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Abstract

The inflammasome is a large multimeric protein complex comprised of an effector protein that 

demonstrates a specificity for a variety of activators or ligands, an adaptor molecule and pro-

caspase-1 which is converted to caspase-1 upon inflammasome activation. Inflammasomes are 

expressed primarily by myeloid cells and are located within the cell. The macromolecular 

inflammasome structure can be visualized by cryo-electron microscopy. This complex has been 

found to play a role in a variety of disease models in mice and several have been genetically linked 

to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding 

domain leucine rich repeat containing), or NOD (nucleotide oligomerization domain)-like receptor 

protein family. However, other effectors have also been described, with the most notable being 

AIM2 (absence in melanoma 2), which recognizes DNA to elicit inflammasome function. This 

chapter will focus on the role of the inflammasome in myeloid cells and its role in health and 

disease.

Introduction

Inflammation is the body’s response to injury, pathogen exposure and irritants. Pattern 

recognition receptors allow our body to recognize a diverse array of patterns generated 

during exposure to these insults. In 2002, the Nucleotide-binding domain, Leucine-rich 

Repeat containing (NLR, also known as NOD-like receptor) gene family of pattern 

recognition receptors was discovered(1–3). While several members were already recognized 

at that point, reports of the entire NLR family provided a global view. In the past fifteen 

years of research, the physiological relevance of these genes has been revealed to include a 

diverse variety of functions. Gene mutations in some of the family members have been 

linked to autoinflammatory diseases in humans (Figure 1). This association of mutations in 

NLR genes to autoinflammatory diseases indicates critical functions in the regulation of 

immunity and inflammation.

There are 22 NLR genes in humans and 34 identified in mice, with each gene encoding a 

protein with a characteristic tripartite structure of central nucleotide binding domain (NBD), 

an N-terminal effector domain and a variable number of C-terminal leucine rich repeats 

(LRRs) (Figure 2)(4). Proteins with domain architecture similar to that of human NLRs exist 

in plants and in invertebrates such as sea urchins. These proteins are absent in nematodes 

and Drosophila, suggesting either convergent evolution between mammalian and plant NLRs 

or loss in invertebrates(5, 6). The effector domains of NLRs can be combinations of the 
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following domain types: acidic transactivation domain (AD), baculoviral inhibitory repeat 

(BIR)-like domain, caspase recruitment domain (CARD), pyrin domain or domain of 

unknown function (X) (Figure 2). The length of the LRR domains is highly variable. For 

example, an NLR may contain up to 30+ LRR domains(7). While each NLR has a unique 

capability to sense a variety of pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs), the exact mechanisms of NLR-ligand binding have 

only recently emerged for NOD2 and NLRC4/NAIP proteins. Initially NLRs were presumed 

to be expressed only in innate immune cells of monocyte/macrophage lineage. However, 

their ubiquitous expression throughout the human body is now widely accepted. 

Interestingly, different NLRs show distinct tissue, cellular and intracellular distributions, 

suggesting variable roles in different cell types(8). This chapter will focus on the role of 

NLRs in myeloid cells in the normal host as well as in dysregulated immune states of 

disease.

Activation of Inflammasome NLRs

Upon activation, several NLRs form multiprotein complexes called “inflammasomes”. These 

complexes consist of an NLR, an adapter molecule known as ASC (apoptosis-associated 

speck-like protein containing a CARD) and the inflammatory protease pro-caspase-14–5. 

Even though the inflammasome mediated roles of NLRs have been extensively studied, there 

are several non-inflammasome mediated functions of NLRs including NF-κB regulation, 

MAPK activation, cytokine and chemokine production, IFN production, ribonuclease L 

activation and antimicrobial reactive oxygen species (ROS) production. The inflammasome 

forming NLRs will be discussed in detail here, while the readers are referred to other 

reviews for descriptions of the non-inflammasome forming NLRs(9–11).

A subset of NLRs (NLRP1, NLRP3, NLRP6, NLRP7, NLRC4, NLRC5 and NAIP2/5/6) has 

been reported to form inflammasomes. Each NLR with its activating signal, inflammasome 

components and disease association will be described here in some detail.

