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ABSTRACT

LIUQING (JASMINE) YANG: Statistical Methods for Deconvolution in Cancer Genomics
(Under the direction of J. S. Marron and Hongtu Zhu)

With the advance of deep sequencing techniques, intratumor heterogeneity becomes a prevalent

confounding factor to tumor genomic profiling studies. The heterogeneous composition of a tumor

tissue can potentially lead to false positive di↵erential expression conclusions and influence patients’

clinical outcomes and therapeutic responses. Many deconvolution methods aiming to separate

the subcomponent signals have been developed in the past decades, modeling the tumor genomic

profiling as a linear combination of the abundance of the mixing components. In this dissertation,

we characterize a two-components (tumor versus non-tumor) model and develop a Fast Tumor

Deconvolution (FasTD) pipeline to address the heterogeneity issue. We build a semi-parametric

regression-based framework utilizing raw measured gene expression values, and provide mixing

proportions and individual component genomic profiles as outputs. We demonstrate our method

and show it is more than a thousand times faster than several current probabilistic models. Both

simulated data and real data applications are provided to demonstrate the e↵ectiveness of our

proposed method. Our method is then extended to deconvolve heterogeneous tumor samples with

more than two subcomponents. The extended pipeline (FasTDK) can e↵ectively deconvolve an

unknown component in K-subcomponent mixtures provided with K � 1 reference profiles.
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in (d) shows when cMSE(Ťig) is smaller than cMSE(T̂ig). . . . . . . . . . . . . . . . . . . . . . . . 29



2.7 FasTD performance in estimating proportional coe�cients and mean
expression values for the cone component for dataset GSE33076. The
scatter plot (a) demonstrates a good correlation (CCC = 0.9) between
the FasTD estimates (x-axis) and the true proportions (y-axis), where each
point is a sample. Plot (b) shows the di↵erences (in y-axis) between the
estimated mean expression value for the cone component in the mixtures,
and that computed in the pure isolated cone cells. The x-axis shows the
spread of these two quantities. All values are transformed into log2-scale.
Genes are presented as dots and colored by the density value. A large
density of genes clustered around the reference line suggesting a good
estimation of the mean expression values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Illustration of the preprocessing step to identify uncertain samples in the
TCGA LUSC dataset. The height in the y-axis is the euclidean distance
between two clusters. Each leaf node represents a sample. The original
tumor samples are labeled as dots and the original normal samples are
labeled as circles. Two LUSC normal samples, shown as two overlapping
circles on the lower-left part of the plot clustered with other tumor samples
are identified as uncertain samples and disregarded for future analysis. . . . . . . . . . . . . . 32

2.9 Purity estimation performance comparison between our method and the
other two methods for PRAD tumor samples. In both plots the x-axis
shows the FasTD estimate value and each point is a tumor sample. The
y-axis in (a) is the DeMixT estimate and that in (b) is the ABSOLUTE
estimate for the same set of PRAD tumor samples. Overall, the Pearson
correlation coe�cients between di↵erent methods are high in this cancer type. . . . . . . . 35

2.10 Two-way clustering results of PRAD samples and genes in the epithelial
mesenchymal transition (EMT) pathway before and after DeMixT
deconvolution. Each row represents a gene in the pathway and each column
represent a prostate sample. Top color bar highlights the normal samples
(purple) versus tumor samples (pink). A better separation of the tumor
versus normal samples is observed only after deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 (a) and (b) One-way clustering for PRAD tumor samples with 7 SREBP
mediated lipogenesis signature genes before and after deconvolution. Each
row represents a gene and each column a prostate tumor sample. All
tumor samples have a categorized Gleason score indicated by the color bar.
Tumor samples with higher Gleason scores (8) are clustered for higher
expression values in these SREBP mediated lipogenesis signature genes
after deconvolution. (c) and (d) shows the Kaplan-Meier plot for BCR
events, stratified for di↵erent tumor clusters grouped by the expression
levels of 7 lipogenesis genes in (a) and (b), respectively. Vertical lines
indicate the time at which censoring occurred. The log-rank test is used to
compare survival curves of two groups, whose p-value is shown on the plot.
Statistically significant di↵erence in the probability of BCR event for two
clusters can only be observed using the deconvolved expression values. . . . . . . . . . . . . . . 38

ix



3.1 Visualization of low leverage observations in a 2-dimensional feature space.
X1 andX2 are values for the two predictors in the multiple linear regression
step of a FasTDK application. Each point is a gene. The whole genome
is colored in blue while the genes with low leverage are colored in orange.
This filtering step is designed to remove potential outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 One hundred D-optimality genes (yellow circled) are selected in a real data
application in a 2-dimensional feature space. The x- and y-axes are the row
values for X0

2 RG0⇥2 and each point is a gene. The D-optimality criterion
minimizes the determinant of ⌃�1, which tends to select points that are
representatives in the sense of lying near the edge of the data set. . . . . . . . . . . . . . . . . . . . 51

3.3 Scatterplot of 100 mixing samples’ proportion estimates versus the truth
for 4 subcomponents. Each point represents a mixture sample. The x-axis
value captures the proportion estimate acquired by our method and the
y-axis values are the ground truth. For all subcomponents (a)-(d), the 100
samples align well around the red y = x line, which indicates our procedure
is very e↵ective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Simulation Results for 100 runs studies how proportion estimation accuracy
is driven by the number of mixing samples and the variance of the
unknown component. The decreasing trend towards the right side shows
more mixing sample improves accuracy of the unknown subcomponent
proportion estimation. But the estimation performance is best when the
unknown SD is at a middle value (= 0.3 in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Simulation Results for 100 Monte Carlo runs studies how proprotion
estimation accuracy is driven by the variance of the unknown component.
The bias generated by small �K can be reduced when the mixing sample
number increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Measured gene expression pattern in a heterogeneous mixing sample can be
modeled as the weighted sum of gene expression derived from pure tissue
samples. The y-axis is the measured expression pattern/mean of mixing
samples with 70% Liver, 5% Brain and 25% Lung tissues. The x-axis is the
expression pattern reconstituted proportionally from the mean expression
values obtained from the pure tissue samples. Each point represents a
probe. Color represents point density from a single probe (purple) to lots
of probes (yellow). This plot shows that the expression pattern/mean in
the mixtures behaves similarly as the values reconstituted from pure tissue
samples. The fraction of probes that deviate from the diagonal line suggests
reconstitution is better done at the raw data level, i .e. before log2-transformation. . . . 58

3.7 Deconvolved proportion estimates for Benchmark Dataset GSE19830 using
simple linear regression in model (3.22). The x values are estimated
while the y values are the true proportions. Each data point represents
a mixture sample. All data points aligning well around the y=x reference
line indicates the e↵ectiveness of the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



3.8 Deconvolved proportion estimates for the Benchmark Dataset GSE19830
when liver is the unknown component. The x values are proportion
estimates while the y values are the ground truth. Each data point
represents a mixing sample. All data points are aligning well around the
y = x reference line. This alignment is quantitatively evaluated by the
Concordance Correlation Coe�cient (Lawrence and Lin, 1989): 0.95 , which
indicates the e↵ectiveness of our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Quality check of GSE19830 intermediate estimates. Three scenarios are
studied when the liver, brain and lung subcomponents are assumed to be
unknown in turn. Each point is a mixing sample. The x-values are the
FasTDK estimates computed by the intermediate regression coe�cients
�ik and the true ⇡̄k’s, according to (3.8), which are plotted against the true
proportions on the y-axis. Comparing with the liver unknown case in (a),
plots (b) and (c) suggest the final proportion estimates for both the brain
and the lung cases are confounded by the biased intermediate results in the
regression step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Performances of proprotion estimates using gene subset Ag when either the
brain or the lung tissue is the unknown component. Each point is a mixing
sample whose FasTDK estimates are the x-values and ground truths are the
y-values. The performances are greatly improved using geneset Ag: CCC
values increase from around 0 to 0.657 and 0.967 for the brain and the lung
cases, respectively. This result suggests when the unknown component only
occupies a small proportion in the mixtures, genes with stronger signals
from the minority groups tend to give better coe�cient estimation. . . . . . . . . . . . . . . . . . . 64

3.11 Normalized histograms of the residual values �g for gene subsets A and
B. The red vertical line indicates the mean value of �g for the set A
(�̄A = 0.0055), while the blue line is that for the set B (�̄B = �0.329).
This suggests gene subset A is better fitted to the linear additive model
(3.22) originally proposed for dataset GSE19830. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



CHAPTER 1

Introduction

1.1 Background: Intratumor Heterogeneity

Recently there have been extensive studies researching tumor heterogeneity due to its significant

impact on tumor genetic analysis and therapeutic decisions, (Burrell et al., 2013). There are two

levels of tumor heterogeneity: intertumor and intratumor. The former one refers to the variation

between individuals with the same tumor type, while the latter one is observed within one tumor

tissue sample. Intratumor heterogeneity can be caused by subclone events or mixture of other

cell/tissue types in tumor tissues, such as blood vessels, immune cells, stromal cells, etc. This

variation within a tumor tissue sample is what we will focus and build a model on in this dissertation

work. Because of recent advances in deep sequencing techniques, intratumor heterogeneity is

observed more and more at the molecular level, (Shibata, 2012). Gene expression profiles extracted

from these mixed tumor samples for studying tumor/normal di↵erences can be strongly confounded

by the composition of cell types in the mixture samples (Figure 1.1). Meanwhile, extensive

studies have demonstrated this intratumor heterogeneity is closely related to therapeutic responses.

Shibata (2012) concludes that more heterogeneity in tumors with many subtype-specific mutations

is positively correlated with the failure rate of chemotherapy. In addition, Mo�tt et al. (2015)

report that patients with samples with an ‘activated’ stromal subtype had a much worse survival

rate than patients with another normal-like stroma subtype. This result suggests the importance

of identifying individual sub-components in a bulk tissue, which can lead to alternative therapeutic

choices.

The importance of quantifying the sub-components in tumor samples is further supported

by studies of tumor micro-environment. Junttila and de Sauvage (2013) point out that tumors

should be evaluated as complete organs (Figure 1.2) instead of simple masses of epithelial cells.

DeNardo et al. (2011), show that the amount of macrophages, one kind of immune cell, in the

1



tumor tissue was correlated with clinical outcomes in breast cancer. Considering the expensive

manual microdissection of di↵erent cell types, it is important to develop in silico modeling methods

to accurately measure the composition of the tumor. The mathematical process of identifying

and separating constituent components is called deconvolution. One recent deconvolution method

developed by Quon et al. (2013) shows significant improvements in prognostic prediction and other

clinical variables for lung and prostate cancer after using deconvolved tumor gene expression profiles.

The promising outcomes of these computational methods motivate more and more researchers

to develop e↵ective tumor deconvolution methods to address the intratumor heterogeneity issue,

including the work introduced in this dissertation.

Figure 1.1: Tumor sample transciptome can be heterogeneous due to an underlying mixture of cell types.
Figure from Shen-Orr and Gaujoux (2013)

1.2 Objectives and Problem Statement

Solid tumor tissues have demonstrated extensive genetic heterogeneity even within individual

samples, which is often referred as intratumor heterogeneity. Tumor samples collected by physicians

may be a mixture of cancer subtypes and/or normal cells such as stromal, immune and blood cells. It

is usually of great interest for both clinicians and genetic researchers to obtain an explicit expression

value for each of the sub-components in the mixture, as well as their corresponding proportions.

Statistically, if we model each of these mixture components’ genetic expression levels as

independent random variables, the observed genomic profile for a mixed tumor sample can be

formulated as the weighted sum of these variables.
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Figure 1.2: Picturing tumor tissue as an organ to demonstrate tumor heterogeneity. Tumor formation
involves the co-evolution of tumor cells, stromal cells, immune cells, extracellular matrix and vascular
network. Figure from Junttila and de Sauvage (2013)

Let the observed genomic profiles for S, the number of tumor samples, and G, the number of

genes be denoted as the matrix Y 2 RG⇥S . Each matrix element ygi 2 R is the observed expression

value of gene g 2 {1, . . . , G} from sample i 2 {1, . . . , S}. We assume the entries of Y are gene

expression values after using some standard preprocessing procedures. Let K denote the number

of subtypes present in the mixture sample. Subtype matrix X 2 RG⇥K contain the subtype mean

specific expression values for G genes in each column. Then the proportion matrix is defined as

⇥ 2 RK⇥S , whose ith column contains the proportions of each subtype in sample i. For each i, the

column values should be non-negative and sum up to one. Lastly, the matrix E will store all the

error terms. We assume the convolution of cell type expression values takes place in linear space.

Hence the observed genomic profiles Y can be formulated as the multiplication of X and ⇥ plus

the error term:

Y = X⇥+E

We emphasize the linearity assumption of the model, which means each subpopulation’s

contribution to the observed expression value of a gene is linearly proportional to the abundance of

that subpopulation in the mixture. This is di↵erent from the previous common practice of modeling

convolution after applying the log2-transformation to the expression data. Zhong and Liu (2012)
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point out the convolution of tumor genomic profiles should be modeled in the linear space. They

proved that if the log-transformed data is used as input, the output subtype specific expression

profile X will be underestimated.

Provided with the genomic information of the mixed tumor samples, i.e. the matrix Y, our

target is to e�ciently and accurately estimate the elements of ⇥, as well as the tumor-specific

expression pattern in X.

1.3 Methods Overview

Many algorithms and methods have been developed to tackle the intratumor heterogeneity issue.

As noted in Carroll et al. (2006), many review papers have summarized current deconvolution

methods from di↵erent perspectives. Mohammadi et al. (2017) emphasize the choices of loss

function, optimization constraints and regularization techniques involved in di↵erent methods.

Shen-Orr and Gaujoux (2013) divide the computational methodologies into five classes, according

to what input data is required for the method and the resolution of the output data, i,e. output X

or ⇥, or both. Wang et al. (2016a) summarize tumor purity estimation tools from the perspective

of the data platform on which the model is built: based on genomic or epigenetic data. In this

dissertation, we group current methods in three di↵erent ways.

The first grouping perspective is regression-based frameworks versus probabilistic models,

Mohammadi et al. (2017). A regression-based model often involves techniques such as ordinary

least squares (OLS), as proposed in our method, or quadratic programming (QP) frameworks as

demonstrated in Zhong et al. (2013), and a series of other advanced optimization algorithms. For

example, given the reference cell type expression profile, for a single gene g, the problem can be

formatted as:

argmin
xg ,✓i2RK

SX

i=1

L(ygi � xT
g ✓i) + �1R1(✓i) + �2R2(xg)

where L and R1, R2 are loss function and regularization functions respectively.
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On the other hand, the probabilistic models often have distributional assumptions for matrices

Y,X⇥ or E, such as:

xg ⇠ LN (µg,�
2
g)

✏gi ⇠ N (0,�2
g)

ygi ⇠ multinomial distribution

✓i ⇠ Dirichlet(↵) where ↵ = (↵1, . . . ,↵K).

This framework usually involves optimizing a likelihood function by Bayesian approach. For

example, methods such as DSection (Erkkilä et al., 2010), GLAD (Saddiki et al., 2015), ISOLATE

(Quon and Morris, 2009) and ISOpure (Quon et al., 2013) are developed based on the Latent

Dirichlet Allocation work developed by Blei et al. (2003). In particular, the proportion coe�cients

use the Dirichlet distribution as a prior, for its convenient properties such as being conjugate

to the multinomial distribution, in the exponential family. One problem with methods of this

kind is the intractability of the posterior distribution. Approximation algorithms such as Laplace

approximation, variational EM and MCMC are often used to conduct inference for the hidden

variables. However, the computation time might su↵er greatly from this type of approximation.

Most of these papers do not report the computation time, but this can be a big drawback for

methods of this type. For example, both GLAD and the most updated version of DeMixT (Wang

et al., 2017), took several hours to process 100 samples, not including the pre-processing time. In

contrast, our method, which will be discussed in detail in Chapter 2, uses less than one second

processing time.

The second categorization of existing methods is supervised deconvolution versus unsupervised.

In the field of signal processing, this categorization is often named as semi-/guided BSS versus

Blind Source Separation (BSS) in Hesse and James (2006). BSS refers to the process of separating

source signals from a linear combination of these signals, either without the aid of information

about the source signals or using some prior knowledge. Various supervised/semi-BSS approaches

may require di↵erent types of prior information, e.g.,

(a) Some approaches depend on having expression data from a purified reference sample for each

cell or tissue type, i.e. X is provided. Abbas et al. (2009) developed one of the early regression

based methods, assuming a pure expression matrix of each of the di↵erent cell types is provided.
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(b) Some require cell-type specific marker genes, which are highly expressed in one cell type but not

expressed in other cell types, to be available, such as the Digital Sorting Algorithm proposed

in Zhong et al. (2013).

(c) Some other approaches assume availability of the proportions of each sample or cell type, i.e.

the matrix ⇥. These measures are usually evaluated by pathologists as in Stuart et al. (2004).

For most of the supervised methods, the number of sub components K is also assumed to be known.

