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While functional neuroimaging studies typically focus on a particular paradigm to investigate 

network connectivity, the human brain appears to possess an intrinsic “trait” architecture that is 

independent of any given paradigm. We have previously proposed the use of “cross-paradigm 

connectivity (CPC)” to quantify shared connectivity patterns across multiple paradigms and have 

demonstrated the utility of such measures in clinical studies. Here, using generalizability theory 

and connectome fingerprinting, we examined the reliability, stability, and individual identifiability 

of CPC in a group of highly-sampled healthy traveling subjects who received fMRI scans with 

a battery of five paradigms across multiple sites and days. Compared with single-paradigm 

connectivity matrices, the CPC matrices showed higher reliability in connectivity diversity, lower 

reliability in connectivity strength, higher stability, and higher individual identification accuracy. 

All of these assessments increased as a function of number of paradigms included in the CPC 

analysis. In comparisons involving different paradigm combinations and different brain atlases, we 

observed significantly higher reliability, stability, and identifiability for CPC matrices constructed 

from task-only data (versus those from both task and rest data), and higher identifiability but lower 

stability for CPC matrices constructed from the Power atlas (versus those from the AAL atlas). 

Moreover, we showed that multi-paradigm CPC matrices likely reflect the brain’s “trait” structure 

that cannot be fully achieved from single-paradigm data, even with multiple runs. The present 

results provide evidence for the feasibility and utility of CPC in the study of functional “trait” 

networks and offer some methodological implications for future CPC studies.
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Introduction

Cognitive neuroscience employs a variety of psychological paradigms to investigate 

functional connectomic basis of the human mind. Each paradigm may target a specific 

functional domain and elicit the activation of domain-specific brain networks. For instance, 

a resting-state paradigm may activate the brain’s default-mode network but deactivate 

cognitive control systems (Buckner et al. 2008; Raichle et al. 2001). In contrast, a 

working memory task would render the frontoparietal network strongly activated (McCarthy 

et al. 1994; Owen et al. 2005), with decreased activity of the default-mode network 

(Buckner et al. 2008). Although breaking down the complex functions of the brain into 

discrete domain-related phenotypes has facilitated identification of neural architectures 

underlying functionally distinct domains, this strategy may be less sensitive to identifying 

commonalities in network architecture across paradigms.

Recent studies have observed that the human brain possesses an intrinsic “trait-like” 

functional architecture that is independent of the employed paradigm, and brain networks 

observed during different paradigms are shaped primarily by this “trait” architecture 

and secondarily by paradigm-specific features (Cole et al. 2014; Geerligs et al. 2015; 

Krienen et al. 2014). Based on these findings, we have previously proposed a measure 

termed “cross-paradigm connectivity” (CPC (Cao et al. 2018a; Cao et al. 2019b)), which 
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essentially quantifies the state-independent functional connectivity for a given individual 

across multiple paradigms. Specifically, the CPC matrices are computed based on the 

principal component analysis (PCA) of the functional connectivity matrices derived from 

different fMRI paradigms. The first principal component (PC) extracted from these multi

paradigm functional connectivity matrices represents the connectivity pattern that explains 

the majority of variance shared across the paradigms and thus likely reflects a “trait” 

architecture of the human brain. Using this strategy, our prior work has shown the power 

of CPC matrices in the prediction and characterization of psychotic disorders (Cao et al. 

2018a; Cao et al. 2019b), suggesting CPC as a promising approach to study inter-subject 

differences, at least in clinical populations.

Although CPC has shown potential to track individual connectivity traits associated 

with behavior and risk for mental illness, at least four practical questions remain to be 

addressed regarding this approach. First, as a common concern in neuroimaging research, 

the reliability of the CPC matrices has not been established. A series of studies has 

demonstrated good reliability or generalizability of functional connectivity matrices derived 

from a single paradigm, including resting state (Braun et al. 2012; Cao et al. 2018b; Cao et 

al. 2014; Wang et al. 2011) and active tasks (Cao et al. 2018b; Cao et al. 2014). However, 

whether the high reliability in a single-paradigm context would translate to the multi

paradigm CPC matrices is unclear, a question that would affect the application of such an 

approach in longitudinal studies, such as those related to clinical trials or neurodevelopment. 

In addition, as previously shown in the single-paradigm functional connectivity studies, the 

choice of data processing pipeline such as atlas and the choice of fMRI paradigm both 

significantly influence reliability outcomes (Cao et al. 2018b; Cao et al. 2014; Wang et 

al. 2011; Welton et al. 2015). This raises the possibility that CPC reliability may also be 

affected by these factors. In theory, the CPC matrices derived from a PCA approach can 

be performed on any number of paradigms (larger than one) as well as different types of 

paradigms (resting state, various active tasks). Whether the paradigm number and paradigm 

type would influence the resulting CPC matrices and their reliabilities is unknown.

Another important consideration for the CPC matrices is stability. Specifically, while 

the reliability analysis quantifies how consistent the measures of CPC matrices are in a 

repeated-measures setting (Shavelson and Webb 1991; Shrout and Fleiss 1979), the stability 

analysis estimates whether the CPC matrices derived from different numbers and/or types of 

paradigms reflect the same architecture (Cole et al. 2014; Geerligs et al. 2015). This is of 

important practical significance because if the stability increases with an increase in number 

of paradigms, a CPC analysis with more fMRI paradigms included would then make the 

resulting network structure more stable and thus closer to representing the brain’s “trait” 

organization; otherwise, the number of included paradigms may have little influence on the 

generation of the “trait” network and therefore may be less important in the computation and 

interpretation of CPC results.