NLRP1

NLR family, Pyrin domain containing 1 or NLRP1 (formerly CARD7, DEFCAP, NALP1) 

was first characterized as a member of the CED-4 family of apoptotic proteins that are 

required to initiate programmed cell death(12–14). The first caspase-1 activating 

inflammasome to be identified consisted of NLRP1, ASC, caspase-1 and caspase-5(15). 

Overexpression of NLRP1 in mammalian cells led to apoptosis(12, 13). NLRP1 is a 

cytoplasmic protein that is highly expressed in peripheral blood lymphocytes(12). Initial 

studies on NLRP1 suggested that the NLRP1 inflammasome in humans consists of NLRP1, 

pro-caspase-1, caspase-5 and the adapter ASC(12, 13). It was later revealed that even though 

the presence of ASC may not be required for processing of pro-caspase-1 by the NLRP1 

inflammasome, ASC does augment processing of pro-caspase-1(16).

There is one NLRP1 gene in humans in contrast to three paralogs in mice, Nlrp1a, Nlrp1b, 

Nlrp1c(17). Interestingly, not all strains of mice express all isoforms. For example, some 

strains of inbred mice express different splice variants of Nlrp1b, while Nlrp1a is highly 

conserved(18). The NLRP1 protein in humans consists of an N terminal pyrin domain, a 
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central NBD-associated domain (NAD), LRRs, a function to find (FIIND) domain, and a C 

terminal CARD domain. Polymorphisms in the NLRP1 gene, in both the noncoding and 

coding sequences have been associated with the dermatologic autoimmune disease 

vitiligo(19–21). The NLRP1 haplotype associated with vitiligo and other autoimmune 

disorders leads to increased IL-1β processing. Several coding polymorphisms have also been 

associated with heightened risk for other autoimmune diseases such as Addison’s disease 

and type 1 diabetes(22).

The mouse Nlrp1 paralogs vary in structure from the human protein such that Nlrp1a lacks 

the N terminal pyrin domain, Nlrp1b lacks both the pyrin and NAD domains and Nlrp1c 

lacks all but the NBD and LRR domains. Due to these differences, mouse and human 

NLRP1 appear to exhibit functional differences. Specifically, susceptible and resistant 

mouse Nlrp1b loci were genetically associated with Bacillus anthracis susceptibility(23, 24). 

Additionally, anthrax lethal toxin was found to activate mouse Nlrp1b and rat Nlrp1 

inflammasome(25), resulting in caspase-1-dependent pyroptosis. Lethal toxin is composed 

of two proteins: protective antigen (PA) and lethal factor (LF), with PA binding to anthrax 

toxin receptors on host cells and subsequently translocating LF into the cytosol(26). LF was 

found to cause the proteolytic cleavage of rat Nlrp1 at the N-terminus, presumably by 

cleaving an inhibitory domain. Mutation of this cleavage site transformed a responsive allele 

to a nonresponsive allele and resulted in the abrogation of caspase-1 activation(27). In the 

mouse system, an engineered Nlrp1b that contained an artificial TEV protease cleavage site 

activated inflammasome in the presence of TEV(26). Interestingly, this cleavage site 

coincided with the cleavage site found in rat NLRP1, although dissimilar in sequence. 

Overall, this association of LF cleavage of Nlrp1b in the intact animal is less 

straightforward, in that Nlrp1b protein from both LF-responsive and - nonresponsive mouse 

strains were cleaved by LF(28).

In addition to pathogens, human NLRP1 inflammasome is activated by the peptidoglycan 

component muramyl dipeptide (MDP)(16). MDP stimulation of a macrophage cell line also 

leads to association of overexpressed NLRP1 with NOD2, leading to formation of a multi-

protein complex consisting of NLRP1, NOD2 and caspase-1(25). These results suggest 

either the existence of an inflammasome containing NLRP1 plus NOD2 that is activated by 

MDP, or that MDP activates both NLRP1 and NOD2 inflammasomes. However, a mouse 

cell line deficient in Nlrp1b and lacking inflammasome activation by anthrax lethal toxin 

shows no defect in the assembly of NLRP1 inflammasome by MDP(29). While investigating 

the crystal structure of the LRR domain of NLRP1, Reubold et al. concluded that the LRR 

domain is not likely to contain the MDP-binding domain(30). Thus MDP may represent a 

species specific activator of NLRP1, considering the structural difference between human 

and rodent NLRP1.