Unsupervised approaches usually involve clustering, Independent Component Analysis (ICA),

Principle Component Analysis (PCA), or Nonnegative Matrix Factorization (NMF). Among these

tools, NMF is considered to be especially suitable for biological data, as it constrains all input and

output data to be positive. A study in Mo�tt et al. (2015) uses unsupervised NMF to identify

exemplar genes, which are defined as genes with distinctly large weights in a single column of the

matrix X. They demonstrate that these exemplar genes have subtype related meanings which can

be confirmed from other studies. Moreover, combining these techniques with prior information

has demonstrated better deconvolution performance. In Gaujoux and Seoighe (2012), where prior

knowledge in the form of a set of marker genes is used, the accuracy of gene expression deconvolution

is improved with the marker-guided NMF algorithm. Another rising class of unsupervised methods

is called Convex Analysis of Mixtures (CAM), which utilizes a geometric approach to identify the

vertices (marker genes) of the most tightly fitting scatter simplex Wang et al. (2016b), that encloses

the observed data points. When the algorithm obtains the best simplex (convex hull) to fit the

data, it is supposed to simultaneously obtain the vertices corresponding to K subpopulation marker

genes, and give rise to the mixing proportions for each subpopulation. The highlight of this method

is that it has no requirement on prior information such as the number, identity, or composition of

the subpopulations present in mixed samples. However, some basic assumptions, such as a good

uniform sampling over the space spanned by the subtype profile matrices and the intrinsic mixture

diversity, still need to hold to ensure the model being identifiable.

The third categorization of current methods is based on the source of data: genetic data (such

as DNA copy number, methylation data) versus transcriptome expression data (such as microarray,

RNAseq data). For a common set of mixed tumor samples, one would expect the tumor purity

estimates obtained from these two sources to be similar to each other. However, based on our
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results of comparing estimates from a DNA copy number based method, and estimates from a

transcriptome data based method, we did not observe a relatively high concordance of estimates

(Table 2.4). Similar results were also reported in Wang and Wang (2015), where the highest

correlation was observed as 0.57 in ovarian cancer.

The deconvolution method we propose here is a transcript based semi-BSS method, which

assumes some reference expression matrix to be available, whose output includes both the coe�cient

matrix ⇥ and the subcomponent specific expression profile matrix X. With a better understanding

of the intratumor heterogeneity issue and the development of deconvolution methodologies, we

foresee the incorporation of the deconvolution step as an important part of genome profiling study

pipelines in the future.

1.4 Dissertation Organization

To address the intratumor heterogeneity issue we start with a simple case in Chapter 2:

assuming a tumor-normal two-component structure for the mixed tumor sample, i.e. a single

cancer type and one type of normal tissue contamination. Details of developing and testing such

two-component method are discussed in Chapter 2. We will extend these ideas and develop a

multiple-component tumor deconvolution tool in Chapter 3.

At the end of this dissertation, we will discuss some potential work beyond the dissertation,

such as applying the method to multiple platform data, and exploring the e↵ect of data integration

on tumor deconvolution.
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CHAPTER 2

Two-component Source Separation Analysis

2.1 Introduction

Most deconvolution methods for identifying cell-type specific signals from heterogeneous tumor

samples operate under a linearity assumption, Zhong and Liu (2012), in which the expression

value of the mixture is a weighted sum of signals of its constituent cell types. Following this

assumption, we propose a Fast Tumor Deconvolution (FasTD) pipeline, which deconvolves mixed

genomic profiles into tumor/non-tumor profiles, as well as an estimation of the mixing proportions

for each component. The method is a semi-Blind Source Separation (BSS) procedure as it requires

reference gene expression profiles from non-tumor samples. But these reference samples do not

have to be matched to the tumor samples. In addition, FasTD can be easily extended to more

sub-components if the reference expression profiles for all but one subcomponents are available.

Another highlight of our method is that no distributional assumption is imposed on the

expression subgroups, only mean and variance parameters are assumed. Our semi-parametric

method has been tested and compared with other probabilistic methods in simulated data and

real applications. The results show FasTD is both accurate and highly e�cient, with biologically

meaningful outputs for a TCGA prostate cancer case study.

As summarized in Figure 2.1, there are six key components of the FasTD pipeline. Firstly,

the expression matrix Y of the mixing samples should be provided. Reference profiles for one of

the constituent component in the mixtures are also given (Section 2.2.1). Secondly, some simple

gene filtering is conducted to select genes di↵erentiating the observed mixing expressions from the

reference population. Procedures that remove outliers or influential points are recommended in this

step. Then the core purity estimation part (Section 2.2.2) is the regression and the optimization

step, which utilizes the first and the second moment information of the data sets, respectively.
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After obtaining the purity estimates, individual deconvolution in Section 2.3 using our designed

estimator is performed and concluded by the output of the tumor-specific expression matrix T.

Figure 2.1: Flowchart of the FasTD pipeline.

2.2 Tumor Purity Proportion Estimation

We present a mixing proportion estimation procedure, which outputs the first set of estimates

of our Fast Tumor Deconvolution pipeline ‘FasTD’. For this procedure to work, we need to

assume at most two major components are present in the tumor mixture tissue samples: a pure

homogeneous tumor component and a homogeneous normal/non-tumor component. When normal

control samples are available to us, we are able to set up a regression model, whose regression

coe�cients are directly related to the proportions of the tumor component in the mixture samples.

Our goal is to fully recover these proportion coe�cients which describe the purity of tumor samples.

After running through the regression analyses and an optimization step, users can obtain the mixing

proportion estimate for each tumor sample, as well as the mean and variance estimates for both

components, within a short computational time. In Section 2.4.1, we will compare the simulation
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results of our semi-parametric method with two other parametric methods to show the e↵ectiveness

of our method.

2.2.1 Problem Formulation and Model Assumptions

Let Yig, be the observed gene expression value for mixed tumor sample i, i = 1 , . . . , S, gene

g, g = 1, . . . , G. We assume each observed value Yig is a proportional sum of two quantities: the

gene expression value for sample i, gene g from tumor cells, denoted as random variables Tig, and

that from normal cells, denoted as random variable Nig. The proportional coe�cient, denoted as

⇡i 2 [0, 1], captures the percentage of tumor cells in that sample:

Yig = ⇡iTig + (1� ⇡i)Nig 8i, g. (2.1)

Random variables Tig and Nig are assumed to be independent of each other across samples and

across genes. We also assume Tig follows mean µTg and variance �2
Tg and Nig follows mean µNg

and variance �2
Ng. Note that there is no assumption on the distribution of these variables:

8
>><

>>:

Tig ⇠ (µTg,�2
Tg)

Nig ⇠ (µNg,�2
Ng)

Another important assumption is the gene expression profiles for N0 number of normal control

samples are available to us. Hence the parameters µNg and �2
Ng assumed for Nig can be easily

estimated. Based on these assumptions, ⇡i, µTg, �2
Tg for S samples and G genes are quantities

remained to be estimated.

2.2.2 Purity Estimation using Moments Information

To show that a regression model can be derived based on assumptions in subsection 2.2.1, we

will rearrange the problem formulated in (2.1). Let µT 2 RG and ⌃T 2 RG⇥G denote the mean

vector and covariance matrix of gene expression for G genes in tumor cells, and µN 2 RG and

⌃N 2 RG⇥G for G genes in normal cells. Then the observed gene expression vector yi 2 RG for
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mixed tumor sample i is the proportional sum of µT and µN , plus some noise ✏i:

yi = ⇡iµT + (1� ⇡i)µN + ✏i (2.2)

where

✏i ⇠
⇣
0, ⇡2

i⌃T + (1� ⇡i)
2⌃N

⌘
.

Subtracting µN from both sides of (2.2) we get:

yi � µN = ⇡i(µT � µN ) + ✏i. (2.3)

If µN can be estimated from N0 normal control samples and µT is known, the expression in

(2.3) very much resembles a simple linear regression without intercept, with ⇡i being the coe�cient,

(µT �µN ) the data matrix and (yi�µN ) the response. When µT is unknown, we present a method

to estimate the quantity (µT �µN ) in Step 3 of this subsection, hence estimating ⇡i by setting up

a regression analysis.

The other issue that needs to be addressed is the selection of input genes. If we include all G

genes whose expression values are available, some genes with the same expression levels in normal

cells and tumor cells, i.e., µTg = µNg, will not be helpful in estimating ⇡i but only introducing noise

to the regression model (2.3). Therefore, the ideal case is to select a set of feature genes, which is

often referred as Di↵erentially Expressed (DE) genes (in tumor cells versus non-tumor cells), as our

input genes. For now, we simply use a two sample t-test to detect whether a gene is di↵erentially

expressed or not.

• Step 1. Select Feature Genes

Given the observed gene expression profiles for tumor mixture samples and normal samples,

we would like to select G̃ feature genes/DE genes that best separate the tumor mixture group

and normal group, by evaluating each gene’s t-statistics. For example, a threshold of � 5

for the absolute t-statistic value can be used. Five is chosen based on the critical value

corresponding to a 0.05 significant p-value adjusted for 20,000 genes of multiple t-tests.

• Step 2. Estimate µN and Compute Gene Weighting Matrix K
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The mean vector for normal gene expression µN is estimated from N0 normal control samples

and then plugged into (2.3):

µ̂N =
1

N0

N0X

i=1

Ni

yi � µ̂N = ⇡i(µT � µ̂N ) + (1� ⇡i)(µN � µ̂N ) + ✏i. (2.4)

To prevent genes with high expression values dominating the analysis, we will normalize

genes across subjects. Each selected gene is treated equally by the following normalization.

We introduce the gene weighting diagonal matrix K, with positive elements on the diagonal.

To start with, one can set the weights of each gene as the reciprocal of the sample standard

deviation computed from YS⇥G̃:

�̂2
g =

1

(S � 1)

SX

i=1

(Yig � Ȳ·g)
2

8g, K =

0

BBBB@

1
�̂1

. . .

1
�̂G̃

1

CCCCA

G̃⇥G̃

. (2.5)

• Step 3. Regression Analysis

Equation (2.4) is still an under-determined system as µT is unknown, but we can estimate

K(µT � µ̂N ) for a corresponding ⇡i by method of moments.

1

S

SX

i=1

K(yi � µ̂N )

=
1

S

SX

i=1

⇡i ·K(µT � µ̂N ) +
1

S

SX

i=1

(1� ⇡i) ·K(µN � µ̂N ) +
1

S

SX

i=1

K✏i.

(2.6)

Letting

ȳ =
1

S

SX

i=1

yi, ⇡̄ =
1

S

SX

i=1

⇡i, ✏̄ =
1

S

SX

i=1

✏i

(2.6) can be rewritten as:

K(ȳ � µ̂N ) = ⇡̄ ·K(µT � µ̂N ) + (1� ⇡̄) ·K(µN � µ̂N ) +K✏̄. (2.7)
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✏i was assumed to have mean 0, µ̂N with mean µN . By law of large number, when S and N0

are large enough, term ✏̄ and (µN � µ̂N ) will go to 0 with probability 1. Hence the left hand

side of (2.7) can be approximated by ⇡̄ ·K(µT � µ̂N ). Then an estimate of K(µT � µ̂N ) is

obtained by:

\K(µT � µ̂N ) =
K(ȳ � µ̂N )

⇡̄
+O(

1
p
N0

) +O(
1

p
S
). (2.8)

From (2.4) we know for sample i it satisfies:

K(yi � µ̂N ) = ⇡i ·K(µT � µ̂N ) + (1� ⇡i)K(µN � µ̂N ) +K✏i

Letting

K�i = (1� ⇡i)K(µN � µ̂N ) +K✏i

be the new error term, whose expectation is still 0.

Then the expression in (2.8) is the key to remove the unknown µT in the regression set-up:

K(yi � µ̂N ) = ⇡i ·K(µT � µ̂N ) +K�i

= ⇡i · \K(µT � µ̂N ) +K�i

K(yi � µ̂N ) =
⇡i
⇡̄

·K(ȳ � µ̂N ) +K�i +O(
1

p
N0

) +O(
1

p
S
).

(2.9)

Based on the relations in (2.9), one can obtain the least square estimator of �i =
⇡i
⇡̄ by:

�̂i =
⇣c⇡i
⇡̄

⌘

LS
= max

⇣(ȳ � µ̂N )TK2(yi � µ̂N )

(ȳ � µ̂N )TK2(ȳ � µ̂N )
, 0

⌘
. (2.10)

One would expect a negative slope, i.e. �̂i, if there are a lot of noise present in the data. But

realistically a negative scaled version of ⇡i is not meaningful. Therefore, we put a non-negative

constraint for �i in (2.10).

• Step 4. Second Moment Optimization to Fully Recover ⇡i

So far, we have obtained �̂i’s, which are the scaled values of ⇡̂i’s. But the proportions are

not yet fully recovered as ⇡̄ is unknown. The remaining question is how to provide a good

estimation for ⇡̄.

13



Continually motivated by the method of moment, we decide to utilize the second moment

information from observations Yig. According to our model’s parameter assumption (2.3),

the error term ✏i follows:

✏i = yi � µN � ⇡i(µT � µN ) ⇠
⇣
0, ⇡2

i⌃T + (1� ⇡i)
2⌃N

⌘
8i.

After estimating µ̂N and introducing the weighting matrix K, the error term follows:

K✏i = K(yi � µ̂N )� ⇡iK(µT � µ̂N )� (1� ⇡i)K(µN � µ̂N )

⇠

⇣
0, ⇡2

iK⌃TK
0 + (1� ⇡i)

2K⌃NK0
⌘

8i.

Set the second moment information of K✏i as Zi = K✏i✏0iK
0, then the mean of Zi becomes:

E(Zi) = ⇡2
iK⌃TK

0 + (1� ⇡i)
2K⌃NK0. (2.11)

The exact values of Zi are not observed. But we have S approximated independent

observations of K✏i’s, according to (2.9):

Zi = (K✏i)
⌦2

=
⇣
K(yi � µ̂N )� ⇡iK(µT � µ̂N )� (1� ⇡i)K(µN � µ̂N )

⌘⌦2

⇡

⇣
K(yi � µ̂N )� ⇡iK(µT � µ̂N )

⌘⌦2

=
⇣
K(yi � µ̂N )� �̂i ·K(ȳ � µ̂N ) +O(

1
p
N0

) +O(
1

p
S
)
⌘⌦2

i = 1, . . . , S.

(2.12)

for any matrix X, X⌦2 = XXT .
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We introduce an objective function, which is to minimize the sum of squared deviation of

each observation from the mean:

SX

i=1

kdiag(Zi � E(Zi))k
2
2

=
SX

i=1

���diag(
�
K(yi � µ̂N )� �̂i ·K(ȳ � µ̂N )

�⌦2
� ⇡2

iK⌃TK
0
� (1� ⇡i)

2K⌃NK0)
���
2

2
.

(2.13)

Note that the diagonal elements of ⌃T is unknown but can be estimated simultaneously

by solving the optimization problem. The diagonal elements of ⌃N can be estimated by

the normal control sample variance 1
(N0�1)

PN0
i=1(Ni � µ̂N )2. In addition, we can utilize the

information obtained earlier in (2.10) from the least square estimator, to replace ⇡̂i with �̂i⇡̄

due to the fact that �̂i =
⇡̂i
⇡̄ .

Now plug into (2.13) all the estimated quantities we have so far, and formulate the

optimization problem as:

min
⇡̄,diag(⌃T )

SX

i=1

���diag(
�
K(yi � µ̂N )� �̂i ·K(ȳ � µ̂N )

�⌦2

� (�̂i⇡̄)
2K⌃TK

0
� (1� �̂i⇡̄)

2K⌃̂NK0)
���
2

2

s.t.: min(
1

max(�̂i)
, 1) � ⇡̄ � 0

diag(⌃T ) � 0.

(2.14)

Problem (2.14) is a quadratic programming problem with one unknown scalar ⇡̄ and a vector

of gene variances. All variables should be non-negative and the upper bound for ⇡̄ is restrained

so that the final estimates for ⇡i’s are no larger than 1.

Note that when ⇡̄ is given, (2.14) is reduced to:

for all g = 1, . . . , G̃,

min
�2
Tg

SX

i=1

���
�
Kg(yig � µ̂Ng)� �̂i ·Kg(ȳ·g � µ̂Ng)

�2
� (�̂i⇡̄)

2K2
g�

2
Tg � (1� �̂i⇡̄)

2K2
g �̂

2
Ng

���
2

2

s.t.: �2
Tg � 0.

(2.15)
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where Kg is the gth diagonal element of K. The elements of diag(⌃T ) can be evaluated

independently here because we have assumed the expression level for each gene is independent

of each other. In addition, the optimal value of �2
Tg that minimizes (2.15) for gene g can be

explicitly expressed and simplified as:

�̂2
Tg = max(

PS
i=1

h�
(yig � µ̂Ng)� �̂i(ȳ·g � µ̂Ng)

�2
� (1� �̂i⇡̄)2�̂2

Ng

i
· �̂2

i

⇡̄2
PS

i=1 �̂
4
i

, 0). (2.16)

We see from (2.16) that the optimal solution �̂2
Tg is a function of ⇡̄. Therefore if we plug

(2.16) back into (2.14), the original optimization problem is rewritten as below with only one

scalar unknown ⇡̄:

min
⇡̄

SX

i=1

G̃X

g=1

h�
Kg(yig � µ̂Ng)� �̂i ·Kg(ȳ·g � µ̂Ng)

�2
� (1� �̂i⇡̄)

2K2
g �̂

2
Ng

� �̂2
i K

2
g

PS
i=1

h�
(yig � µ̂Ng)� �̂i(ȳ·g � µ̂Ng)

�2
� (1� �̂i⇡̄)2�̂2

Ng

i

+
· �̂2

i

PS
i=1 �̂

4
i

i2

s.t.: min(
1

max(�̂i)
, 1) � ⇡̄ � 0.