The third question relates to the similarity between the CPC matrices and the matrices 

computed from a single paradigm using the same PCA approach, in order to inform whether 

CPC matrices and highly-sampled single-paradigm matrices share the same network 

architecture. Specifically, while the CPC metric is typically generated from multiple fMRI 
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paradigms, it is unclear whether a PCA analysis on a single paradigm with multiple sessions 

would resemble that derived from multiple paradigms. In other words, it is an open question 

whether CPC indeed reflects a shared network architecture across different paradigms that 

cannot be achieved by a single paradigm, or simply increases signal-to-noise ratio (SNR) 

when collapsing data from multiple sessions. The answer to this question has important 

practical value since many neuroimaging studies may not have acquired multi-paradigm data 

but have a single paradigm (e.g. resting state) scanned across multiple sessions (Laumann et 

al. 2015; Poldrack et al. 2015; Zuo et al. 2014). If the multi-paradigm and single-paradigm 

(with repeated sessions) results are comparable, the brain’s “trait” network can simply be 

acquired from highly-sampled resting-state data.

Finally, we aim to demonstrate the superiority of CPC in studying individual variability 

compared with single-paradigm functional connectivity, as an empirical example of the 

utility of such approach in neuroscience research. Our prior work has demonstrated 

CPC alterations in individuals at clinical risk for psychotic disorders, a finding that is 

undetectable solely using resting-state whole-brain functional connectivity data, suggesting 

the superiority of CPC in distinguishing risk for progression of illness among at-risk 

individuals (Cao et al. 2018a). However, whether such superiority translates to healthy 

subjects is unclear. Given the hypothesis that CPC likely reflects a state-independent “trait” 

architecture of the human brain, it is possible that these “trait” measures would detect 

individual differences to a better extent than single-paradigm connectivity measures that 

contain mixed signals of both “trait” and “state”. If so, the CPC metrics would show 

potential as biomarkers for cognitive and behavioral predictions.

Here, we examined the above questions using a traveling-subject sample as previously 

reported (Cao et al. 2018). In this unique sample, eight healthy participants were scanned 

twice at each of the eight study sites, using a battery of five fMRI paradigms. This sample 

allows us to directly quantify multi-site reliability, stability, and individual identifiability for 

the CPC matrices constructed from the five paradigms. Moreover, to investigate potential 

influences of the employed paradigms on these measures, we also computed CPC based on 

all possible two-, three-, and four-combinations of these paradigms and compared the above 

measures between different combinations.

Methods and materials

Subjects

The studied sample included eight healthy traveling subjects (age 26.9 ± 4.3 years, 4 males) 

recruited from eight study sites across the United States and Canada: Emory University, 

Harvard University, University of Calgary, University of California Los Angeles, University 

of California San Diego, University of North Carolina Chapel Hill, Yale University, and 

Zucker Hillside Hospital. The sample details have been described previously in (Cao et al. 

2018b). Specifically, eight participants (one for each site) traveled to each of the eight sites 

in a counterbalanced order. At each site, they were scanned twice on two consecutive days 

with a battery of five fMRI paradigms, generating a total of 128 sessions (8 subjects x 8 

sites x 2 days) for each paradigm. The fMRI paradigms included an eyes-open resting state 

paradigm, a verbal working memory task, an episodic memory encoding task, an episodic 
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memory retrieval task, and an emotional face matching task. Details on these paradigms 

were given in (Cao et al. 2018b). Of note, for each of the working memory, episodic 

memory and face matching tasks, one session was unusable due to technical artifacts, and 

one session for the episodic memory paradigms did not complete successfully, leaving a 

total of 126 sessions available for all five paradigms.

All participants received the Structured Clinical Interview for Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV-TR (First et al. 2002)) and Structured Interview for 

Psychosis-risk Syndromes (McGlashan et al. 2001), and were excluded if they met the 

criteria for psychiatric disorders or psychosis prodromal syndromes. Other exclusion criteria 

included a history of neurological or psychiatric disorders, substance dependency in the last 

six months, IQ < 70 (assessed by the Wechsler Abbreviated Scale of Intelligence (Wechsler 

1999)) and the presence of a first-degree relative with mental illness. The whole study was 

performed in accordance with the protocols and guidelines approved by the institutional 

review boards at each study site. All subjects provided written informed consent for the 

study protocols.

Data acquisition and preprocessing

All data were acquired from eight 3 T MR scanners (Siemens Trio, GE HDx, and GE 

Discovery) located at eight study sites using gradient-recalled-echo echo-planar imaging 

(GRE-EPI) sequences with identical parameters. Specifically, the following parameters were 

used for all paradigms: TE = 30 ms, 77 degree flip angle, 30 4-mm slices, 1 mm gap, 

and 220 mm FOV. The working memory and face matching tasks used TR = 2.5 s while 

the other paradigms used TR = 2 s. The total time points for the five paradigms were 

between 132 and 250 (154 for resting state, 184 for working memory, 250 for episodic 

memory encoding, 219 for episodic memory retrieval, 132 for face matching). Since the 

time series for working memory and episodic memory tasks were much longer than that 

for resting state, we only used the first 154 time points in these tasks in order to avoid 

potential confounds caused by differences in amount of data between paradigms. In addition, 

we also acquired high-resolution T1-weighted images for all participants with the following 

sequences: 1) Siemens scanners: magnetization-prepared rapid acquisition gradient-echo 

(MPRAGE) sequence with 256 mm x 240 mm x 176 mm FOV, TR/TE 2300/2.91 ms, 9 

degree flip angle; 2) GE scanners: spoiled gradient recalled-echo (SPGR) sequence with 260 

mm FOV, TR/TE 7.0/minimum full ms, 8 degree flip angle.

Data preprocessing followed standard procedures implemented in the Statistical Parametric 

Mapping software (SPM8, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). In brief, all 

fMRI images were slice-time corrected, realigned for head motion, registered to the 

individual T1-weighted structural images, and spatially normalized to the Montreal 

Neurological Institute (MNI) template. Finally, the normalized images were spatially 

smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian kernel.

Network construction

Following previously published work (Cao et al. 2018b; Cao et al. 2014), we used two 

brain atlases to construct connectome-wide networks: a structure-based AAL atlas with 90 
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nodes (Tzourio-Mazoyer et al. 2002) and an expanded function-based Power atlas with 270 

nodes (Cao et al. 2018a; Cao et al. 2017; Cao et al. 2018b; Power et al. 2011). These 

atlases represent different node definition strategies and meanwhile cover both cortex and 

subcortex. Details on network construction were described previously (Cao et al. 2018b). 