NLRP1 has also been shown to mediate inflammasome activation in response to Toxoplasma 
gondii in a human monocytic cell line(31). This protein was later found to mediate host 

response to Toxoplasma in mice(32) but the process was not dependent on the cleavage site 

of Nlrp1b found in anthrax(23). Both Nlrp1b and Nlrp3 form inflammasomes that restrict 

Toxoplasma gondii infection via the production of IL-18(33). Finally, additional studies have 
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demonstrated that mouse Nlrp1a mediates inflammasome and pyroptosis function during 

LCMV infection and upon chemotherapy treatment(34).

Aside from response to microbial pathogen, NLRP1 is associated with several disease 

pathologies, including acute glaucoma, traumatic brain injury, acute lung injury, colitis and 

colitis-associated tumorigenesis(29, 35–37). Interestingly, a recent paper showed that Nlrp1 

is also involved in metabolic disease, where it prevents obesity by the production of IL-18 

which is known to prevent overeating(38). An inflammasome consisting of NLRP1, ASC, 

caspase-1, caspase-11 (the rodent ortholog of human caspase-5) and the X-linked inhibitor 

of apoptosis protein (XIAP) was shown to be present in rat spinal cord motor neurons, in 

protein co-immunoprecipitation and immunofluorescence experiments(39). Remarkably, 

therapeutic neutralization of ASC with an antibody was shown to improve histopathology 

after traumatic brain injury via reduction of immune responses(40). This finding is 

consistent with a report that ASC specks accumulate in the extracellular space after cells 

undergo pyroptosis to promote IL-1β maturation. Although phagocytosis of these specks 

was shown to induce lysosomal damage, stimulate soluble ASC nucleation and increase 

inflammation(41), “frustrated” phagocytosis has been noted as a consequence to injury (and 

inflammasome activation) found in various organs.

NLRP3

NLR family, Pyrin-domain containing 3 (NLRP3, also Cryopyrin, Nalp3, PYPAF1, CIAS1) 

was discovered in 2001, in a seminal report that mapped a causative NLRP3 mutation to 

rheumatologic autoinflammatory disorders, namely familial cold autoinflammatory 

syndrome (FCAS) and Muckle Wells syndrome (MWS)(42). In 2002, with the discovery of 

NOMID/CINCA (neonatal-onset multisystem inflammatory disease and Chronic infantile 

neurologic cutaneous and articular syndrome), FCAS and MWS were classified along with 

NOMID to form the cold associated periodic syndromes (CAPS)(43, 44). To date, the 

primary focus of inflammasome research has been anchored by NLRP3, which is a 

cytoplasmic protein that is primarily expressed in monocytes, macrophages, granulocytes, 

dendritic cells, epithelial cells and osteoblasts(45, 46). NLRP3 expression in myeloid cells is 

highly inducible(47). The protein is composed of 3 distinct domains: the N terminal pyrin 

domain, the central nucleotide binding domain (NBD), and the C terminal leucine-rich 

repeats (LRRs).

NLRP3 responds to a wide range of DAMPs and PAMPs, including bacterial and viral 

nucleic acids(48, 49), intracellular pathogens; ATP(50), uric acid(51, 52), β-amyloid(53), 

hyaluronan and heparin sulfate(54); silica(55–57), asbestos(56), cholesterol(58, 59) and 

alum crystals(57, 60); metabolites associated with type 2 diabetes such as ceramide, 

saturated fatty acids, islet amyloid peptides(61–63); hemozoin(64) byproduct from blood-

feeding parasites that cause malaria; and cyclic dinucleotides (65). Activation of the NLRP3 

inflammasome requires two signals and is controlled at transcriptional and post-translational 

levels (Figure 3). The first signal, also referred to as the priming signal, is the induction of 

the toll-like receptor (TLR)/nuclear factor (NF)-κB pathway to upregulate the expression of 

NLRP3(50)and pro-IL-1β(66). Signal 2 is transduced by various PAMPs and DAMPs to 

activate the functional NLRP3 inflammasome by initiating assembly of a multi-protein 
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complex consisting of NLRP3, the adaptor protein ASC, and pro-caspase-1(67). Association 

of NLRP3 with ASC is required for recruitment of pro-caspase-1(68). ASC utilizes its 

