-covariate interactions while providing a computationally simple

and clinically interpretable linear rule for personalized treatment decisions. To estimate the

model parameters, we combine nonparametric maximum likelihood estimation with sieve

estimation and develop an iterative alternating optimization procedure. We establish the
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asymptotic properties of the resulting estimators by novel applications of modern empirical

process theory, seive estimation theory, and semiparametric efficiency theory. We demonstrate

the usefulness of the proposed methods through simulation studies and an application to the

AIDS Clinical Trials Group (ACTG) 175 study (Hammer et al., 1996).

3.2 Methods

3.2.1 Model and Optimal Treatment Regimens

Let T denote the survival time, A the treatment indicator (with values 1 versus 0), and

X a p-vector of bounded baseline covariates. To allow the treatment effect to depend on

covariates in a flexible manner, we propose a semiparametric single-index model in the

proportional hazards form, such that the hazard function of T conditional on A and X is

λpt|A,Xq “ λptq exptαTX ` AψpβTZqu, (3.1)

where Z is a q-dimensional subset of X, α and β are unknown regression parameters, λp¨q is

an arbitrary baseline function, and ψp¨q is an unknown and strictly increasing link function.

For identifiability, we assume that there are non-zero components in β and ||β|| “ 1, where

||x|| is the Euclidean norm of vector x. If ψpuq “ u, then model 3.1 reduces to the standard

Cox (1972) proportional hazards model with an interaction between treatment and covariates.

To see how the parameters in model (3.1) can yield the optimal treatment regimens, we

let T paq denote the potential survival time if the patient receives treatment a for a “ 0 or

1. We further make the stable unit treatment assumption and no unmeasured confounder

assumption (Rubin, 1974):

(A1) T “ T paq when A “ a, and

(A2) A is independent of tT p0q, T p1qu conditional on X.

Under these two assumptions, model (3.1) implies that

P pT paq ą t|Xq “ P pT paq ą t|A “ a,Xq “ P pT ą t|A “ a,Xq
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“ exp
!

´ΛptqeαTX`aψpβTZq
)

.

Thus, the survival probability of the potential survival time under a˚ ” ItψpβTZq ă 0u,

where Ip¨q is the indicator function, is always larger than the one under p1 ´ a˚q. In

other words, the optimal treatment regimen should be IpψpβTZq ă 0q or, equivalently,

It´ψ´1p0q ` βTZ ă 0u. Hence, the semiparametric single-index model provides a simple

linear rule that can be conveniently used in practice.

3.2.2 Sieve Maximum Likelihood Estimation

Let C denote the censoring time, and write rT “ minpT,Cq and ∆ “ IpT ď Cq. We

assume that C is independent of T conditional on pA,Xq. For a randomized clinical trial with

n patients, the data consist of prTi,∆i, Ai,Xiq pi “ 1, . . . , nq. The log-likelihood concerning

the model parameters is given by

n
ÿ

i“1

“

∆i

 

αTXi ` Aiψpβ
TZiq

(

`∆i log λprTiq ´ exptαTXi ` Aiψpβ
TZiquΛprTiq

‰

,

where Λptq “
şt

0 λpsqds.

We propose a sieve maximum likelihood estimation approach. First, we estimate the

cumulative baseline hazard function Λp¨q nonparametrically by treating it as a step function

with jumps at the observed survival times. Maximization of the above log-likelihood with

respect to the jump sizes yields the profile log-likelihood

n
ÿ

i“1
∆i

˜

αTXi ` Aiψpβ
TZiq ´ log

«

n
ÿ

j“1
YjprTiq exptαTXj ` Ajψpβ

TZjqu

ff¸

, (3.2)

where Yiptq “ IprTi ě tq.

We approximate ψpuq by B-splines (Schumaker, 1981). Specifically, let Bpuq ” pB1puq,

¨ ¨ ¨ , BKn`1puqq
T denote quadratic B-spline bases corresponding to Kn distinct knots in

an interval containing the union of the support of βTZ for any unit vector β. We then

approximate ψpuq by rψpuq ” γTBpuq, where γ ” pγ1, ¨ ¨ ¨ , γKn`1q
T is a vector of unknown
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coefficients. To ensure that rψpuq is increasing but not too large, we require that ´Mn ď γ1 ď

¨ ¨ ¨ ď γKn`1 ďMn for some constant Mn. The increasing sequence of γ values guarantees the

increasing property of rψpuq because of the choice of the quadratic splines.

Finally, to estimate α,β, and γ, we maximize

plpα,β,γq ”
n
ÿ

i“1
∆i

ˆ

αTXi ` Aiγ
TBpβTZiq ´ log

”
n
ÿ

j“1
YjprTiq exptαTXj ` Ajγ

TBpβTZjqu

ı

˙

(3.3)

under the constraints that ||β|| “ 1 and ´Mn ď γ1 ď ¨ ¨ ¨ ď γKn`1 ďMn. In the next section,

we will describe the optimization algorithm and the choices of Kn,Mn, and the knots for

defining B-splines.

3.2.3 Numerical Algorithm

We describe an iterative alternating optimization procedure (Bezdek and Hathaway, 2003)

to maximize 3.3 as follows.

In the initial step, we fit the standard Cox model with covariates pXT, A,AZTqT, and

we obtain initial estimates pα0 and pβ0 by using the estimated coefficients for X and the

normalized coefficients for AZ, respectively. The initial value for γ is set to the least-squares

estimate that approximates a linear link using the B-splines, where the intercept and slope

of this link function are, respectively, the coefficient of A and the Euclidean norm of the

coefficients for AZ in the Cox model.

At the lth iteration, the current parameter values are denoted by pαl´1, pβl´1, and pγl´1.

We set the link function as pψl´1puq ” pγT
l´1Bpuq. We first update β by maximizing

n
ÿ

i“1
∆i

!

pαT
l´1Xi ` Ait pψl´1ppβ

T
l´1Ziq `

pψ1l´1p
pβT
l´1Ziqpβ ´ pβl´1q

TZiu ´ log
´

n
ÿ

j“1
YjprTiq exp

”

pαT
l´1Xj ` Ajt pψl´1ppβ

T
l´1Zjq `

pψ1l´1p
pβT
l´1Zjqpβ ´ pβl´1q

TZju

ı¯)
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subject to the constraint }β} “ 1, where f 1puq denotes the first derivative of fpuq. Essentially,

we approximate pψl´1pβ
TZq in the partial likelihood function 3.3 by the first-order Taylor

expansion at pβl´1, which results in a concave function of β. This optimization is solved

through the Lagrange multiplier method. Given pβl, we update α and γ by maximizing

plpα, pβl,γq under the constraint ´Mn ď γ1 ď ¨ ¨ ¨ ď γKn`1 ď Mn. Note that the objective

function in this optimization is strictly concave and that the constraint sets are convex.

Therefore, there exists a unique global maximum, and many software packages for convex

optimization can be used. In particular, we adopt the R package “quadprog" (Berwin and

Weingessel, 2013). We iterate through the above steps until convergence.

We need to determine Kn,Mn, and the knots for the B-splines. The asymptotic theory

in the next section suggests Kn “ Opn1{13q and Mn “ Opplog nqδq for some δ P p0, 1q. In our

experience, the estimates remain unchanged if Mn is set to be larger than 20; the performance

is satisfactory when Kn ranges from 3 to 9; and Kn is determined by the AIC criterion

(Akaike, 1970). For the boundary and interior knots, we use the extreme values and the

pKn ´ 2q quantiles of tpβT
l´1Zi, i “ 1, ¨ ¨ ¨ , nu, respectively, in each iteration in order to avoid

sparse data when estimating the coefficients for B-splines.

Let pα, pβ, and pγ be the final estimates of α, β, and γ, respectively. The link function

ψpuq is estimated by pψpuq ” pγTBpuq, and the cumulative baseline hazard function Λp¨q is

estimated by the Breslow-type estimator (Breslow, 1972)

n
ÿ

i“1

IprTi ď tq∆i
řn
j“1 Yjp

rTiq exptpαTXj ` Aj pψppβTZjqu
.

Finally, the optimal treatment rule is estimated as ItpβTZ ă pψ´1p0qu. In addition, we can

estimate the average treatment effect βav, defined as the average log-hazard ratio of treatment

A over all patients in the population EtψpβTZqu, by pβav ” n´1 řn
i“1

pψppβTZiq.
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3.3 Asymptotic Theory

Let α0 ” pα0,1, ¨ ¨ ¨ , α0,pq
T, β0 ” pβ0,1, ¨ ¨ ¨ , β0,qq

T, and ψ0p¨q denote the true values of

α,β, and ψp¨q, respectively. In addition, let τ denote the study duration and Z denote the

union of the support of βTZ for all }β} “ 1. We impose the following regularity conditions.

Condition 1. The true values α0 and β0 lie in the interior of a known compact set;

ψ0puq is a strictly increasing function of u and three-times differentiable in Z, and λ0ptq is

continuously differentiable in r0, τ s.

Condition 2. The conditional density of C givenX is continuously differentiable on its

support. The conditional distribution of pA,Xq given βT
0 Z has a continuously differentiable

density with respect to a dominating measure.

Condition 3. With probability 1, P pY pτq “ 1|Xq ą c0 for some positive constant

c0. In addition, if cT
1X “ d1 with probability 1 for some constant vector c1 and constant d1,

then c1 “ 0 and d1 “ 0.

Condition 4. If for some β˚ with norm 1, Varpβ˚TZ|βT
0 Zq “ 0 almost surely, then

β˚ “ ˘β0. In addition, B{BβEtψ0pβ
T
0 Zq|β

TZu
ˇ

ˇ

β“β0
is non-degenerate.

Condition 5. The number of the knots satisfies that Kn Ñ 8 and n´1{2K7
n Ñ 8.

The upper bound Mn satisfies that Mn Ñ 8, n´1{2K4
nMn

expt4Mnu Ñ 0 and K´1{2
n exptMnu Ñ 0. In addition, the adjacent distance of the interior

knots is between c´1K´1
n and cK´1

n for some positive constant c.

Remark 1. The second part of Condition 1 and Condition 2 ensure smoothness for

the functions ψ0 and λ0, the conditional distribution of C given X, and the conditional

distribution of pA,Xq given βT
0 Z. Condition 3 ensures that a non-trivial proportion of

subjects is censored at τ and that p1,XTqT is linearly independent. Condition 4 is an

identifiability condition used in single-index models. In particular, this condition holds if

Z follows a multivariate normal distribution. In Condition 5, we may set Kn and Mn to

Opn1{13q and Opplog nqδq, respectively, for any constant δ P p0, 1q.
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We state the consistency and asymptotic distribution of the estimators for the model

parameters in the following three theorems, whose proofs are given in the Appendix. In

addition, we establish the asymptotic properties for the estimator of the average treatment

effect in §S.1 of the Supplementary Materials.

Theorem 3.3.1. Under Conditions 1–5, || pψ ´ ψ0||W 1,8pZq Ñ 0, ||pα ´ α0|| Ñ 0, and ||pβ ´

β0|| Ñ 0 in probability, where for any differentiable function f with derivative f 1, ||f ||W 1,8pZq

is defined as ||f ||L8pZq` ||f 1||L8pZq. Furthermore, ||pα´α0||
2` ||pβ´β0||

2` || pψ´ψ0||
2
L2pZq “

oppn
´1{2q.

To describe the asymptotic distribution, we assume β0q ą 0 without loss of generality.

For a q-dimensional vector x, let x´q “ px1, ¨ ¨ ¨ , xq´1q
T. We introduce a pp` q ´ 1q-vector

function, Rpsq, as the solution to the following functional equation

Rpsq “ E
!

ż

AdNpuq|βT
0 Z “ s

)´1

!

E
”

ż

EtARpβTZq|T “ u,∆ “ 1uAdNpuq|βT
0 Z “ s

ı

`

E
´

ż

rg ´ EtgpX, Aq|T “ u,∆ “ 1usAdNpuqdu|βT
0 Z “ s

¯)

, (3.4)

where Nptq “ ∆IpT ď tq, and

gpX, Aq “

¨

˚

˝

X

Aψ10pβ
T
0 ZqZ´q ´ β0,´qAψ

1
0pβ

T
0 ZqZq{β0,q

˛

‹

‚

. (3.5)

There exists a unique solution, as proven in §S.2 of the Supplementary Materials. Define

Hpu,X, Aq “ gpX, Aq´EtgpX, Aq|T “ u,∆ “ 1u ´ ARpβT
0 Zq

`EtARpβT
0 Zq|T “ u,∆ “ 1u.

Theorem 3.3.2. Under Conditions 1–5, n1{2ppαT ´ αT
0 ,

pβT
´q ´ β

T
0,´qq

T converges in dis-
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tribution to a zero-mean normal random vector with covariance matrix Σ´1, where Σ “

ş

E
“

Hb2pu,X, Aq exptαT
0X ` Aψ0pβ

T
0 ZquY puq

‰

λ0puqdu, and vb2 “ vTv for any vector v.

In addition, Σ´1 achieves the semiparametric efficiency bound.

To estimate Σ, we need to estimate R. To this end, let P and Pn denote the probability

measure and the empirical measure, respectively. That is, for random variable U , PpUq is the

expectation of U , and PnpUq is the sample average over tUiuni“1. We partition the data into

mn groups based on the quantiles of tpβTZiu
n
i“1, and we use pEnpU |pβ

TZ “ sq to denote the

average of tUiuni“1 among subjects who are in the same partition as s. In addition, define

rEnrU s “ PnrY puq exptpαTX ` A pψppβTZqus
´1
PnrUY puq exptpαTX ` A pψppβTZqus.

In light of equation 3.4, we estimate Rpsq by pRpsq, which solves the following equation

pRpsq “ pEn

!

ż

AdNpuq|pβTZ “ s
)´1!

pEn

”

ż

rEntA pRppβTZquAdNpuq|pβTZ “ s
ı

` pEn

´

ż

”

g ´ rEntgpX, Aqu
ı

AdNpuqdu|pβTZ “ s
¯)

.

Essentially, pRp¨q solves a linear equation system. We then estimate H by

xHpu,X, Aq ” gpX, Aq ´ rEntgpX, Aqu ´ A pRppβTZq ` rEntA pRppβTZqu

and Σ by
pΣ ”

ż

Pn
“

xHb2
pu,A,Xq exptpαTX ` A pψppβTZquY puq

‰

dpΛpuq.

Theorem 3.3.3. Under Conditions 1–5, with mn “ cn1{2 for a positive constant c, pΣ Ñ Σ

in probability.
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3.4 Simulation Studies

3.4.1 Simulation results and comparison with other methods

We conducted extensive simulation studies to assess the performance of the proposed

methods. We considered sample sizes n “ 500, 1000, and 2000. We let the baseline hazard

function λptq follow a Weibull distribution with shape parameter 2.5 and scale parameter

2. We considered three link functions: (a) (exponential) ψ0puq “ eu ´ 0.5; (b) (linear)

ψ0puq “ u` 0.4; and (c) (sine)

ψ0puq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´3 if u ď ´1{2,

2 sinpπuq ´ 1 if ´ 1{2 ă u ď 1{2,

1 if u ą 1{2.

When the link function is linear, the proposed model reduces to the standard Cox model.

We let the censoring time follow Unifr0, τ s, where τ was chosen to yield the censoring rate

of 50%. We generated four independent covariates from Unifr´1, 1s for the main effects and

let the treatment effect on the survival time depend on the first two covariates. We set the

main-effect parameters pα1, α2, α3, α4q
T to p´0.4,´0.2, 0.2, 0.4qT and the interaction-effect

parameters pβ1, β2q
T to p´0.6, 0.8qT. We let the treatment assignment A be independent of

X and follow Bernp0.5q. We simulated 10,000 replicates for each setting.

We considered a series of models with the number of knots Kn ranging from 3 to 9. The

majority of the 10,000 replicates selected a final model with Kn “ 3, 3, and 6 by the AIC

criterion for the exponential, linear, and sine link functions, respectively. The estimates

remained unchanged with an Mn larger than 20. For n “ 500, 99.4% of the replicates

converged with 500 iterations; for n “ 2000, the convergence rate was higher than 99.95%. It

took approximately 3 seconds and 2 minutes to analyze one simulated dataset for n “ 500

and n “ 2000, respectively.