In brief, the mean time series for each node in both atlases were extracted from the 

preprocessed images. The extracted time series were further corrected for task coactivations 

(for task data), white matter and cerebrospinal fluid signals, the 24 head motion parameters 

(i.e. the 6 rigid-body parameters generated from the realignment step, their first derivatives, 

and the squares of these 12 parameters (Power et al. 2014; Satterthwaite et al. 2013)), and 

the frame-wise displacement. The corrected time series were then temporally filtered (task 

data: 0.008 Hz high pass, rest data: 0.008–0.1 Hz band pass) to account for scanner and 

physiological noises. Pearson correlations were performed to generate a 90 × 90 (AAL 

atlas) or 270 × 270 (Power atlas) pairwise connectivity matrix for each session during each 

paradigm (i.e. each atlas has 126 × 5 matrices in total).

Principal component analysis and cross-paradigm connectivity

CPC were built upon the connectivity matrices derived from the five paradigms using PCA, 

following our previously published procedure (Cao et al. 2018a). Specifically, for each 

atlas, the connectivity matrices of the five paradigms at the same session were vectorized, 

mean centered, and decomposed into a set of principal components (PCs) using singular 

value decomposition (SVD). The first PCs generated from the analysis represented the CPC 

and were thus extracted (one for each session, 126 in total). In addition, for comparison 

purposes, we also performed PCA on each of the two-, three-, and four-combinations of 

the paradigms, yielding a total of 126 × 26 CPC matrices (10 for two-combination, 10 for 

three-combination, 5 for four-combination and 1 for all five paradigms). These generated 

CPC matrices were further used for the assessment of reliability, stability, and utility.

Reliability analysis

To assess multi-site reliability of CPC matrices, we calculated two metrics characterizing the 

key structure of the matrices: node strength and node diversity. Node strength is the average 

connectivity between a given node and all other nodes in the network, reflecting how 

strongly the node is connected to others; while node diversity is the connectivity variance 

between a given node and all other nodes, reflecting the variability of the connectivity 

pattern for that node in the network (Bullmore and Bassett 2011; Cao et al. 2019a). Note 

that the definitions in the current study are based on the CPC matrices rather than original 

connectivity matrices, which may reflect the strength and variability of the weighted linear 

combinations of the original connectivity matrices. The multi-site reliability of node strength 

and node diversity were subsequently quantified using generalizability theory (Cao et al. 

2018b; Shavelson and Webb 1991). Specifically, the total variance in each of the outcome 

measures (σ2 psd) was decomposed into a participant-related variance σ2 P, a site-related 

variance σ2 s,a day-related variance σ2 d, their two-way interactions σ2 ps, σ2 pd, σ2 sd, and 

their three-way interaction as well as random error σ2 psd,e (Shavelson and Webb 1991). The 

variance decomposition was performed using a three-way analysis of variance (ANOVA) 

model with participant, site and day included as random factors.
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σpsd
2 = σp2 + σs2 + σd

2 + σps2 + σpd
2 + σsd

2 + σpsd, e
2

Reliabilities of node strength and node diversity were then quantified by the D-coefficient 

(ϕ), which measures the proportion of participant-related variance over the total variance, 

thereby evaluating the absolute agreement of the target measure (analogous to ICC(2,1) in 

classical test theory (Shavelson and Webb 1991)). The formula is given as follows:

Φ= σ2p

σ2p + σ2s
n s + σ2d

n d + σ2ps
n s + σ2pd

n d + σ2sd
n s * n d + σ2psd, e

n s * n d

where n(i) represents the number of levels in factor i, and p, s, and d refer to participant, site, 

and day, respectively. Depending on how to define the number of levels, the D-coefficient 

can be calculated in two different situations, namely, the generalizability study (G-study) 

and the decision study (D-study). The D-coefficients in the G-study are estimated based 

on the facets and their levels in the studied sample (here n(s) = 8, n(d) = 2)(Cao et al. 

2018b; Forsyth et al. 2014; Shavelson and Webb 1991). In contrast, investigators define the 

number of facets and levels in the D-study in terms of research interest (Cao et al. 2018b; 

Noble et al. 2016; Shavelson and Webb 1991). Since “nested” designs are commonly used 

in neuroimaging research whereby each participant is scanned only one time at one site, the 

expected site- and day-related variance would be higher than those in a “crossed” design 

as used in this study (Lakes and Hoyt 2009). We thereby also computed the D-coefficients 

based on n(s) = 1 and n(d) = 1, which corresponds to the expected multi-site reliability 

in a “nested” design with distinct subjects between sites and days. In this work, we report 

reliability measures from both G- and D-studies.

Stability analysis

To assess stability of the CPC matrices and to directly compare the stability between 

different numbers and types of paradigms, we used a correlation-based method similar to 

that in (Cole et al. 2014). Specifically, if two matrices are structurally similar, they should 

be highly correlated element-wise. Here, we quantified the similarity of the CPC matrices 

constructed from different paradigm combinations by computing their Pearson correlation 

coefficients for each of the 126 sessions. In addition, for comparison purposes, we also 

assessed the similarities between the single-paradigm connectivity matrices derived from 

each of the five paradigms and these CPC matrices using the same method. This resulted 

in a 31 × 31 pair-wise correlation matrix for each session, with each element in the matrix 

representing the Pearson correlation coefficient between two different connectivity or CPC 

matrices (5 single-paradigm connectivity matrices and 26 CPC matrices as described above). 

The stability of a given connectivity or CPC matrix was subsequently measured as the 

average of the correlation coefficients across all 31 matrices (i.e. row or column mean).
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Utility analysis and individual identification

To compare CPC matrices with multi-session single-paradigm connectivity matrices, the 

same correlation-based approach as described above was used. To condense single-paradigm 

connectivity data from multiple sessions and meanwhile equate the amount of data with that 

used in multi-paradigm CPC, we performed a similar PCA analysis on five randomly-chosen 

sessions for each of the five paradigms and each of the eight subjects. This randomization 

was repeated for 16 times which generated a total of 16 first-PC matrices for each paradigm 

and subject, each representing the cross-session shared variance for a single paradigm. 