CARD domain to recruit pro-caspase-1 via homotypic CARD-CARD interactions. In the 

inflammasome complex, the inactive pro-caspase-1 undergoes autocatalytic cleavage to form 

active caspase-1. Caspase-1 in turn can cleave and activate multiple substrates ranging from 

chaperones, cytoskeletal and translation machinery, glycolysis and immune proteins such as 

the proinflammatory cytokines IL-1β and IL-18(69–71). While NLRP3 is known to respond 

to several PAMPs and DAMPs, evidence for direct binding of any ligand to NLRP3 remains 

indeterminate. One model is that NLRP3 activation is mediated via secondary intermediates 

such as potassium efflux(50), change in cell volume(72), calcium mobilization via the 

calcium channels TRPM2 or CASR(73–75), osmolarity changes(76), reactive oxygen 

species (ROS)(77) or mitochondrial DNA release(78, 79).

NLRP3 is associated with autoinflammatory, metabolic and autoimmune diseases(80–

84)80–84. Autoinflammatory diseases will be discussed here. Autosomal dominant mutations 

in NLRP3 lead to three CAPS autoinflammatory syndromes in humans, ranging from the 

mild FCAS, to the intermediate MWS and the more severe NOMID/CINCA syndromes. 

Fever, urticaria-like rash and varying degrees of arthropathy and neurological manifestations 

are present in all three syndromes(43, 85–87). FCAS consists of the mildest symptoms 

including cold-induced urticaria and mild arthralgia. MWS is intermediate with non-cold 

induced spontaneous urticaria, sensorineural hearing loss, arthralgia, and in some cases renal 

amyloidosis. CINCA is the most severe with spontaneous urticaria, deforming arthropathy, 

sensorineural hearing loss, and chronic aseptic meningitis. All CAPS are characterized by 

increased levels of IL-1β in the absence of infection and can be successfully treated with 

inhibitors of IL-1β(88–90). Gain-of-function mutations of NLRP3 enhance IL-1β secretion 

even in the absence of a stimulus in vitro(15).

Major advances regarding NLRP3 inflammasome formation have been gleaned from elegant 

biochemical and cryo-electron microscopy (EM) studies. Biochemical studies showed that 

the pyrin domain is an evolutionary conserved structure that can cause ASC to form a prion-

like filament, which then activates downstream effector caspases. Cryo-EM(91) results 

similarly support a model in which activated NLRP3 forms an oligomeric platform where 

the pyrin domain nucleates ASC via the latter’s pyrin domain to form a filamentous 

structure. The CARD domain of ASC then interacts with the CARD domain of caspase-1 

causing proximal caspase-1 to undergo auto-cleavage(92). As is noted below, in addition to 

NLRP3, AIM2 inflammasome activation by DNA binding also undergoes the same process.

NLRC4 and NAIP

NLR family, Caspase Recruitment domain containing 4 (NLRC4, also IPAF) is coupled to 

NAIP proteins (see later) that act as cytosolic receptors for PAMPs produced by flagellated 

pathogens, such as Salmonella typhimurium(68, 93) and Legionella pneumophila(94), and 

non-flagellated pathogens, such as Shigella flexneri and Pseudomonas aeruginosa(95). 

NLRC4 forms a homo-oligomeric inflammasome with caspase-1(68). The crystal structure 

of NLRC4 suggested that it remains in an autoinhibited state when unstimulated with ADP 
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bound to its central NBD. Disruption of this ADP-NBD interaction leads to constitutive 

activation of NLRC4(96).

NLRC4 is highly expressed in human brain, bone marrow and the THP-1 human monocytic 

cell line(97). Initial characterization of NLRC4 in human tissues and cell lines demonstrated 

its direct association with the CARD domain of pro-caspase-1 through CARD-CARD 

interactions(97, 98). This interaction can cause autocatalytic processing of pro-caspase-1 to 

caspase-1(97). A constitutively active NLRC4 causes autocatalytic processing of pro-

caspase-1, generating caspase-1-dependent apoptosis in transfected cells(97). In 

macrophages, activation of the NLRC4 inflammasome by cytoplasmic flagellin leads to 

caspase-1 activation and IL-1β release(68, 93, 99). It is expected that NLRC4 interacts 

directly with pro-caspase-1 through CARD-CARD interactions. Although direct interaction 

of ASC with NLRC4 has not yet been demonstrated, Asc-deficient macrophages show 

defective caspase-1 activation and IL-1β release in response to Salmonella, Shigella and 

Pseudomonas infections, indicating that ASC can enhance the function of NLRC4(68, 95, 

100).