Table 1 summarizes the results for the estimation of pβ1, β2q
T under the proposed model.
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Table 3.1: Simulation results for the estimation of β
Proposed model Cox model

n Bias SE SEE CP Bias SE SEE CP
Exponential link function
500 β1 0.009 0.147 0.151 0.926 0.011 0.154 0.155 0.923

β2 -0.015 0.115 0.114 0.918 -0.015 0.117 0.118 0.907
1000 β1 0.004 0.100 0.105 0.943 0.005 0.105 0.106 0.934

β2 -0.007 0.076 0.079 0.940 -0.007 0.079 0.080 0.929
2000 β1 0.001 0.070 0.073 0.951 0.000 0.074 0.074 0.939

β2 -0.004 0.053 0.055 0.948 -0.005 0.056 0.056 0.937
Linear link function
500 β1 0.026 0.207 0.183 0.886 0.018 0.184 0.189 0.911

β2 -0.024 0.159 0.136 0.864 -0.020 0.139 0.147 0.892
1000 β1 0.012 0.138 0.129 0.919 0.009 0.126 0.128 0.931

β2 -0.010 0.103 0.096 0.906 -0.009 0.095 0.097 0.921
2000 β1 0.004 0.093 0.090 0.934 0.003 0.088 0.089 0.939

β2 -0.005 0.070 0.067 0.929 -0.005 0.067 0.067 0.935
Sine link function
500 β1 0.002 0.042 0.043 0.957 0.071 0.083 0.084 0.883

β2 0.000 0.031 0.032 0.952 0.043 0.052 0.053 0.803
1000 β1 0.001 0.028 0.029 0.960 0.069 0.057 0.059 0.812

β2 0.000 0.021 0.022 0.959 0.045 0.036 0.037 0.727
2000 β1 0.001 0.019 0.020 0.958 0.069 0.041 0.042 0.628

β2 0.001 0.015 0.015 0.958 0.046 0.025 0.026 0.549
Bias and SE are the bias and standard error of the parameter estimator, respectively; SEE
is the mean of the standard error estimator; CP is the coverage probability of the 95%
confidence interval. The SEE and CP in the Cox model are based on the robust variance
estimator.

For comparison, we also show the estimation results for a normalized estimator of the

treatment-covariate interaction under the standard Cox model. The biases of the parameter

estimators under our model are small and decrease as n increases. The variance estimators

and the corresponding confidence intervals for β become more accurate as n increases. For

simulation settings with a small sample size, the bootstrap method may provide a more

accurate variance estimator and confidence interval; example simulations are included in

section A.2 of the appendix. In the case of the sine link function, whose first-order derivative

has large fluctuations over the values of the linear predictor βTZ, the estimation of the
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interaction effects under the standard Cox model is highly biased.

Figure 1 shows that the link function is estimated accurately by the proposed methods.

Table 2 summarizes the results for estimating the average treatment effect. The estimator of

the average treatment effect is nearly unbiased. The variance estimator is accurate and the

corresponding confidence intervals have correct coverages, especially for large n.

n Exponential Linear Sine

500

1, 000

2, 000

Figure 3.1: Estimation of the link function ψ. The solid and dotted curves pertain to the

true value and the mean estimate, respectively.

In order to assess the performance of the treatment rules, we generated an independent

“test” dataset and used the estimated coefficients under the proposed model, the Cox model,

and the method of Jiang et al. (2017) to derive the optimal treatment rules for each subject.
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In particular, we used t “ 2 and the SAIPSWKME method that is described in the paper by

Jiang et al. (2017), referred to as "Jiang’s method" in the rest of the paper. We calculated the

correct treatment assignment rate and the average survival probability of patients who follow

the treatment rules under each model. For each patient in the test dataset, we compared

the treatment assignment recommended by each model with the optimal treatment rule.

Table 3 shows the average treatment assignment rates using the sine link function and

n “ 1, 000. The proposed model has an incorrect treatment assignment rate of 1.6%, whereas

the Cox model and Jiang’s method have higher incorrect assignment rates of 13.2% and 4.9%,

respectively. The Cox model also tends to recommend treatment 1 to patients whose true

optimal treatment is 0.

Table 3.2: Simulation results for the average treatment effect
Link n Bias SE SEE CP
Exponential 500 0.015 0.141 0.145 0.954

1000 0.010 0.098 0.098 0.952
2000 0.006 0.068 0.069 0.952

Linear 500 0.011 0.139 0.143 0.954
1000 0.008 0.096 0.097 0.952
2000 0.005 0.067 0.067 0.954

Sine 500 -0.085 0.264 0.265 0.921
1000 -0.030 0.146 0.146 0.953
2000 -0.014 0.096 0.098 0.960

See the Note to Table 3.1.

Table 3.3: Simulation results on the treatment assignments
Optimal Proposed model Cox model Jiang’s method
treatment trt. assign. trt. assign. trt. assign.

0 1 0 1 0 1
0 38.2% 0.8% 25.9% 13.1% 35.8% 3.2%
1 0.8% 60.2% 0.1% 60.9% 1.7% 59.3%
Parameters in all models were estimated in simulation scenario (c): sine link function. The
correct treatment assignment rate was estimated from a test dataset of 1,000 subjects.

For each patient in the test dataset, we calculated the true survival functions corresponding
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to the treatment rules determined by the proposed model and by the Cox model. Patients

were divided into three subgroups according to their “risk score” SCpZq ” 0.8Z2 ´ 0.6Z1.

Figure 2 shows the average survival probability over time for each subgroup of patients in

the case of the sine link function with n “ 1, 000. For subgroups (a) and (c) in Figure 2, the

survival curves are similar between the treatment rule determined by the proposed model

and that determined by the Cox model.

(a) (b) (c)

Figure 3.2: Estimation of the survival functions for patients with: (a) SCpZq ă 0.2; (b)

0.2 ď SCpZq ď 0.5; and (c) SCpZq ą 0.5. The dashed, dotted, and solid curves pertain to

the survival functions under the proposed model, the Cox model, and the optimal treatment

assignment, respectively.

For the 183 subjects with risk scores between 0.2 and 0.5 in subgroup (b), Figure 2 shows

that the average survival probability over time is much higher if patients follow the treatments

assigned by the proposed model as opposed to those assigned by the Cox model. Specifically,

at time t “ 2, patients with SCpZq P r0.2, 0.5s who receive the treatments recommended by

the proposed model have an average survival probability of 0.37, which is the same as that

of the optimal treatment rule. By contrast, if they receive the treatments recommended by

the Cox model, the average survival probability is only 0.26. In other words, the adoption
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of the treatment rule formulated by the proposed model improves average patient survival

probability by 42% among patients with SCpZq P r0.2, 0.5s, and the proposed model performs

as well as the true optimal treatment assignment.

3.4.2 Treatment assignment under model misspecification

We compared the estimated treatment regimen under the proposed single-index model

with the Cox model and Jiang’s method under various model misspecifications. We first

considered I) the proportional odds model, where assumptions in Jiang’s method still hold,

but the proposed model and the Cox model are misspecified. We simulated the data with

true values specified as in the previous subsection with an exponential link and sample size

of 1000. We further considered the following two cases: II) when the baseline covariate effect

is non-linear and assumptions in Jiang’s method still hold, but the proposed model and the

Cox model are misspecified; and III) when the interaction effect is captured by the sum of

two indices and all three models are misspecified. Specifically, for scenario II), we considered

the hazard-ratio relationship

λpt;X, Aq “ λ0ptq exp
 

ψ1pα
TXq ` Aψ2pβ

TZq
(

.

Let ψ1puq “ u3 ` 0.6, and let ψ2 take the sine link form, as in subsection 4.1. For scenario

IV), we considered the hazard-ratio relationship

λpt;X, Aq “ λ0ptq exp
 

αTX ` cAψ1pβ
T
1 Zq ` Aψ2pβ

T
2 Zq

(

,

where ψ1puq “ u3 ` 0.6, ψ2puq “ eu ´ 0.5, and c P t0.2, 0.6u. We set the interaction-effect

parameters to β2 “ p´0.91,´0.41q and β1 “ p´0.6, 0.8q. Other aspects of the simulations in

II) and III) were the same as in subsection 4.1. We simulated 1000 replicates for all settings.

Table 4 summarizes the treatment assignments under the three models versus the true

optimal treatment under different model misspecifications. In setting I), the Cox model shows

the smallest misclassification rate of 8.78%, and the proposed model is the second best, with
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a misclassification rate of 9.35%. The proposed model gives the most accurate treatment

rule, with a smaller misclassification rate in settings II) and III).

Table 3.4: Simulation results on the treatment assignment with different hazards relationships
Optimal Proposed model Cox model Jiang’s method

trt. trt. assgn. trt. assgn. trt. assgn.
0 1 0 1 0 1

I) Proportional Odds Models
0 81.91% 5.13% 79.45% 7.60% 76.77% 10.27%
1 4.22% 8.73% 1.18% 11.78% 4.74% 8.21%

II) Cubic Main Effect
0 38.72% 0.97% 11.22% 28.46% 14.13% 25.55%
1 0.75% 59.57% 16.94% 43.38% 21.29% 39.03%

III) Summation of two single index terms for interaction with c “ 0.2
0 86.67% 3.32% 74.11% 15.89% 77.59% 12.40%
1 2.57% 7.44% 8.23% 1.78% 8.61% 1.39%

III) Summation of two single index terms for interaction with c “ 0.6
0 89.23% 2.25% 77.65% 13.83% 81.94% 9.54%
1 1.88% 6.65% 7.22% 1.30% 7.62% 0.90%

In the table, "trt. assgn." stands for treatment assignment rate, which was estimated from a
test dataset of 1000 patients.

3.5 Application to an AIDS clinical trial

The ACTG 175 study is a randomized, double-blind, phase II/III clinical trial (Hammer

et al., 1996). A total of 2,139 subjects infected with human immunodeficiency virus type 1

(HIV-1) were randomized to one of four arms: zidovudine (ZDV) monotherapy; didanosine

(ddI) monotherapy; ZDV + ddI; or ZDV + zalcitabine (ddC). The primary endpoint was

ě 50% decline in CD4 cell count, development of AIDS, or death. Approximately 75.6% of

the subjects were censored.

We aimed to identify baseline covariates that influence the treatment effects on the survival

time and derive the optimal treatment regime for each patient in the study. Following Jiang

et al. (2017), we only considered the 1,054 subjects who received ZDV + ddI (A = 1) or

ZDV + ddC (A = 0), and we included the following 12 covariates for the main effects: age;
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Table 3.5: Estimation of the parameters under the proposed, Cox and Jiang’s models
Proposed model Cox model

Std. Std.
Parameters Est. Err. P -value Est. Err. P -value

Main Effects
Weight 0.16 0.10 0.11 0.14 0.10 0.17
Age 0.07 0.10 0.44 0.06 0.10 0.54
CD4 count ´0.56 0.12 ă 0.01 ´0.59 0.12 ă 0.01
CD8 count 0.16 0.07 0.03 0.16 0.07 0.02
Karnofsky score ´0.36 0.09 ă 0.01 ´0.32 0.09 ă 0.01
Antiretroviral history 0.46 0.16 ă 0.01 0.46 0.16 ă 0.01
Gender ´0.18 0.32 0.58 ´0.18 0.31 0.56
Race ´0.07 0.18 0.71 ´0.07 0.18 0.71
Homosexual activity 0.26 0.27 0.35 0.26 0.27 0.33
Intravenous drug use ´0.58 0.25 0.02 ´0.57 0.25 0.02
Hemophilia status 0.28 0.35 0.41 0.29 0.34 0.39
Symptomatic status 0.52 0.17 ă 0.01 0.52 0.16 ă 0.01

Average treatment effect 0.01 0.16 0.96 ´0.12 0.14 0.40
Interactions

Age ´0.84 0.15 ă 0.01 ´0.81 0.23 ă 0.01
Karnofsky score 0.42 0.25 0.09 0.27 0.35 0.44
Weight 0.08 0.27 0.77 0.14 0.36 0.69
CD4 count 0.33 0.29 0.26 0.50 0.37 0.18

The estimate of the interaction effect in the Cox model is scaled to have the same Euclidean norm
as that in the proposed model. “Est." and “Std. Err." denote the estimate and the standard error
estimate for a parameter, respectively.

weight; Karnofsky score; baseline CD4 cell count; baseline CD8 cell count; hemophilia status;

homosexual activity; history of intravenous drug use; race; gender; antiretroviral history; and

symptomatic status. The results in Jiang et al. (2017) and Geng et al. (2015) suggested

that Karnofsky score, weight, CD4 cell count, and age may interact with treatment effects.

These four covariates were included in our model as interaction terms. We characterized the

treatment-covariate interaction effects on time to death and derived the treatment rules by

fitting model 2.1. All covariates were standardized.

We fit model 2.1 with the number of knots Kn ranging from 3 to 7 and set Mn to 20. By

the AIC criterion, we selected the model with Kn “ 3 and the estimated link function in
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Figure 3. We checked the goodness-of-fit of the model by examining the martingale residuals,

which is discussed in details in Section S.5 in the supplementary materials. Table 5 displays

the estimation results for the average treatment effect and the treatment-covariate interaction

effects under the proposed model and the Cox model. Both models indicate that age is

significantly related to the treatment effect on patient survival, with older patients more likely

to benefit from treatment ZDV + ddI than treatment ZDV + ddC. The Karnofsky score

plays a more important role in the optimal treatment rule estimation under the proposed

model than under the Cox model. The average treatment effect is not significant under either

the proposed model or the Cox model.

Figure 3.3: Estimation of the link function ψ.

We compared the treatment rule estimated by the proposed model with the Cox model

and Jiang’s method at t “ 400 using SIAPSWKME. The time t “ 400 was used in the

analysis of the same dataset in Jiang et al. (2017). The treatment rule estimated by the

proposed model, the Cox model and Jiang’s method is, respectively, t´0.42 * Karnofsky

score ´ 0.33 * CD4 cell count + 0.84 * age ´ 0.08 * weight ă 0u, t´0.27 * Karnofsky score

- 0.50 * CD4 cell count + 0.81 * age - 0.14 * weight ă 0u, and t´0.24 * Karnofsky score

+ 0.40 * CD4 cell count + 0.58 * age ´ 0.42 * weight + 0.52 ă 0u. Table 6 shows that,

out of the 1,046 patients, 74 would receive different treatments under the proposed model
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versus the Cox model, 375 would receive different treatments under the proposed model

versus Jiang’s model. Figure 4 shows that the survival curves are comparable in the two

treatment arms, with the survival probabilities improved if patients follow the treatment

regimen recommended by the proposed model.

Table 3.6: Treatment assignments under the proposed and Cox models
Cox model Jiang’s model

ZDV+ ZDV+ ZDV+ ZDV+
Proposed model ddI ddC ddI ddC Total
ZDV + ddI 458 26 437 47 484
ZDV + ddC 48 514 328 234 562
Total 506 540 765 281 1046

Figure 3.4: Estimation of the survival function for the ACTG 175 study. The black, green,

and red curves pertain, respectively, to the ZDV + ddC arm, ZDV + ddI arm, and those

patients who would have received treatments assigned by the proposed model.

To assess how well each treatment regimen works, we estimated the survival functions

for patients based on the assigned treatments and the opposite ones. These two groups
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Figure 3.5: Estimation of the survival functions for patients in the ACTG 175 study assigned
to groups classified as “agreed" (dashed line) or “disagreed" (solid line) based on treatment
assignments. The red, blue, and greens curves pertain, respectively, to the proposed model,
the Cox model, and Jiang’s model.

are referred to as the “agreed" case and the “disagreed" case, respectively. We performed a

log-rank test to compare the survival functions between these two hypothetical groups of

patients. Survival curves for the “agreed" group and the “disagreed" group are well separated

under the proposed model (p-value = 0.002) but less so under the Cox model (p-value = 0.01)

or Jiang’s model (p-value = 0.13); see Figure 5. In particular, the difference of estimated

survival probabilities between the “agreed" and “disagreed" groups on day 600 is 0.031 under

the Cox model and 0.049 under the proposed model (i.e., 60% higher for the proposed model).

Survival probabilities difference is larger around t “ 400 under Jiang’s method, as their

method aims to maximize the survival probability difference at that time point. At later

time points such as t “ 1000, the curves are better separated under the proposed model than

Jiang’s method. This finding suggests that the treatment rule formulated by the proposed

model is more beneficial to patients, as measured by the survival function.
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3.6 Discussion

In this chapter, we proposed a framework to estimate personalized treatment rules by

modeling treatment-covariate interactions through a single index function. We developed

an efficient and stable numerical algorithm based on approximate functions to overcome the

non-convexity problem in the optimization step. We derived the asymptotic distributions for

the estimators of the treatment-covariate interaction effects and the average treatment effect.

The proofs are challenging due to the presence of two different non-parametric components

in the model. The limiting covariance matrix involves a function that is the solution to

an equation with no analytic form. By approximating this function with a step function

and applying the kernel estimation technique, we transformed the original equation into a

finite-dimensional linear system that can be solved via a one-step procedure. People may be

interested in quantities that summarize the patients performance, such as the survival function

under the treatment rule. These quantities could be estimated by the plug-in estimator, and

their asymptotic properties follow from the delta method and the limiting distribution of pα,
pβ and pψ.

Several new research directions extend naturally from the work presented in this chapter.