The derived 16 matrices were further averaged to acquire a single-paradigm PC matrix. 

Similarly, the multi-paradigm CPC matrices and original connectivity matrices for each 

paradigm and each subject were also averaged across the 16 sessions, thereby assuring the 

same amount of data being compared. Subsequently, we compared the similarities of the 

derived single-paradigm PC matrices with ones acquired from multiple paradigms using 

Pearson correlations. In case that CPC simply increases SNR, a close similarity between 

single-paradigm PC matrices and multi-paradigm PC matrices would be observed, which 

should be more similar than that between single-paradigm PC matrices and single-paradigm 

connectivity matrices. Otherwise, it is more likely that the CPC matrices capture shared 

connectivity patterns across different paradigms and thus a multi-paradigm design is indeed 

required in such a situation.

We investigated the ability of CPC matrices in individual identification using the recently 

developed “connectome fingerprinting” approach (Finn et al. 2015; Kaufmann et al. 2017). 

This approach was originally employed to identify individuals across different paradigms, 

where the identification accuracy was measured based on the comparison of functional 

connectivity matrices derived from one paradigm with those from another. Here, since 

we aim to directly compare the outcome identification accuracies between paradigms, we 

slightly modified this approach by calculating the identification accuracy based on the 

comparison of matrices across different sites and days. Specifically, in an iterative process, 

one subject’s CPC or functional connectivity matrix at one scan site and one scan date was 

selected, and the similarity of this preselected matrix with all subjects’ matrices from a 

different site and date was calculated based on Pearson correlation coefficients. Individual 

identification was determined by finding the one among all tested matrices that had the 

highest similarity to the preselected matrix. If the individual was successfully identified, 

a value of 1 was assigned to this attempt, and otherwise a value of 0 was assigned. This 

procedure was repeated with every subject being the target subject once across all sites 

and days. Following previous procedures (Finn et al. 2015; Kaufmann et al. 2017), the 

accuracy of connectome fingerprinting for a given individual was calculated as the number 

of successful identifications divided by the total number of iterations for that individual. 

The accuracy values were generated for each subject at each paradigm and paradigm 

combinations.

Statistics

For the derived reliability, stability, and utility measures, we used mixed-effect models to 

investigate potential contributing factors to these outcome measures. Specifically, we asked: 

1) whether the use of different brain atlases would influence results; 2) how the outcomes 
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would change with the increase of number of paradigms in the CPC construction; and 

3) whether different types of paradigm (i.e. resting state and active tasks) would affect 

the resulting measures. To answer these questions, brain atlas, number of paradigms, 

and paradigm type were modeled as fixed-effect variables, while subject was modeled 

as random-effect variable with random intercept considered for each subject (details see 

Results). Statistical analyses were performed on SPSS 26.

Results

Cross-paradigm connectivity

We first examined the extracted first PC matrices to ensure that these matrices indeed 

reflected the majority of variance in the connectivity matrices shared across different 

paradigms. We found that for both AAL and Power atlases, the first PC matrices in 

general explained ~ 80% of total variance across paradigms. Specifically, depending on the 

paradigm combination, 76.0–89.1% of total variance were captured in the first PC matrices 

using the AAL atlas, while 66.9–83.8% were captured using the Power atlas (Fig. 1A). 

Notably, when resting state was included in the PCA analysis, the variance explained by the 

first PC was between 66.9% and 83.2% for both atlases, compared to that between 73.2% 

and 89.1% when using task data only. In addition, the first PC matrices explained 76.2–

89.1%, 69.8–83.9%, 67.7–81.3% and 66.9–76.0% of total variance for two-paradigm, three

paradigm, four-paradigm and five-paradigm combinations, respectively. To test whether 

different factors had significant influences on the explained cross-paradigm variance, we 

used a mixed-effect model where atlas (AAL vs Power), paradigm type (including rest vs 

only task) and number of paradigms (two to five) were entered as fixed-effect variables 

and subject as a random-effect variable. Significant main effects were shown for all three 

fixed-effect factors (P < 0.001 for atlas, paradigm type and number of paradigms). In 

particular, the percent of variance explained in the PC matrices derived from the AAL atlas 

and from task data only was significantly higher than that in PC matrices derived from the 

Power atlas and from data with resting state included (Fig. 1B). Moreover, the percent of 

variance significantly dropped with the increase of number of paradigms. These findings 

indicate that the performance of CPC in explaining multi-paradigm variance depends on 

factors such as atlas, number of paradigms and whether resting state data are included or not.

Reliability of cross-paradigm connectivity

Consistent with our prior work (Cao et al. 2018b), the G-study revealed high reliability for 

both node strength and node diversity across all paradigm combinations and atlases (overall 

range between 0.68 and 0.90, Fig. 2A and B, Tables S1 & S2). Specifically, node diversity 

with the AAL atlas showed the highest reliability (ranging between 0.74 and 0.90), while 

node strength with the AAL atlas showed the lowest reliability (ranging between 0.68 and 

0.85). Reliabilities for two-, three-, four- and five-paradigm combinations ranged between 

0.68 and 0.90, between 0.77 and 0.90, between 0.81 and 0.89, and between 0.84 and 0.88, 

respectively. With the increase of number of paradigms included in the CPC, a gradually 

enhanced reliability was clearly shown for both metrics and both atlases.
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Similar patterns were also present for the reliability measures in the D-study, albeit with 

lower values (Figs. 3A and B). In particular, the overall range for the D-coefficients was 

between 0.24 and 0.50, regardless of atlas, metric and paradigm combination. Again, the 

highest reliability was shown for node diversity with the AAL atlas (range between 0.29 and 

0.50), while the lowest reliability was found for node strength with the AAL atlas (range 

between 0.24 and 0.39). Reliability increased as a function of number of paradigms included 

in the CPC, ranging from between 0.24 and 0.47 for two-paradigm combinations to between 

0.38 and 0.49 for five-paradigm combinations.