(2.17)

The optimal value of ⇡̄ in (2.17) is determined using the Matlab fminunc routine. By obtaining

⇡̄, we have fully recovered the mixing proportions for the tumor component in each mixture

samples as (�̂i⇥ ⇡̄). The final step is to use this newly estimated ⇡̂i’s to obtain the mean and

variance estimates for the tumor component over the whole genome.

• Step 5. Obtain Mean and Variance Estimates for All G Genes

Only a subset of feature genes, G̃ genes, were used from Step 2 to 4. With the purity estimates

obtained in Step 4, we are able to provide mean and variance estimates for all G genes specific

to the tumor component.
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For gene g, g = 1, . . . , G, treating mean µTg in (2.3) as the only unknown, a least square

estimate is obtained as:

µ̂Tg = max
�PS

i=1(Yig � µ̂Ng)PS
i=1 ⇡̂i

+ µ̂Ng, 0
�
. (2.18)

Variance �Tg, for g = 1, . . . , G, is obtained by the same expression as in (2.16), which is the

optimal value that minimizes (2.15) when ⇡̄ is known.

2.3 Individual Deconvolution

Section 2.2 provides us with an e�cient procedure to estimate the tumor proportion for each

mixture sample, as well as the estimated mean and variance parameters for each gene. With

these estimates, our next goal is to recover the real tumor expression value from the observed

mixed expression value, for each gene in each mixture sample. This step is referred as individual

deconvolution.

2.3.1 Estimators of the Explicit Tumor Expression Value

Using the same notations and assumptions as in section 2.2.1, we continue to assume the

observed mixed sample expression value Yig is a proportional sum of two independent random

variables:

Yig = ⇡iTig + (1� ⇡i)Nig.

We also assume at this step, the estimates of ⇡i and those of the mean and variance parameters,

µTg and �2
Tg, µNg and �2

Ng, for T·g and N·g respectively, can be obtained from section 2.2. Hence

these parameters are all treated as known quantities from now on. Constructing a good estimator

for Tig is our next target. To illustrate the main idea, we start with assuming Tig and Nig to be

two normally distributed random variables.

8
>><

>>:

Tig ⇠ N (µTg,�2
Tg)

Nig ⇠ N (µNg,�2
Ng)
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Then, the probability density function of Yig is the convolution of fNig and fTig :

fYig(yig) =

Z 1

�1
fNig(

yig
1� ⇡i

�
⇡i

1� ⇡i
tig)fTig(tig)dtig

=

Z 1

�1

1
p
2⇡�Ng

exp
h
�

( yig
1�⇡i

�
⇡i

1�⇡i
tig � µNg)2

2�2
Ng

i
⇥

1
p
2⇡�Tg

exp
h
�

(tig � µTg)2

2�2
Tg

i
dtig.

There exists a closed expression for the above integral, which shows Yig is also normally

distributed:

fYig(yig) =
1q

2⇡(⇡2
i �

2
Tg + (1� ⇡i)2�2

Ng)
exp

h
�

(yig � ⇡iµTg � (1� ⇡i)µNg)2

2(⇡2
i �

2
Tg + (1� ⇡i)2�2

Ng)

i

or

Yig ⇠ N (⇡iµTg + (1� ⇡i)µNg, ⇡2
i �

2
Tg + (1� ⇡i)

2�2
Ng).

Next, we can obtain the conditional distribution of Tig, given the observed data yig:

f(tig|yig) =
f(yig|tig)fTig(tig)

fYig(yig)
=

fNig(
yig�⇡itig

1�⇡i
)fTig(tig)

fYig(yig)

/ �
⇣yig � ⇡itig

1� ⇡i

���µNg,�
2
Ng

⌘
· �(tig|µTg,�

2
Tg) (2.19)

where �(·|µ,�2) is a normal density with mean µ and variance �2. The probability density function

of Tig given Yig is also following a normal distribution:

Tig|Yig ⇠ N (⇡iµTg + (1� ⇡i)µNg, ⇡2
i �

2
Tg + (1� ⇡i)

2�2
Ng).

• The likelihood estimator, T̂ig

Since we have obtained the expression for the conditional density function of Tig in (2.19),

one strategy is to design a Tig estimator that maximizes this probability:

argmax
tig

�(tig|µTg,�
2
Tg) · �

⇣yig � ⇡itig
1� ⇡i

���µNg,�
2
Ng

⌘
. (2.20)
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If we take the first derivative of the log likelihood function of (2.20) and set it to zero, we get

a likelihood estimator, denoted as T̂ig:

T̂ig =
(1� ⇡i)2�2

Ng · µTg + ⇡2
i �

2
Tg · T̃ig

(1� ⇡i)2�2
Ng + ⇡2

i �
2
Tg

(2.21)

where T̃ig = yig
⇡i

�
1�⇡i
⇡i

µNg.

It is interesting to see from (2.21) that T̂ig is a weighted sum of µTg and T̃ig. Both are two

important quantities containing information about the true Tig. Take a closer look at T̃ig.

Given the true value Tig,

T̃ig|Tig =
⇡iTig + (1� ⇡i)Nig

⇡i
�

1� ⇡i
⇡i

µNg

= Tig +
1� ⇡i
⇡i

(Nig � µNg).

Based on the independence and normality assumption for Tig and Nig, we get:

T̃ig|Tig ⇠ (Tig, (
1� ⇡i
⇡i

)2�2
Ng). (2.22)

or

E(T̃ig|Tig) = Tig

Var(T̃ig|Tig) = (
1� ⇡i
⇡i

)2�2
Ng

Thus, T̃ig is important because its conditional distribution centers around the true Tig. On

the other hand, µTg is also important because it is the mean value of Tig when Tig is treated

as a random variable.

Inspired by the expression of T̂ig, we propose a general format for estimators of Tig, which is

a weighted sum between µTg and T̃ig:

TG
ig =

a · µTg + b · T̃ig

a+ b
. (2.23)
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We regard TG
ig as an e�cient way to combine all available information about Tig. Next we

investigate choice of the coe�cients a and b.

• The oracle estimator, T ⇤
ig

A useful criterion is the smallest conditional Mean Square Error (cMSE) given Tig. The cMSE

for the general form is written as:

MSE(TG
ig |Tig) =

⇥
E(

a · µTg + b · T̃ig

a+ b
|Tig)� Tig

⇤2
+Var(

a · µTg + b · T̃ig

a+ b
|Tig).

With the conditional mean and variance of T̃ig as shown in (2.22), the above cMSE is simplified

as:

MSE(TG
ig |Tig) =

ha · (Tig � µTg)

a+ b

i2
+

b2 · (1�⇡i
⇡i

)2�2
Ng

(a+ b)2
. (2.24)

To minimize (2.24), we will take the first derivative of the function with respect to a and b,

and set them to zero. Then we can get the optimal solutions for a and b:

a⇤ = (1� ⇡i)
2�2

Ng

b⇤ = ⇡2
i (Tig � µTg)

2.
(2.25)

Plugging (2.25) into the general form TG
ig in (2.23), we get the optimal estimator T ⇤

ig. It is an

estimator that minimizes the conditiontal MSE when Tig is given:

T ⇤
ig =

(1� ⇡i)2�2
Ng · µTg + ⇡2

i (Tig � µTg)2 · T̃ig

(1� ⇡i)2�2
Ng + ⇡2

i (Tig � µTg)2
. (2.26)

Or it can be written as:

T ⇤
ig =

(1�⇡i
⇡i

·
�Ng

�Tg
)2 · µTg + (

Tig�µTg

�Tg
)2 · T̃ig

(1�⇡i
⇡i

·
�Ng

�Tg
)2 + (

Tig�µTg

�Tg
)2

. (2.27)

In real situations, we do not know Tig, hence we can not obtain T ⇤
ig. But in simulation studies,

(2.26) still provides a useful basis for comparison, as this is the lower bound on what we can
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achieve in minimizing the cMSE. If we compare the expressions between T̂ig and T ⇤
ig, we see

that T̂ig just uses �2
Tg to replace the unknown part of T ⇤

ig: (Tig � µTg)2. This makes sense if

Tig is treated as a random variable, because �2
Tg is the expected value of (Tig � µTg)2 .

• The plug-in estimator, Ťig

Motivated by the goal of minimizing the conditional MSE, and with the fact that the

conditional mean of T̃ig is Tig, we propose another estimator Ťig, which plugs T̃ig into the

unknown part of T ⇤
ig:

Ťig =
(1� ⇡i)2�2

Ng · µTg + ⇡2
i (T̃ig � µTg)2 · T̃ig

(1� ⇡i)2�2
Ng + ⇡2

i (T̃ig � µTg)2
. (2.28)

This estimator follows the general format we proposed earlier as a weighted sum of µTg and

T̃ig. The only random variable present in this estimator is T̃ig.

Next we will rearrange the estimators to show that the performance of these estimators depends

on two important quantities. First we will divide both the numerator and denominator of T ⇤
ig and

T̃ig by �2
Tg. Then let X =

Tig�µTg

�Tg
, X̃ =

T̃ig�µTg

�Tg
, A = 1�⇡i

⇡i
, and B =

�Ng

�Tg
. Note that under the

normality assumption, X ⇠ N (0, 1), and the conditional distribution of X̃|Tig ⇠ N (X, (AB)2).

Finally the estimators are rewritten as:

T ⇤
ig =

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
µTg +

⇣
Tig�µTg

�Tg

⌘2
T̃ig

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
+
⇣
Tig�µTg

�Tg

⌘2 =
(AB)2µTg +X2T̃ig

(AB)2 +X2
. (2.29)

T̂ig =

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
µTg + 1 · T̃ig

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
+ 1

=
(AB)2µTg + 1 · T̃ig

(AB)2 + 1
. (2.30)

Ťig =

⇣
�Ng

�Tg
·
1�⇡i
⇡i

⌘2
µTg +

⇣
T̃ig�µTg

�Tg

⌘2
T̃ig

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
+
⇣
T̃ig�µTg

�Tg

⌘2 =
(AB)2µTg + X̃2T̃ig

(AB)2 + X̃2
. (2.31)

The rearrangement displays two sets of quantities: AB and X. Note that AB captures the

odds ratio of tumor/non-tumor purity(A) and the variance(B). In our analysis, we will focus on

samples which are not pure tumor or non-tumor tissues. This means the mixing proportions are
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away from zero or one. Further more, we decide to focus on genes whose expression values are

more heterogeneous in tumor tissue than in non-tumor tissues, i.e. �Tg > �Ng, which are more

biologically interesting. Thus we expect to work on cases where AB values are small non-negative

numbers.

The other important quantity X is unknown to us in real situations. However if Tig follows

the normal distribution, X will follow a standard normal distribution. Therefore, for our future

analysis on the performance of these estimators, if we concentrate on AB and X values within

certain range, i.e. [0, 3] and [-3, 3] respectively, the results should still be representative for a large

number of the population. The performance of these estimators in certain ranges of AB and X

will be shown in Section 2.4.2.

2.4 Simulation Study

2.4.1 Comparing Proportion Estimates with Two Parametric Models

The mixing proportion estimation is an important indicator of a successful deconvolution event.

To validate our ⇡i estimates, we will test it with simulated mixture profiles and compare the results

with two other parametric deconvolution methods: DeMixT (Wang et al., 2017) and a Frequentist

method developed by Dr. Rongjie Liu in Dr. Zhu’s group. Similar to our method, both of

these methods have the tumor proportion estimation as their first step and assume the availability

of normal control samples. We will particularly focus on comparison with DeMixT, which is a

recently developed method based on DeMix published in Ahn et al. (2013). DeMixT expanded

the deconvolution capacity to three components, with the requirement of pure expression profiles

available for the other two non-tumor components. DeMixT assumes gene expression follows a log2-

normal distribution. This means the observed data Yig is the convolution of the density function for

two log2-normal distributions, under the same parameter formulation of the problem we presented

in section 2.2.1. As a closed form of the complete likelihood function for Yig cannot be obtained,

numerical integration is used to estimate the parameters. More specifically, Iterated Conditional

Modes algorithm is used to search for the ⇡i that locally maximizes the joint probability conditioning

on the rest of parameters. Whereas the Frequentist method assumes the observed data Yig is the
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convolution of two Negative Binomial (NB) gene expression densities. Still a closed form of the

density function of Yig is not available, hence the Monte Caro EM algorithm is used to search for

the local optimal ⇡i that maximizes the complete likelihood. Both of these methods are developed

based on raw counts data, instead of log2-transformed according to Zhong and Liu (2012). And

both are parametric probabilistic models, which we discussed in Section 1.3 that are likely to su↵er

from approximation error and lengthy computation time.

To compare our semi-parametric method with these two parametric methods, we simulated

two separate datasets of 500 genes and 100 sample observations, whose entries are the sum of

either two log2 normal distributed random variables or two NB distributed random variables. Each

dataset has 100 simulation replicates. The true tumor proportions ⇡i were designed to be uniformly

distributed over the [0,1] interval. Performance of these methods are compared according to their

Mean Square Errors (MSE). Results are shown in Figure 2.2.

(a) DeMixT vs. FasTD (b) Frequentist vs. FasTD

Figure 2.2: Purity estimation performance comparison between FasTD and other methods.

Input data size Method Platform CPUtime (in sec)
500 x 100 DeMixT R 3,047

Frequentist Python 72,000
Our Method Matlab less than 1

Table 2.1: Running time comparison in seconds over 100 replications.
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Recall that we simulated two datasets according to the distributional assumptions imposed

by DeMixT and the Frequentist method. As shown in Figure 2.2, the DeMixT method slightly

outperforms ours (at a scale of 10�3), which is not surprised as the simulated dataset is generated

exactly according to a log2 normal distribution. Our method uses the squared loss function during

the ⇡i estimation, which is known to be an asymptotically optimal loss function when the underlying

model is perturbed by Gaussian noise. However, as shown in Table 2.1, our method only takes 0.74

second per dataset to get the mixing proportions. This is more than 4,000 times faster than DeMixT

(3047 seconds), with a negligible compensation of Mean Square Error (MSE). Comparing with the

Frequentist method, our method performs better both in accuracy, as shown in Figure 2.2 (b), and

in time, more than 72,000 times faster (Table 2.1). This can be explained by the approximation

errors generated by the Monte Caro EM algorithm, when the complete joint likelihood function is

complicated.

One limitation of the DeMixT method we observed when running the simulation study is that

it restricts purity proportions to a range of [0.05, 0.95]. This means the DeMixT method will not

be able to handle the cases when the tumor sample is pure tumor or pure non-tumor, while these

samples are very likely to exist in real scenarios. To further investigate this issue and confirm

our method does not have this constrained window for ⇡, we simulated a group of datasets with

tumor proportion ranges from 0.9 to 1 (since it is of more interest for researchers to investigate

on tumor with high purity instead of almost-normal cases). As we can see from Figure 2.3 (a),

for samples with high tumor proportions, our method performs much better than the DeMixT

method. Figure 2.3 (b) is a scatter plot of two sets of 100 sample estimates generated by DeMixT

(orange points) and by our method (blue points). For each sample point, the x-axis value is the

estimated proportion and the y-axis value is the truth. The better the sample points aligning with

the yellow y=x line, the better estimation results from that method. From Figure 2.3 (b) we see

that estimates from the DeMixT are greatly biased, compared with ours in the cases when most

samples have 0.9 to 1 tumor proportions.

Yet another limitation we observed about the DeMixT method, and possibly other methods

which utilizes numerical integration algorithms, is the issue of approximation error. Since the

complete likelihood for two convoluted log-2 normal random variables is not a closed form, the
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(a) Purity estimation performance comparison
between DeMixT and our method over the (0.9, 1)
interval

(b) Scatterplot of DeMixT Estimates/Our Estimates
vs. Real Values for 100 Mixed Tumor Samples

Figure 2.3: Purity estimation performance comparison between DeMixT and our method, when true ⇡i’s
spread over [0.9, 1] interval. In this interval, the DeMixT method has poor performance and more bias.

authors use numerical integration to approximate it. The problem is when the integrand function

inside the complete likelihood function is steeply peaked, shown in Figure 2.5 (b), it needs a very

large bin number to capture the peak. Increasing the bin number will either greatly prolong the

estimation time, or still fail to return an accurate estimation when the peak is extremely steep.

Because this case is frequently observed when the tumor mean is much smaller than normal mean,

we simulated a convoluted dataset with two log2 normal random variables, whose mean parameters

µN and µT is at least 4 units apart. As shown in Figure 2.4 (a), our method again outperforms

DeMixT in the µNg >> µTg scenario, with smaller and less variant MSE distribution for 100

simulation runs. Figure 2.4 (b) is an illustration of a single simulation result for 100 sample points.

We observe that DeMixT (in orange) performs poorly especially when the true tumor purity is

smaller than 0.3. The DeMixT estimates deviate from the y=x line, whose x value is the estimated

value and y the true proportion. But this deviation is not observed in samples estimated by our

method (blue in Figure 2.4 b).

Figure 2.5 (a) and (b) illustrate the idea why DeMixT works well in Figure 2.4 (b) when the true

proportions are large. We plotted the integrand function in Figure 2.5 of the complete likelihood

function for an observed yig = 4 ⇥ 104, with µN = 15, µTg = 10 and �T = �N = 1, with two

di↵erent tumor proportions. Figure 2.5 (a) shows that a larger tumor purity, such as ⇡=0.8, would

mitigate the peaking e↵ect, thus enable the numeric integration algorithm to capture the optimal
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n. But the algorithm is likely to fail when ⇡ is as low as 0.2, for the integrand function in Figure

2.5 (b).