First, we will consider other types of models, such as linear transformation models (Zeng

and Lin, 2007), in order to allow different types of dependency of the survival time on

covariates and treatment. Second, we will develop variable-selection procedures to handle

higher-dimensions of interaction effects. Finally, we will develop methods that allow for more

than two treatment options and multiple decision points.
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CHAPTER 4: TRANSFORMATION SINGLE-INDEX MODELS FOR
OPTIMAL TREATMENT REGIMENS

4.1 Introduction

A flexible semiparametric single-index model was proposed in Chapter 3 to assess how

the effect of treatment on the survival distribution depends on each individual covariate. The

model was flexible enough to allow complex treatment-covariate interactions while providing

an interpretable linear treatment rule. In scientific studies, for example when modeling

prognostic factors with medium or long follow-up times, the proportional hazards assumption

is often violated (Valsecchi et al., 1996). The class of linear transformation models (Dabrowska

and Doksum, 1988), which includes both the proportional hazards and the proportional

odds models as special cases, could serve as an useful alternative. In order to accommodate

general hazard relationship, it is important to extend the single-index proportional hazards

model to a more flexible framework of transformations. The nonconcave likelihood and the

infinite-dimensional nuisance parameters in the single-index transformation model make the

computation difficult. The partial likelihood approach used in the derivation of asymptotic

properties for the single-index proportional hazards model no longer applies here, as the

cumulative hazard function cannot be profiled out with the general transformation.

In this chapter, we propose a semiparametric single-index model in the transformation

model framework to assess the individualized treatment effect. The proposed model is an

extension of Chapter 3 by allowing general hazard relationships. The treatment rule derived

from the proposed model remains linear, which is computationally simple and clinically

interpretable for personalized treatment decisions. We show that by casting the optimization

of likelihood with transformation function into the missing value framework, the EM algorithm

could be used to simplify the estimation. We develop the associate asymptotic theory and
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show that the resulting estimators are semiparametrically efficient. The performance of the

proposed methods is illustrated in simulation studies and a real data application.

4.2 Methods

4.2.1 Data and Model

Let T , A and X denote the survival time, the binary treatment with values 0 and 1, and

bounded baseline covariates, respectively. To characterize the heterogeneity of treatment

effects under the semiparametric transformation model, we assume that the cumulative

hazard function for T conditional on A and X takes the form

Λpt;A,Xq “ G

„
ż t

0
exptαTX ` AψpβTZqudΛpsq



, (4.1)

where Gp¨q is a specific transformation function that is strictly increasing, Λp¨q is an unknown

increasing function (Zeng & Lin, 2006), Z is a subset of X, α and β are the regression

parameters, and ψp¨q is an unknown and strictly increasing link function. We assume that

there are non-zero components in β and ||β|| “ 1 for identifiability, where ||x|| is the Euclidean

norm of vector x.

Clearly, when ψpxq “ x, model (4.1) reduces to the usual transformation model with the

interaction between the treatment and the covariates. The choice of Gpxq “ x yields the

proportional hazards models with a single index term for treatment covariate interaction. An

important class of transformation models is the class of logarithmic transformations Gpxq “

r´1logp1` rxqpr ě 0q, with r “ 0 and r “ 1 corresponding to the proportional hazards and

proportional odds models, respectively. Since all the covariates are time-independent, model

(4.1) can be rewritten as a linear transformation model log ΛpT q “ ´αTX ´ AψpβTZq ` ε,

where ε is an error term with distribution function 1´ expr´Gtexppxqus (Chen et al., 2002).

4.2.2 Maximum Likelihood Estimation

Suppose that data from a randomized trial consist of n right-censored observations. We

denote them as prTi,∆i, Ai,Xiq pi “ 1, . . . , nq, where rTi “ minpTi, Ciq and ∆i “ IpTi ď Ciq,
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and Ci is the potential censoring time for subject i. We further assume that Ci is independent

of Ti given pAi,Xiq. The observed log-likelihood function concerning the model parameters

is then given by

n
ÿ

i“1

`

∆i

 

αTXi ` Aiψpβ
TZiq

(

`∆i log λprTiq `∆i logG1
”

exptαTXi ` Aiψpβ
TZiquΛprTiq

ı

´G
”

exptαTXi ` Aiψpβ
TZiquΛprTiq

ı

˘

, (4.2)

where Λptq “
şt

0 λpsqds.

Expression (4.2) involves both α,β and the infinite dimensional parameters ψ and Λ,

and it may not be concave in these parameters. Also, there is no partial likelihood function

available due to the transformation G. To resolve these difficulties, we adopt a mixture

of expectation-maximization (EM) algorithm, NPMLE, and sieve estimation approach for

the estimation procedure. First, for all commonly used transformations, expt´Gpxqu is the

Laplace transformation of some function ψpxq such that

expt´Gpxqu “
ż 8

0
expp´xtqφptqdt.

Also,

G1pxq expt´Gpxqu “
ż 8

0
t expp´xtqφptqdt.

As proposed in Zeng and Lin (2007), by introducing a new frailty ξ with density function φ,

the objective function can be written as

n
ź

i“1

ż

“

ξi exp
 

αTXi ` Aiγ
TBpβTZiq

(

ΛtrTiu
‰∆i

exp
”

´ξi exptαTXi ` Aiγ
TBpβTZiquΛprTiq

ı

φpξiqdξi. (4.3)

This expression is the likelihood function under the proportional hazards frailty model with
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conditional hazard function

ξiλ0ptq exp
 

αTXi ` Aiγ
TBpβTZiq

(

.

That is, we can use the EM algorithm in the estimation procedure by treating tξiu as missing

data following a distribution with a (set of) parameter r.

If we could observe tξiu, the full log-likelihood is, up to a term free of the parameter

values,

LFullpr,α,β, ψ,Λ; t∆i, rTi,Xi, Ai, ξiuq “ L1prq ` L2pα,β, ψ,Λq,

where L1prq only involves the latent variable tξiu and parameter r, and

L2pα,β, ψ,Λq “
n
ÿ

i“1

”

∆i

!

αTXi ` Aiψpβ
TZiq ` log λprTiq

)

´ ξiΛprTiq exptαTXi ` Aiψpβ
TZiqu

ı

.

In the E step, as shown in the appendix of Zeng and Lin (2007), the posterior expectation of

the latent variables tξiu, given the data and current estimates of all parameters prα, rβ, rψ, rΛq

can be expressed as

Wi ” Erξi|∆i, rTi,Xi, Ai, rα, rβ, rψ, rΛs “

G1
!

exptrαTXi ` Ai rψprβ
TZiqu

rΛprTiq
)

´∆i

G2
!

exptrαTXi ` Ai rψprβ
TZiqu

rΛprTiq
)

G1
!

exptrαTXi ` Ai rψprβTZiqu
rΛprTiq

) ,

where Λttu denotes the step size of Λ at t. The resulting expectation of L2 given the data
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and the current values of Wi is

rL2pα,β, ψ,Λq “
n
ÿ

i“1

”

∆i

!

αTXi ` Aiψpβ
TZiq ` log λprTiq

)

´WiΛprTiq exptαTXi ` Aiψpβ
TZiqu

ı

. (4.4)

The M step of the EM algorithm requires the maximization of 4.4 with respect to the

unknown parameters α, β, ψ, Λ. Since 4.4 is a weighted log likelihood of the Cox model, we

can apply the computational algorithm in section 3.2.3. Specifically, we let the estimator for

Λ be a step function with jumps only at the observed rTi with ∆i “ 1. By maximizing 4.4

with respect to the jump sizes, Λ is profiled out, which yields

L3pα,β, ψq “

n
ÿ

i“1
∆i

˜

αTXi ` Aiψpβ
TZiq ´ log

«

n
ÿ

j“1
YjprTiqWj exptαTXj ` Ajψpβ

TZjqu

ff¸

. (4.5)

We use B-splines (Schumaker, 1981) to approximate the link function ψ. Specifically, we let

Bpuq “ pB1puq, ¨ ¨ ¨ , BKn`1puqq
T denote quadratic B-spline bases corresponding toKn distinct

knots in an interval containing the support of βTZ for any }β} “ 1. We then approximate

ψpuq by rψpuq ” γTBpuq, where γ “ pγ1, ¨ ¨ ¨ , γKn`1q
T are unknown coefficients. To further

ensure that rψpuq is increasing but not too large, we require ´Mn ď γ1 ď ¨ ¨ ¨ ď γKn`1 ďMn

for some constant Mn. The increasing sequence of γ’s guarantees the increasing property

of rψpuq because of the choice of the quadratic splines. We will later describe the choice of

Kn,Mn, and the knots for defining B-splines.

4.2.3 Computational Algorithm

We design an algorithm that maximizes (4.2) by casting the transformation model into

the framework of missing values. Then we can immediately apply the EM algorithm to

facilitate the computation. Within each loop of the EM algorithm, the optimization problem

reduces to the single-index weighted proportional hazards model, which can be solved by
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an interative procedure similar to that in Chapter 3. The detailed algorithm is describe as

follows.

In the initial step, we fit a Cox model with covariates pXT, A,AZTqT, and initialize

pα0 and pβ0 with the estimated coefficient for X and the normalized coefficient for AZ,

respectively. The initial value for γ is set to be the least square estimation coefficients in the

B-spline approximation to a linear function, where the intercept and slope of this function

are the coefficient of A and the Euclidean norm of the coefficient for AZ in the Cox model,

respectively. We initialize the cumulative hazard pΛ0 to be the Breslow estimator.

At the lth iteration, using the current parameter values pαl´1, pβl´1, pγl´1, pΛl´1 and prl´1,

we compute tWl´1,iu and set the link function as pψl´1puq ” pγT
l´1Bpuq. We first update β by

maximizing

n
ÿ

i“1
∆i

"

pαT
l´1Xi ` Ait pψl´1ppβ

T
l´1Ziq `

pψ1l´1p
pβT
l´1Ziqpβ ´ pβl´1q

TZiu´

log
´

n
ÿ

j“1
YjprTiqWl´1,j exp

”

pαT
l´1Xj ` Ajt pψl´1ppβ

T
l´1Zjq `

pψ1l´1p
pβT
l´1Zjqpβ ´ pβl´1q

TZju

ı ¯

*

,

subject to the constraint }β} “ 1. Essentially, we approximate pψl´1pβ
TZq in the partial

likelihood function 4.5 by the first order Taylor expansion at pβl´1, which results in a concave

function of β. This optimization step is solved through the Lagrange multiplier method.

We check that the partial likelihood increases at pβl compared to pβl´1. Otherwise, we

calculate the partial likelihood at 2´q pβl ` p1´ 2´qqpβl´1, for q “ 1, 2, ¨ ¨ ¨ , and update β as

2´q pβl ` p1´ 2´qqpβl´1 with the smallest q that increases the partial likelihood. Next, given
pβl, we update α and γ by maximizing L3pα, pβl,γq under the constraint ´Mn ď γ1 ď ¨ ¨ ¨ ď

γKn`1 ďMn. We note that the object functions in this optimization is strictly concave and

that the constraint sets are convex. Therefore, there are guaranteed unique global maximums

and many packages for convex optimization can be used. Particularly, we adopt R package
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quadprog in our numerical studies. Last, we update pΛ by

pΛlptq “
n
ÿ

i“1

IprTi ď tq∆i
řn
j“1 Yjp

rTiqWl´1,j exptpαT
l Xj ` Aj pψppβT

l Zjqu
.

We iterate until convergence. The algorithm is guaranteed to converge, since the objective

function 4.4 in the maximization step is increased at each iteration, and will only be unchanged

upon convergence. Let pα, pβ, pγ, and pΛ be the final estimates of α, β, γ, and Λ, respectively.

The link function ψpuq is estimated by pψpuq ” pγTBpuq. Finally, the optimal treatment rule

is estimated as ItpβTZ ă pψ´1p0qu.

4.2.4 Variance estimation

We use profile likelihood (Murphy & van der Vaart, 2000) to estimate the covariance

matrix of ppαT, pβT
´qq

T, which we denote as θ thereafter. Specifically, we define the profile

loglikelihood

plnpθq “ max
ΛPC,ψPD

logLnpθ, ψ,Λq,

where C is the set of step functions with nonnegative jumps at rTi with ∆1 “ 1, and D is the

set of monotone increasing functions spanned by the B-splines. Then the covariance matrix

of θ is estimated by the negative inverse of the matrix whose pj, kqth element is

h´2
n

!

plnppθq ´ plnppθ ` hnekq ´ plnppθ ` hnejq ` plnppθ ` hnek ` hnejq
)

, (4.6)

where ej is the jth canonical vector in Rp`q´1 and hn is a constant of order n´1{2. To calculate

plnpθq, we reuse the proposed EM algorithm with θ held fixed and only updating pΛ and pψ in

the M-step.

Numerical results show that the second order perturbation formula might lead to negative

results in rare cases, and the rate n´1{2 might not work the best in small sample scenarios.

Therefore, we also propose the first order analog to the above formula, with hn of order

n´1. Specifically, the covariance matrix of θ is estimated by the inverse of the matrix whose
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pj, kqth element is

h´2
n

n
ÿ

i“1

!

plinp
pθq ´ plinp

pθ ` hnekq
)!

plinp
pθq ´ plinp

pθ ` hnejq
)

, (4.7)

where plin is the contribution of the ith subject to the profile likelihood.

4.3 Asymptotic Properties

Let α0 ” pα0,1, ¨ ¨ ¨ , α0,pq
T, β0 ” pβ0,1, ¨ ¨ ¨ , β0,qq

T, and ψ0p¨q denote the true values of

α,β, and ψp¨q, respectively. In addition, let τ denote the study duration and Z denote the

union of the support of βTZ for all }β} “ 1. We impose the following regularity conditions.

Condition 1. The true values α0 and β0 lie in the interior of a known compact set;

ψ0puq is a strictly increasing function of u and three-times differentiable in Z, and λ0ptq is

twice differentiable in r0, τ s.

Condition 2. The conditional density of C given X has bounded twice differentiable

derivative on its support r0, τ s. The conditional distribution of pA,Xq given βT
0 Z has a

continuously differentiable density with respect to a dominating measure.

Condition 3. With probability 1, P pY pτq “ 1|Xq ą c0 for some positive constant

c0. In addition, if cT
1X “ d1 with probability 1 for some constant vector c1 and constant d1,

then c1 “ 0 and d1 “ 0.

Condition 4. The number of the knots satisfies that Kn Ñ 8 and n´1{2K7
n Ñ 8. In

addition, the adjacent distance of the interior knots is between c´1K´1
n and cK´1

n for some

positive constant c.

Condition 5. For any positive c0, lim supxÑ8tGpc0xqu
´1logtx supyďxG1pyqu ď 1.

Remark 1. The second part of Condition 1 and Condition 2 ensure smoothness for

the functions ψ0 and λ0, the conditional distribution of C given X, and the conditional

distribution of pA,Xq given βT
0 Z. Condition 3 ensures that a non-trivial proportion of

subjects is censored at τ and that p1,XTqT is linearly independent.

44



Remark 2. Condition 4 is satisfied by most transformations. For example, the limit

goes to zero for the Box-Cox transformation Gpxq “ tp1` xqρ ´ 1u{ρ with ρ ą 0 and goes to

one for the logarithmic transformation Gpxq “ r´1logp1` rxq.

We state the consistency and asymptotic distribution of the estimators for the model

parameters in the following three theorems, whose proofs are given in the Appendix.

Theorem 4.3.1. Under Conditions 1–4, || pψ´ψ0||W 1,8pZq` sup
tPr0,τ s

|pΛ´Λ0|` ||pα´α0||` ||pβ´

β0|| Ñ 0 in probability, where for any differentiable function f with derivative f 1, ||f ||W 1,8pZq

is defined as ||f ||L8pZq` ||f 1||L8pZq. Furthermore, ||pα´α0||
2` ||pβ´β0||

2` || pψ´ψ0||
2
L2pZq “

oppn
´1{2q.

To describe the asymptotic distribution, we assume β0q ą 0 without loss of generality.

For a q-dimensional vector x, let x´q “ px1, ¨ ¨ ¨ , xq´1q
T.

Theorem 4.3.2. Under Conditions 1–5, n1{2ppαT´αT
0 ,

pβT
´q´β

T
0,´qq

T converges in distribution

to a zero-mean normal random vector with covariance matrix Σ´1, and Σ´1 achieves the

semiparametric efficiency bound.

4.4 Simulation Studies

We conducted simulation studies to assess the performance of the proposed methods

under realistic scenarios. We considered sample sizes n “ 500, 1000, and 2000. The baseline

hazard function Λptq was assumed to follow a Weibull distribution with shape parameter 2.5

and scale parameter 2. We considered two link functions: (a) (exponential) ψ0puq “ eu ´ 0.5;

(b) (linear) ψ0puq “ u` 0.4; and (c) (sine)

ψ0puq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´3 if u ď ´1{2

sinpπuq ´ 1 if ´ 1{2 ă u ď 1{2

1 if u ą 1{2.
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The censoring time was assumed to follow Unifr0, τ s, where τ was chosen such that

the censoring rate was 50%. We generated four independent covariates from Unifr´1, 1s

for the main effects and assumed that the treatment effect on the survival time depends

on the first two covariates with the main effects. We set the corresponding main effect

parameters pα1, α2, α3, α4q
T to p´0.4,´0.2, 0.2, 0.4qT and the interaction effect parameters

pβ1, β2, β3, β4q
T to p´0.5,´0.5, 0.5, 0.5qT. The treatment assignment A was assumed to be

independent of X,Z and to follow a Bernoulli distribution with success probability of 0.5.