To directly compare these cross-paradigm reliability measures with the ones derived from 

single paradigms, we extracted the D-coefficients for node strength and node diversity 

from our previously reported work (Cao et al. 2018b). Interestingly, we found that the 

two examined metrics showed the opposite effects in terms of single-paradigm and multi

paradigm reliabilities (Figs. 2A, B, 3A, B). Specifically, the reliability for node diversity 

continuously increased with the increase of number of paradigms, while the reliability for 

node strength dramatically dropped from single to multiple paradigms, regardless of brain 

atlas. This discrepancy suggests a reliability trade-off between strength and diversity, where 

CPC would increase the reliability of network diversity at the cost of lower reliability of 

network strength.

We performed a four-way ANOVA analysis on the outcome reliability measures where atlas 

(AAL vs Power), examined metric (strength vs diversity), number of paradigms (one to five) 

and paradigm type (including rest, with 16 combinations vs only task, with 15 combinations) 

were modeled as fixed-effect factors. Two-way interactions between these variables were 

also included in the model since the findings strongly suggest an interactive effect. We found 

significant main effects for connectiviy metric, number of paradigms and paradigm type 

in both G- and D-studies (P < 0.02, Figs. 2C and 3C), and a significant main effect for 

atlas in the G-study (P = 0.003, Fig. 2C). In particular, significantly higher reliability was 

detected for the CPC constructed from only task data compared to those from data including 

resting state. Moreover, two-paradigm combinations had significantly lower reliability than 

other three-, four-, and five-paradigm combinations (PBonferroni < 0.001), and three-paradigm 

combinations had significantly lower reliability than four-paradigm combination in the G

study (PBonferroni = 0.001). In the D-study, significant effects were shown for all pairwise 

comparisons except for that between four- and five-paradigm combinations (PBonferroni < 

0.001). For both G- and D-studies, significant interactive effects were shown for metric x 

atlas, metric x paradigm type, metric x number of paradigms, and number of paradigms x 

paradigm type (all P < 0.001, Figs. 2D and 3D). Specifically, node strength was less reliable 

than node diversity with the AAL atlas but more reliable than node diversity with the Power 

atlas. Similar pattern was also present in terms of paradigm type, with higher reliability 

of node strength using data including resting state but higher reliability of node diversity 

using data including only task paradigms. In addition, as expected, significant interactive 

effect on metric x number of paradigms indicates that CPC would enhance the reliability of 

node diversity but reduce the reliability of node strength, at least for the maximal number of 

paradigms that can be acquired in the current sample.
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Since the D-study generally yielded lower overall reliability than the G-study, we further 

investigated the D-coefficients in the D-study for each single node in the CPC matrices, 

in order to inform the most reliable nodes in a cross-paradigm research (Tables S3 & 

S4). Using the CPC built upon all five paradigms, we found that regions with the highest 

reliability (top 20% ranked by D-coefficient values of all nodes) were largely distributed in 

the brain’s default-mode system, sensorimotor system, and frontoparietal system, regardless 

of atlas and metric (Fig. 4). In addition, the subcortical and cerebellar system also showed 

high reliability in terms of node strength, while the salience system showed high reliability 

in terms of node diversity. Figure 4 illustrated the top 20% most reliable nodes separated for 

each atlas and each metric, with nodes in the Power atlas assigned to the established systems 

(sensorimotor, visual, auditory, default-mode, cingulo-opercular, frontoparietal, salience, 

attention, subcortico-cerebellar) according to (Power et al. 2011).

Considering the small sample size in the present study, we additionally calculated the largest 

possible null hypothesis values that can be tested for each derived reliability estimates, as 

an assessment of their performance. The calculation was performed using the R package 

ICC.Sample.Size (https://cran.r-project.org/web/packages/ICC.Sample.Size/index.html), at 

statistical power = 0.8, sample size = 8, rater number = 16, and alpha = 0.05 (two-tailed). 

The results were shown in Table S1 and Table S2. In general, the largest possible null 

hypothesis values were very close to the derived reliability values at an adequate statistical 

power (0.8), suggesting that the present sample, albeit small, may still have reasonable 

power to detect a small effect.

To examine whether head motion would be related to connectivity metrics (node strength 

and node diversity) in the CPC analysis, which in turn influence the reliability measures, 

we calculated the correlations between the mean frame-wise displacements across all five 

paradigms and the mean CPC metrics derived from all five paradigms. The results did not 

show any significant correlations between head motion and CPC metrics (node strength: P = 

0.93 and P = 0.96 for the AAL and Power atlas, respectively; node diversity: P = 0.11 and 

P = 0.66 for the AAL and Power atlas, respectively). These findings suggest that measures 

of node strength and node diversity in the CPC analysis are unlikely to be affected by head 

motion.

Stability of cross-paradigm connectivity

The overall correlation coefficients between different paradigms and paradigm combinations 

ranged from 0.61 to 0.99 for the AAL atlas (Fig. 5A), and from 0.49 to 0.99 for the 

Power atlas (Fig. 5B). In general, with the increase of number of paradigms, the CPC 

matrices became more and more similar to each other, and thus more stable. In particular, 

the mean pairwise one-paradigm correlations were 0.76 and 0.67 for the AAL atlas and 

Power atlas, respectively. These numbers increased to 0.89 and 0.83 for the two-paradigm 

combinations, 0.96 and 0.92 for the three-paradigm combinations, and 0.98 and 0.97 for 

the four-paradigm combinations. Accordingly, the stability for different paradigms and 

paradigm combinations increased from 0.78 (for single-paradigm resting state) to 0.95 (for 

all 5-paradigm combination) with the AAL atlas and from 0.72 to 0.93 with the Power atlas 

(Fig. 5C, Table S5).
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Further statistics using atlas, number of paradigms and paradigm type as fixed-effect factors 

demonstrated significant main effects for all of these factors. In particular, the AAL atlas, 

the data without resting-state included, and more paradigms were associated with higher 

stability of CPC (P < 0.001, Fig. 5D).