NLR apoptosis-inhibitory proteins (NAIP, formerly called BIRC1, NLRB1) represent prime 

examples of NLRs that recognize their cognate ligands, which promotes NLRC4 recruitment 

to form a multimeric inflammasome complex(101–103). NAIP is expressed in peripheral 

blood mononuclear cells and macrophages. While the human genome has one NAIP gene 

that is functionally similar to murine Naip1(101, 104), there are 7 paralogs of NAIP in mice 

(Naip1-7), presumably to provide specificity of binding to a number of bacterial ligands.

Based on co-immunoprecipitation studies utilizing over-expressed NAIP and NLRC4, these 

two proteins were shown to associate, suggesting the potential for co-engagement in the 

same caspase-1 activating inflammasome(105). NAIP5 inflammasome activation has been 

reported in response to the C-terminus of flagellin after Legionella pneumophila 
infection(106). Transduction of macrophages with the C-terminal 35 amino acid fragment of 

flagellin leads to NAIP5-dependent cell death, while full length flagellin induces NAIP5-

independent, NLRC4-dependent cell death and IL-1β release. Since NAIP5 does not have a 

caspase domain, it requires NLRC4 to activate pro-caspase-1. This suggests a mechanism 

for differential sensing of bacterial components where NAIP5 appears to possess NLRC4-

dependent and -independent functions(106).

A recent study by Tenthorey et al. utilized a panel of chimeric NAIP molecules and 

identified the central NBD domain, rather than the expected LRR domain, to be associated 

with bacterial ligand binding(107). Moreover, ligand binding is essential for oligomerization 

of NAIP monomers into an inflammasome. In addition to NAIP5, NAIP6 can also recognize 

flagellin(102). In contrast, NAIP1 and 2 recognize bacterial type 3 secretory system needle 

protein and rod protein, respectively, but do not recognize flagellin. As a genetic test, mice 

with specific deletions in Naip1 and Naip2 provided biologic evidence for this specificity in 

mediating bacterial clearance(102, 108, 109).

Similar to NLRP3 and AIM2 (see below), cryo-EM has shed light on the assembly of the 

NLRC4/NAIP inflammasome. A contrasting model has emerged where ligand (PrgJ)-bound 
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NAIP is the initiating effector, but only one activated NAIP2 is necessary to cause the 

activation of NLRC4 protein that undergoes a dramatic conformational change in the 

exposure of its catalytic surface to activate another NLRC4, eventually forming a wheel-like 

configuration. This wheel-like platform associates with caspase-1 to cause the autocatalytic 

cleavage of caspase-1(110–112). In this model, ASC does not play a role since the CARD-

CARD domain interaction necessary for the final activation step is mediated through 

NLRC4 and caspase-1.

NAIP and NLRC4 also have roles that are distinct from the inflammasome and myeloid 

cells. For example, epithelium-intrinsic functions of this protein pair are associated with 

restriction of Salmonella proliferation in the gut epithelium, independent of inflammasome 

products(113). NAIP/NLRC4 is also known to inhibit caspase-3 and caspase-7 mediated 

pathways(114). NAIP interacts with pro-caspase-9 via its BIR3 domain. This association 

prevents the autoproteolysis of caspase-9 in the apoptosome complex, preventing caspase-9-

mediated cell death(115). The NBD and BIR domains of NAIP are required for inhibition of 

pro-caspase-9 autoproteolysis. Human NAIP is involved in bacterial sensing and inducing 

pyroptosis in human macrophages and epithelial cells(116).

In 1995, two groups reported deletion mutants of the Naip gene in patients with spinal 

muscular atrophy(117, 118). Since then, multiple reports in a number of countries have 

shown that deletions in Naip represent one of the most frequent and consistent genomic 

changes associated with spinal muscular dystrophy and positively correlates with clinical 

severity of this disease(119). The molecular basis for this disease association remains to be 

elucidated. More recently, a mutation in the NBD domain in NLRC4 was described that 

causes a gain-of-function phenotype that increases inflammasome activation and recurrent 

macrophage activation syndrome(120).