We considered a series of models with the number of knots Kn ranging from 3 to 9. The

majority of the 10,000 replicates selected a final model with Kn “ 3, 3, and 6 by the AIC

criterion for the exponential, linear, and sine link functions, respectively. In the variance

calculation, we used hn “ n´1 as the perturbation parameter.

Table 4.1-4.2 summarizes the results for the estimation of pβ1, β2, β3, β4q
T under the

proposed model with different links and transformation models. Note that the scenario r “ 0

and r “ 1 corresponds to the proportional hazards single-index model and proportional odds

single-index model, respectively. The biases of the parameter estimators under our model are

small and decrease as the sample size increases increases. The variance estimators and the

corresponding confidence intervals for β become more accurate as the sample size increases

to 2000 or higher.

4.5 Application to evaluate adjuvant therapy of large-bowel carcinoma

The data is from a randomized clinical trial to evaluate the surgical adjuvant therapy

of large-bowel carcinoma (Moertel et al., 1990; Laurie et al., 1989). This was a randomized

clinical trial on patients with resected stages B and C colorectal carcinoma. The main goal

was to assess the effectiveness of fluorouracil (5-FU) plus levamisole versus levamisole alone

versus the observation group. The time to death and disease relapse were recoreded, with a

median follow-up time of 6.5 years. 50% of the subjects were censored.

We aimed to investigate the interaction between baseline covariates and treatment effect

on the time to disease relapse and derive the optimal treatment regimen for each patient
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in the study. With some exploratory analysis, we included the following 8 covariates for

the main effect: location of primary neoplasm, extent of local speed, perforation, adherence,

number of positive nodes, age, number of days from tumor resection to start of treatment

and pre-operative CEA level. Among these, perforation, adherence, number of positive nodes,

age and pre-operative CEA level were included for the interaction terms. In the exploratory

analysis, we found that the performance in the levamisole alone group and the observation

group is comparable. Therefore, we combined those patients and coded them as receiving

treatment A “ 0, and the treatment of fluorouracil (5-FU) plus levamisole was labeled as

A “ 1.

We fitted the transformation single index model with the logarithmic transformation

parameter ranging from 0 to 2, with a step size of 0.1. We evaluated the the performance

of different single-index transformation models using a five-fold cross validation. Each time,

we fitted the model with the left-out dataset, and computed two performance benchmarks

with the left-out: the C-index and the p-value from the log-rank test. Each time in the

cross validation, we calculated the optimal treatment assignment for each patient in the

left-out dataset. The C-index measured if the risk of the disease relapse as predicted in the

model is concordant with their actual order of timing for every pair of patients in the left-out

dataset. The p-value in the log-rank test was obtained in testing the difference of disease

relapse over time between patients who followed the treatment versus those who did not

follow the treatment. The C-index benchmark generally favored a larger r. The log rank test

suggested a model with r in the range of 0.8 and 1, and r greater than 1 was almost as good

as the optimal r. Combining these two results, we decided to choose r “ 1.5 as our final

transformation parameter. Details of the cross validation criteria is provided in Figure 4.1.
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Figure 4.1: Cross validation criteria in choosing the best transformation.

Table 4.3 displays the estimation results for the treatment-covariate interaction effects

under the proposed model and the single-index proportional hazards model. Both models

indicate that age is significantly related to the treatment effect on time to relapse, with older

patients more likely to benefit from fluorouracil (5-FU) plus levamisole than levamisole alone.

Perforation was a deterministic factor in the optimal treatment rule estimation under the

single-index model, but did not show the effect with the proposed model. Adherence was

marginally significant under the proposed model but not so under the single-index model. A

comparison of the estimated link functions is given in Figure 4.2.

In order to measure the performance of the proposed model in assigning patients to the

optimal treatment rule, we compared the probability of disease relapse over time for patient

who followed the treatment rule versus those who did not follow the treatment rule. It is

clear in Figure 4.3 that the patients have a much smaller risk of experiencing disease relapse

if they follow the recommended treatment strategy. That is, the treatment rule estimated by

the proposed transformation single-index model benefits the patients in delaying their time

to experience the disease relapse.
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Figure 4.2: Estimation of the link functions under the transformation single-index model

(r “ 1.5) and the single-index proportional hazards model (r “ 0).

Figure 4.3: Estimation of the survival curve for patients who follow the treatment recommen-

dation under the proposed model and those who do not follow the treatment recommendation.
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4.6 Discussion

In practice, the transformation function is an unknown piece in the model and needs

to be selected. In the real data application, we used p value in the log rank test and the

C-index as benchmarks. These statistics are estimated by the cross validation approach.

Other criteria, such as the log-likelihood, may also work. However, with the aim of estimating

the optimal treatment rule, we think the criteria that emphasize the treatment assignment is

more relevant.

Although this chapter is mainly focused on estimation of the interaction parameters and

the optimal treatment rule under the transformation model, the proposed method can be

easily extend for inference of the value function for each patient. Asymptotic properties for a

predefined loss or benefit function that measures how much benefit an individual receives

from the treatment can be obtained using strategies similar to the proof for the asymptotic

behavior of the interaction parameters.

One practical issue in using the proposed model is to determine which variables to include

for the potential interaction term. In the next chapter, we will develop a variable selection

approach that allows high dimensional input and automatically differentiates the important

and unimportant variables in predicting the optimal treatment rule.
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Table 4.1: Simulation results for the estimation of β “ p´0.5,´0.5, 0.5, 0.5q with different
link functions.

r “ 0 r “ 1
Link n Bias SE SEE CP Bias SE SEE CP
Expon- 1000 β1 0.02 0.10 0.09 0.90 0.03 0.14 0.12 0.89
ential β2 0.01 0.09 0.09 0.91 0.02 0.14 0.12 0.90

β3 0.00 0.09 0.09 0.93 -0.02 0.14 0.12 0.91
β4 -0.01 0.09 0.09 0.92 -0.02 0.14 0.13 0.90

2000 β1 0.01 0.07 0.06 0.93 0.01 0.09 0.09 0.93
β2 0.01 0.06 0.06 0.93 0.02 0.10 0.09 0.92
β3 0.00 0.06 0.06 0.94 -0.01 0.09 0.09 0.93
β4 0.00 0.06 0.06 0.95 0.00 0.09 0.09 0.94

5000 β1 0.00 0.04 0.04 0.95 0.00 0.06 0.06 0.96
β2 0.00 0.04 0.04 0.95 0.01 0.06 0.06 0.96
β3 0.00 0.04 0.04 0.95 -0.01 0.06 0.06 0.95
β4 0.00 0.04 0.04 0.94 0.00 0.06 0.06 0.94

Linear 1000 β1 0.03 0.15 0.12 0.87 0.05 0.21 0.17 0.85
β2 0.02 0.15 0.12 0.87 0.05 0.21 0.17 0.86
β3 -0.02 0.15 0.12 0.88 -0.04 0.21 0.17 0.86
β4 -0.02 0.15 0.15 0.88 -0.05 0.21 0.19 0.88

2000 β1 0.01 0.10 0.09 0.93 0.02 0.14 0.13 0.93
β2 0.01 0.10 0.09 0.92 0.03 0.14 0.13 0.91
β3 -0.01 0.10 0.09 0.93 -0.02 0.14 0.13 0.93
β4 -0.01 0.10 0.09 0.93 -0.01 0.14 0.13 0.93

5000 β1 0.01 0.06 0.06 0.96 0.01 0.08 0.09 0.97
β2 0.00 0.06 0.06 0.94 0.01 0.09 0.09 0.95
β3 -0.01 0.06 0.06 0.95 -0.02 0.09 0.09 0.96
β4 0.00 0.06 0.06 0.93 0.00 0.09 0.09 0.94

r denotes the transformation parameter in the logarithmic transformation. Bias and SE
are the bias and standard error of the parameter estimator, respectively; SEE is the mean
of the standard error estimator; CP is the coverage probability of the 95% confidence
interval.
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Table 4.2: Simulation results for the estimation of β “ p´0.5,´0.5, 0.5, 0.5q with different
link functions.

r “ 0 r “ 1
Link n Bias SE SEE CP Bias SE SEE CP
Sine 1000 β1 0.01 0.07 0.06 0.93 0.02 0.13 0.10 0.87

β2 0.00 0.07 0.06 0.93 0.01 0.12 0.09 0.88
β3 0.00 0.07 0.06 0.93 -0.01 0.13 0.09 0.87
β4 -0.01 0.07 0.06 0.92 -0.02 0.13 0.10 0.86

2000 β1 0.00 0.04 0.05 0.96 0.01 0.07 0.07 0.94
β2 0.00 0.04 0.05 0.95 0.01 0.08 0.07 0.93
β3 0.00 0.05 0.05 0.94 0.00 0.07 0.07 0.93
β4 0.00 0.05 0.05 0.93 -0.01 0.08 0.07 0.92

5000 β1 0.00 0.03 0.03 0.96 0.00 0.04 0.05 0.96
β2 0.00 0.03 0.03 0.96 0.00 0.04 0.05 0.96
β3 0.00 0.03 0.03 0.95 0.00 0.04 0.05 0.95
β4 0.00 0.03 0.03 0.95 0.00 0.04 0.05 0.96

See note to Table 4.1.

52



Table 4.3: Estimation of the parameters under different transformation models
r “ 0 r “ 1.5

Std. Std.
Parameters Est. Err. P -value Est. Err. P -value

Main Effects
Sigmoid neoplasm -0.18 0.11 0.09 -0.26 0.17 0.11
Cecum neoplasm -0.14 0.12 0.27 -0.17 0.19 0.36
Muscular Spread 0.31 0.53 0.56 0.23 0.61 0.71
Serosa Spread 0.85 0.50 0.09 0.92 0.58 0.11
Contuiguos structures 1.44 0.53 0.01 1.82 0.67 0.01
Perforation 0.14 0.26 0.59 0.12 0.45 0.79
Adherence 0.18 0.13 0.18 0.20 0.23 0.39
Log positive nodes 0.39 0.05 ă 0.01 0.54 0.07 ă 0.01
Age 0.01 0.05 0.82 0.02 0.08 0.79
Days to treatment -0.08 0.05 0.08 -0.08 0.07 0.26
Pre-operative CEA level 0.09 0.05 0.08 0.14 0.08 0.07

Interactions
Perforation 0.25 1.24 0.84 0.04 1.63 0.98
Adherence 0.56 0.45 0.21 0.65 0.36 0.07
Log positive nodes 0.28 0.18 0.12 0.24 0.23 0.30
Age -0.67 0.19 ă 0.01 -0.67 0.30 0.03
Pre-operative CEA level 0.32 0.17 0.06 0.28 0.25 0.26

The transformation parameter r “ 0 corresponds to a single-index proportional hazards model.
“Est." and "Std. Err." denote the estimate and the standard error estimate for a parameter.
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CHAPTER 5: VARIABLE SELECTION WITH SINGLE-INDEX
MODELS WITH APPLICATION TO OPTIMAL TREATMENT REGIMES

5.1 Introduction

With the modern development of technology, wide use of electronic devices, and the

availability of electronic health record, researchers are able to collect more variables from each

patient than any time in the past. The detailed information provides both the opportunity

and the challenge. It is an opportunity for researchers to discover unknown associations

between treatment benefit and the patient characteristics and thus develop a more effective

treatment procedure. It is challenging because among the massive information, only a small

portion is truly important in predicting the optimal treatment rule. Such variables need to

be identified from the noise in a computational efficient way with a sample size in a typical

clinical trial, which is usually not very large.

This procedure is usually termed as variable selection or dimension reduction and has

been studied using stepwise model selection (Chatfield, 1995; Harrell et al., 1996; Steyerberg

et al., 1999), the Akaike information criterion (Akaike, 1970), and the Bayesian information

criterion (Schwarz et al., 1978). Certain penalties, such as the adaptive lasso (Zou, 2006) and

the smoothly clipped absolute deviation (Fan and Li, 2001), have been shown to enjoy the

oracle penalty when they are used for variable selection with non-censored outcomes. For

censored outcomes, variable selection with the adaptive lasso penalty has been discussed in

the Zhang and Lu (2007) and Liu and Zeng (2013), among other methods.

In the field of personalized medicine, there has been some discussion of variable selection

with non-censored outcomes. Fan et al. (2016) studied the penalized A-learning in a multiple-

stage treatment where a Dantzig selector (Candes et al., 2007) directly penalizes the A-

leaning estimating equations. Gunter et al. (2011) discussed variable selection for qualitative
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interactions using the Adjusted Gain in Value (AGV) lasso penalty. Nezhad et al. (2016)

designed the integrated feature selection method with stacked autoencoders in deep learning to

achieve dimension reduction. All of the above mentioned works can only handle non-censored

outcomes. To our knowledge, there is no existing variable selection method in estimating the

personalized treatment rule with censored outcomes.

In this chapter, we propose a variable selection approach by adding the adaptive lasso

penalty to the log-likelihood of a single-index transformation model. This model encompasses

both the single-index proportional hazards model and the single-index proportional odds

model as special cases, among many other models in between. We design an estimation

procedure by casting the problem into a weighted Cox model framework. We show the oracle

penalty and asymptotic distribution of the adaptive lasso estimator. Performance of the

proposed method is demonstrated by simulation examples and a clinical trial application.

5.2 Methods

5.2.1 Data and Model

Let T denote the survival time, A denote the binary treatment with values 0 and 1, and

X denote the baseline covariates assumed to be bounded. To characterize the heterogeneity

of treatment effects under the semiparametric transformation model, we assume that the

cumulative hazard function for T conditional on A and X takes the form

Λpt;A,Xq “ G

„
ż t

0
exptαTX ` AψpβTZqudΛpsq



, (5.1)

where Gp¨q is a specific transformation function that is strictly increasing, Λp¨q is an unknown

increasing function (Zeng & Lin, 2006), Z is a subset of X, α and β are the regression

parameters, and ψp¨q is an unknown and strictly increasing link function. For identifiability,

we further assume that there are non-zero components in β and ||β|| “ 1, where ||x|| is the

Euclidean norm of vector x.

Clearly, when ψpxq “ x, model (5.1) reduces to the usual transformation model with the
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interaction between the treatment and the covariates. The choice of Gpxq “ x yields the

proportional hazards models with a single index term for treatment covariate interaction. An

important class of transformation models is the class of logarithmic transformations Gpxq “

r´1logp1` rxqpr ě 0q, with r “ 0 and r “ 1 corresponding to the proportional hazards and

proportional odds models, respectively. Since all the covariates are time-independent, model

(5.1) can be rewritten as a linear transformation model log ΛpT q “ ´αTX ´ AψpβTZq ` ε,

where ε is an error term with distribution function 1´ expr´Gtexppxqus (Chen et al., 2002).

5.2.2 Initial Estimate

Let prTi,∆i, Ai,Xiq pi “ 1, . . . , nq denote the data from a randomized trial consist of

n right-censored observations, where rTi “ minpTi, Ciq and ∆i “ IpTi ď Ciq, and Ci is

the potential censoring time for subject i. We make the standard independent censoring

assumption that Ci is independent of Ti given pAi,Xiq. The observed log-likelihood function

concerning the model parameters is given by

n
ÿ

i“1

`

∆i

 

αTXi ` Aiψpβ
TZiq

(

`∆i log λprTiq `∆i logG1
”

exptαTXi ` Aiψpβ
TZiquΛprTiq

ı

´G
”

exptαTXi ` Aiψpβ
TZiquΛprTiq

ı

˘

, (5.2)

where Λptq “
şt

0 λpsqds.

Expression (5.2) involves both α,β and the infinite dimensional parameters ψ and Λ,

and it may not be concave in these parameters. Also, there is no partial likelihood function

available due to the transformation G. As shown in Chapter 4, the non-parametric maximum

likelihood estimators can be obtained using a combination of the expectation-maximization

(EM) algorithm and sieve estimation approach. In each iteration in the EM algorithm, the

posterior expectation in the E step can be written as

Wi “ G1
!

exptrαTXi ` Ai rψprβ
TZiqu

rΛprTiq
)

´∆i

G2
!

exptrαTXi ` Ai rψprβ
TZiqu

rΛprTiq
)

G1
!

exptrαTXi ` Ai rψprβTZiqu
rΛprTiq

) ,
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where Λptq denotes the step size of Λ at t. The function we aim to maximize in the M step

takes the form

Lpα,β, ψq “

n
ÿ

i“1
∆i

˜

αTXi ` Aiγ
TBpβTZiq ´ log

«

n
ÿ

j“1
YjprTiqWj exptαTXj ` Ajγ

TBpβTZjqu

ff¸

.

(5.3)

where γ1 ď ¨ ¨ ¨ ď γKn`1, }β} “ 1, and Bpuq “ pB1puq, ¨ ¨ ¨ , BKn`1puqq
T denote quadratic

B-spline bases corresponding to Kn distinct knots in an interval containing the support of

βTZ for any }β} “ 1.

5.2.3 Variable Selection

We consider the adaptive lasso penalty for variable selection for its oracle properties.