Utility of cross-paradigm connectivity

We first investigated whether the single-paradigm PC matrices would be more similar to 

the multi-paradigm PC matrices, or would more resemble the single-paradigm connectivity 

matrices. We found that the similarity between multi-paradigm and single-paradigm PC 

matrices ranged from 0.86 to 0.98, depending on paradigm, atlas, and subject. Similar 

similarities were also detected between multi-paradigm PC matrices and single-paradigm 

connectivity matrices (ranging from 0.90 to 0.98). In stark contrast, the similarity 

between single-paradigm PC matrices and single-paradigm connectivity matrices were ~ 

1 (> 0.99) for all paradigms, atlases, and subjects (Fig. 6). The statistical comparison 

showed a significantly higher similarity between single-paradigm PC and single-paradigm 

connectivity matrices compared with other pairs (P < 0.001). This finding provides direct 

evidence that single-paradigm PC matrices are more similar to single-paradigm connectivity 

matrices than multi-paradigm PC matrices, and thus unlikely to reflect the same network 

architecture as the CPC.

The connectome fingerprinting analysis showed that the overall accuracy ranged between 

0.35 and 0.97 for the AAL atlas, and between 0.68 and 1 for the Power atlas. Specifically, 

accuracies for single-paradigm connectivity ranged between 0.35 and 0.95 for the AAL 

atlas, and between 0.69 and 1 for the Power atlas. For the AAL atlas, two-, three-, four-, 

and five-paradigm CPC fingerprinting accuracies were between 0.41 and 0.95, between 0.53 

and 0.97, between 0.55 and 0.97, and between 0.60 and 0.97, respectively. The minimal 

accuracies for two-, three-, four-, and five-paradigm CPC using the Power atlas were 0.68, 

0.74, 0.77 and 0.80, respectively, while the maximal accuracies all reached 1 (Fig. 7A, Table 

S6). All derived accuracies were significantly higher than the chance level, as demonstrated 

from 10,000 permutations.

Similar as steps described above, we also performed a mixed-effect model to investigate 

the contributions of different factors to connectome fingerprinting accuracy. With atlas, 

number of paradigms and paradigm type modeled as fixed-effect variables and subject as 

random-effect variable, we found significant effects for atlas, number of paradigms, and 

paradigm type (P < 0.001, Fig. 7B). In particular, CPC fingerprinting accuracies were 

significantly higher for the Power atlas and for including only task data compared with the 

AAL atlas and including rest data. In addition, the accuracy also became higher when the 

number of paradigms increased. These findings suggest that an optimal processing pipeline 

and fMRI paradigm would reduce the false positive and false negative rates in connectome 

fingerprinting.

Discussion

In this study, we computed individual CPC patterns using our previously proposed approach 

(Cao et al. 2018a) in a sample of traveling subjects scanned with five fMRI paradigms, 
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and assessed the reliability, stability, and utility of these derived CPC patterns. Our results 

demonstrated that the CPC matrices were reasonably reliable, stable, and were capable 

of distinguishing individuals from one another, at least in the current sample with the 

employed paradigms. Moreover, factors such as the choice of brain atlas, the number of 

paradigms, and type of paradigms significantly influenced the outcomes. Overall, these 

findings suggest PCA-based CPC analysis as a promising approach to study human brain 

“traits” in neuroimaging research, although the choices of brain atlas and fMRI paradigm are 

worthy of consideration in future studies.

Consistent with our prior work using the same sample (Cao et al. 2018b), we observed 

good to excellent reliability for CPC node strength and node diversity in the G-study, 

and relatively lower reliability for these measures in the D-study when generalized into 

the context of single-site and single-day (Nsite = 1, Nday = 1). Interestingly, while node 

strength was more reliable than node diversity using single-paradigm data, the pattern was 

partly flipped for multi-paradigm CPC matrices, suggesting node diversity as a promising 

target measure in longitudinal and/or multi-center studies using the CPC approach. When 

comparing reliability measures from single-paradigm connectivity matrices with those from 

multi-paradigm CPC matrices, we found an increase from single- to multi-paradigm in 

terms of node diversity but a decrease in terms of node strength, suggesting that the use 

of multi-paradigm data has a mixed effect on the derived connectivity matrices. On the 

one hand, the PCA analysis would extract the most consistent variance across multiple 

paradigms and thus render the node diversity (which per se is a measure of connectivity 

variance) more reliable; on the other hand, since functional connectivity strength differs 

between different paradigms, the inclusion of multiple paradigms would make the resulting 

node strength more heterogeneous and thus less reliable than that from a single paradigm. 

However, this reliability loss tends to be greatly compensated by the increase of number of 

paradigms, suggesting that acquiring high reliability of node strength in the CPC context 

may need a sufficient number of paradigms.

We found that the most reliable nodes in the CPC matrices were predominantly distributed 

in the default-mode network, sensorimotor network, and frontoparietal network. This finding 

is highly parallel to our prior finding that the default-mode and sensorimotor systems are 

consistently reliable during both resting state and active tasks (Cao et al. 2018b). It has 

been well known that the default-mode network is a brain system that is strongly activated 

when individuals are at rest but deactivated during goal-directed tasks (Buckner et al. 2008; 

Raichle et al. 2001). The robust rest-related activation and task-related deactivation may 

account for the high reliability of its connectivity patterns. Similarly, the sensorimotor 

system is required when subjects perform motor response during active tasks, and it may 

also be involved in the sensation of environmental changes during resting state. In addition, 

the frontoparietal network is the key cognitive control system in the human brain which 

serves as a “control hub” that coordinates and regulates the function of other systems in 

order to reach the task goals (Cole et al. 2014; Cole et al. 2013; Dosenbach et al. 2007). 

It is also robustly activated across a variety of cognitive and emotional tasks (Dosenbach et 

al. 2007; Iidaka et al. 2006; Lindquist and Barrett 2012; Owen et al. 2005). As a result, the 

functionality of these systems makes them plausible to be reliable during a multi-paradigm 

CPC analysis.
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With larger number of paradigms included, the derived CPC matrices became more and 

more similar to each other, suggesting that increasing number of paradigms would enhance 

CPC stability. Two possible reasons may account for this. First, when the number of 

paradigms increases, more shared “paradigm-independent” variance was extracted, and the 

corresponding CPC matrices would more resemble the “trait” matrices for each individual. 