(a) Purity estimation performance comparison
between DeMixT and our method when µNg and µTg

is distantly apart
(b) Scatterplot of DeMixT Estimates/Our Estimates
vs. Real Values for 100 Mixed Tumor Samples

Figure 2.4: Purity estimation performance comparison between DeMixT and our method, in cases when
µNg >> µTg. Our outperforms DeMixT, especially when ⇡i is small

(a) Integrand function plot with a relatively large
purity proportion

(b) Integrand function plot with a relatively small
purity proportion

Figure 2.5: Illustration of the peaking e↵ect for the likelihood functions that DeMixT trying to numerically
approximate. When the observed y is large, and µN and µT are apart from each other, the integrand function
tends to steeply peak within a small region. However, this e↵ect can be alleviated by a relatively large ⇡.
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2.4.2 Performance Evaluation of Individual Deconvolution Estimator

Since our overall strategy is to construct estimators with small cMSE, it is desirable to have

explicit expressions for all corresponding cMSEs. The closed cMSE expression for T ⇤
ig and T̂ig can

be derived as:

MSE(T ⇤
ig|Tig) =

h (AB)2X

(AB)2 +X2

i2
+
h (AB)X2

(AB)2 +X2

i2
(2.32)

MSE(T̂ig|Tig) =
h (AB)2X

(AB)2 + 1

i2
+
h (AB)

(AB)2 + 1

i2
. (2.33)

The di�cult part is to have a closed form for the cMSE of Ťig. Hence we will run simulation

studies to evaluate the estimators’ performance. For all the simulations, we set µTg = 1 and

�2
Tg = 1. Then for a fixed AB and X value, true Tig is known and T̃ig can be simulated according

to the normal distribution (2.22). 5000 runs of simulation were performed for each set of AB, X

value. The cMSE of each estimator was then computed and compared with other estimators as

shown in Figure 2.6.

Neither the ratio
cMSE(T ⇤

ig)

cMSE(T̂ig)
, nor

cMSE(T ⇤
ig)

cMSE(Ťig)
exceeds the value 1, as shown in Figure 2.6(a) and

(b) respectively, which demonstrates T ⇤
ig is the optimal estimator with the minimum cMSE. Around

the region X = 1, the estimator T̂ig performs as well as T ⇤
ig. This is as expected because when

X = 1, T̂ig is identical to T ⇤
ig (2.29 and 2.30). Then we see from Figure 2.6 (c) and (d) that Ťig and

T̂ig outperform each other in di↵erent AB, X regions. Ťig outperforms T̂ig when both X and AB

are small and X deviates from 1, and when X is larger, e.g. X > 2. However, we also notice from

Figure 2.6 (b) and (c), that in general when AB is getting large (but not X), the performance of

Ťig is getting worse (i.e. getting bluer). This seems to be because:

Ťig =

⇣
�Ng

�Tg
·
1�⇡i
⇡i

⌘2
µTg +

⇣
T̃ig�µTg

�Tg

⌘2
T̃ig

⇣
1�⇡i
⇡i

·
�Ng

�Tg

⌘2
+
⇣
T̃ig�µTg

�Tg

⌘2

=
(AB)2µTg + X̃2T̃ig

(AB)2 + X̃2
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(a) Performance of T̂ig comparing with T ⇤
ig (b) Performance of Ťig comparing with T ⇤

ig

(c) Performance of Ťig comparing with T̂ig (d) Performance of Ťig comparing with T̂ig

Figure 2.6: Performance evaluation of estimators under di↵erent AB and X values. (a) and (b) confirms
the optimal performance of T ⇤

ig and shows the regions where T̂ig and Ťig perform as well as T ⇤
ig (the yellow

region). (c) and (d) compares the performance between Ťig and T̂ig. Yellow region in (d) shows when

cMSE(Ťig) is smaller than cMSE(T̂ig).

and X̃|Tig ⇠ N (X, (AB)2). When the conditional variance term AB gets larger, X̃ becomes more

variant hence the estimator Ťig is more unstable. Through this simulation study, we observe the

large variance of the estimator Ťig. Therefore in real data applications, we recommend to use T̂ig

to estimate the tumor-specific expressions in the mixtures.

2.5 Real Data Applications

In this section, we apply the two-component deconvolution method FasTD to several real

datasets. First a validation dataset with known mixing proportions is introduced in Section 2.5.1.

28



The FasTD estimates for the proportions are compared with the ground truths to demonstrate the

e↵ectiveness of our method. Then FasTD is applied to a larger cohort study, The Cancer Genome

Atlas (TCGA) in Section 2.5.2. More than six thousand tumor purity estimates are obtained for

the fourteen cancer types in this dataset. A case study of the TCGA prostate cancer in Section

2.5.3 demonstrates the value added from performing the deconvolution step before downstream

genomic analysis.

2.5.1 Benchmark Dataset Validation

Dataset GSE33076 (Siegert et al., 2012) is designed to evaluate the linearity of amplification

between gene expression values and the amounts of RNA in adult retina cells in mouse models. In

the original experimental design, two distinct retina cell types: cone cells and starburst cells, were

fluorescence marked and sorted using the Fluorescence Activated Cell Sorting (FACS) technique

and then mixed in compositions summarized in Table 2.2. There are eight di↵erent designs with a

total number of 200 cells in each design. Both pure and mixed cone and starburst cell groups are

available.

Design # Number of Replicates Tissue Type Cone Cell # Starburst Cell #
1 3 Pure 0 200
2 3 Pure 200 0
3 3 Mixed 50 150
4 3 Mixed 75 125
5 3 Mixed 100 100
6 3 Mixed 150 50
7 3 Mixed 157 43
8 3 Mixed 183 17

Table 2.2: Experimental design of GSE33076 and the compositions for the mixtures. Each design consists
of 200 mouse retina cells in three replicates. Cone cells and starburst cells are either isolated as a pure group
or mixed in di↵erent cell numbers.

The gene expression of each cell group was measured on the A↵ymetrix Mouse Gene 1.0 ST

Array platform and was processed by the authors to remove contamination from rod cells, producing

a working size of 22347 genes for each sample. Each design has three replicates thus there are

twenty-four pure/mixed samples in total. In the original study of Siegert et al. (2012), ten cell-type
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specific genes were used to test the linearity of the RNA amplification, which was demonstrated to

be proportional to the amount of specific cells.

In our validation study, we allow the information for the pure cone cell groups (Design #2

in Table 2.2) to be covered, and take use of the expression of the whole genome to estimate the

mixing proportions through FasTD, without the help of domain-knowledge about the cell-type

specific genes. Figure 2.7 shows the results of our analysis, where the cone component is regarded

as the unknown component in mixed Designs # 3-8, and the expression profiles of the pure starburst

samples in Design #1 are used as the reference profiles. The convolution is modeled in the raw

expression space instead of using the log2-transformed values. Genes with large di↵erence between

the mean expression of the mixtures and that of the reference profiles, as well as with low leverage in

the regression step are used as the input for the FasTD pipeline. The FasTD outputs include both

the proportion estimates and the mean expression estimates for the cone component are presented

in Figure 2.7.

(a) Scatterplot of truth vs. estimates (b) Mean expression values comparison

Figure 2.7: FasTD performance in estimating proportional coe�cients and mean expression values for the
cone component for dataset GSE33076. The scatter plot (a) demonstrates a good correlation (CCC = 0.9)
between the FasTD estimates (x-axis) and the true proportions (y-axis), where each point is a sample. Plot
(b) shows the di↵erences (in y-axis) between the estimated mean expression value for the cone component
in the mixtures, and that computed in the pure isolated cone cells. The x-axis shows the spread of these
two quantities. All values are transformed into log2-scale. Genes are presented as dots and colored by the
density value. A large density of genes clustered around the reference line suggesting a good estimation of
the mean expression values.
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Results in Figure 2.7 demonstrate our method to be e↵ective in deconvoluting the two-

component mixtures with reference profiles available for one component. The Concordance

Correlation Coe�cient (Lawrence and Lin, 1989) of 0.9 shows a good correlation between our

estimated proportions and the ground truth. The other deconvolution product from the FasTD

pipeline is the mean expression estimates for the cone component. As shown in Figure 2.7 (b)

where genes are represented in points and colored by density, the di↵erences for most genes are

small, between our mean expression estimates and the ground truth (computed from the isolated

pure cone cell samples in Design #2). These results show that the FasTD method is e↵ective in

deconvoluting two-component mixtures in this real data application.

2.5.2 The Cancer Genome Atlas Pan-can Deconvolution Analysis

In this section, we aim to apply the tumor purity estimation and individual deconvolution

methods we developed in Sections 2.2 and 2.3, to 14 of The Cancer Genome Atlas (TCGA) cancer

types. These cancer types were selected because they are all solid tumor primary cancers, also for

each cancer type there are at least 19 normal control samples available. The number of original

normal and tumor samples for each cancer type is summarized in the second and third columns of

Table 2.3. The full names of each cancer type can be found online (TCGA Study Abbreviations,

2019).

The TCGA data represent a continuum between samples with essentially all normal cells

and those with a high proportion of tumor cells. Since there is no sharp boundary, we use

preprocessing to eliminate uncertain samples. We developed a procedure to detect these samples as

a preprocessing step of the deconvolution pipeline. All uncertain samples are discarded before

running FasTD. Our strategy is to use a Rank based Mann-Whitney U test to estimate the

power of each gene in di↵erentiating the normal and mixed tumor populations. The top one

thousand genes with the smallest p-values are selected as the feature genes, whose first two principal

component(PC) scores are then extracted for hierarchical clustering. Samples clustered with a

majority of its opposite group are identified as uncertain samples. These samples are excluded in

our deconvolution analysis. Figure 2.8 shows an example of this preprocessing step in the Lung

Squamous Cell Carcinoma (LUSC) cancer in TCGA. Two LUSC normal samples are clustered with

31



14 TCGA
CancerTypes

Original Normal
Sample Counts

Original Tumor
Sample Counts

After
Preprocessing
Normal Counts

After
Preprocessing
Tumor Counts

BLCA 19 414 17 385
BRCA 113 1101 98 1032
COAD 41 477 33 442
HNSC 44 500 31 494
KICH 24 65 23 64
KIRC 72 538 66 495
KIRP 32 288 26 276
LIHC 50 371 50 362
LUAD 59 532 57 446
LUSC 49 502 48 486
PRAD 52 333 47 295
STAD 32 375 32 299
THCA 57 502 55 418
UCEC 35 549 26 524

Table 2.3: Summary of normal and tumor sample counts for 14 TCGA cancer types before and after
preprocessing.

other tumor samples hence regarded as uncertain. Columns 4 and 5 of Table 2.3 summarize the

finalized working sample numbers for the fourteen cancer types after this preprocessing step.

Figure 2.8: Illustration of the preprocessing step to identify uncertain samples in the TCGA LUSC dataset.
The height in the y-axis is the euclidean distance between two clusters. Each leaf node represents a sample.
The original tumor samples are labeled as dots and the original normal samples are labeled as circles. Two
LUSC normal samples, shown as two overlapping circles on the lower-left part of the plot clustered with
other tumor samples are identified as uncertain samples and disregarded for future analysis.

Due to the absence of ground truth for TCGA tumor purities, we evaluate the purity

estimates for 14 cancer types by comparing them with the results obtained by ABSOLUTE

(Carter et al., 2012), a DNA-based method that has been regarded within the research community

as a gold standard for purity estimates. In Table 2.4 (with cancer types sorted by correlation

for easy reading), we observe good concordance between these methods for several cancer types
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such as Kidney Chromophobe (KICH), Prostate Adenocarcinoma (PRAD), Lung Squamous Cell

Carcinoma (LUSC) and Colon Adenocarcinoma (COAD). However, we do also observe that some

purity estimates obtained from FasTD and those from ABSOLUTE are not consistent, this

discrepancy may arise from not only the di↵erence between the two methodologies, but also the

biological di↵erence between DNA copy number datasets and RNA expression datasets. What’s

more, the presence of only two constituent subcomponents in a tumor sample is a strong assumption

for complex cancer types such as the Head-Neck Squamous Cell Carcinoma (HNSC).

TCGA Cancer Type RMSE Sample # Pearson Corr. 95% C.I.
KICH 0.11 64 0.67 (0.51, 0.79)
PRAD 0.16 287 0.65 (0.58, 0.72)
LUSC 0.23 478 0.55 (0.48, 0.61)
COAD 0.14 427 0.54 (0.47, 0.61)
BLCA 0.23 376 0.29 (0.19, 0.38)
STAD 0.33 293 0.28 (0.18, 0.39)
LUAD 0.19 418 0.22 (0.13, 0.31)
BRCA 0.21 989 0.21 (0.15, 0.27)
HNSC 0.19 480 0.11 (0.02, 0.2)
KIRP 0.30 262 0.05 (-0.07, 0.17)
UCEC 0.21 505 0.04 (-0.05, 0.13)
LIHC 0.43 339 -0.05 (-0.16, 0.06)
THCA 0.29 377 -0.11 (-0.21, -0.01)
KIRC 0.22 463 -0.13 (-0.22, -0.04)

Table 2.4: FasTD purity estimates comparison with ABSOLUTE. Two sets of estimates for the same
collection of overlapping samples are evaluated by Root Mean Squared Error (RMSE) and Pearson correlation
with 95% Confidence Interval. The correlation coe�cients di↵er by cancer types.

Prostate cancer purity estimates obtained by RNA-based methods such as FasTD yield high

concordance with estimates obtained by DNA-based methods. (This is also the case when DeMixT

estimates are compared with ABSOLUTE estimates). In light of this high concordance and the

relatively large sample numbers, we decide to conduct more analysis on this cancer type in the

following section.

2.5.3 A Case Study: Prostate Cancer of The Cancer Genome Atlas

The high consistency in purity estimates between the two-component deconvolution methods

and the ABSOLUTE estimates, suggests the PRAD mixture samples may fit well to the two

constituent subcomponents assumption. Hence we conduct more in-depth investigation on this
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cancer type, trying to understand the e↵ect of deconvolution on downstream genomic analysis

results.

2.5.3.1 Tumor Purity Estimation

RNASeq sequencing data for prostate cancer samples collected from the Illumina HiSeq platform

Version 2 Level 3 files are used. There are 47 normal control samples and 295 mixed tumor samples

after the preprocessing step. Not all of the genes will be used as an input for our method. In fact,

only genes that are di↵erentially expressed in tumor and normal cells will serve as useful signals in

the deconvolution steps. As described in Section 2.2.2, we start the purity estimation procedure

with selecting the feature genes.

After performing a simple two sample t-test for each gene, the first set of feature genes are

selected whose absolute t-statistics are larger than five. As the true purity information is not

known to us, we evaluate these estimates by comparing them with the results obtained by the

ABSOLUTE method. ABSOLUTE is a DNA-based method which has been applied to a large

number of TCGA samples to estimate the tumor purity, and regarded as a gold standard for purity

estimates in the community. (One should keep in mind that if the purity estimates obtained

from our method and those from ABSOLUTE are not consistent, it may not only be due to the

di↵erence between the two methodologies, but can be due to the biological di↵erence between DNA

copy number and RNA expression data.) In addition, we compare our purity estimates with those

obtained by DeMixT. DeMixT uses the same RNAseq dataset and we observe a high correlation

between DeMixT estimates and ours: 0.92 (Figure 2.9 a). But for this set of real data, DeMixT

takes almost five hours to get the purity estimates, whereas our method takes less than 5 minutes.

Therefore, for two-source signals deconvolution on RNAseq data, comparing with DeMixT, FasTD

is able to produce real data results in a much shorter time period.

We present the estimates for PRAD tumor samples obtained by three methods in Figure 2.9.

Each point represents a mixed PRAD tumor sample. The x-axis value is the tumor proportions

obtained from our method (Section 2.2.2). The y-axis represents proportion estimates either

from DeMixT (Figure 2.9 a) or ABSOLUTE (Figure 2.9 b). We observe in Figure 2.9 (b) a

good concordance between ABSOLUTE and FasTD tumor proportion estimates, with a Pearson
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correlation equal to 0.65. Figure 2.9 (a) suggests a strong correlation, however either our proportions

are under-estimated, or the DeMixT results are over-estimated. The consistency of the purities

across di↵erent methods adds to the credibility of FasTD purity estimates, which will be further

used for the individual deconvolution part of the pipeline.

(a) Our method vs. DeMixT, cor = 0.71 (b) Our method vs. ABSOLUTE, cor = 0.65

Figure 2.9: Purity estimation performance comparison between our method and the other two methods
for PRAD tumor samples. In both plots the x-axis shows the FasTD estimate value and each point is a
tumor sample. The y-axis in (a) is the DeMixT estimate and that in (b) is the ABSOLUTE estimate for the
same set of PRAD tumor samples. Overall, the Pearson correlation coe�cients between di↵erent methods
are high in this cancer type.