NLRP6

NLRP6 (formerly, PYPAF5) plays a role in impeding clearance of both Gram positive and 

negative bacterial infections. Overexpression of ASC with NLRP6 leads to enhanced 

caspase-1 activation(121), suggesting that it serves an inflammasome function. Structurally, 

NLRP6 resembles NLRP3, with an N-terminal pyrin domain, a central NOD domain and C-

terminal LRRs. NLRP6 is expressed in myeloid cells such as granulocytes, dendritic cells 

and macrophages; is found in CD4 and CD8 T cells(122–126); and is activated during 

development by PPAR-γ in intestinal epithelium(127).

The majority of studies have found that NLRP6 protects against experimental colitis and 

colitis-associated tumorigenesis(125, 128) and its function in monocytes contributes to this 

protective outcome(129). However, divergent mechanisms have been proposed to account 

for this activity. An analysis of the association between NLRP6 and the microbiome 

suggests that Nlrp6 deletion in mice causes dysbiosis attributed to reduced IL-18 which then 

causes expanded pathobiont bacteria Bacteroides (Prevotellaceae) and TM7 

microbiota(128). Reciprocally, the presence of the microbiota enhances caspase-1 

maturation that is dependent on NLRP6 control(130). However, other reports indicate 

alternative roles for NLRP6. It has been implicated in the control of intestinal epithelium 

renewal(126) to preserve the epithelial barrier as a checkpoint regulator of NF-κB/MAPK 
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pathways(124) or as a positive regulator of interferon-induced responses (i.e. ISGs) during 

viral infection(131). In addition, NLRP6 deficiency has been found to cause defective 

autophagy in goblet cells and reduced mucus secretion, thus impeding pathogen 

clearance(132). A separate report also showed a similar dependency of goblet cell mucus 

secretion on NLRP6 and caspase-1/11, but not on IL-1/IL-18(133). Precisely how 

caspase-1/11 are involved is unclear.

NLRC5, NLRP7 and NLRP12

NLRC5, NLRP7 and NLRP12 represent three NLRs which have other functions, but also 

have been reported to mediate inflammasome function. While the reported function of 

NLRC5 is to regulate class I MHC gene transcription, studies in human macrophage lines or 

primary monocytic cells indicated that it also mediates inflammasome activation in a similar 

fashion as NLRP3 and associates with NLRP3(7). Similarly, rhinovirus induces NLRP3- and 

NLRC5-dependent inflammasome activation in bronchial cells(134). In Nlrc5 deficient 

mice, Nlrp3 inflammasome is partially impaired, hinting at the intersection of these two 

factors(135).

NLRP7 consists of an N-terminal pyrin domain, followed by a NBD domain and C-terminal 

LRRs. Structural analysis of the pyrin domain from NLRP7 indicated that it possesses a six 

α-helix bundle death domain fold and forms a strong hydrophobic cluster upon pyrin-pyrin 

interactions(136). Khare et al. demonstrated the formation of a NLRP7-containing 

inflammasome in response to microbial lipopeptides in human macrophages(137). 

Activation of NLRP7 promoted ASC-dependent caspase-1 activation, IL-1β and IL-18 

maturation and restriction of intracellular bacterial replication, but not caspase-1-

independent secretion of the pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. 

Radian et al. utilized the THP-1 monocytic cell line expressing a mutated Walker A motif to 

show defective NLRP7 inflammasome activation, thus suggesting that the NBD of NLRP7 is 

responsible for ATP binding and ATPase activity(138). This mutant cell line also showed 

defective IL-1β release and pyroptosis in response to acylated lipopeptides and S. aureus 
infection.

NLRP7 also has alternate functions outside of myeloid cells and is highly expressed in MI 

and MII oocytes. Mutations in the maternal gene Nlrp7 are associated with biparental 

hydatidiform mole (HYDM1) in a number of patient cohorts which is characterized by 

abnormal growth of the placenta and lack of proper embryonic development(139). To 

identify the molecular mechanism associated with HYDM1, Singer et al. utilized a yeast 

two-hybrid screen against an ovarian library with NLRP7 as the bait. This approach led to 

the identification of the transcriptional repressor ZBTB16 as an interacting protein of 

NLRP7(140). This interaction was further verified in mammalian cells by 

immunoprecipitation and confocal microscopy; however, a clear mechanism for the 

molecular events leading to HYDM1 remains unknown.