These “trait” matrices are naturally more stable than the “state” matrices, which are 

mixed signals of brain’s trait structure, state dynamic, and random noise (Geerligs et al. 

2015). Second, when condensing data from multiple paradigms, the random noise becomes 

attenuated. As a consequence, this process simultaneously increases SNR, which would 

make the resulting matrices more stable. However, given the fact that single-paradigm PC 

matrices are much more similar to single-paradigm functional connectivity matrices than to 

multi-paradigm CPC matrices, the second interpretation is unlikely to be the case to account 

for increased stability. Together, our results suggest that use of more paradigms would make 

the derived CPC matrices closer to the brain’s “trait” architecture, the pattern of which is 

unachievable from single-paradigm matrices, even with multiple sessions.

Since the CPC matrices most likely reflects the “trait” architecture of the brain system 

that is unattainable by single-paradigm fMRI, the utility of such “trait” patterns becomes 

critically important. Using the “connectome fingerprinting” approach, we demonstrated 

that the CPC matrices were able to identify individuals among the healthy population, 

the accuracy of which outperformed that using single-paradigm functional connectivity 

matrices, suggesting the superiority of CPC in estimating inter-subject variability and 

in subject identification. Notably, the identification accuracy became higher with the 

increase of number of paradigms, suggesting that closer to the functional “trait” network 

would render the CPC matrices more distinct and identifiable. Since human functional 

connectome is highly individualized and predictive of a variety of demographic, cognitive, 

and behavioral variables such as age (Dosenbach et al. 2010), gender (Zhang et al. 2018), 

intelligence (Finn et al. 2015), attentional ability (Rosenberg et al. 2016), and personality 

traits (Dubois et al. 2018; Hsu et al. 2018; Jiang et al. 2018), these findings suggest 

the potential of CPC as a novel and possibly better individual predictor in cognitive and 

behavioral research. Moreover, clinical studies also revealed that the patterns of functional 

connectome are highly predictive of symptom severity in multiple brain disorders such as 

schizophrenia (Cao et al. 2018a), Alzheimer’s disease (Lin et al. 2018), autism (Plitt et al. 

2015), and stroke (Watson et al. 2018), which further suggests the broader utility of CPC in 

both healthy and clinical populations.

Several factors significantly affected the outcomes of the CPC matrices. Specifically, 

compared with the Power atlas, the AAL atlas was associated with higher reliability of 

node diversity, lower reliability of node strength, higher stability, and lower identification 

accuracy. Compared with data including only task paradigms, data including rest paradigm 

were associated with lower reliability, lower stability, as well as lower identification 

accuracy. These findings may have interesting implications for future CPC studies. One 

possible explanation for the effect of brain atlas is the different number of nodes between 

the two examined atlases. As previously shown, networks constructed from the larger size 

Power atlas are generally more reliable than the smaller size AAL atlas (Cao et al. 2018b; 

Cao et al. 2014). In addition, a relatively high-resolution parcellation is related to higher 
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individual variability, and thus boosts identification accuracy (Finn et al. 2015). However, 

larger network size may also be associated with higher chance of spurious connections and 

noise, which may relatively reduce stability. Another explanation is the different definitions 

of the two atlases. Since the Power atlas is functionally defined based on both resting-state 

and task data, it may by nature more accurately represent functionally separated units in 

the human brain that in turn increases the reliability of its connectivity strength. In contrast, 

the function of the structurally defined AAL atlas tends to be more heterogeneous, thereby 

increasing the reliability of connectivity diversity. These results suggest that the choice of 

brain atlas may depend on research purposes in the CPC studies. Besides the brain atlas 

effect, the lower performance of CPC matrices with data including resting state may be 

attributed to several reasons. First, compared to the conditions when subjects are actively 

involved in goal-directed tasks, a resting state design lacks the component to constrain the 

subjects’ attention and thoughts. This naturally makes the connectivity differences between 

resting state and active tasks larger than those between different task conditions. As a 

consequence, the CPC matrices constructed from both rest and task data would capture less 

shared variance than those constructed from only task data, and thus less stable. Second, the 

lower reliability with data including resting state well corresponds to previous work showing 

that task-based brain networks are more reliable than resting-state brain networks (Cao et al. 

2018b; Deuker et al. 2009b). Compared to task paradigms which require considerably more 

attentional effort, resting state involves the random engagement of internal thoughts such 

as introspection, future envisioning and autobiographical memory retrieval (Buckner et al. 

2008), and thus by nature is more vulnerable to state-related within-subject factors such as 

mood, tiredness, diurnal variations, and scan environment. These discrepancies would also 

contribute to their differences in connectome fingerprinting accuracy, where the connectome 

during tasks outperformed that during rest. Notably, the same finding has been reported 

before in (Finn et al. 2017). As discussed by the authors, “Rest has become the default 

state for probing individual differences, chiefly because it is easy to acquire and a supposed 

neutral backdrop… However, mounting evidence suggests that rest may not be the optimal 

state for studying individual differences.” This argument seems to be supported by our own 

data based on CPC fingerprinting.

Besides the CPC approach, a recent study has proposed a method assessing “general 

functional connectivity (GFC)” based on the concatenation of time series across multiple 

fMRI paradigms (Elliott et al. 2019). Interestingly, the results from the GFC method 

seem to be highly similar to those reported in the current study using a CPC approach. 

In particular, both studies have shown that the inclusion of multiple paradigms would 

significantly increase the reliability of derived connectivity metrics, and that a combination 

of multi-paradigm data would achieve better individual predictability compared with resting

state data alone. While future studies are encouraged to compare the performance of these 

two approaches quantitatively, both studies have clearly pointed to the important value of 

leveraging multi-paradigm fMRI data in studying individual brain networks.