2.5.3.2 Biological Implications using Deconvolved Profiles

With the tumor purity estimates, one can get the mean and variance estimates for the tumor

component according to (2.18) and (2.16), respectively. Then the tumor specific expression profiles

can be obtained for each PRAD sample using the likelihood estimator T̂ig introduced in Section

2.3. There is no gold standard for purified tumor expression profiles in the TCGA community, so it

is not feasible to directly validate these individual deconvolution results. However, we demonstrate

the statistical analysis results using the purified tumor expression profiles are consistent with

current understanding of the prostate cancer, which indirectly validate and show the value of

using deconvoluted profiles.
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Using the FasTD individual deconvolution profiles, we observe sharper contrast between tumor

and normal populations for tumorigenesis related pathways. Take the Epithelial Mesenchymal

Transition (EMT) pathway for example, which has been reported to be associated with cancer

metastasis (Ye and Weinberg, 2015). When we use clustering analysis to examine the tumor-

normal di↵erences of the EMT genes, we observe a better separation of the tumor versus normal

samples using deconvoluted tumor profiles in Figure 2.10 (b), which is not observed using the

original tumor profiles in Figure 2.10 (a). Hence by conducting tumor deconvolution, we are able

to obtain ‘cleaner’ tumor signals better separated from the adjacent normal cells, which may provide

new insights on tumor specific gene expression changes.
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.07
TCG

A.2A.A8VT.01A.11R.A37L.07
TCG

A.HC.7211.11A.01R.2118.07
TCG

A.HC.8258.11A.01R.2263.07
TCG

A.HC.7740.11A.01R.2118.07
TCG

A.HC.7737.11A.02R.2118.07
TCG

A.HC.7745.11A.01R.2118.07
TCG

A.HC.7747.11A.01R.2118.07
TCG

A.HC.7738.11A.01R.2118.07
TCG

A.EJ.7125.01A.11R.1965.07
TCG

A.G
9.6494.01A.11R.1789.07

TCG
A.EJ.5532.01A.01R.1580.07

TCG
A.EJ.5517.01A.01R.1580.07

TCG
A.CH.5772.01A.11R.1580.07

TCG
A.YL.A8SQ

.01B.11R.A37L.07
TCG

A.EJ.5494.01A.01R.1580.07
TCG

A.W
W
.A8ZI.01A.11R.A37L.07

TCG
A.EJ.A65E.01A.11R.A29R.07

TCG
A.G

9.7519.01A.11R.2263.07
TCG

A.EJ.A8FN.01A.11R.A352.07
TCG

A.EJ.7786.01A.11R.2118.07
TCG

A.ZG
.A8Q

X.01A.11R.A37L.07
TCG

A.V1.A8X3.01A.11R.A37L.07
TCG

A.J4.8200.01A.11R.A29R.07
TCG

A.V1.A8M
F.01A.11R.A36G

.07
TCG

A.V1.A8W
L.01A.11R.A37L.07

TCG
A.KC.A7FA.01A.21R.A33R.07

TCG
A.2A.A8VO

.01A.11R.A37L.07
TCG

A.XA.A8JR.01A.11R.A36G
.07

TCG
A.VN.A88P.01A.11R.A352.07

TCG
A.YL.A8SH.01B.11R.A37L.07

TCG
A.Y6.A8TL.01A.21R.A37L.07

TCG
A.G

9.6384.11A.01R.1858.07
TCG

A.J4.A83K.01A.11R.A352.07
TCG

A.G
9.7522.01A.11R.2263.07

TCG
A.V1.A8W

N.01A.11R.A37L.07
TCG

A.CH.5789.01A.11R.1580.07
TCG

A.G
9.6384.01A.11R.1789.07

TCG
A.M

7.A71Y.01A.22R.A32O
.07

TCG
A.EJ.A7NK.01A.12R.A352.07

TCG
A.VP.A879.01A.11R.A352.07

TCG
A.EJ.A6RA.01A.11R.A33R.07

TCG
A.EJ.A7NH.01A.12R.A33R.07

TCG
A.G

9.6351.01A.21R.1965.07
TCG

A.EJ.A46D.01A.21R.A32Y.07
TCG

A.EJ.7327.11A.01R.2118.07
TCG

A.EJ.7125.11A.01R.1965.07
TCG

A.CH.5761.11A.01R.1580.07
TCG

A.G
9.6342.11A.02R.1965.07

TCG
A.EJ.A46I.01A.12R.A26U.07

TCG
A.HC.7750.01A.11R.2118.07

TCG
A.G

9.6351.11A.01R.1965.07
TCG

A.HC.7742.11A.01R.2118.07
TCG

A.EJ.7115.11A.01R.2118.07
TCG

A.HC.8260.11A.01R.2263.07
TCG

A.HC.7819.11A.01R.2118.07
TCG

A.EJ.7317.11A.01R.2118.07
TCG

A.EJ.5515.01A.01R.1580.07
TCG

A.CH.5794.01A.11R.1580.07
TCG

A.VN.A88Q
.01A.11R.A352.07

TCG
A.CH.5744.01A.11R.1580.07

TCG
A.Q

U.A6IP.01A.11R.A31N.07
TCG

A.G
9.6342.01A.11R.1965.07

TCG
A.EJ.7797.01A.11R.2263.07

TCG
A.V1.A8W

S.01A.11R.A37L.07
TCG

A.CH.5765.01A.11R.1580.07
TCG

A.CH.5764.01A.21R.1580.07
TCG

A.EJ.7784.01A.11R.2118.07
TCG

A.EJ.7321.01A.31R.2263.07
TCG

A.CH.5768.01A.11R.1580.07
TCG

A.CH.5790.01A.11R.1580.07
TCG

A.J9.A52B.01A.11R.A26U.07
TCG

A.EJ.A7NM
.01A.21R.A33R.07

TCG
A.CH.5740.01A.11R.1580.07

TCG
A.HC.8257.01A.11R.2263.07

TCG
A.HC.7747.01A.11R.2118.07

TCG
A.EJ.5499.01A.01R.1580.07

TCG
A.EJ.5510.01A.01R.1580.07

TCG
A.KK.A7B4.01A.11R.A32O

.07
TCG

A.KK.A8IH.01A.11R.A36G
.07

TCG
A.HC.7213.01A.11R.2118.07

TCG
A.G

9.6363.01A.21R.1789.07
TCG

A.HC.7232.01A.11R.2118.07
TCG

A.EJ.5507.01A.01R.1580.07
TCG

A.EJ.5521.01A.01R.1580.07
TCG

A.KK.A8I6.01A.11R.A36G
.07

TCG
A.HC.7231.01A.11R.2118.07

TCG
A.G

9.6356.11A.01R.1789.07
TCG

A.HC.8262.11A.01R.2263.07
TCG

A.G
9.6365.11A.01R.1789.07

TCG
A.2A.A8VL.01A.21R.A37L.07

TCG
A.J4.A83N.01A.11R.A352.07

TCG
A.XJ.A83H.01A.11R.A352.07

TCG
A.KC.A7FD.01A.11R.A33R.07

TCG
A.CH.5767.01A.11R.1789.07

TCG
A.KC.A4BN.01A.61R.A250.07

TCG
A.G

9.6499.01A.12R.1965.07
TCG

A.J9.A8CN.01A.11R.A352.07
TCG

A.G
9.6333.01A.12R.1965.07

TCG
A.VN.A88O

.01A.11R.A352.07
TCG

A.KK.A8IJ.01A.11R.A352.07
TCG

A.VP.A87J.01A.11R.A352.07
TCG

A.EJ.7314.01A.31R.2118.07
TCG

A.J4.A83M
.01A.11R.A352.07

TCG
A.HC.7209.01A.11R.2118.07

TCG
A.CH.5753.01A.11R.1580.07

TCG
A.CH.5750.01A.11R.1580.07

TCG
A.CH.5766.01A.11R.1580.07

TCG
A.EJ.8470.01A.11R.2403.07

TCG
A.HC.7818.01A.11R.2118.07

TCG
A.HC.7211.01A.11R.2118.07

TCG
A.J4.A67T.01A.11R.A311.07

TCG
A.KC.A7F3.01A.21R.A33R.07

TCG
A.G

9.6336.01A.11R.1789.07
TCG

A.KC.A7F6.01A.11R.A33R.07
TCG

A.G
9.6377.01A.11R.1965.07

TCG
A.KK.A6DY.01A.12R.A311.07

GJA1P1
PRSS2
COL11A1
MMP3
MMP1
LRRC15
SGCG
PTX3
FOXC2
IL6
AREG
TFPI2
SCG2
DKK1
CXCL6
CXCL1
CRLF1
FAP
CTHRC1
NTM
MSX1
APLP1
MFAP5
LAMA1
ADAM12
TNFRSF11B
OXTR
PTHLH
MATN3
CDH2
FBN2
ITGB3
ACTA2−AS1
CDH6
IL15
RGS4
COMP
SERPINE1
POSTN
SFRP4
VCAN
THBS2
COL5A2
DAB2
PVR
FBLN2
PCOLCE
FBLN5
HTRA1
FERMT2
MXRA5
TGFBI
FBN1
LAMA3
LAMC2
COL7A1
ITGA2
TNFAIP3
TGFBR3
EFEMP2
SGCB
WIPF1
TGFB1
CDH11
PRRX1
PLAUR
BDNF−AS
VEGFC
COL5A3
GPX7
PCOLCE2
TIMP3
NID2
SGCD
GAS1
SNTB1
MAGEE1
FAS
IL32
GLIPR1
VCAM1
SERPINE2
ECM1
EMP3
FGF2
NT5E
ABI3BP
ECM2
EDIL3
INHBA
SPP1
GREM1
LOX
FZD8
WNT5A
MEST
PLOD2
CXCL12
CAP2
SLIT3
LAMA2
SLIT2
NNMT
PDLIM4
TNFRSF12A
GEM
GADD45A
THY1
ENO2
COL8A2
LOXL2
BMP1
LOXL1
FSTL3
COL1A1
COL3A1
SPARC
COL1A2
FN1
BGN
MGP
COL6A2
COL4A2
VIM
FLNA
SPOCK1
FSTL1
PMEPA1
RHOB
JUN
TPM1
CALD1
IGFBP2
TGM2
SAT1
TPM4
COPA
PPIB
COL12A1
ID2
GADD45B
CADM1
GPC1
SERPINH1
PLOD3
MCM7
SLC6A8
IGFBP3
ELN
COL16A1
COL5A1
PDGFRB
ITGA5
TNC
SFRP1
QSOX1
MATN2
LGALS1
MMP14
MMP2
ANPEP
SDC1
SDC4
DST
BASP1
ITGAV
FUCA1
PFN2
PLOD1
ITGB5
FMOD
VEGFA
LAMC1
LRP1
CD59
NOTCH2
CALU
ITGB1
THBS1
CYR61
CTGF
LUM
DCN
FBLN1
CD44
COL6A3
COL4A1
TIMP1
DPYSL3
IGFBP4 Sample Type