To accommodate penalties into the original optimization problem, we first examine the

equation (5.3), which resembles the form of the partial log-likelihood function for a Cox

model. Therefore, we propose to adapt the ideas in Liu and Zeng (2013) and Zhang and

Lu (2007) in the estimation with the adaptive lasso penalty. Specifically, after we apply the

penalty, the objective function can be written as

Qnpβq “ ´
n
ÿ

i“1
∆i

˜

αTXi ` Aiψpβ
TZiq ´ log

«

n
ÿ

j“1
YjprTiqWj exptαTXj ` Ajψpβ

TZjqu

ff¸

` nρ
q
ÿ

j“1
|rβj|

´1
|βj|, (5.4)

subject to ||β|| “ 1, where ρ is a tuning parameter and rβ is the initial estimate. A large

value of the initial estimate indicates higher predictive power and the corresponding variable

receives less penalty; a smaller initial estimate implies less importance of the variable in the

model fitting and is penalized with a higher weight.
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We approximate ψpβTZq by the first order Taylor expansion at rβ in equation (5.3):

lnpβq “
n
ÿ

i“1
∆i

"

αTXi ` Aitψprβ
TZiq ` ψprβ

TZiqpβ ´ rβqTZiu´

log
´

n
ÿ

j“1
YjprTiqWj exp

”

αTXj ` Ajtψprβ
TZjq ` ψ

1
prβTZjqpβ ´ rβqTZju

ı ¯

*

.

In terms of β, this expression takes the form of a weighted partial log-likelihood function with

the ith observation’s weight given byWj exprαTXj`Ajtψprβ
TZjq´ψ

1prβTZjq
rβTZjus. Define

the gradient vector ∇lpβq “ ´Blnpβq{Bβ, the Hessian matrix ∇2lpβq “ ´B2lnpβq{BβBβ
T,

the Cholesky decomposition of ∇2lpβq, i.e. ∇2lpβq “ UTU and the pseudo response

vector R “ pUTq´1t∇2lpβqβ ´∇lpβqu. With the second-order Taylor expansion, ´lnpβq is

approximated by 1{2pR´UβqTpR´Uβq. That is, we aim the minimize

1{2pR´UβqTpR´Uβq ` nρ
q
ÿ

j“1
|rβj|

´1
|βj|. (5.5)

For any fixed ρ, the following is a complete algorithm for solving (5.4).

Step 1. Obtain rβ, rα, rΛ and rψ as the initial estimates using the methods in Wang et. al.

(2019), and then compute rRi pi “ 1, ¨ ¨ ¨ , nq.

Step 2. Compute ∇l, ∇2l, U and R based on the value of rβ.

Step 3. Minimize the objective function (5.5) with constraint ||β|| “ 1.

We propose the criteria for the optimal tuning parameter following steps similar to Fan

and Li (2001), Zhang and Lu (2007) and Liu and Zeng (2013). Define the penalty function

pρp|βj|q “ ρ|rβj|
´1|βj|. For nonzero βj0 and βj , the derivative of the penalty with respect to

βj can be written as

rpρp|βj|qs
1
“ p1ρp|βj|q|βj|

´1βj « p1ρp|βj0|q|βj0|
´1βj0 “ nρβ´1

j0 .

Therefore, the penalty function can be approximated by
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pρp|βj0|q ` 1{2|βj0|´1p1ρp|βj0|qpβ
2
j ´ β

2
j0q,

for βj0 close to βj. If βj0 “ 0, a consistent initial estimate produces a penalty weight going

to infinity and shrinks the adaptive lasso estimate to zero. That is, the objective function

can be alternatively approximated by

1{2pR´UβqTpR´Uβq ` nρβTAβ,

where A “ diagp rβ1
´2
, ¨ ¨ ¨ , rβq

´2
q. It is straightforward to obtain the effective number of

parameters epρq “ trp∇2lpβq`Aq´1∇2lpβq. We can choose the tuning parameter ρ according

to the generalized cross validation criteria

GCV pρq “ ´lnpβρq{rnt1´ epρq{nu2s.

5.3 Asymptotic Properties

We describe the proposed adaptive Lasso estimator with the penalized objective function

based on n samples, which is denoted by Qnpβq “ lnpβq ´ nρn
řq
j“1 |βj|{|

rβj|. Write the true

values of β as β0 “ pβ10,β20q
T, where β10 consists of q1 zero components and β20 consists of

q2 nonzero components. Similarly, we define the adaptive lasso estimator pβn “ ppβ1n, pβ2nq
T.

Also, define the maximum likelihood estimator after variable selection qβn “ pqβ1n, qβ2nq
T.

Finally, we write the potential interaction covariates Z as pZT
1 ,Z

T
2 q, where Z1 denotes the

unimportant covariates and Z2 denotes the important ones. Let Λ0 denote the true value for

the cumulative hazard function. We require the following regularity conditions.

We impose the following regularity conditions.

Condition 1. The true values α0 and β0 lie in the interior of a known compact set;

ψ0puq is a strictly increasing function of u and three-times differentiable in Z, and λ0ptq is

twice differentiable in r0, τ s.
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Condition 2. The conditional density of C given X has bounded twice differentiable

derivative on its support r0, τ s. The conditional distribution of pA,Xq given βT
0 Z has a

continuously differentiable density with respect to a dominating measure.

Condition 3. With probability 1, P pY pτq “ 1|Xq ą c0 for some positive constant

c0. In addition, if cT
1X “ d1 with probability 1 for some constant vector c1 and constant d1,

then c1 “ 0 and d1 “ 0.

Condition 4. The number of the knots satisfies that Kn Ñ 8 and n´1{2K7
n Ñ 8. In

addition, the adjacent distance of the interior knots is between c´1K´1
n and cK´1

n for some

positive constant c.

Condition 5. For any positive c0, lim supxÑ8tGpc0xqu
´1logtx supyďxG1pyqu ď 1.

Remark 1. These are the same set of conditions used in the maximum likelihood

estimation in the single-index transformation model. No additional conditions are needed for

the adaptive lasso estimator.

Remark 2. The second part of Condition 1 and Condition 2 ensure smoothness for

the functions ψ0 and λ0, the conditional distribution of C given X, and the conditional

distribution of pA,Xq given βT
0 Z. Condition 3 ensures that a non-trivial proportion of

subjects is censored at τ and that p1,XTqT is linearly independent. Condition 4 is satisfied

by most transformations. For example, the limit goes to zero for the Box-Cox transformation

Gpxq “ tp1 ` xqρ ´ 1u{ρ with ρ ą 0 and goes to one for the logarithmic transformation

Gpxq “ r´1logp1` rxq.

We state that the adaptive lasso estimator is consistent for the true value at the rate n1{2.

Theorem 5.3.1. Under Conditions 1–5, suppose n1{2ρn “ Opp1q, then the adaptive lasso

estimator satisfies ||pβn ´ β0|| “ Oppn
´1{2q.

The next theorem shows the oracle property of the adaptive lasso estimator. In other

words, as sample size increases, the selector keeps the important variables and discard

the unimportant ones as if the distinction between the two were known. In addition, the
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asymptotic distribution of the important interaction variables is a multivariate normal

distribution with the semiparametric efficiency bound attained. The efficiency is because

without the penalty, the quadratic approximation to the objective function is exactly the

same as the approximate objective function for the single-index transformation model in the

M step of an EM algorithm. The penalty is not dominating as shown by the oracle property.

Therefore, the estimator attains the same efficiency as in the unpenalized single-index

transformation models.

Theorem 5.3.2. Under Conditions 1–5, suppose n1{2ρn Ñ 0 and nρn Ñ 8, then under

Theorem 1, the adaptive lasso estimator pβn has the following properties: (i) pβ1n “ 0 with

probability tending to 1; (ii) n1{2ppβ2n ´ β20q converges in distribution to a zero-mean normal

random vector with covariance matrix Σ´1, and Σ´1 achieves the semiparametric efficiency

bound.

Last, we show the theoretical properties for the maximum likelihood estimator of the

selected important variables when refitting the model without the adaptive lasso penalty

after variable selection.

Theorem 5.3.3. Under Conditions 1–5, the maximum likelihood estimator after variable

selection, n1{2pqβ2n´β20q converges in distribution to a zero-mean normal random vector with

covariance matrix Σ´1, and Σ´1 achieves the semiparametric efficiency bound.

Proofs of the theorems are given in the Appendix.

5.4 Simulation Studies

The simulation study is set up as follows. We considered sample sizes 1000, 2000 and 5000.

The baseline hazard function Λptq was assumed to follow a Weibull distribution with shape

parameter 2.5 and scale parameter 2. We considered three link functions: (a) (exponential)

ψ0puq “ eu ´ 0.5; (b) (linear) ψ0puq “ u` 0.4; and (c) (sine)
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ψ0puq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´3 if u ď ´1{2

2 sinpπuq ´ 1 if ´ 1{2 ă u ď 1{2

1 if u ą 1{2.

Table 5.1: Variable selection proportions, the average number of correct and incorrect zero
coefficients with the adaptive lasso method.

Selection Percentage
r Link n β11 β12 β13 β14 β15 β16 β17 β18 β19 β20 Cor Incr
0 Expon- 1000 8 6 6 6 7 6 91 93 92 92 14.9 0.3

ential 2000 2 2 1 2 2 1 100 100 100 100 15.8 0.0
5000 1 1 1 1 1 1 100 100 100 100 15.9 0.0

Linear 1000 19 18 15 17 18 20 75 78 78 77 13.0 0.9
2000 14 14 13 14 13 12 95 97 96 95 13.9 0.2
5000 5 5 5 6 5 6 100 100 100 100 15.2 0.0

Sine 1000 3 2 3 3 2 2 92 92 92 92 15.6 0.3
2000 0 0 0 0 0 0 100 100 100 100 16.0 0.0
5000 0 0 0 0 0 0 100 100 100 100 16.0 0.0

1 Expon- 1000 11 8 9 9 9 10 73 75 74 74 14.5 1.0
ential 2000 4 3 3 4 2 2 95 95 96 96 15.6 0.2

5000 1 2 1 1 1 1 100 100 100 100 15.8 0.0
Linear 1000 15 16 14 15 16 16 50 53 52 53 13.4 1.9

2000 13 11 12 13 13 11 77 76 76 75 14.1 1.0
5000 4 6 5 5 5 5 99 98 98 98 15.2 0.1

Sine 1000 16 15 15 15 16 15 78 79 78 78 13.6 0.9
2000 1 1 1 1 1 1 97 97 97 97 15.9 0.1
5000 0 0 0 0 0 0 100 100 100 100 16.0 0.0

r denotes the transformation parameter in the logarithmic transformation. “Selection percentage" denotes
the proportion of replicates where the parameter is selected by the proposed method. “Corr" and “Incr"
denotes the average number of correct zero parameters and incorrect zero parameters in the model. Each
entry is based on 1000 replicates.

The censoring time was assumed to follow Unifr0, τ s, where τ was chosen such that the

censoring rate was 50%. We set the corresponding main effect parameters pα17, α18, α19, α20q
T

to p´0.4,´0.2, 0.2, 0.4qT and αj “ 0 for j “ 1 ¨ ¨ ¨ 16. Similarly, we set the interaction effect

parameters pβ17, β18, β19, β20q
T to p´0.5,´0.5, 0.5, 0.5qT, and βj “ 0 for j “ 1 ¨ ¨ ¨ 16. The

treatment assignment A was assumed to be independent of X,Z and to follow a Bernoulli
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distribution with success probability of 0.5. We simulated 1000 replicates.

Table 5.2: Simulation results on β17 ´ β20 with exponential link.
Before selection After selection

r n Bias SE Bias SE SEE CP
0 1000 β17 0.07 0.11 0.01 0.11 0.09 0.87

β18 0.07 0.11 0.01 0.11 0.09 0.87
β19 -0.07 0.11 -0.01 0.11 0.09 0.87
β20 -0.06 0.11 -0.01 0.11 0.09 0.89

2000 β17 0.03 0.07 0.00 0.07 0.06 0.93
β18 0.02 0.07 0.00 0.07 0.06 0.94
β19 -0.02 0.07 0.00 0.07 0.06 0.94
β20 -0.02 0.07 0.00 0.06 0.07 0.95

5000 β17 0.01 0.04 0.00 0.04 0.04 0.95
β18 0.01 0.04 0.00 0.04 0.04 0.94
β19 -0.01 0.04 0.00 0.04 0.04 0.94
β20 -0.01 0.04 0.00 0.04 0.04 0.94

1 1000 β17 0.12 0.15 0.04 0.15 0.11 0.81
β18 0.12 0.14 0.05 0.14 0.11 0.86
β19 -0.12 0.15 -0.04 0.15 0.12 0.83
β20 -0.11 0.15 -0.03 0.16 0.12 0.86

2000 β17 0.05 0.10 -0.02 0.09 0.09 0.95
β18 0.05 0.10 -0.01 0.10 0.09 0.92
β19 -0.05 0.10 0.01 0.10 0.09 0.92
β20 -0.04 0.10 0.01 0.10 0.10 0.92

5000 β17 0.01 0.06 -0.01 0.06 0.06 0.96
β18 0.02 0.06 0.01 0.06 0.06 0.94
β19 -0.03 0.06 -0.01 0.06 0.06 0.95
β20 -0.01 0.06 0.01 0.06 0.06 0.95

r denotes the transformation parameter in the logarithmic transformation.
Bias and SE are the bias and standard error of the parameter estimator,
respectively; SEE is the mean of the standard error estimator; CP is the
coverage probability of the 95% confidence interval. Each entry is based on
1000 replicates.

We obtained the initial estimates using the expectation-maximization algorithm described

in section 5.2.2. We then implemented the adaptive lasso variable selection procedure in

section 5.2.3 to select important features in the optimal treatment rule estimation. We

considered the grid points p2´8, 2´7, . . . , 1, . . . , 27, 28q for tuning parameter ρ, and reported
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the results with the optimal value of ρ. Table 5.1 summarizes the proportion of times each

parameter is selected in the adaptive lasso estimation based on 1000 simulated replicates for

β11 ´ β20. With each transformation function and link function, the proposed method is able

to select the correct set of parameters when sample size increases. Transformation model

with r “ 1 requires a larger sample size for the method to correctly select the important

variables compared to r “ 0.

Table 5.3: Inference results on β17 ´ β20 with linear link.
Before selection After selection

r n Bias SE Bias SE SEE CP
0 1000 β17 0.13 0.15 0.05 0.16 0.11 0.78

β18 0.12 0.14 0.06 0.15 0.11 0.82
β19 -0.13 0.15 -0.06 0.15 0.11 0.81
β20 -0.13 0.14 -0.06 0.14 0.12 0.85

2000 β17 0.06 0.10 0.00 0.10 0.09 0.92
β18 0.07 0.10 0.00 0.11 0.09 0.88
β19 -0.06 0.10 0.00 0.11 0.09 0.91
β20 -0.07 0.10 -0.01 0.10 0.09 0.92

5000 β17 0.02 0.06 0.00 0.06 0.06 0.95
β18 0.02 0.06 0.00 0.06 0.06 0.95
β19 -0.02 0.06 0.00 0.06 0.06 0.94
β20 -0.02 0.06 0.00 0.06 0.06 0.95

1 1000 β17 0.19 0.17 0.10 0.17 0.14 0.80
β18 0.19 0.17 0.12 0.18 0.14 0.78
β19 -0.20 0.17 -0.12 0.18 0.14 0.80
β20 -0.19 0.17 -0.11 0.17 0.23 0.86

2000 β17 0.11 0.14 0.03 0.15 0.12 0.87
β18 0.12 0.14 0.04 0.15 0.12 0.86
β19 -0.12 0.14 -0.03 0.14 0.12 0.86
β20 -0.11 0.14 -0.03 0.14 0.12 0.91

5000 β17 0.04 0.08 -0.01 0.09 0.09 0.94
β18 0.05 0.09 0.00 0.08 0.09 0.96
β19 -0.05 0.09 0.00 0.09 0.09 0.95
β20 -0.04 0.09 0.01 0.09 0.09 0.95

See note to table 5.2.