We would like to note several limitations for our study. First, we acknowledge that the 

sample size in this study is relatively small, which may to a certain degree constrain the 

power to quantify the desired measures of CPC matrices. Despite the fact that this fMRI 

sample is one of the largest to date with subjects repeatedly sampled from multiple sites, 
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days, and paradigms, future studies with larger sample size assessing the performance of 

CPC matrices are still warranted. Second, while we explicitly tested the effect of brain 

atlas on the outcome measures, many other factors during fMRI data processing may as 

well influence our findings, such as preprocessing parameters (Braun et al. 2012), filter 

frequency (Braun et al. 2012; Deuker et al. 2009a), noise correction strategy (Braun et al. 

2012; Cao et al. 2018b; Liao et al. 2013), connectivity metrics (Fiecas et al. 2013; Liang et 

al. 2012), among others. Since variabilities in these factors were not examined in this study, 

we would like to emphasize that our findings are based on a preselected data processing 

pipeline and may not necessarily generalize to other pipelines. In a similar way, our results 

are also generated from a typical set of fMRI experiments evaluating memory, emotion 

and resting functions of the brain, and CPC matrices computed from other paradigms may 

show (presumably slight) differences from this battery. Third, an interesting yet unexplored 

question is whether lower reliability of node strength in multi-paradigm CPC would be 

completely compensated for using a larger number of fMRI paradigms. If this is the case, 

multi-paradigm studies with large number of paradigms would certainly be beneficial in 

investigating individual traits.

To sum up, using a traveling-subject multi-paradigm fMRI dataset, our study provides the 

first evidence for the reliability, stability, and utility of CPC in neuroimaging research. The 

findings in the present data encourage the use of CPC approach to study brain functional 

“traits” related to individual cognition, behavior, and neuropathology, and offer some useful 

insights into the choices of brain atlas and fMRI paradigm. While these findings still 

merit further replication, they suggest that a shift toward the collection of large batteries 

of paradigms is preferred to understand individual differences in cognitive and clinical 

neuroscience, in addition to resting-state data where the vast majority of current research has 

been focused on.
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Fig. 1. 
Percent of variance explained by CPC (the first PC in the PCA analysis). (A) For all possible 

combinations of the fMRI paradigms used in the data, the first PC explained ~ 80% of total 

variance across paradigms. (B) Significantly higher percent of variance was explained by the 

first PC when the analysis was performed on the AAL atlas (vs Power atlas), only task data 

(vs rest data) and a small number of paradigms. Error bars indicate standard errors
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Fig. 2. 
Measures of CPC matrices showed high reliability (D-coefficients) in the G-study. Note that 

reliability measures for functional connectivity matrices during each of the five paradigms 

were also included (as number of paradigm = 1) to facilitate direct comparisons with those 

of the CPC matrices. These single-paradigm reliabilities were reported previously in (Cao 

et al. 2018b). (A) Reliability of node strength and node diversity as a function of number 

of paradigms. (B) Reliability of node strength and node diversity across different paradigm 

combinations. (C) The matrices derived from the AAL atlas, task data, and larger number of 

paradigms had higher reliability compared with the Power atlas, rest data, and small number 

of paradigms. (D) Interactive effects were shown for metric x atlas, metric x paradigm type, 

metric x number of paradigms, and number of paradigms x paradigm type on the reliability 

measures. Error bars indicate standard errors
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Fig. 3. 
Reliability (D-coefficients) for measures of CPC matrices in the D-study. Note that 

reliability measures for functional connectivity matrices during each of the five paradigms 

were also included (as number of paradigm = 1) to facilitate direct comparisons with 

those of the CPC matrices. These single-paradigm reliabilities were reported previously in 

(Cao et al. 2018b). (A) Reliability of node strength and node diversity as a function of 

number of paradigms. (B) Reliability of node strength and node diversity across different 

paradigm combinations. (C) The matrices derived from only task data and larger number of 

paradigms had higher reliability compared with rest data and small number of paradigms. 

(D) Interactive effects were shown for metric x atlas, metric x paradigm type, metric x 

number of paradigms, and number of paradigms x paradigm type on the reliability measures. 

Error bars indicate standard errors
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Fig. 4. 
Top 20% of most reliable nodes for the CPC matrices constructed from all five paradigms in 

the D-study (A: node strength with AAL atlas; B: node diversity with AAL atlas; C: node 

strength with Power atlas; D: node diversity with Power atlas). For (C) and (D), nodes were 

allocated to the established networks according to (Power et al. 2011). For (A) and (B), 

nodes were assigned to the most representative Power network as described in (Cao et al. 

2019a). SM = sensorimotor; VIS = visual; AUD = auditory; DMN = default-mode; CON = 

cingulo-opercular; FPN = frontoparietal; SAL = salience; ATT = attentional; SUB-CRB = 

subcortico-cerebellar
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Fig. 5. 
Pairwise similarities of CPC matrices constructed from different paradigm combinations 

assessed by Pearson correlations (A: AAL atlas; B: Power atlas). The mean pairwise 

similarities within five single paradigms as well as within two-, three-, and four-paradigm 

combinations were given in red. The right-most columns indicated the mean similarities 

(stability) for each paradigm or paradigm combination across all other paradigm or 

paradigm combinations, which were shown in details in (C). (D) Significant effects were 

shown for atlas, paradigm type and number of paradigms on the matrical stability. Error bars 

indicate standard errors
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Fig. 6. 
Similarities between multi-paradigm PC matrices, single-paradigm PC matrices, and single

paradigm connectivity matrices (A: AAL atlas; B: Power atlas). Matrices built upon single 

paradigm and single-paradigm PCA were almost identical (r ~ 1), both of which were much 

less similar to that built upon multi-paradigm PCA. Error bars indicate standard errors
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Fig. 7. 
(A) Accuracy of connectome fingerprinting using CPC matrices across different paradigm 

combinations. Note that fingerprinting accuracies for functional connectivity matrices during 

each of the five paradigms were also included (as number of paradigm = 1) to facilitate 

direct comparisons with that of the CPC matrices. All derived accuracies were significantly 

higher than the chance level (~ 0.125), as calculated from 10,000 permutations. (B) 

Significantly higher accuracies were shown for matrices using Power atlas, only task data, 

and larger number of paradigms. Error bars indicate standard errors
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