Normal
Tumor

0

5

10

15

20

(a) Before deconvolution

TCG
A.HC.7211.11A.01R.2118.07

TCG
A.HC.8258.11A.01R.2263.07

TCG
A.HC.7740.11A.01R.2118.07

TCG
A.HC.7737.11A.02R.2118.07

TCG
A.HC.7745.11A.01R.2118.07

TCG
A.HC.7747.11A.01R.2118.07

TCG
A.HC.7738.11A.01R.2118.07

TCG
A.G

9.6356.11A.01R.1789.07
TCG

A.HC.8262.11A.01R.2263.07
TCG

A.CH.5761.11A.01R.1580.07
TCG

A.G
9.6342.11A.02R.1965.07

TCG
A.EJ.7327.11A.01R.2118.07

TCG
A.EJ.7125.11A.01R.1965.07

TCG
A.HC.7819.11A.01R.2118.07

TCG
A.HC.8260.11A.01R.2263.07

TCG
A.EJ.7317.11A.01R.2118.07

TCG
A.G

9.6351.11A.01R.1965.07
TCG

A.HC.7742.11A.01R.2118.07
TCG

A.EJ.7115.11A.01R.2118.07
TCG

A.EJ.7328.11A.01R.2118.07
TCG

A.EJ.7781.11A.01R.2118.07
TCG

A.EJ.7783.11A.01R.2118.07
TCG

A.EJ.7123.11A.01R.1965.07
TCG

A.EJ.7330.11A.01R.2118.07
TCG

A.EJ.7794.11A.01R.2118.07
TCG

A.EJ.7315.11A.01R.2118.07
TCG

A.EJ.7786.11A.01R.2118.07
TCG

A.HC.7752.11A.01R.2118.07
TCG

A.EJ.7331.11A.01R.2118.07
TCG

A.HC.8259.11A.01R.2263.07
TCG

A.EJ.7793.11A.01R.2263.07
TCG

A.EJ.7314.11A.01R.2118.07
TCG

A.EJ.7797.11A.01R.2263.07
TCG

A.EJ.7785.11A.01R.2118.07
TCG

A.G
9.6363.11A.01R.1789.07

TCG
A.G

9.6499.11A.02R.1965.07
TCG

A.EJ.7782.11A.01R.2118.07
TCG

A.EJ.7789.11A.01R.2118.07
TCG

A.EJ.7321.11A.01R.2263.07
TCG

A.EJ.7784.11A.01R.2118.07
TCG

A.EJ.7792.11A.01R.2118.07
TCG

A.G
9.6333.11A.01R.1965.07

TCG
A.EJ.A8FO

.11A.11R.A36G
.07

TCG
A.G

9.6365.11A.01R.1789.07
TCG

A.G
9.6384.11A.01R.1858.07

TCG
A.CH.5767.11B.01R.1789.07

TCG
A.J4.A83J.11A.11R.A36G

.07
TCG

A.CH.5761.01A.11R.1580.07
TCG

A.CH.5751.01A.11R.1580.07
TCG

A.YL.A8S8.01A.11R.A37L.07
TCG

A.HC.A4ZV.01A.11R.A26U.07
TCG

A.G
9.7521.01A.11R.2263.07

TCG
A.EJ.5525.01A.01R.1580.07

TCG
A.HC.7821.01A.12R.2118.07

TCG
A.J9.A8CL.01A.11R.A352.07

TCG
A.YL.A8SJ.01B.11R.A37L.07

TCG
A.HC.A76W

.01A.11R.A33R.07
TCG

A.J9.A8CM
.01A.11R.A352.07

TCG
A.KK.A8I4.01A.11R.A36G

.07
TCG

A.FC.7708.01A.11R.2118.07
TCG

A.KK.A8IC.01A.11R.A36G
.07

TCG
A.EJ.5514.01A.01R.1580.07

TCG
A.EJ.7315.01A.31R.2118.07

TCG
A.VP.A87C.01A.11R.A352.07

TCG
A.YL.A8HJ.01A.11R.A36G

.07
TCG

A.HC.7081.01A.11R.1965.07
TCG

A.VP.A87E.01A.31R.A352.07
TCG

A.KC.A4BR.01A.32R.A32Y.07
TCG

A.KK.A8IL.01A.11R.A36G
.07

TCG
A.KK.A8IB.01A.11R.A36G

.07
TCG

A.KK.A8I9.01A.11R.A36G
.07

TCG
A.J9.A8CP.01A.11R.A352.07

TCG
A.ZG

.A8Q
Y.01A.11R.A37L.07

TCG
A.HI.7168.01A.11R.2118.07

TCG
A.YL.A9W

J.01A.11R.A37L.07
TCG

A.HC.7210.01A.11R.2118.07
TCG

A.HC.8264.01B.11R.2403.07
TCG

A.EJ.5518.01A.01R.1580.07
TCG

A.KK.A8I5.01A.11R.A36G
.07

TCG
A.ZG

.A8Q
W
.01A.11R.A37L.07

TCG
A.VN.A88L.01A.11R.A352.07

TCG
A.G

9.6361.01A.21R.1965.07
TCG

A.KK.A6E6.01A.11R.A311.07
TCG

A.VP.A872.01A.11R.A352.07
TCG

A.KK.A7B3.01A.11R.A33R.07
TCG

A.G
9.6348.01A.11R.1789.07

TCG
A.KK.A7B1.01A.11R.A32O

.07
TCG

A.YL.A8HK.01A.11R.A36G
.07

TCG
A.XQ

.A8TB.01A.11R.A36G
.07

TCG
A.J9.A8CK.01A.11R.A352.07

TCG
A.FC.7961.01A.11R.A29R.07

TCG
A.HC.8265.01B.04R.2302.07

TCG
A.HC.7233.01A.11R.2118.07

TCG
A.CH.5739.01A.11R.1580.07

TCG
A.J4.8200.01A.11R.A29R.07

TCG
A.EJ.8468.01A.21R.2403.07

TCG
A.KK.A59Z.01A.12R.A26U.07

TCG
A.KK.A8IG

.01A.11R.A36G
.07

TCG
A.HC.8265.01A.11R.2263.07

TCG
A.HC.8216.01A.11R.A29R.07

TCG
A.HC.7742.01A.11R.2118.07

TCG
A.EJ.7782.01A.11R.2118.07

TCG
A.M

7.A721.01A.12R.A32O
.07

TCG
A.EJ.5504.01A.01R.1580.07

TCG
A.EJ.7331.01A.11R.2118.07

TCG
A.YL.A8SB.01A.31R.A37L.07

TCG
A.YL.A8HO

.01A.11R.A36G
.07

TCG
A.VP.A878.01A.31R.A352.07

TCG
A.V1.A8M

U.01A.11R.A37L.07
TCG

A.G
9.7510.01A.11R.2263.07

TCG
A.HC.7737.01A.11R.2118.07

TCG
A.EJ.A6RC.01A.11R.A32O

.07
TCG

A.EJ.A8FU.01A.11R.A36G
.07

TCG
A.EJ.5498.01A.01R.1580.07

TCG
A.EJ.5497.01A.02R.1580.07

TCG
A.EJ.5512.01A.01R.1580.07

TCG
A.EJ.7793.01A.31R.2263.07

TCG
A.G

9.6384.01A.11R.1789.07
TCG

A.V1.A8W
N.01A.11R.A37L.07

TCG
A.CH.5789.01A.11R.1580.07

TCG
A.EJ.7781.01A.11R.2118.07

TCG
A.EJ.5517.01A.01R.1580.07

TCG
A.EJ.7786.01A.11R.2118.07

TCG
A.EJ.5508.01A.02R.1580.07

TCG
A.HC.8266.01A.11R.2263.07

TCG
A.EJ.5531.01A.01R.1580.07

TCG
A.EJ.7794.01A.11R.2118.07

TCG
A.EJ.A46I.01A.12R.A26U.07

TCG
A.HC.7750.01A.11R.2118.07

TCG
A.EJ.5515.01A.01R.1580.07

TCG
A.G

9.6378.01A.11R.1789.07
TCG

A.EJ.A7NK.01A.12R.A352.07
TCG

A.EJ.7327.01A.11R.2118.07
TCG

A.HC.7748.01A.11R.2118.07
TCG

A.EJ.5524.01A.01R.1580.07
TCG

A.EJ.5516.01A.01R.1580.07
TCG

A.EJ.5522.01A.01R.1580.07
TCG

A.EJ.5542.01A.01R.1580.07
TCG

A.EJ.5526.01A.01R.1580.07
TCG

A.EJ.5527.01A.01R.1580.07
TCG

A.HC.7736.01A.11R.2118.07
TCG

A.CH.5762.01A.11R.1580.07
TCG

A.CH.5738.01A.11R.1580.07
TCG

A.HC.A8D0.01A.11R.A36G
.07

TCG
A.EJ.7328.01A.31R.2118.07

TCG
A.J4.A6G

3.01A.11R.A311.07
TCG

A.J4.A6G
1.01A.11R.A311.07

TCG
A.ZG

.A8Q
Z.01A.11R.A37L.07

TCG
A.SU.A7E7.01A.22R.A33R.07

TCG
A.HC.7232.01A.11R.2118.07

TCG
A.EJ.5510.01A.01R.1580.07

TCG
A.G

9.7522.01A.11R.2263.07
TCG

A.G
9.6364.01A.21R.1789.07

TCG
A.VP.A879.01A.11R.A352.07

TCG
A.HC.A8D1.01A.11R.A36G

.07
TCG

A.HC.7747.01A.11R.2118.07
TCG

A.G
9.6336.01A.11R.1789.07

TCG
A.M

7.A71Y.01A.22R.A32O
.07

TCG
A.FC.A4JI.01A.11R.A250.07

TCG
A.XQ

.A8TA.01A.11R.A36G
.07

TCG
A.2A.A8W

1.01A.11R.A37L.07
TCG

A.EJ.A8FS.01A.11R.A352.07
TCG

A.FC.A5O
B.01A.11R.A29R.07

TCG
A.YL.A8S9.01A.11R.A37L.07

TCG
A.KK.A8IK.01A.11R.A36G

.07
TCG

A.KK.A8ID.01A.11R.A36G
.07

TCG
A.HC.8213.01A.11R.A29R.07

TCG
A.HC.7077.01A.11R.1965.07

TCG
A.KK.A8II.01A.11R.A36G

.07
TCG

A.KK.A7AU.01A.11R.A32O
.07

TCG
A.KK.A6E2.01A.11R.A311.07

TCG
A.CH.5741.01A.11R.1580.07

TCG
A.V1.A8W

S.01A.11R.A37L.07
TCG

A.HC.A76X.01A.11R.A33R.07
TCG

A.J4.A6M
7.01A.11R.A31N.07

TCG
A.HC.7230.01A.11R.2118.07

TCG
A.EJ.A7NF.01A.11R.A33R.07

TCG
A.EJ.5496.01A.01R.1580.07

TCG
A.HC.7820.01A.11R.2118.07

TCG
A.J4.A83N.01A.11R.A352.07

TCG
A.VP.A876.01A.11R.A352.07

TCG
A.CH.5765.01A.11R.1580.07

TCG
A.G

9.6366.01A.11R.2118.07
TCG
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(b) After deconvolution

Figure 2.10: Two-way clustering results of PRAD samples and genes in the epithelial mesenchymal
transition (EMT) pathway before and after DeMixT deconvolution. Each row represents a gene in the
pathway and each column represent a prostate sample. Top color bar highlights the normal samples (purple)
versus tumor samples (pink). A better separation of the tumor versus normal samples is observed only after
deconvolution.

Furthermore, as a result of the collaboration work with the DeMixT group (Wang et al., 2017)

and scientists at the MD Anderson Cancer Center, we observe more biological insights using the

deconvoluted profiles. A recent study (Chen et al., 2018) uncovered that the SREBP-dependent

lipogenic program is hyperactivated in prostate cancer samples, which motivates us to examine

the expression level of these signature genes in the TCGA prostate samples. Using the seven

SREBP mediated lipogenesis signature genes reported in Chen et al. (2018), we perform a one-way

clustering analysis for the prostate dataset. We also label the tumor samples by Gleason Score, an
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independent characterization for prostate cancer cells that measures how di↵erent they are from

normal cells and how likely they are to spread. Consistently, the clustering result in Figure 2.11

shows the increased expression in the lipogenesis signature genes is associated with higher Gleason

scores of PRAD tumor samples, which is in line with the findings in Chen et al. (2018) but only

observed using the deconvoluted expression matrix. Moreover, when we separate tumor samples

into the ‘Lipogenesis High’ and the ‘Lipogenesis Low’ groups according to the expression levels of

these seven lipogenesis genes, we observe a significant decrease (p = 0.019) in the probability of

Free Biochemical Recurrence (BCR) event for the Lipogenesis High group (Figure 2.11.d). This

di↵erence is only observed using the deconvoluted profiles and is consistent with the previous finding

that the up-regulated lipogenesis genes promote prostate cancer metastasis (Chen et al., 2018).

The consistency between current biological findings in prostate cancer and the statistical

conclusions derived from deconvoluted gene expression profiles demonstrates the value added from

performing the deconvolution step before downstream genomic analysis. The deconvoluted profiles

for each cellular component at the gene level help us to move forward from working with fractions of

the subcomponents to performing more systematic analyses with higher tumor to normal contrast.

These analyses may lead to new insights/discoveries in tumorigenesis that will not be observable

using the original profiles ( Figure 2.10 & 2.11).
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(a) Before deconvolution (b) After deconvolution

(c) Before deconvolution (d) After deconvolution

Figure 2.11: (a) and (b) One-way clustering for PRAD tumor samples with 7 SREBP mediated lipogenesis
signature genes before and after deconvolution. Each row represents a gene and each column a prostate tumor
sample. All tumor samples have a categorized Gleason score indicated by the color bar. Tumor samples with
higher Gleason scores (8) are clustered for higher expression values in these SREBP mediated lipogenesis
signature genes after deconvolution. (c) and (d) shows the Kaplan-Meier plot for BCR events, stratified for
di↵erent tumor clusters grouped by the expression levels of 7 lipogenesis genes in (a) and (b), respectively.
Vertical lines indicate the time at which censoring occurred. The log-rank test is used to compare survival
curves of two groups, whose p-value is shown on the plot. Statistically significant di↵erence in the probability
of BCR event for two clusters can only be observed using the deconvolved expression values.
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CHAPTER 3

Multiple Components Separation Analysis

3.1 Introduction

The tumor tissue can be evaluated as a complete organ with its own micro-environment as

illustrated in Figure 1.2, suggesting complex constitute components. In addition, it has been

reported in many cancer types, tumor cells can be further separated into distinctive subtypes

according to their genomic profile. For example, a well-established classifier, PAM50, is often used

to categorize breast tumors into five intrinsic subtypes based on their expression profiles (Bernard

et al., 2009). The results of our pan-can deconvolution analysis for the TCGA study (Table 2.4)

also suggest that the assumption of only two constituent subcomponents in a tumor sample might

be too strong for complex cancer types. Therefore, it is desired to develop a deconvolution tool

applicable for bulk tumor tissue samples containing more than two subcomponents. In this chapter,

we will demonstrate our work of extending the tool developed in Chapter 2 to account for multiple-

subcomponent scenarios.

The development of the Fast Tumor Deconvolution for K components (FasTDK) pipeline is

explained in details in Section 3.2. We demonstrate that FasTDK is e↵ective in estimating the

mixing proportions for K constituent subcomponents and estimating the tumor specific expression

profiles through simulation studies (Section 3.3.1) and a real data application (Section 3.4). To

address the challenge of increasing noise brought by additional subcomponents, we introduce a new

gene filtering scheme in Section 3.2.4. Through the sensitivity analysis in Section 3.3.1, we find

the estimation accuracy for mixing proportions gets better when the number of mixing samples

increases. The real data analysis in Section 3.4.3 also helps us to discover a new cut-o↵ criterion,

which improves the estimation accuracy by selecting genes with strong signals for subcomponents

in small proportions.
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3.2 K Components with K-1 Reference Profiles

In situations when multiple subcomponents are present in a tumor mixture sample, a

deconvolution tool capable of separating more than two subcomponents is desirable. We present

a deconvolution pipeline ‘FasTDK’, to estimate the proportion and type-specific expression value

of the unknown subcomponent in a K-component mixture, with the assumption that the total

number of subcomponents K is known, and K � 1 expression reference profiles are available. In

the case of mixed gene expression data derived from bulk tumor tissues, tumor is often regarded

as the unknown subcomponent, and we assume some reference expression profiles for other cell

types in the mixtures such as the immune cells, blood cells and stromal cells, are available. In

this section, we will first set up the problem mathematically and then describe in details how to

deconvolute K-components mixing samples using the strategy extended from the FasTD pipeline.

We will also introduce a new gene filtering scheme in subsection 3.2.4 to facilitate the more complex

multi-component deconvolution.

3.2.1 Problem Formulation and Model Assumptions

Given the expression data obtained from S bulk tissue tumor samples consists of K

subcomponents, our goal is to estimate the proportions of the tumor component, and the tumor-

specific expression values in each of the mixture samples.

Let Yig, be the observed gene expression value for mixed tumor sample i, i = 1 , . . . , S, gene

g, g = 1, . . . , G. We assume each observed value Yig is a proportional sum of K independent

components, C1
ig, . . . , C

K
ig , where Cj

ig, j = 1, . . . ,K is a gene expression random variable for sample

i, gene g in subcomponent j. The proportional weight for subcomponent j in sample i is denoted

as ⇡ij . For each sample i, the proportional weights are constrained in a K � 1 standard simplex,

i .e.,
PK

j=1 ⇡ij = 1,⇡ij 2 [0, 1], 8j = 1, . . . ,K. Hence, the observed mixing expression value Yig can

be written as:

Yig = ⇡i1C
1
ig + ⇡i2C

2
ig + · · ·+ ⇡iKCK

ig 8i, g. (3.1)
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Without loss of generality, we assume the Kth subcomponent is the unknown in the mixture

and reference profiles for the first K�1 subgroups are available. This means the mean and variance

information for random variables C1
ig, . . . , C

K�1
ig can be estimated from the reference profiles, i.e.

µ̂jg and �̂2
jg for gene g in subcomponent j = 1, . . . ,K, are treated as known quantities. Again, there

is no assumption on the distribution of these variables. The goal of the deconvolution problem,

is to estimate the remaining unknown parameters in model (3.1): the mixing proportions ⇡ij , j =

1, . . . ,K, the mean and variance for the expression of gene g in the unknown component, µ̂Kg and

�̂2
Kg, and the explicit expression values of CK

ig .

3.2.2 Proportion Estimation using Moments Information

Estimation procedures for the mixing proportions, and the mean and variance parameters

for the unknown component are explained in this subsection using the first and second moments

information of the dataset.

3.2.2.1 Estimating Regression Coe�cients

First, we rewrite model (3.1) in a vector form. Let µj 2 RG⇥1 and ⌃j 2 RG⇥G denote the

mean vector and covariance matrix of gene expression for G genes in the jth subcomponent. The

observed gene expression vector yi 2 RG⇥1 for mixed tumor sample i is the proportional sum of

the mean expression vectors of all subcomponents, plus some noise ✏i:

yi =
KX

j=1

⇡ijµj + ✏i (3.2)

where

✏i ⇠
⇣
0,

KX

j=1

⇡2
ij⌃j

⌘
8i.

Subtracting µ1 from both sides of (3.2) we get:

yi � µ1 =
KX

j=1

⇡ij(µj � µ1) + ✏i, (3.3)
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which resembles a multiple linear regression (MLR) without an intercept. However, one of the

predictors on the right side of (3.3) is unknown: (µK � µ1). We strategically use the mean

expression value of the observed data to estimate this quantity. Since:

1

S

SX

i=1

(yi � µ1) =
1

S

SX

i=1

KX

j=1

⇡ij(µj � µ1) +
1

S

SX

i=1

✏i

⇡
1

S

SX

i=1

KX

j=1

⇡ij(µj � µ1)

=
K�1X

j=1

⇡̄j(µj � µ1) + ⇡̄K(µK � µ1)

(3.4)

where ⇡̄j =
PS

i=1 ⇡̄ij

S , for j = 1, . . . ,K, we have an estimate of:

\µK � µ1 =
1

⇡̄K
[(ȳ � µ1)�

K�1X

j=1

⇡̄j(µj � µ1)] (3.5)

where ȳ = 1
S

PS
i=1 yi.

Next, replace the unknown predictor in (3.3) with (3.5) and the multiple linear regression

problem becomes:

yi � µ̂1 =
K�1X

j=1

⇡ij · (µ̂j � µ̂1) + ⇡iK · (µK � µ̂1) + ✏i

=
K�1X

j=1

⇡ij · (µ̂j � µ̂1) + ⇡iK · ( \µK � µ1) + �i

=
K�1X

j=1

⇡ij · (µ̂j � µ̂1) +
⇡iK
⇡̄K

· {(ȳ � µ̂1)�
K�1X

j=1

⇡̄j(µ̂j � µ̂1)}+ �i

=
K�1X

j=1

(⇡ij �
⇡iK
⇡̄K

⇡̄j)(µ̂j � µ̂1) +
⇡iK
⇡̄K

(ȳ � µ̂1) + �i.

(3.6)

To ensure homoscedasticity for the above regression problem, we introduce the gene weighting

diagonal matrix Q, with positive elements on the diagonal. To start with, one can set the weights

of each gene as the reciprocal of the sample standard deviation computed from Y 2 RS⇥G:
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�̂2
g =

1

(S � 1)

SX

i=1

(yig � ȳ·g)
2

8g, Q =

0

BBBB@

1
�̂1

. . .

1
�̂G

1

CCCCA

G̃⇥G

.

Then the final expression of the multiple linear regression problem becomes:

Q(yi � µ̂1) =
K�1X

j=1

(⇡ij �
⇡iK
⇡̄K

⇡̄j)Q(µ̂j � µ̂1) +
⇡iK
⇡̄K

Q(ȳ � µ̂1) +Q�i. (3.7)

For each sample i, denote �i = (�̂i2, �̂i3, . . . , �̂iK) as the coe�cients obtained from (3.7). There

exists such relations:

�̂ij = ⇡ij � �̂iK ⇡̄j 8j = 2, . . . ,K � 1

�̂iK =
⇡iK
⇡̄K

.
(3.8)

It is worth-noting that for a given sample i, the ⇡ij ’s are subject to the K � 1 standard

simplex constraint (
Pj=K

j=1 ⇡ij = 1; 0  ⇡ij  1, 8j = 1, . . . ,K). Hence, taking this constraint into

consideration, the final coe�cient estimates should have constraints:

�̂iK � 0

� �̂iK  �̂ij  1, 8j = 2, . . . ,K � 1.

3.2.2.2 Estimating ⇡̄’s for each subcomponent

We have obtained the regression coe�cients �ij ’s, but to fully recover ⇡ij through (3.8), we

need estimates of ⇡̄2, . . . , ⇡̄K . To achieve this goal, the second moment information of the dataset

is utilized.

We have assumed the error term ✏i follows:

✏i = yi � µ1 �

KX

j=1

⇡ij(µj � µ1) ⇠
⇣
0,

KX

j=1

⇡2
ij⌃j

⌘
8i.
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Similar to the derivations in (2.12) and (2.11), for each sample i, the weighted second moment

information of ✏i and its expectation can be expressed as:

Zi ⇡
�
Q(yi � µ̂1)�

K�1X

j=1

�̂ij ·Q(µ̂j � µ̂1)� �̂iKQ(ȳ � µ̂1)
�⌦2

and

E(Zi) =
KX

j=1

⇡2
ijQ⌃jQ

0

respectively. Based on these two quantities, we construct an objective function, which minimizes

the sum of squared deviation of the weighted second moment of the error term from its expectation.

In other words, this objective function reduces the deviation of each of these moment conditions

from that would be theoretically obtained.

The mathematically expression of the objective function is written as:

SX

i=1

kdiag[Zi � E(Zi)]k
2
2

=
SX

i=1

���diag[
�
Q(yi � µ̂1)�

K�1X

j=1

�̂ij ·Q(µ̂j � µ̂1)� �̂iKQ(ȳ � µ̂1)
�⌦2

�

KX

j=1

⇡2
ijQ⌃jQ

0]
���
2

2
.