After the variable selection procedure, we obtained the maximum likelihood estimator by

refitting the single-index transformation model using the expectation-maximization algorithm
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Table 5.4: Inference results on β17 ´ β20 with sine link.
Before selection After selection

r n Bias SE Bias SE SEE CP
0 1000 β17 0.01 0.04 0.00 0.03 0.03 0.95

β18 0.01 0.04 0.00 0.03 0.03 0.96
β19 -0.01 0.04 0.00 0.03 0.03 0.93
β20 -0.01 0.04 0.00 0.03 0.04 0.96

2000 β17 0.00 0.02 0.00 0.02 0.02 0.95
β18 0.00 0.02 0.00 0.02 0.02 0.95
β19 0.00 0.02 0.00 0.02 0.02 0.95
β20 -0.01 0.02 0.00 0.02 0.02 0.96

5000 β17 0.00 0.01 0.00 0.01 0.01 0.94
β18 0.00 0.01 0.00 0.01 0.01 0.96
β19 0.00 0.01 0.00 0.01 0.01 0.94
β20 0.00 0.01 0.00 0.01 0.01 0.95

1 1000 β17 0.03 0.06 0.02 0.06 0.05 0.93
β18 0.03 0.06 0.01 0.06 0.05 0.94
β19 -0.03 0.07 -0.01 0.06 0.05 0.92
β20 -0.03 0.06 -0.01 0.06 0.06 0.93

2000 β17 0.01 0.04 0.00 0.03 0.04 0.97
β18 0.01 0.04 0.00 0.03 0.04 0.97
β19 -0.01 0.04 0.00 0.03 0.04 0.97
β20 -0.01 0.04 0.00 0.03 0.04 0.98

5000 β17 0.00 0.02 0.00 0.02 0.02 0.98
β18 0.00 0.02 0.00 0.02 0.02 0.97
β19 0.00 0.02 0.00 0.02 0.02 0.97
β20 0.00 0.02 0.00 0.02 0.02 0.98

See note to table 5.2.

proposed in section 5.2.2 on the set of parameters that are selected using the adaptive Lasso

method. The results concerning the updated estimates and the corresponding variance

estimator are summarized in tables 5.2-5.4. With all link functions, the bias in the original

estimate can be reduced considerably by refitting the model, especially for the sample size of

1000. When sample size is 2000 or larger, the biases with the maximum likelihood estimators

are small and the standard error estimates are close to the sample standard errors. The 95%

confidence intervals based on the estimated parameters and standard error estimates have

accurate coverage for true parameters.
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5.5 Application to evaluate adjuvant therapy of large-bowel carcinoma

We applied the proposed method to the large-bowel carcinoma clinical trial (Moertel

et al., 1990; Laurie et al., 1989). This is the same dataset as analyzed in section 4.5. The

aim of the clinical trial was to assess the effectiveness of fluorouracil (5-FU) plus levamisole

versus levamisole alone and the observation group.

Figure 5.1: Details of the generalized cross validation with the adaptive lasso approach for

variable selection.

There are a total of 20 variables measured in the large-bowel carcinoma data: gender,

obstruction by the lesion, development of cancer cells (grade 1; grade 2-3; grade 4; others),

location of primary neoplasm (cecum; sigmoid colon; others), extent of local speed (submucosa;

muscular; serosa; others), histologic type (adenocarcinoma; colloid; signet ring; others),

perforation, adherence, regional implants, number of positive nodes, age, number of days

from tumor resection to start of treatment and pre-operative CEA level. In the exploratory

analysis described in section 4.5, we fitted the saturated proportional hazards model including
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linear interaction between treatment and covariates. A backward selection procedure was

implemented to determine the variables to be included in the model. In this analysis, we

applied the adaptive lasso method to the same dataset for the variable selection purpose.

Figure 5.2: Estimation of the probability of disease relapse for patients who receive a

different treatment recommendation under the two models. The black and red curves pertain,

respectively, to patients who follow the treatments assigned with backward selection variables

and adaptive lasso variables.

We fitted the transformation single index model with the logarithmic transformation

parameter r “ 1.5 to obtain the initial estimate. Then we used the algorithm described in

section 5.2.3 to select important variables with the tuning parameter taking values from

the grid points p2´8, 2´7, . . . , 1, . . . , 27, 28q. According to the generalized cross validation

criteria, ρ “ 4 is chosen as the optimal tuning parameter. Details of the generalized cross

validation criteria can be found in Figure 5.1. Variables representing the extent of local speed

(submucosa; muscular; serosa; others) and age are selected in this model. We applied the

transformation single-index model described in section 5.2.2 to the selected features and
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obtained the post-selection maximum likelihood estimator and the optimal treatment rule.

Table 5.5: Estimation of the parameters under different transformation models
Before selection After selection Original

Std. Std.
Parameters Est. Est. Err. P -value Est. Err. P -value

Interactions
Gender ´0.02
Obstruction 0.00
Grade 1 development 0.00
Grade 2-3 development 0.01
Grade 4 development ´0.27
Cecum location ´0.01
Sigmoid location 0.01
Submucosa speed 0.07 ´0.64 0.29 0.01
Muscular speed 0.07 ´0.58 0.27 0.01
Serosa speed 0.08 ´0.47 0.47 0.16
Adenocarcinoma type 0.00
Colloid type ´0.56
Signet ring type ´0.67
Perforation ´0.01 0.04 1.63 0.98
Adherence 0.05 0.65 0.36 0.07
Regional implants ´0.01
Log positive nodes 0.04 0.24 0.23 0.30
Days before treatment 0.00
Pre-operative CEA level 0.00 0.28 0.25 0.26
Age ´0.10 ´0.17 0.50 0.37 -0.67 0.30 0.03

“After selection" denotes the estimation results by refitting the transformation single-index model on
variables selected by the adaptive lasso method, ρ “ 4. “Original" denotes the estimation results as desc-
ribed in section 4.5, where the features were selected using a backward selection procedure. “Est." and
“Std. Err." denote the estimate and the standard error estimate for a parameter.

In Table 5.5, we reported the estimation results for the treatment-covariate interaction

effect with the adaptive lasso approach where ρ “ 1. Results with the backward selection

approach was included as a comparison. The variables selected by the adaptive lasso method

is quite different from those in the backward selection results. Age is a common feature that

is selected under both models. The three variables representing the extent of local speed are

deemed as important by the adaptive lasso penalty. On the other hand, backaward selection

result favors perforation, adherence, number of positive nodes and the pre-operative CEA
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level.

We compared the treatment rule estimated with different variable selection approaches.

Table 5.6 shows that, out of 908 patients, 63 would receive different treatments using the

adaptive lasso variable selection method compared to the original results using the backward

selection approach. Figure 5.2 shows that probabilities of disease relapse decrease if patients

follow the treatment regimen recommended by refitting the transformation single-index model

on variables selected with the adaptive lasso procedure.

Table 5.6: Treatment assignments with the adaptive lasso procedure and with the original
backward selection approach

Original
5-FU + Observation/

Adaptive Lasso Levamisole Levamisole Total
5-FU + Levamisole 834 37 871
Observation/Levamisole 26 11 37
Total 860 48 908

5.6 Discussion

In this chapter, we are mainly concerned with the variable selection in the treatment-

covariate interaction term. The method could be easily extended to select the important

main effect and interaction effect of covariates at the same time. The penalized estimation

procedure can be generalized to other commonly used penalties. The asymptotic properties,

such as the oracle property, the asymptotic normal distribution and the efficiency of the

interaction term remain valid with both extensions.

With the advance of technology in bioinformatics, genetic information on patients, such as

genotype and protein expression data, can be obtained with a reasonable cost. Such genetic

dataset usually contains hundreds of thousands variables for each patient. An important

extension of this chapter is to develop a variable selection method for the single-index

transformation model with p ąą n. The initial estimate could be obtained by, for example,

a penalized estimator with the ridge penalty. The estimation procedure and the asymptotic
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properties can be developed in a similar fashion with this new initial estimate
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In this dissertation, we have studied single-index models for estimation of the optimal

treatment regime with censored outcomes. The proposed model allows for flexible non-linear

treatment-covariate interactions and yet the treatment rule remains a simple linear form. This

research enables individualized treatment options to be assigned to patients by incorporating

their features into the decision process so that each patient receives the maximum benefit on

the individual level.

In Chapter 3, we proposed to apply the single-index function to the Cox proportional

hazards model in order to account for the treatment covariate interaction in a flexible

manner. We designed a non-parametric maximum likelihood estimation procedure and

showed the theoretical properties for the parametric and nonparametric estimators. We

showed through extensive comparisons that the proposed method outperform the value-based

optimal treatment estimation approach both in simulation studies and in a data application

to the ACTG data.

In Chapter 4, we relaxed the proportional hazards assumption and extended the single-

index framework to transformation models. The transformation function presents new

challenges in both the asymptotic properties and the estimation procedures. We designed

an expectation-maximization algorithm that greatly reduces the computational burden.

Asymptotic distribution and the semiparametric efficiency of parametric component in the

model were shown by applying the theory of empirical process and semiparametric theory.

We demonstrated the performance of the proposed method in simulations with different link

and transformation functions. In a data application, we showed the proposed method delayed

disease relapse for patients in a large-bowel carcinoma clinical trial.

In Chapter 5, we investigated the variable selection procedure in applying the single-index
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model for estimation of the optimal treatment rule. We proposed an adaptive lasso approach,

showed its oracle property as well as the asymptotic behaviour of the maximum likelihood

estimator after selection. Finite sample performance was studied by simulation studies under

various settings. The large-bowel carcinoma data was analyzed to illustrate the performance

of the treatment assignment resulting from the adaptive lasso variable selection.

Several future directions of research naturally extend from this dissertation. One question

that merits future investigation is the relationship between value inference and the theoretical

properties of the parameters in the single-index model. Researchers may be interested in

quantities that summarize patient performance, such as the survival function under the

treatment rule, or the proportion of patients who receive the correct optimal treatment

assignment. These quantities can be estimated by the plug-in estimator, and their asymptotic

properties follow from the delta method and the limiting distributions of pα, pβ, and pψ. We

have already proved that the parametric component, namely pα and pβ, are semiparametrically

efficient. Based on these findings, it would be interesting to see if we could establish the

efficiency for the value function.

Another enticing possibility is to extend the proposed method to a more complex setting,

such as multiple decision points and multiple treatment options. Compared to the many

works on personalized medicine, there are few literature available on the optimal treatment

estimation with more than one decision point. Jiang et al. (2017) proposed to model the

censoring distribution and used the inverse probability weighting method to estimate the

patient survival probability if he followed multiple treatment assignment. For multiple

treatment options, we can include multiple index functions in the model, with each index

function representing the treatment rule for one option.

Last but not least, it is of great importance to develop model diagnosis criteria. Some

robust analysis have been done to demonstrate the robustness of the proposed model. For

example, in Chapter 3, we investigated the behavior of the single-index proportional hazards

model when there are in fact two indices in the model but we only fit with on index function.
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We also considered the results when the transformation parameter is misspecified. In both

scenarios, we showed that the estimation results remained robust in terms of the treatment

recommendation. Nevertheless, it is essential to find out what model assumptions are the

treatment assignment sensitive to, and design statistics measuring the departure from the

proposed model.
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APPENDIX : PROOFS

A.1 Proof for Chapter 3

A.1.1 Proof of Theorem 3.3.1

According to Theorem 6.25 of Schumaker (1981), there exists a function rψpuq “
řKn
k“1 rγkBkpuq

such that || rψ ´ ψ0||W 1,8pZq ď OpK´2
n q and || rψ ´ ψ0||L2pZq ď OpK´7{2

n q. Since ψ0 is strictly

increasing, it follows that rψ1puq ą 0 for all u P Z when n large enough.

For any α and η, define

ϑnpα, ηq “ ∆
ˆ

αTX ` AηpZq ´ log
„

n´1
ÿ

j

exptαTXj ` AjηpZjquYjprT q

˙

,

and

ϑ˚npα, ηq “ ∆
`

αTX ` AηpZq ´ log
“

EtexptαTX ` AηpZquY prT qu
‰˘

.

Also, let η0pZq “ ψ0pβ
T
0 Zq, pηpZq “ pψppβTZq, and rηpZq “ rψpβT

0 Zq. Because the profile

log-likelihood (3.2) is maximized at pα, pβ, and pψ, we have

Pnϑnppα, pηq ě Pnϑnpα0, rηq. (1)

Consider the class of functions

F “
"

exptαTX ` AηpZquY ptq : α P Θ1, ||β|| “ 1,

ηpuq “
Kn`1
ÿ

k“1
γkBkpβ

Tuq with´Mn ď γ1 ď ¨ ¨ ¨ ď γKn`1 ďMn

*

,

where Θ1 is a compact set containing α0 as given in Condition 3.1. This class has an envelope

function of order exppMnq. In addition, both tαTXu and tβTZu belong to the bounded

finite-dimensional space and thus are Vapnik-Chervonenkis (VC)-major classes (Vapnik and
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Chervonenkis, 1971). Since
řKn`1
k“1 γkBkpuq is monotone and bounded by OpMnq,

"

M´1
n ηpZq : ηpZq “

Kn`1
ÿ

k“1
γkBkpβ

TZq with´Mn ď γ1 ď ¨ ¨ ¨ ď γKn`1 ďMn

*

is a bounded VC-major class (van der Vaart and Wellner, 1996, Lemma 2.6.19). Since any

function in F is Lipschitz-continuous with respect to αTX and ηpZq, we see that, for any

probability measure Q, the ε-covering number for F satisfies that

logNpε,F , L2pQqq ď c1pε
´1exppMnqMnq

2v1{pv1`2q

for some positive constants c1 and v1 (van der Vaart and Wellner, 1996, Theorem 2.6.9). By

Theorem 2.14.1 of van der Vaart and Wellner (1996), uniformly in t P r0, τ s,

pPn ´ Pq
“

exp
 

pαTX ` ApηpZq
(

Y ptq
‰

“ OP pMn exppMnqn
´1{2

q.

Clearly,

pPn ´ Pq
“

exp
 

αT
0X ` ArηpZq

(

Y ptq
‰

“ OP pn
´1{2

q.

Under Conditions 3.1 and 3.3, P
“

exp
 

pαTX ` ApηpZq
(

Y ptq
‰

is bounded by Opexpp´Mnqq

from below for all t P r0, τ s. Thus, uniformly in p∆,X, A, T̃ q,

ϑnppα, pηq ´ ϑ
˚
nppα, pηq “ OppMn expp2Mnqn

´1{2
q, (2)

and

ϑnpα0, rηq ´ ϑ
˚
npα0, rηq “ OppMn expp2Mnqn

´1{2
q. (3)

Combining (1), (2) and (3), we obtain
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pPn ´ Pq tϑ˚nppα, pηq ´ ϑ˚npα0, rηqu `OppMn expp2Mnqn
´1{2

q ě

´ Ptϑ˚nppα, pηq ´ ϑ˚npα0, rηqu. (4)

By similar arguments for showing (2), the first term on the left side of (4) is bounded by

OP pMn expp2Mnqn
´1{2q. On the right side of (4), we take the second-order Taylor expansion

of ϑ˚nppα, pηq around pα0, η0q and note that the Hessian matrix of the partial log-likelihood

function is strictly negative with its eigenvalues bounded by ´c0 expp´2Mnq for some constant

c0 ą 0. Thus

Pϑ˚nppα, pηq ´ Pϑ˚npα0, rηq

“Pϑ˚nppα, pηq ´ Pϑ˚npα0, η0q `OppK
´7
n q

ď ´ c0 expp´2MnqE
“

||pα´α0||
2
` tpηpZq ´ rηpZq ` rηpZq ´ η0pZqu

2‰
`OppK

´7
n q

ď ´ c0 expp´2MnqE
“

||pα´α0||
2
` tpηpZq ´ rηpZqu2 {2´ trηpZq ´ η0pZqu

2‰
`OppK

´7
n q.

As a result,

OppMn expp4Mnqn
´1{2

q `Oppexpp2MnqK
´7
n q

ě c0E
 

||pα´α0||
2
` |pηpZq ´ rηpZq|2{2

(

. (5)

By the choices of Mn and Kn, we conclude that pαÑp α0, and

OppMn expp4Mnqn
´1{2

q `Oppexpp2MnqK
´7
n q ě Er|pηpZq ´ rηpZq|2s.

Recall that pηpZq “ pψppβTZq and rηpZq “ rψpβT
0 Zq. Since E

„

!

pψppβTZq ´ rψpβT
0 Zq

)2


“

E

ˆ

”

pψppβTZq ´ E
!

rψpβT
0 Zq|

pβTZ
)ı2

˙

` E

ˆ

“

E
!

rψpβT
0 Zq|

pβTZ
)

´ rψpβT
0 Zq

‰2
˙

, inequality
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(5) yields

OppMn exp p4Mnqn
´1{2

q `Oppexp p2MnqK
´7
n q ě

E

ˆ

”

E
!

ψ0pβ
T
0 Zq|

pβTZ
)

´ ψ0pβ
T
0 Zq

ı2
˙

.

Because pβ is bounded, any subsequence of tpβnu has a convergent sub-subsequence with a limit

denoted by β˚. By Condition 3.1 and the continuous mapping theorem, ψ´1
0 pEtψ0pβ

T
0 Zq

|β˚TZuq “ βT
0 Z almost surely. Condition 3.4 then entails that β˚ “ β0. Therefore, pβ Ñp β0.

It also follows from Condition 3.4 that

OppMn expp4Mnqn
´1{2

q `Oppexpp2MnqK
´7
n q ě ||

pβ ´ β0||
2. (6)

On the other hand,

|p pψppβTZq ´ rψppβTZqq|2 ď 2|p pψppβTZq ´ rψpβT
0 Zqq|

2
` 2|p rψppβTZq ´ rψpβT

0 Zq|
2.

It follows from (5) that

OppMn expp4Mnqn
´1{2

q `Oppexpp2MnqK
´7
n q

ě E
 

|p pψppβTZq ´ rψppβTZq|2 ´ 2|p rψppβTZq ´ rψpβT
0 Zq|

2
q
(

.

In light of (6),

OppK
2
nMn expp4Mnqn

´1{2
q `Oppexpp2MnqK

´5
n q ě E

 

| pψppβTZq ´ rψppβTZq|2
(

.

Because the L2-norm between two functions pψ and rψ is bounded from below by the Euclidean

norm of the corresponding coefficient vectors subject to a constant (De Boor, 1978, p. 155),
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we obtain

OppK
2
nMn expp4Mnqn

´1{2
q `Oppexpp2MnqK

´5
n q ě

Kn
ÿ

k“1
|pγk ´ rγk|

2.

It follows that

|| pψ ´ rψ||W 1,8pZq (7)

ď

Kn
ÿ

k“1
|pγk ´ rγk| ||Bk||8 `

Kn
ÿ

k“1
|pγk ´ rγk| ||B

1
k||8

ďK1{2
n

#

Kn
ÿ

k“1
|pγk ´ rγk|

2

+1{2

||Bk||8 `K
1{2
n

#

Kn
ÿ

k“1
|pγk ´ rγk|

2

+1{2

||B1k||8

“Op

`

K2
nM

1{2
n expp2Mnqn

´1{4
` exppMnqK

´1{2
n

˘

.

By the choices of Kn and Mn, we obtain || pψ ´ rψ||W 1,8pZq Ñ 0.

To determine the convergence rate, we repeat the above arguments but notice that the

left side of (5) becomes oppn´1{2q `OppK
´7
n q because of the convergence of pα, pβ, and pψ. By

Condition 3.5, we obtain ||pα´α0||
2 ` ||pβ ´ β0||

2 ` || pψ ´ ψ0||
2
L2pZq “ oppn

´1{2q.

A.1.2 Proof of Theorem 3.3.2

Write θ “ pαT,βT
´qq

T, θ0 “ pαT
0 ,β

T
0,´qq

T, and φ “ pλ, ψqT. We wish to obtain

the least favorable direction for θ, defined as a function phT
λ ,h

T
ψq

T, such that Erl˚φlθs “

Erl˚φlφrph
T
λ ,h

T
ψq

Tss, where lθ is the score for θ, lφrphT
λ ,h

T
ψq

Ts is the score function for φ along

the submodel φ` εphT
λ ,h

T
ψq

T, and l˚φ is the dual operator of lφ. Equivalently, lφrphT
λ ,h

T
ψq

Ts

is the projection of lθ on the tangent space spanned by the score functions for pλ, ψq.

Let Υλ and Υψ denote the nuisance tangent space for λ and ψ, respectively. By direct

calculation, the score function of θ in model (2.1) is given by

lθ “

ż

gpX, AqdMpu,X, Aq.

78



According to Chapter 3.4 of Bickel et al. (1998), the projection of lθ on the orthogonal

complement of Υλ, i.e., ΥK
λ , is given by

ż

rgpX, Aq ´ EtgpX, Aq|T “ u,∆ “ 1us dMpu,X, Aq.

On the other hand, the score function for ψ takes form
ş

AfpβT
0 ZqdMpu,X, Aq, so

Υψ XΥK
λ “

 

ż

“

AfpβT
0 Zq ´ EtAfpβ

T
0 Zq|T “ u,∆ “ 1u

‰

dMpu,X, Aq :

fpuq is a vector of measurable functions
(

.

Therefore, to find the projection of lθ on the tangent space for pλ, ψq, it suffices to find Rpuq

that satisfies

E
`

ż

“

gpX, Aq ´ EtgpX, Aq|T “ u,∆ “ 1u

´ ARpβT
0 Zq ` EtARpβ

T
0 Zq|T “ u,∆ “ 1u

‰

dMpu,X, Aq
ż

“

AfpβT
0 Zq ´ EtAfpβ

T
0 Zq|T “ u,∆ “ 1u

‰

dMpu,X, Aq
˘

“ 0

for any fp¨q. Equivalently,

ż

E
`“

gpX, Aq ´ EtgpX, Aq|T “ u,∆ “ 1u

´ ARpβT
0 Zq ` EtARpβ

T
0 Zq|T “ u,∆ “ 1u

‰

AfpβT
0 Zq

exp
 

αT
0X ` Aψ0pβ

T
0 Zq

(

Y puq
˘

λ0puqdu “ 0

for all fp¨q. Thus, Rp¨q solves the equation

E
`“

gpX, Aq ´ EtgpX, Aq|T “ u,∆ “ 1u ´ ARpβT
0 Zq ` EtARpβ

T
0 Zq|T “ u,∆ “ 1u

‰

A exp
 

αT
0X ` Aψ0pβ

T
0 Zq

(

Y puq|βT
0 Z

˘

“ 0,
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which is equation (3.4). In §S.2 of the Supplementary Materials, we show that the solution to

(3.4) exists and is unique. As a result, hψpuq “ Rpuq, and hλptq “ ErgpX,Aq`ARpβT
0 Zq|T “

t,∆ “ 1s. In addition, the efficient score function for θ as

Seff,θ ”

ż

Hpu,A,X,ZqdMpu,A,X,Zq.

We approximate hψ by a B-spline function rhψ such that ||rhψ ´ hψ||W 1,8pZq

ď OpK´2
n q and ||rhψ ´ hψ||L2pZq ď OpK´7{2

n q. Because

Pn
!

Blpθ, pφq{Bθ|θ“pθ

)

“ 0

and

Pn
 

Blppθ, pφ` εphλ, rhψq
T
q{Bε|ε“0

(

“ 0,

we have

Pnlθppθ, pφq ´ Pnlφppθ, pφqrphλ, rhψqTs “ 0,

or, equivalently,

pPn ´ Pq
!

plθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

“ ´P
!

lθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

. (8)

Due to the convergence of pθ and pφ and the Donsker properties of lθppθ, pφq and lφppθ, pφq, (8)

becomes

pPn ´ Pq
!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP pn
´1{2

q

“ ´P
!

lθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

.
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By the first-order Taylor expansion on the right side of the above equation,

´ p1` oP p1qqP
 

lθθ ´ lφθrphλ,hψq
T
s
(

ppθ ´ θ0q

´ p1` oP p1qqP
!

lθφr pφ´ φ0s ´ lφφrphλ,hψq
T, pφ´ φ0s

)

`Opp||pα´α0||
2
` ||pβ ´ β0||

2
` || pφ´ φ0||

2
L2pZqq `OP pK

´7
n q.

The choice of phλ,hψqT implies that the term P
 

lθφr pφ ´ φ0s ´ lφφrphλ,hψq
T, pφ ´ φ0s

(

is

zero. It then follows from the convergence rate of ppα, pβ, pφq that

pPn ´ Pq
!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP pn
´1{2

q

“ ´p1` oP p1qqP
 

lθθ ´ lφθrphλ,hψq
T
s
(

ppθ ´ θ0q ` oP pn
´1{2

q `OP pK
´7
n q.

In §S.3 of the Supplementary Materials, we show that P
 

lθθ ´ lφθrphλ,hψq
Ts
(

is non-

singular. Thus,

n1{2
ppθ ´ θ0q

“ ´ P
 

lθθ ´ lφθrphλ,hψq
T
s
(´1

n1{2
pPn ´ Pq

!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP p1q

“ ´ P
 

lθθ ´ lφθrphλ,hψq
T
s
(´1

n1{2
pPn ´ Pq

 

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ,hψq
T
s
(

` oP p1q.

The asymptotic normality in Theorem 2 follows. In addition, the limiting covariance matrix is

given by Σ´1, where Σ “ EpSeff,θS
T
eff,θq. Clearly, Σ´1 achieves the semiparametric efficiency

bound.

A.1.3 Proof of Theorem 3.3.3

We have established the consistency of pα, pβ, and pψ. The consistency for the estimator of

the cumulative baseline hazard function can be obtained in a similar manner to Tsiatis (1981).

Thus, to prove Theorem 3, it suffices to show that pRppβTZq Ñ RpβT
0 Zq in probability.
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Let L and pL denote the linear operators in the equations for R and pR, respectively, and

let I denote the identity operator on the same space. Then pI ´LqR “ 0 and pI ´ pLq pR “ 0.

Since

EpAR|T “ u,∆ “ 1q “ ErexptαT
0X ` Aψ0pβ

T
0 ZquY puqs

´1

ErpAR exptαT
0X ` Aψ0pβ

T
0 ZquY puqs,

which is uniformly bounded in u, it is clear that L and pL are both bounded linear operators

mapping the space of bounded variation functions to itself.

For any function with bounded total variation in Z,

||pL´ pLqrpsq||L8pZq (9)

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

ż

A exp
 

αT
0Z ` Aψ0psq

(

Y puqλ0puqdu|β
T
0 Z “ s

ı´1

E
”

ż

AY puqtg ´ Epg|T “ u,∆ “ 1qu exp
 

αT
0X ` Aψ0psq

(

λ0puqdu|β
T
0 Z “ s

ı

´ pEn

”

ż

A exp
!

pαTZ ` A pψpsq
)

Y puqdpΛpuq|pβTZ “ s
ı´1

pEn

”

ż

AY puq
!

pg ´ rEnppg|T “ u,∆ “ 1q
)

exp
!

pαTX ` A pψpsq
)

dpΛpuq|pβTZ “ s
ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8pZq

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

ż

A exp
 

αT
0X ` Aψ0psq

(

Y puqλ0puqdu|β
T
0 Z “ s

ı´1

E
”

ż

AY puqEpArpβT
0 Zq|T “ u,∆ “ 1q exp

 

αT
0X ` Aψ0psq

(

λ0puqdu|β
T
0 Z “ s

ı

´ pEn

”

ż

A exp
!

pαTX ` A pψpsq
)

Y puqdpΛpuq|pβTZ “ s
ı´1

pEn

”

ż

AY puq rEnpArppβ
TZq|T “ u,∆ “ 1q exp

!

pαTX ` A pψpsq
)

dpΛpuq|pβTZ “ s
ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8pZq

.

Clearly, for any bounded function f , rEnpf |T “ u,∆ “ 1q converges to Epf |T “ u,∆ “ 1q

uniformly in u. In addition, with the choice of mn, pEnpf |pβ
TZ “ sq converges to the true

conditional expectation of f given βT
0 Z by the standard results for histogram-type estimators
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(Wasserman, 2006, Chapter 6.2) and the convergence of pβ to β0. Thus, the norms of the two

terms on the right side of (9) converge to 0, such that ||pL´ pLqrp¨q||L8pZq Ñ 0 as n increases.

In §S.3 of the Supplementary Materials, we show that the operator pI ´Lq is invertible.

It follows that pI ´ pLq is also invertible for large n and moreover,

||pI ´Lq´1
´ pI ´ pLq´1

|| ă c||pL´ pLq|| Ñp 0

for some constant c. This gives || pR´R||L8pZq Ñ 0.

A.2 Additional Results for Chapter 3

A.3 Proof for Chapter 4

A.3.1 Invertibility of information operator

Without loss of generality, we assume βq ą 0. Recall that θ “ pαT,βT
´qq

T, where

β´q “ pβ1, ¨ ¨ ¨ , βq´1q
T. The log-likelihood from a single subject is

lpθ, ψ,Λq “ ∆tαTX ` AψpβTZqu `∆logλprT q`

∆logG1
”

exp
 

αTX ` AψpβTZq
(

ΛprT q
ı

´G
”

exp
 

αTX ` AψpβTZq
(

ΛprT q
ı

By differentiating the log-likelihood with respect to θ, ψ and Λ along the submodel θ` εd,

ψ ` εhψ and dΛp1` εhΛq, respectively, we obtain the score operator as

lθpθ, ψ,ΛqTd “ r∆` gθ,ψ,ΛpX, A,∆, rT qΛprT qs

¨

˚

˝

X

Aψ1pβTZqpZ´q ´ β´qZq{βqq

˛

‹

‚

T

d,

lψpθ, ψ,Λqrhψs “ r∆` gθ,ψ,ΛpX, A,∆, rT qΛprT qsAhψpβTZq,

lΛpθ, ψ,ΛqrhΛs “ ∆hΛprT q ` gθ,ψ,ΛpX, A,∆, rT q
ż

rT

0
hptqdt,

where
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gθ,ψ,ΛpX, A,∆, rT q “
´

∆G1
”

exp
 

αTX ` AψpβTZq
(

ΛprT q
ı´1

G2
”

exp
 

αTX ` AψpβTZq
(

ΛprT q
ı

´G1
”

exp
 

αTX ` AψpβTZq
(

ΛprT q
ı ¯

exp
 

αTX ` AψpβTZq
(

.

We write d “ pdT
1 ,d

T
2 q

T, where d1 P Rp, and d2 P Rq´1. Similarly, lθ “ plTα, lTβ´qq
T. In other

words, the score operator Sprd, hψ, hΛsq can be written as lθpθ, ψ,ΛqTd` lψpθ, ψ,Λqrhψs `

lΛpθ, ψ,ΛqrhΛs.

The dual operator must satisfy

ă S˚rqpX, A,∆, rT qs, pd, hψ, hΛq ą

“ ă qpX, A,∆, rT q, Sprd, hψ, hΛsq ą

“Erlθpθ, ψ,ΛqTqsd` Etlψpθ, ψ,ΛqTrhψsqu ` EtlΛpθ, ψ,ΛqTrhΛsqu

“Erlθpθ, ψ,ΛqTqpX, A,∆, rT qsd`
ż

Etr∆` gθ,ψ,ΛpX, A,∆, rT qΛprT qsAhψpβTZqqpX, A,∆, rT q|X “ xufXpxqdx`
ż

Er∆qpX, A,∆, rT q|rT “ tsf
rT ptqhΛptqdt`

ż

Ergθ,ψ,ΛpX, A,∆, rT qqpX, A,∆, rT q|rT ą tshΛptqdt

Therefore, S˚rqs “ pErlθpθ, ψ,ΛqTqs, Etr∆` gθ,ψ,ΛpX, A,∆, rT qΛprT qsAhψpβTZqq|X “ xu,

Er∆qpX, A,∆, rT q|rT “ tsf
rT ptq ` Ergθ,ψ,ΛpX, A,∆, rT qqpX, A,∆, rT q|rT ą tsqT. The informa-

tion operator is

Lpθ, ψ,Λq ” S˚Srpd, hψ, hΛqs
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“

¨

˚

˚

˚

˚

˝

Erlθl
T
θ sd

Etl2ψrhψs|X “ xu

EtlΛrhΛs∆|T̃ “ tufT̃ ptq ` ErlΛgθ,ψ,Λ|T̃ “ ts

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

Erlθplψrhψs ` lΛrhΛsqs

Etlψrhψspl
T
θd` lΛrhΛsq|X “ xu

EtplTθd` lψrhψsq∆|T̃ “ tufT̃ ptq ` Erpl
T
θd` lψrhψsqgθ,ψ,Λ|T̃ “ ts

˛

‹

‹

‹

‹

‚

.

The information operator is a Fredholm operator of the first kind, as it is a summation of

an invertible operator and an integral operator when α “ α0,β “ β0,´q, ψ “ ψ0,Λ “ Λ0.

Furthermore, since hψ and hΛ are compact, the latter can be shown to be a compact and

smooth operator from

H ”
 

pd, hψ, hΛq : d P Rp`q´1, hψ P Cr0, τ s, hΛ P BV r0, τ s, ||d2|| ď 1
(

to itself, where BV r0, τ s is the Banach space consisting of all the functions with bounded total

variation in r0, τ s and Cr0, τ s is the Banach space consisting of all the continuous functions

in r0, τ s.

We next show that Lpθ, ψ,Λq is invertible. Following Rudin (1973), it suffices to show that

Lpθ, ψ,Λq is one-to-one. Suppose Lpθ0, ψ0,Λ0qrd, hψ, hΛs “ 0; that is, lTθd`lψrhψs`lΛrhΛsq “

0.

First, we let A “ 0 so that lTαd1 ` lΛrhΛs “ 0. This is the score function in the usual

transformation model without the single index terms. Thus, from the invertibility of the

information in Cox model, we obtain hΛ “ 0 and d1 “ 0. Now with lTβ´qd2 ` lψrhψs “ 0, it is

necessary that ψ1pβTZqvTZ ´hψpβ
TZq “ 0 with v “

`

dT
2 ,´d

T
2 β´q{βq

˘T. This immediately

gives v “ cβ and hψpβTZq “ ´cψ1pβTZqβTZ for some constant c. Because vTβ0 “ 0, this

is impossible unless c “ 0. Therefore, Lpθ, ψ,Λq is invertible.
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Finally, the same arguments apply if we consider a different Banach space,

H˚ ” tpd, hψ, hΛq : d P Rp`q´1, hψ P L2r0, τ s, hΛ P L2r0, τ s, ||d2|| ď 1u.

Therefore, the invertibility of Lpθ0, ψ0,Λ0q implies

||Lpθ0, ψ0,Λ0qrd, hψ, hΛs||
2
L2pP q ě c

 

||d||2 ` ||hψ||
2
8 ` ||hΛ||

2
8

(

.