(3.9)

The proportion parameters ⇡ij ’s in (3.9) are still unknown. But we can replace them with the

regression coe�cients we obtained in (3.8):

⇡ij = �̂ij + �̂iK ⇡̄j 8j = 2, . . . ,K � 1

⇡iK = �̂iK ⇡̄K

⇡i1 = 1�
K�1X

j=2

(�̂ij + �̂iK ⇡̄j)� �̂iK ⇡̄K

(3.10)

where 8j = 1, . . . ,K, ⇡̄j =
1
S

PS
i=1 ⇡ij .

Then the remaining unknowns in (3.9) are the averages of the proportions parameters ⇡̄j ,

j = 1, . . . ,K, and the variance parameters of the unknown component �2
Kg, g = 1, . . . , G. Note that

the proportion parameters ⇡ij ’s are subject to the K � 1 standard simplex constraint. Therefore,
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we need to add the derived constraints for the corresponding ⇡̄j ’s:

0  ⇡̄K  min(
1

max
i

(�̂iK)
, 1)

min(max
i

(�
�̂ij

�̂iK
, 0), 1)  ⇡̄j  max(min

i
(
1� �̂ij

�̂iK
, 1), 0) 8j = 2, . . . ,K � 1

min(max
i

(�

PK�1
j=2 �̂ij

�̂iK
, 0), 1) 

KX

j=2

⇡̄j  max(min
i
(

KX

j=2

1�
PK�1

j=2 �̂ij

�̂iK
, 1), 0).

(3.11)

With all the constraints in (3.11) and the objective function in (3.9), we first formulated

an optimization problem solving for the average proportions and the variance parameters

simultaneously:

min
⇡̄2,...,⇡̄K ,diag(⌃K)

SX

i=1

���diag[
�
Q(yi � µ̂1)�

K�1X

j=1

�̂ij ·Q(µ̂j � µ̂1)� �̂iKQ(ȳ � µ̂1)
�⌦2

�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)
2Q⌃jQ

0
� (�̂iK ⇡̄K)2Q⌃KQ0

� (1�
K�1X

j=2

(�̂ij + �̂iK ⇡̄j)� �̂iK ⇡̄K)2Q⌃1Q
0]
���
2

2

s.t.: 0  ⇡̄K  min(
1

max
i

(�̂iK)
, 1)

min(max
i

(�
�̂ij

�̂iK
, 0), 1)  ⇡̄j  max(min

i
(
1� �̂ij

�̂iK
, 1), 0) 8j = 2, . . . ,K � 1

min(max
i

(�

PK�1
j=2 �̂ij

�̂iK
, 0), 1) 

KX

j=2

⇡̄j  max(min
i
(

KX

j=2

1�
PK�1

j=2 �̂ij

�̂iK
, 1), 0)

diag(⌃K) � 0.

(3.12)

Above is a quadratic programming problem with K�1 unknown scalars ⇡̄2, . . . , ⇡̄K and a vector

of gene variances for the Kth tumor component. When the scalars are given, with the assumption

of independence between genes, we have an explicit expression for the optimal solution of �2
Kg, as
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a function of ⇡̄j , j = 2, . . . ,K:

�̂2
Kg =

n SX

i=1

h�
yig � µ̂1g �

K�1X

j=1

�̂ij · (µ̂jg � µ̂1g)� �̂iK(ȳ·g � µ̂1g)
�2

�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)
2�̂2

jg � (1�
K�1X

j=2

(�̂ij + �̂iK ⇡̄j)� �̂iK ⇡̄K)2�̂2
1g

i
· �̂2

iK/(⇡̄2
K

SX

i=1

�̂4
iK)

o

+
.

(3.13)

This expression for optimal �̂2
Kg is plugged back into (3.12). Then the final version of the

optimization problem becomes:

min
⇡̄2,...,⇡̄K

SX

i=1

G̃X

g=1

n⇥
Qg(yig � µ̂1g)�

K�1X

j=1

�̂ijQg(µ̂jg � µ̂1g)� �̂iKQg(ȳ·g � µ̂1g)
⇤2

�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)
2Q2

g�̂
2
jg �

⇥
1�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)� �̂iK ⇡̄K
⇤2
Q2

g�̂
2
1g

�
�̂2
iKPS

i=1 �̂
4
iK

n SX

i=1

h⇥
Qg(yig � µ̂1g)�

K�1X

j=1

�̂ijQg(µ̂jg � µ̂1g)� �̂iKQg(ȳ·g � µ̂1g)
⇤2

�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)
2Q2

g�̂
2
jg � (1�

K�1X

j=2

(�̂ij + �̂iK ⇡̄j)� �̂iK ⇡̄K)2Q2
g�̂

2
1g

i
· �̂2

iK

o

+

o2

s.t.: 0  ⇡̄K  min(
1

max
i

(�̂iK)
, 1)

min(max
i

(�
�̂ij

�̂iK
, 0), 1)  ⇡̄j  max(min

i
(
1� �̂ij

�̂iK
, 1), 0) 8j = 2, . . . ,K � 1

min(max
i

(�

PK�1
j=2 �̂ij

�̂iK
, 0), 1) 

KX

j=2

⇡̄j  max(min
i
(

KX

j=2

1�
PK�1

j=2 �̂ij

�̂iK
, 1), 0)

diag(⌃K) � 0.

(3.14)

3.2.2.3 Obtaining Constituent Subcomponent Proportions

Plug the optimal values ˆ̄⇡2, . . . , ˆ̄⇡K obtained from the optimization problem (3.14) into (3.10).

We can get the final estimates of the sample-wise proportion coe�cients for each subcomponent in

the mixtures. For sample i, i = 1, . . . , S:
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⇡̂ij = �̂ij + �̂iK ˆ̄⇡j 8j = 2, . . . ,K � 1

⇡̂iK = �̂iK ˆ̄⇡K

⇡̂i1 = 1�
K�1X

j=2

(�̂ij + �̂iK ˆ̄⇡j)� �̂iK ˆ̄⇡K .

(3.15)

3.2.2.4 Estimating Expression Mean and Variance for the Unknown

Estimates of the expression variance �̂2
Kg for gene g in subcomponent K can be obtained by

plugging ˆ̄⇡1, . . . , ˆ̄⇡K into expression (3.13). The corresponding mean expression estimate is obtained

by:

µ̂Kg = (
1

S

SX

i=1

yig �
K�1X

j=1

ˆ̄⇡jµjg)+/ˆ̄⇡K . (3.16)

With the estimates for the mixing proportions, the expression mean and variance for genes in

the unknown component, one can proceed to the individual deconvolution part of the pipeline, to

estimate the explicit expression values for the unknown component in the mixtures.

3.2.3 Individual Deconvolution

As a result of the steps in Section 3.2.2, many unknown parameters are estimated. From

here and onward, we assume the mean and variance parameters for each gene expression random

variable C1
g , . . . , C

K
g , 8g = 1, . . . , G, are known to us, as well as the subcomponent level proportions

⇡i1, . . . ,⇡iK , for all samples 1, . . . , S.

The next goal is to estimate the explicit expression value CK
ig for the unknown subcomponent

K. In the individual deconvolution section of Chapter 2 (Section 2.3), we introduced an estimator

that combines two important quantities associated with the target value Tig. Likewise, we also

identified two important quantities capturing the information of target value CK
ig in the multiple

component case: µKg and C̃K
ig , where

C̃K
ig =

Yig �
PK�1

j=1 ⇡ijµjg

⇡iK
,
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whose conditional mean and variance is written as:

E(C̃K
ig |C

K
ig ) = CK

ig

Var(C̃K
ig |C

K
ig ) =

K�1X

j=1

(
⇡ij
⇡iK

)2�2
jg.

With a strategy similar to that of Section 2.3.1, we first propose a general estimator of CK
ig to

be a weighted sum between µKg and C̃K
ig of the form:

CKG
ig =

a · µKg + b · C̃K
ig

a+ b
(3.17)

where a and b are two arbitrary numbers. Then the optimal solutions for a and b are obtained by

minimizing the conditional MSE of CKG
ig :

a⇤ =
K�1X

j=1

⇡2
ij�

2
jg

b⇤ = ⇡2
iK(C̃K

ig � CK
ig )

2

(3.18)

Plug the optimal a⇤ and b⇤ back to CKG
ig into obtain the oracle estimator, ĊK

ig :

ĊK
ig =

PK�1
j=1 ⇡2

ij�
2
jg · µKg + ⇡2

iK(C̃K
ig � CK

ig )
2
· C̃K

igPK�1
j=1 ⇡2

ij�
2
jg + ⇡2

iK(C̃K
ig � CK

ig )
2

(3.19)

If we carefully examine the expressions of the weight coe�cients in (3.19), we will have a better

understanding of the oracle estimator ĊK
ig . The weight a

⇤ contains the variance part of the reference

subcomponents (from 1 to K-1), as well as their proportions in the mixture sample i. The weight b⇤

captures the deviation of the observed value C̃K
ig from its conditional mean CK

ig , and the proportion

of the unknown component ⇡iK . In cases when the variance(s) of the reference profiles are large,

or when the proportions of the reference components are relatively large, it will give more weight

to µKg, the expression mean of CK
ig , because the observed quantity C̃K

ig is less reliable. In contrast,

for cases when the proportion of the unknown component is large, or when the deviation of the

true expression value from its mean is large, the observed quantity C̃K
ig will be given more weights.

Though being a reasonable estimator, it is easy to realize that in real cases ĊK
ig is not achievable

due to the unknown part CK
ig in b⇤. After reorganizing ĊK

ig :
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ĊK
ig =

PK�1
j=1 ⇡2

ij(
�jg

�Kg
)2 · µKg + ⇡2

iK(
C̃K

ig�CK
ig

�Kg
)2 · C̃K

ig

PK�1
j=1 ⇡2

ij(
�jg

�Kg
)2 + ⇡2

iK(
C̃K

ig�CK
ig

�Kg
)2

we recognize the unknown part (
C̃K

ig�CK
ig

�Kg
)2 can be replaced by its expected value of 1. Hence

we arrive at our final estimator ĈK
ig :

ĈK
ig =

PK�1
j=1 ⇡2

ij(
�jg

�Kg
)2 · µKg + ⇡2

iK · C̃K
ig

PK�1
j=1 ⇡2

ij(
�jg

�Kg
)2 + ⇡2

iK

. (3.20)

Since the expression value of the unknown subcomponent (instead of the other K-1 components)

is usually of most interest, this concludes our individual deconvolution part for the multi-component

mixture separation problem.

3.2.4 A New Gene Filtering Scheme

In the two-component setting of Section 2.2.2, we mentioned that the gene filtering step can

be easily computed by a two sample t-test. For the multiple component case, each subcomponent

will contribute some noise to the mixture expression, which adds to the di�culty of detecting the

signals from the proportion coe�cients ⇡ik’s. Therefore, we developed a more sophisticated gene

selection scheme for the multiple component case. In summary, the strategy is to carefully select a

set of representative genes/observations from the regression step to serve as the input for the whole

FasTDK pipeline.

As we have seen from Section 3.2.2, the multiple linear regression is the first key to the success

of overall estimation accuracy. To illustrate the idea, we rewrite the MLR problem in equation 3.7

as follows:

yi = �i1x1 + �i2x2 + · · ·+ �ikxk + ✏i (3.21)

where yi 2 RG⇥1, X = [x1, . . . ,xk] 2 RG⇥k and i = 1, . . . , S. For each mixing sample i, the genes

are the observations. Note that for each individual regression i, the input feature space X 2 RG⇥k

does not change. So it is critical to ensure a good set of observations are selected for coe�cient

estimation.
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Our first step is to compute the leverage score of each row/observation of X and compare it to

2p/n, a general guideline to evaluate the leverage for a linear additive regression model (Goodall,

1993), where n is the number of observations and p is the number of parameters in the model.

This step is expected to remove any influential observations which might be outliers, making the

regression results more robust. Figure 3.1 illustrates the e↵ect of removing the genes with high

leverage scores in a real data set introduced in Section 3.4.1, treating the liver component as the

unknown.

Figure 3.1: Visualization of low leverage observations in a 2-dimensional feature space. X1 and X2 are
values for the two predictors in the multiple linear regression step of a FasTDK application. Each point is
a gene. The whole genome is colored in blue while the genes with low leverage are colored in orange. This
filtering step is designed to remove potential outliers.

Next, we carry over the concept of optimal experimental design to further refine the geneset.

After removing the high leverage points, we are left with a subset of G0 observations. Using

this subset of observations, the linear model (3.2.4) for each sample i (i = 1, . . . , S) becomes

y
0
i = X0�i + ✏i, where y

0
i 2 RG0⇥1, X0

2 RG0⇥k and ✏i 2 RG0⇥1 is an i.i.d Guassian noise vector

with zero mean and finite variance. In typical experimental design problems, a small subset of

observations M ⇢ {1, . . . , G0
} of r rows from X0 is selected, so that the regression e�ciency is

maximized and the total experimental cost is minimized. This new design XM is often selected

by maximizing the precision of estimating � and referred as an optimal design. Though in our
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problem the experimental cost is not a major concern, the same goal is pursued: to minimize the

variance of the estimated coe�cients.

To minimize the variance of the coe�cients is to minimize the covariance matrix of ⌃�1 =

(XT
MXM )�1. As discussed in Pukelsheim (2006), various optimality-criteria have been developed

as the invariants of this matrix to evalute how well ⌃�1 is minimized on a selected design. What we

have chosen is a popular criterion called ‘D-optimality’, which minimizes the determinant of ⌃�1.

Figure 3.2 illustrates the e↵ect of the D-optimal criterion and how the points are selected according

to this criterion for the leverage filtered genes in Figure 3.1. We can observe genes surrounding the

volume are selected rather than those around the origin. This is a desirable feature in our situation,

because the genes around the origin not only contribute less signal to estimating the regression

coe�cients, but also bring more noise to the following optimization step, where we mainly focus on

the second moment information. An additional benefit from this selection of a much smaller subset

of observations is the reduced computational burden for the optimization step.

Figure 3.2: One hundred D-optimality genes (yellow circled) are selected in a real data application in a
2-dimensional feature space. The x- and y-axes are the row values for X0

2 RG0⇥2 and each point is a
gene. The D-optimality criterion minimizes the determinant of ⌃�1, which tends to select points that are
representatives in the sense of lying near the edge of the data set.

We utilize an R package ‘AlgDesign’ (Wheeler, 2004) to generate the D-optimal designs. This

package creates exact D-optimal designs when provided with the number of trials needed, in which

the Fedorov (1972) row exchange algorithm is implemented to select the optimal subset. In real
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data applications, it is recommended to run the gene filtering steps we presented here and use this

subset as the input for FasTDK.

3.3 Simulation Study

3.3.1 Performance Evaluation of Estimated Proportions

To simulate data that can better present biological scenarios, we utilize the sample means and

standard deviations from real expression data for simulation. The dataset should be gene expression

data collected in a pure cell type, ideally originally from a mixture. The number of samples might

be limited due to this requirement, still the sample mean and standard deviation are useful to serve

as parameters for our simulation purpose.

The real expression data we use here was downloaded online from the NIH GEO site with

submission number GSE24223. The original study is a benchmark dataset in Grigoryev et al.

(2010). This dataset includes transcriptome mRNA profiling of whole blood and purified CD4,

CD8 T cells, B cells and monocytes in tandem with high-throughput flow cytometry in 10 kidney

transplant patients sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Four cell type specific

RNA probe expression values from the week 2 time point are selected, which has relatively more

samples. The sample mean and SD parameters are generated from 7 CD4, 7 CD8, 5 CD19 and 3

CD56 samples.

The simulation design is as follows. Cell type CD4, CD8 and CD19 are treated as the known

subcomponents in the mixture, whose sample mean and standard deviation are used to generate the

reference profiles for each cell type (only the positive part from a Gaussian distribution). Cell type

CD56 is assumed to be the unknown subcomponent in the mixture without reference profiles. In

order to generate S mixing samples, S samples are first simulated independently for each of the four

cell types according to a normal distribution. Then the four populations are combined according

to a proportion matrix ⇧ 2 R4⇥S , whose columns are randomly and uniformly distributed in the

standard 3-simplex space.

Our goal is to evaluate the proportion estimates obtained by our procedure, given that the

true ⇡ij ’s, j = 1, . . . , 4, i = 1, . . . , S are known to us. In Figure 3.3 we show the estimation

results for 100 mixture samples in one simulation run. Each point represents a mixing sample
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and there are four subplots corresponding to four subcomponents. The x-axis values of the scatter

plots are the proportions estimates acquired by our method and the y-axis values are the truth.

A red y = x reference line is added in each subplot to clearly highlight the approximation of

equality. All proportion estimates align well with the red line, from Figure 3.3 (a) to (d). This

demonstrates our method to be e↵ective in estimating the mixing proportions not only for the

unknown subcomponent, but also for the subcomponents with reference profiles.

(a) (b)

(c) (d)

Figure 3.3: Scatterplot of 100 mixing samples’ proportion estimates versus the truth for 4 subcomponents.
Each point represents a mixture sample. The x-axis value captures the proportion estimate acquired by our
method and the y-axis values are the ground truth. For all subcomponents (a)-(d), the 100 samples align
well around the red y = x line, which indicates our procedure is very e↵ective.
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3.3.1.1 Sensitivity Analysis

A key step in our procedure which can greatly a↵ect the overall estimation accuracy is the

performance of ⇡̄K estimation. Therefore, we want to investigate how its performance changes

with di↵erent parameters inputs.