Furthermore, we note that Lpθ, ψ,Λq converges to Lpθ0, ψ0,Λ0q uniformly in the norm

||θ ´ θ0|| ` ||ψ ´ ψ0||8 ` ||Λ ´ Λ0||8 where ||f ||8 denotes the supreme norm in r0, τ s. We

conclude that there exists some ε0 such that whenever ||θ´θ0||`||ψ´ψ0||8`||Λ´Λ0||8 ă ε0,

the inequality

||Lpθ, ψ,Λqrd, hψ, hΛs||
2
L2pP q ě c{2

 

||d||2 ` ||hψ||
2
8 ` ||hΛ||

2
8

(

(10)

holds.

A.3.2 Proof of Consistency

We will show that there exists a local maximum of the observed data log-likelihood

function over the sieve space

Sn “
 

pθ, ψ,Λq : θ P Rp`q´1, ψpuq “ γTBpuq,

where B is a vector of B-spline bases with knots given in Section 2,

Λ is the step function with jump sizes at the observed events,
(

such that the obtained estimator, ppθ, pψ, pΛq, converges to the true parameters in probability

under the norm defined in Theorem 1.

By condition (C.1) and Theorem 6.25 in Schumaker (2007), there exists a function
pψ0puq “ γ

T
0 Bpuq such that || pψ0 ´ ψ0||W 1,8 “ OpK´2

n q and || pψ0 ´ ψ0||L2 “ OpK´7{2
n q. Then
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we consider the following neighborhood of pψ0 in the sieve space

Nεn “

#

ψpuq “ γTBpuq :
Kn`1
ÿ

j“1
|γj ´ γj0|

2
ď εn

+

,

where εn is to be chosen later. For each ψ P Nεn , we define

ppθψ, pΛψq “ argmaxPnlpθ, ψ,Λq,

where Λ is a step function with jumps at the observed events.

If we choose εn so that K3{2
n εn Ñ 0, then for ψ P Nεn ,

||ψ ´ pψ0||BV ď

Kn`1
ÿ

j“1
|γj ´ γj0|||B

1
j||8 “ OpKnq

a

ε2npKn ` 1q Ñ 0. (11)

Therefore, ψ has a bounded total variation. Define

pΛ0ptq “

ż

řn
j“1 YjptqdNjptq

řn
j“1 YjptqexptαT

0Xj ` Ajψ0pβT
0 Zjqu

.

It is easy to see that ||pΛ0 ´ Λ0||BV “ Oppn
´1{2).

Next, we show that limsupntsupψPNεn

pΛψpτqu is finite with probability tending to one.

Define ζψ “ pΛψpτq and Λ̄ψ “
pΛψ{ζψ (here all the definition is with the sample size n). Suppose

ζψ Ñ 8 for some subsequence as n increses to 8. By the definition of ppθψ, pΛψq,

Pntlppθψ, ψ, ζψΛ̄ψq ´ lppθψ, ψ, Λ̄ψqu ě 0. (12)

By condition (C.1) and (11), |pαT
ψX ` AψppβT

ψZq| is bounded by some M ą 0. By algebraic

manipulation of (12) and the boundedness of Λ̄ψ,

n´1
n
ÿ

i“1

ż τ^Ci

0
logtζψsupyďζψeMG

1
pyqudNiptq ´ n

´1
n
ÿ

i“1
IpYipτq “ 1, Ci ě τqGpe´Mζψq ě Opp1q.

87



By condition (C.5),

logtζψsupyďζψeMG
1
pyqu ď c1Gpc0ζψe

M
q

for any c0 ą 0, c1 ą 1 when n is sufficiently large. For any ε ą 0, we can choose c0 such that

Gpc0ζψe
Mq ď c´1

1 εGpζψe
´Mq. This implies that

logtζψsupyďζψeMG
1
pyqu ď εGpζψe

´M
q.

Therefore,

rn´1ε
n
ÿ

i“1
Nipτq ´ n

´1
n
ÿ

i“1
IpYipτq “ 1, Ci ě τqsGpζne

´M
q ą ´8.

If we choose an ε such that

ε ď
PrpY pτq “ 1, C ď τq

2EtNpτqu ,

left hand side of the above inequality diverges to ´8, which is a contradiction. Thus, we

complete the proof that limsupntsupψPNεn

pΛψpτqu ă 8 almost surely.

Since

Pnlpθψ, ψ, pΛψq ěPnlpθ0, ψ, pΛ0q,

PnlΛpθψ, ψ, pΛψqrhΛs “0, and Pnlθpθψ, ψ, pΛψq
Td “ 0,

we obtain

pPn ´ P qlΛpθψ, ψ, pΛψqrhΛs “ ´PlΛpθψ, ψ, pΛψqrhΛs

and

pPn ´ P qlθpθψ, ψ, pΛψq
Td “ ´Plθpθψ, ψ, pΛψq

Td.

The left-hand sides of the equations are Oppn
´1{2q because both lΛ and lθ are Donsker due to

the fact that both pλψ and ψ belong to BV r0, τ s. We apply the Taylor expansion at the true
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pθ0, ψ0,Λ0q to the right hand side so obtain

Oppn
´1{2

q “ ´ ă L11pθ0, ψ0,Λ0qrd, hΛs, rpθψ ´ θ0, dpΛψ ´ dΛ0s ąL2pP q

` op||pθψ ´ θ0|| ` ||pΛψ ´ Λ0||BV q `Opp||ψ ´ ψ0||L2q,

where L11 is the operator in L corresponding to θ and Λ. Using the invertibility of L11, we

have

||pΛψ ´ Λ0||BV ` ||pθψ ´ θ0|| “ Anpn
´1{2

` || pψ ´ ψ0||L2q, (13)

where supψPNεn
|An| is a bounded random variable.

We now consider

Bn ” Pnlppθψ, ψ, pΛψq ´ Pnlpθ0, pψ0, pΛ0q.

First,

Bn “ pPn ´ P q
!

lppθψ, ψ, pΛψq ´ lpθ0, pψ0, pΛ0q
)

` P
!

lppθψ, ψ, pΛψq ´ lpθ0, pψ0, pΛ0q
)

.

The first term on the right hand side is equal to Cnn
´1{2 where supψPNεn

|Cn| Ñ 0 in

probability. For the second term, we apply the expansion at the true values. The first order

in the expansion vanishes and the second order in the expansion is

´
〈
Lpθ˚, ψ˚,Λ˚qppθψ ´ θ0, ψ ´ ψ0, dpΛψ{

pΛ0 ´ λ0q, ppθψ ´ θ0, ψ ´ ψ0, dpΛψ{
pΛ0 ´ λ0q

〉
L2pP q

`Op||pΛ0||
2
8 ` ||

pψ0 ´ ψ0||
2
8q,

where pθ˚, ψ˚,Λ˚q is between ppθψ, ψ, pΛψq and pθ0, ψ0,Λ0q. Using the result in (10), we obtain

Bn “ Cnn
´1{2

´ c1{2||ψ ´ ψ0||
2
L2 `Dnpn

´1
`K´7

n q.
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Therefore, if ψ P δNεn , the results from de Boor (1978) gives ||ψ ´ ψ0||
2
L2 ě c2ε

2
n so that

Bn ď supψPNεn
tCnn

´1{2
`Dnpn

´1
`K´7

n qu ´ c1c2ε
2
n{2.

Consequently, if we choose

ε2n “ 4c´1
1 c´1

2 supψPNεn
tCnn

´1{2
`Dnpn

´1
`K´7

n qu,

then Bn ă 0. Hence, there exists a local maximum pψ within this neighborhood. Furthermore,

|| pψ ´ ψ0||BV Ñ 0 by (11) and

|| pψ ´ ψ0||
2
L2 ď ||

pψ ´ pψ0||
2
L2 `OpK

´7
n q ď ε2n `K

´7
n “ oppn

´1{2
q

according to Condition (C4). By (13), the corresponding ppθ
pψ,
pΛ

pψq satisfies

||pΛ´ Λ0||BV ` ||pθ ´ θ0|| “ Oppn
´1{2

q ` || pψ ´ ψ0||L2 “ oppn
´1{4

q.

A.3.3 Proof of Asymptotic Distribution

The least favorable direction hλ and hψ can be constructed from the expression of the

dual operator and information operator in section A.2.1. Write φ “ pλ, ψqT. Because

Pn
!

Blpθ, pψq{Bθ|θ“pθ

)

“ 0

and

Pn
 

Blppθ, pφ` εphλ, rhψq
T
q{Bε|ε“0

(

“ 0,

we have

Pnlθppθ, pφq ´ Pnlφppθ, pφqrphλ, rhψqTs “ 0,
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or, equivalently,

pPn ´ Pq
!

plθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

“

´ P
!

lθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

. (14)

Due to the convergence of pθ and pφ, we could verify that lθppθ, pφq and lφppθ, pφq are P-Donsker,

because Λptq is increasing in t, and the other terms are bounded by our assumptions. Therefore,

(14) becomes

pPn ´ Pq
!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP pn
´1{2

q

“ ´P
!

lθppθ, pφq ´ lφppθ, pφqrphλ, rhψq
T
s

)

.

By the first-order Taylor expansion on the right side of the above equation,

´ p1` oP p1qqP
 

lθθ ´ lφθrphλ,hψq
T
s
(

ppθ ´ θ0q

´ p1` oP p1qqP
!

lθφr pφ´ φ0s ´ lφφrphλ,hψq
T, pφ´ φ0s

)

`Opp||pα´α0||
2
` ||pβ ´ β0||

2
` || pφ´ φ0||

2
L2pZqq `OP pK

´7
n q.

The choice of phλ,hψqT implies that the term P
 

lθφr pφ ´ φ0s ´ lφφrphλ,hψq
T, pφ ´ φ0s

(

is

zero. It then follows from the convergence rate of ppα, pβ, pφq that

pPn ´ Pq
!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP pn
´1{2

q

“ ´p1` oP p1qqP
 

lθθ ´ lφθrphλ,hψq
T
s
(

ppθ ´ θ0q ` oP pn
´1{2

q `OP pK
´7
n q.
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Since we showed P
 

lθθ ´ lφθrphλ,hψq
Ts
(

is non-singular in subsection A.2.1 Thus,

n1{2
ppθ ´ θ0q

“ ´ P
 

lθθ ´ lφθrphλ,hψq
T
s
(´1

n1{2
pPn ´ Pq

!

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ, rhψq
T
s

)

` oP p1q

“ ´ P
 

lθθ ´ lφθrphλ,hψq
T
s
(´1

n1{2
pPn ´ Pq

 

plθpθ0,φ0q ´ lφpθ0,φ0qrphλ,hψq
T
s
(

` oP p1q.

The asymptotic normality in Theorem 4.2 follows. In addition, the limiting covariance

matrix is given by Σ´1, where Σ “ EpSeff,θS
T
eff,θq. Clearly, Σ´1 achieves the semiparametric

efficiency bound.

A.4 Proof for Chapter 5

The proof of Theorems 5.3.1–5.3.3 closely follow the steps in Liu and Zeng (2013). We

sketch the outline in this section. First, we establish the following two lemma under conditions

(C1)–(C5). These lemmas are straightforward implications from the proof in section A.2

Lemma A.4.1. Let Unpβq “ Blnpβq{β, where ln is the log-likelihood with the transformation

single-index model. Then n´1{2Unpβq “ Opp1q.

Lemma A.4.2. Let Vnpβq “ ´BUnpβq{βT. Then uniformly in β, n´1Vnpβq Ñ V pβq almost

surely, which does not depend on the data. The matrix V pβq is positive definite; therefore,

lnpβq is a concave function when n is sufficiently large.

A.4.1 Consistency of the adaptive lasso estimator

The penalized objective function

Qnpβq “ lnpβq ´ nρn

q
ÿ

j“1
|rβj|

´1
|βj|.

is convex by lemma (A.3.2) and the convexity of the penalty functions when n is large enough.

Therefore, there exists a unique maximum of Qnpβq for sufficiently large n. It suffices to
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show that there exists a local maximum in the ball around the true value β0 with probability

1. In other words, we aim to show that for any given ε ą 0, there exists a constant C ą 0

such that

P

#

sup
||u||ďC

Qnpβ0 ` n
´1{2uq ă Qnpβ0q

+

ě 1´ ε.

Note that

n´1
tQnpβ0 ` n

´1{2uq ´Qnpβ0qu ď

n´1
tlnpβ0 ` n

´1{2uq ´ lnpβ0qu ´ n
´1{2ρn

q
ÿ

j“1
|rβj|

´1
|uj| (15)

By the second order Taylor expansion, the first term in (15) is

n´1
pn´1{2uqTUnpβ0q ´ p2nq´1

pn´1{2uqTVnpβ
˚
qpn´1{2uq

“n´1Opp1q
q
ÿ

j“1
|uj| ´ p2nq´1uT

tV pβ0q ` opp1quu,

where β˚ is between β0 and β0 ` n´1{2u. By the first order Taylor expansion, the second

term in (15) is

n´1{2ρn

q
ÿ

j“1
|uj|

!

|βj0|
´1
´ |βj0|

´2signpβj0qprβj ´ βj0q ` opp|rβj ´ βj0|q
)

“n´1{2ρn

q
ÿ

j“1
t|βj0|

´1
`Oppn

´1{2
qu|uj| ď n´1Opp1q

q
ÿ

j“1
|uj|,

where the equality follows from the convergence rate of rβ and the inequality follows from

n1{2ρn “ Opp1q. That is,

n´1
tQnpβ0 ` n

´1{2uq ´Qnpβ0qu

ď ´p2nq´1uT
tV pβ0q ` opp1quu` n´1Opp1q

q
ÿ

j“1
|uj| ´ n

´1Opp1q
q
ÿ

j“1
|uj|.

93



In the above inequality, the first term on the right hand side is of second order of

u, while all the other terms are of the first order. Therefore, by choosing a constant

C large enough, the first term dominates the rest of the expression. By lemma A.3.2,

n´1tQnpβ0 ` n
´1{2uq ´Qnpβ0qu ă 0 and the proof is completed.

A.4.2 Oracle property of the adaptive lasso estimator

For βj in β1 “ pβ1, . . . , βq1q
T, we have

0 “ BQnpβq{Bβj|β“ pβ “ n1{2
!

n´1{2
BQnpβq{Bβj|β“ pβ ´ n

1{2ρn|rβj|
´1signppβjq

)

By the first order Taylor expansion and lemmas A.3.1–A.3.2, we have

0 “n1{2
!

n´1{2Ujnpβ0q ` n
´1Vjjnpβ

˚
qn1{2

ppβj ´ βj0q ´ nρn|n
1{2

rβj|
´1signppβjq

)

“n1{2
!

Opp1q ` Vjjpβ0qn
1{2
ppβj ´ βj0q ´ nρn|n

1{2
rβj|
´1signppβjq

)

“n1{2
!

Opp1q ´ n1{2Opp1qsignppβjq
)

.

In the above derivation, Ujnpβ0q is the jth element of Unpβ0q, Vjjnpβ˚q is the pj, jqth element

of Vnpβ˚q, Vjjpβ0q is the pj, jqth element of V pβ0q, and β˚ is between β0 and pβ. The last line

follows from the convergence rate of pβ and rβ. As n goes to infinity, pβ1 “ 0 with probability

tending to 0.

A.4.3 Asymptotic distribution of the adaptive lasso estimator

Since section A.3.2 proves P ppβ1n “ 0q Ñ 1, we only need to derive the asymptotic

expansion of pβ2n in the probability set tpβ1nu “ 0. Let U2npβq denotes the last q2 elements of

Upβq and V22n the lower q2 ˆ q2 submatrix of Vnpβq. Then

0 “BQnpβq{Bβ2|β“p0, pβ2nqT

“Blnpβq{Bβ2|β“p0, pβ2nqT
´ nρn

´

|rβq1`1|
´1signppβq1`1q, . . . , |rβq2 |

´1signppβq2q

¯T

“U2npβ0q ´ V22npβ
˚
qppβ2n ´ β20q ´ nρn

´

|rβq1`1|
´1signppβq1`1q, . . . , |rβq2 |

´1signppβq2q

¯T
,
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where β˚ is between β0 and rβ. By Lemma A.3.2, the convergence of rβ and pβ and the rate

of ρn, we have

n1{2
ppβ2n ´ β20q

“tn´1V22npβ
˚
qu
´1

„

n´1{2U2npβ0q ´ n
1{2ρn

´

|rβq1`1|
´1signppβq1`1q, . . . , |rβq2 |

´1signppβq2q

¯T


“V22pβ0q
´1
tn´1{2U2npβ0qu ` opp1q

As the expression above only involves the derivatives concerning the derivatives of the log-

likelihood but not the penalty term, the asymptotic distribution of β2n can be immediately

obtained from sections A.2.1-A.2.3. With the same arguments, the asymptotic variance

attains the semiparametric efficiency bound.

A.4.4 Asymptotic distribution of the post-selection maximum likelihood esti-
mator

The proof for the asymptotic distribution of the post-selection maximum likelihood

estimator is from sections A.2.1-A.2.3.
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