In the following simulation setting, we are particularly interested in how ⇡̄K changes with the

number of mixing samples, S, and the standard deviation of the unknown component �Kg. We

continue to utilize the sample means from the dataset GSE24223 and treat CD4, CD8 and CD19 as

the known/reference subcomponents, and CD56 as the unknown. However, to simplify the analysis,

we set expression the Standard Deviation (SD) to be the same for all genes. More specifically, SD

= 0.3 for all genes from the reference subcomponents, which is about the median number of all

SDs in the real data. But �K for the unknown components will be tested with di↵erent values in

the experiment. We also keep the number of reference samples to be the same, 100, for the known

subcomponents, but test the e↵ect of di↵erent numbers of mixture samples on the ⇡̄K estimation.

The performance of ⇡̄K estimation is evaluated by the Mean Absolute Error (MAE), which

measures the absolute deviation of the estimates from the truth. Then we designed nine simulation

settings given 3 di↵erent number of mixing samples (N = 50, 100 or 200), and 3 di↵erent SDs

(�K = 0.1, 0.3 or 0.6). There are 100 Monte Carlo runs for each setting. Figure 3.4 shows us that

there is a general trend that the more mixture observations, the better performance we will gain for

estimating the unknown proportion average ⇡̄K . This makes sense because given the same amount

of information about the references, we are provided with more information for the unknown part.

Perhaps surprising, the performance does not always improve for smaller sigma because the blue

curve (�K = 0.1) is above the red one (�K = 0.3). This result motivates us to investigate more on

the e↵ect of �K on ⇡̄K estimation.

In the new settings, �K changes from 0 to 0.9 with an increase of 0.1, given the number of

mixture samples is 100 or 500 (Figure 3.5). Consistent with the previous observations in Figure

3.4, more mixture samples give better accuracy as the blue curve is generally under the red curve.

However, we observe a parabola shape for S = 100 but less so for S = 500. This suggests there

exists some bias when �K is very small, but this bias decreases as sample number increases.

54



Figure 3.4: Simulation Results for 100 runs studies how proportion estimation accuracy is driven by the
number of mixing samples and the variance of the unknown component. The decreasing trend towards the
right side shows more mixing sample improves accuracy of the unknown subcomponent proportion estimation.
But the estimation performance is best when the unknown SD is at a middle value (= 0.3 in red).

3.4 Empirical Dataset Validation

To test our method with real world data, we look for a gene expression dataset with mixture

samples consisting of multiple homogeneous tissue/cell-type subcomponents, and with reference

profilings available.

3.4.1 Dataset GSE19830

The microarray expression dataset GSE19830 of Shen-Orr et al. (2010) serves well for our

validation purpose. This dataset was designed to test the feasability and sensitivity of statistical

deconvolution. It not only has mixture samples and reference profiles, but also has ground truth

for the mixing proportions. In the original experimental design, tissue samples from the brain,

liver and lung of a single rat were mixed at the cRNA homogenate level in di↵erent proportions

(shown in Table 3.1 as di↵erent Experiments.) Each experiment design, including the isolated pure

subsets, were analyzed using expression arrays (A↵ymetrix) in triplicate. The overall dimension of

the dataset we have been working with is 31099 probes and 36 samples.

Dataset GSE19830 was originally generated to compare the measured gene expression pattern

of each mixed sample with the reconstituted pattern, simulated from pure tissue samples multiplied
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Figure 3.5: Simulation Results for 100 Monte Carlo runs studies how proprotion estimation accuracy is
driven by the variance of the unknown component. The bias generated by small �K can be reduced when
the mixing sample number increases.

by the proportions of the pure tissue in the sample. Figure 3.6 demonstrates in this dataset, the

measured expression pattern can be e↵ectively reconstituted in silico. The y-axis of Figure 3.6

is the measured mean expression pattern of mixing samples in Experiment #4 with 70% Liver,

5% Brain and 25% Lung tissues. It is plotted against the mean expression pattern reconstituted

proportionally from the expression values obtained from the pure tissue samples. In both subplots,

we see a large density of probes (represented as points and colored as yellow) are aligning well with

the y=x diagonal line with high Pearson correlation coe�cients.

Zhong and Liu (2012) states that the convolution of subcomponents is more e↵ective when

done in the linear space before applying the log2-transformation to the raw expression data. This

is illustrated in Figure 3.6, where (a) shows the disruption of the log2-transformation applied before

reconstitution, where a fraction of probes are underestimated using the reconstituted values. As

expected from their work, this disruption is not observed when the convolution process is instead

performed before log-2 transformation (Figure 3.6 b). Hence in our analysis, the raw expression

data is the input for modeling and log-2 transformation is only used for visualization purposes.

56



Experiment #
Number of
Replicates

Tissue Type Liver Brain Lung

1 3 Pure 100 0 0
2 3 Pure 0 100 0
3 3 Pure 0 0 100
4 3 Mixed 70 5 25
5 3 Mixed 25 70 5
6 3 Mixed 70 25 5
7 3 Mixed 45 45 10
8 3 Mixed 55 20 25
9 3 Mixed 50 30 20
10 3 Mixed 55 30 15
11 3 Mixed 50 40 10
12 3 Mixed 60 35 5

Table 3.1: Summary of dataset GSE19830. For each experiment design, cRNA from liver, brain and
lung tissue samples derived from a single rat were extracted and mixed in di↵erent proportions(%) with 3
replicates.

3.4.2 Solving Mixing Proportions using Simple Linear Regression

In Shen-Orr et al. (2010) a simple linear regression model is applied to deconvolve the expression

profile of each subcomponent in the mixture samples, where mixture ratios are known parameters.

Since our interests are more on the mixing proportions, we want to test how well this model

performs if the tissue-type specific expression profiles are provided to estimate the proportions.

Using notation consistent with ours, the model is written as:

yi = ⇡liver
i µliver + ⇡brain

i µbrain + ⇡lung
i µlung + ✏i (3.22)

where yi is the response vector for sample i = 1, . . . , 27, ✏i is the random error vector, and

µliver,µbrain,µlung are the predictors. The predictors are assumed to be known, which can be

estimated by the mean expression value of the pure tissue samples.

The goal is to use simple linear regression to estimate the mixing proportions ⇡liver
i ,⇡brain

i ,

⇡lung
i for each mixture sample. Note that to obtain these mixing proportions, the least-square

regression coe�cients are first obtained. Any negative coe�cients are set to zero. Then the non-

negative coe�cients are normalized so that they sum up to one for each sample. These normalized
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(a) Convolution modeled at log-2 data level (b) Convolution modeled at raw data level

Figure 3.6: Measured gene expression pattern in a heterogeneous mixing sample can be modeled as the
weighted sum of gene expression derived from pure tissue samples. The y-axis is the measured expression
pattern/mean of mixing samples with 70% Liver, 5% Brain and 25% Lung tissues. The x-axis is the expression
pattern reconstituted proportionally from the mean expression values obtained from the pure tissue samples.
Each point represents a probe. Color represents point density from a single probe (purple) to lots of probes
(yellow). This plot shows that the expression pattern/mean in the mixtures behaves similarly as the values
reconstituted from pure tissue samples. The fraction of probes that deviate from the diagonal line suggests
reconstitution is better done at the raw data level, i .e. before log2-transformation.

coe�cients are the final version of estimates for the mixing proportions, which are plotted in Figure

3.7.

Figure 3.7 shows the e↵ectiveness of model (3.22) in estimating the mixing proportions. The

predictors in the regression model are estimated from Experiment 1-3 in Table 3.1. The fact that

model (3.22) is returning a good estimation of the mixing proportions, suggests it should be valid to

assume the mean expression values obtained from the pure tissue can serve as the reference profiles

to infer the mean values for the subcomponents in the mixtures. This is an important assumption

to hold in order to test our method on this validation dataset.

However, the pure tissue mean expression values for each subcomponent are not always

available. It can be very costly or technically infeasible to obtain isolated pure tissues for each

individual subcomponents. The FasTDK method we developed in Section 3.2.1 allows one of the

subcomponents to be unknown, i.e. without reference profiles from the pure tissues. Next we

will test our FasTDK pipeline on the same dataset, assuming one of predictors in model (3.22) is

unknown.
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Figure 3.7: Deconvolved proportion estimates for Benchmark Dataset GSE19830 using simple linear
regression in model (3.22). The x values are estimated while the y values are the true proportions. Each
data point represents a mixture sample. All data points aligning well around the y=x reference line indicates
the e↵ectiveness of the model.

3.4.3 Estimating Mixing Proportions using FasTDK

Since all of the three mixing components in the validation dataset GSE19830 have pure

expression profiles, we can treat each of the liver, brain and lung component as unknown in turn.

We summarize the application of the FasTDK tool on this dataset in two ways, depending on

whether the unknown component is among the larger proportions in the mixtures.

3.4.3.1 When the major component is the unknown

Based on the mixing proportions in Table 3.1, for most of the 27 samples, liver is the major

component in the mixtures. The average proportion of the liver component is 0.53, while it is 0.33 for

brain and 0.13 for lung. In the setting of tumor genomic deconvolution, one would expect the tumor

component to be both the unknown and the major component (tumor samples are contaminated

by other cell types). Hence, we start with validating FasTDK on the dataset GSE19830 by treating

the liver component as the unknown.

As suggested in Section 3.2.4, a subset of the D-optimal genes is first selected before running

FasTDK. Then FasTDK outputs the estimated proportions for all three subcomponents in the

mixtures. These estimates are plotted against the ground truth (Figure 3.8). We observe a good

correlation between the FasTDK estimates and the ground truth with a concordance correlation

coe�cient greater than 0.9. This demonstrates the FasTDK procedure is e↵ective in estimating the
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proportions for multiple subcomponent mixtures, in the case where the unknown component is the

major component in the mixtures. We expect the constraint of ‘major component’ can be relaxed

when the number of mixing samples increases.

Figure 3.8: Deconvolved proportion estimates for the Benchmark Dataset GSE19830 when liver is the
unknown component. The x values are proportion estimates while the y values are the ground truth. Each
data point represents a mixing sample. All data points are aligning well around the y = x reference line.
This alignment is quantitatively evaluated by the Concordance Correlation Coe�cient (Lawrence and Lin,
1989): 0.95 , which indicates the e↵ectiveness of our method.

3.4.3.2 When the unknown component is among the smaller proportions

We then apply the FasTDK pipeline to the other two scenarios: treating in turn each of the

brain and the lung component as the unknown. According to Table 3.1, the proportions of these

two components in most of the mixing samples are relatively small. To our surprise, the FasTDK

estimates for both scenarios are poor, with ccc values around 0. Figure 3.9 investigates this by

studying the intermediate estimates. The horizontal axis are the proportion estimates using the

�ik’s in (3.8) from the regression step of FasTDK multiplied by the true ⇡̄k’s. When we examine the

performance of the intermediate estimates �ik’s in the brain and the lung cases, we find out many

of these regression coe�cients are far o↵ from the truth (Figure 3.9 b & c). This is particularly

true when we compare these intermediate estimates in these two scenarios with that in the liver

unknown case.

We suspect the performance of Figure 3.9 (b) and (c) is a↵ected by the small proportions of the

unknown component in the mixtures. When a subcomponent is relatively small in proportions, as

a whole it contribute less signals to the observed mixed sample expression. However, based on the
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linear additive assumption in (3.22), we expect the genes with relatively large mean expression value

can o↵set this small proportion e↵ect. For these types of genes, signals from the small proportion

subcomponent are more detectable in the mixtures. Hence, we develop a simple but e↵ective cut-o↵

to select such genes. The e↵ectiveness of this cut-o↵ is not only supported by the improvement

of our FasTDK estmation in Figure 3.10, but also supported by the goodness of fit between this

dataset and its linear model, which we explore in more details in Section 3.4.3.3.

According to model (3.22), the observed yi is a convex combination of the mean expression

values of the three subcomponents. If the unknown component is among the small proportions

and the mean expression values for the major component are available, only genes whose observed

mean expression is larger than the mean expression of the major component will be selected. This

cut-o↵ helps to separate genes with strong signals from the minority groups.

We apply this cut-o↵ to this dataset and separate the genes into two subsets. Let the set

Ag ⇢ {1, . . . , G} denote the genes whose ȳ·g > µliver
g , and the set Bg ⇢ {1, . . . , G} denote the genes

whose ȳ·g  µliver
g , where ȳ·g is the sample mean expression of all mixing data for gene g and µliver

g

is the mean expression for that gene in the pure liver component. We observed that use of set Ag

as the initial input for the FasTDK pipeline greatly improves the performance of the proportional

estimates (Figure 3.10).

3.4.3.3 Evidence supporting the cut-o↵ criterion

Furthermore, we find that these genes in the mixing experiment are better fitted to the additive

linear model (3.22) originally proposed for this dataset in Shen-Orr and Gaujoux (2013). Based on

the model and the law of large numbers, for gene g, the observed sample mean of the mixtures can

be approximated as:

ȳ·g =
1

S

SX

i=1

yig

⇡ ⇡̄liverµliver
g + ⇡̄brainµbrain

g + ⇡̄lungµlung
g

⇡ 0.53µliver
g + 0.33µbrain

g + 0.13µlung
g .

(3.23)
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Then let �g denote the residual value of this approximation:

�g = ȳ·g � 0.53µliver
g � 0.33µbrain

g � 0.13µlung
g .

We expect the residual values for the whole genome to have mean zero. However, when we compare

the residual values between gene subsets Ag and Bg, we observe great di↵erences both in the overall

ditribution (Figure 3.11) and in the mean values: 0.0055 for set Ag versus �0.329 for Bg.

3.4.4 Conclusions

GSE19830 serves well as a validation dataset because it not only has mixed samples with known

mixing proportions, but also includes expression profiles of pure tissue types. What’s more, the

linear additive model for the subcomponents has been tested in publication (Shen-Orr et al., 2010).

The analyses on the validation dataset GSE19830 demonstrate that our method is e↵ective in

estimating the proportion coe�cients for the constituent subcomponents in a mixture, especially

when the unknown component is the majority subcomponent. Even if the unknown is in small

proportions among the mixtures, a simple cut-o↵ criterion introduced in section 3.4.3.2 can help

to select a subset of genes with strong signals for the minority subcomponents to improve the

estimation accuracy.

Based on the simulation study in Section 3.4, we observe that the larger the number of mixing

samples is, the better the estimation accuracy will be. Considering the relative small sample size

for GSE19830, we anticipate the performance of our FasTDK method to improve more once a larger

size validation dataset is available.
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(a) Liver Unknown

(b) Brain Unknown (c) Lung Unknown

Figure 3.9: Quality check of GSE19830 intermediate estimates. Three scenarios are studied when the liver,
brain and lung subcomponents are assumed to be unknown in turn. Each point is a mixing sample. The
x-values are the FasTDK estimates computed by the intermediate regression coe�cients �ik and the true
⇡̄k’s, according to (3.8), which are plotted against the true proportions on the y-axis. Comparing with the
liver unknown case in (a), plots (b) and (c) suggest the final proportion estimates for both the brain and the
lung cases are confounded by the biased intermediate results in the regression step.
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(a) Brain Unknown (b) Lung Unknown

Figure 3.10: Performances of proprotion estimates using gene subset Ag when either the brain or the lung
tissue is the unknown component. Each point is a mixing sample whose FasTDK estimates are the x-values
and ground truths are the y-values. The performances are greatly improved using geneset Ag: CCC values
increase from around 0 to 0.657 and 0.967 for the brain and the lung cases, respectively. This result suggests
when the unknown component only occupies a small proportion in the mixtures, genes with stronger signals
from the minority groups tend to give better coe�cient estimation.

Figure 3.11: Normalized histograms of the residual values �g for gene subsets A and B. The red vertical
line indicates the mean value of �g for the set A (�̄A = 0.0055), while the blue line is that for the set B
(�̄B = �0.329). This suggests gene subset A is better fitted to the linear additive model (3.22) originally
proposed for dataset GSE19830.
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CHAPTER 4

Potential Work Beyond the Dissertation

In this dissertation work, we have presented two deconvolution tools that both produce

estimates of the mixing proportions and the tumor-specific expression profiles for bulk tumor tissue

samples. The variance and consistency of these estimators are yet to be derived and demonstrated

as potential work beyond the dissertation.

The RNAseq gene expression data we used in testing our method is the count data. However,

the RNAseq process pipeline has several choices of gene expression quantification measure, which

includes counts, FPKM (Fragments Per Kilobase of transcript per Million mapped reads), RPKM

(Reads Per Kilobase of transcript per Million mapped reads), and TPM (Transcripts Per Million),

Conesa et al. (2016). A recent published paper suggests TPM to be the best value to use under

the linearity assumption of tumor deconvolution analysis according to Jin et al. (2017). Thus it

will be interesting to investigate the e↵ect of using an alternative abundance measure in testing

our deconvolution tools.

Our methods have currently only been tested on either the RNAseq expression datasets or the

microarray datasets. There are many more types of molecular datasets whose interpretation might

be altered by intratumor heterogeneity. For example, studies have shown tumor heterogeneity is

associated with DNA methylation level in Varley et al. (2009). Thus it would be interesting to test

our methods on other data types when the linearity assumption and the reference profile availability

can be satisfied.

After individual datatypes are tested, some potential work beyond the dissertation may include

investigating the e↵ect of data integration, and whether the integration improves the accuracy of

tumor deconvolution or clinical outcomes. In addition, how to apply tools developed in the context

of intra-tumor heterogeneity to other mixture signals deconvolution process, is another interesting

problem to explore.
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