NLRP12 (formerly called Monarch, PYPAF7, CLR19.3) was one of the first NLRs reported 

to be a negative regulator of inflammation via suppression of NF-κB signaling(141, 142). 

NLRP12 protein consists of an N-terminal pyrin domain, a central NBD, and a C-terminal 

domain composed of at least 12 LRRs(143). Initial studies of NLRP12 utilizing 
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overexpression systems suggested that it forms an inflammasome with ASC(144, 145). 

Additional research points to selective activation of the NLRP12 inflammasome by malaria 

and Yersinia(146, 147). However, aside from inflammasome activation, NLRP12 has 

prominent functions associated with inhibition of cytokine and inflammatory responses. At 

one level it induces proteasome-mediated degradation of NF-κB inducing kinase (NIK), 

leading to the suppression of the non-canonical NF-κB pathway and reduced expression of 

p52-dependent genes Ccr4, Cxcl12 and Cxcl13(141). Two reports confirmed these data by 

using Nlrp12−/− mice in the azoxymethane chemically-induced colorectal cancer model with 

the inflammatory agent dextran sodium sulfate (AOM-DSS). These reports congruently 

found that ablation of NLRP12 increases NF-κB canonical and non-canonical pathways, 

increases ERK phosphorylation in innate immune cells as well as in non-hematopoietic cells 

in the tumor model, and enhances proinflammatory cytokines and chemokines typically 

known to promote tumorigenesis(148),(149). NLRP12 also attenuates host response to 

Salmonella(150); however, this activity may be pathogen specific, in that Nlrp12−/− mice 

exhibited normal host response to other bacteria(151).

Mutations in Nlrp12 lead to Guadeloupe Variant Periodic Fever Syndrome. In this 

syndrome, the following alterations were identified: two missense mutations within the 

Nlrp12 gene, nonsense mutation causing truncation within the NBD domain of the protein 

and deletion mutation leading to loss of the C-terminal LRRs. Both missense mutations 

caused reduced activity in the suppression of NF-κB signaling by NLRP12, while the NBD 

mutation caused a more significant impact on normal NLRP12-induced NF-κB signaling as 

compared to the LRR mutation. Since the symptoms are similar to FCAS, this syndrome is 

referred to as FCAS2. Individuals with this syndrome present with cold-induced 

heterogeneous symptoms including fever, arthralgia, myalgia, sensorineural hearing loss, 

aphthous ulcers and lymphadenopathy(152).

AIM2

In addition to inflammasome NLRs, AIM2 (Absent in Melanoma 2) is a DNA sensor that 

activates the inflammasome(153–156). AIM2, an interferon-inducible gene also known as 

PYHIN4, was identified while screening tumor suppressor genes associated with 

melanoma(157). The AIM2 protein consists of an N-terminal pyrin domain, mediating 

homotypic interactions with ASC, and a C-terminal HIN-200 domain for DNA binding. 

AIM2 can associate into ASC specks to form a novel inflammasome platform inducing 

activation of ASC-mediated apoptotic and pyroptotic cell death pathways during host 

response to bacterial DNA such as from F. tularensis(153, 155, 157–159).

The crystal structure characterization of AIM2 has provided insight into interactions 

important for AIM2 auto-inhibition and inflammasome assembly(160). AIM2 

inflammasome-mediated and non-classical IL-1β secretion induced by LC-3 autophagy are 

linked via the microtubule-associated protein EB-1(161). AIM2 provides host defense 

against both cytosolic bacterial and viral pathogens, such as Francisella tularensis, Listeria 
monocytogenes and Mycobacterium tuberculosis(162–164). AIM2 also contributes to 

inflammation in response to bacterial infection in the brain(165). Alternatively, investigation 

has also shown AIM2 to impede cell survival pathways that promote tumor growth(166–
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168). In the case of colorectal cancer, reduction or lack of expression of AIM2 is positively 

correlated with poor outcome(166). Two recent papers indicate that this role of AIM2 is 

inflammasome-independent and is due to the negative regulation by AIM2 of proliferative 

signals such as Akt and c-myc signaling(166, 168). AIM2 is also protective in the case of 

breast cancer where it prevents MCF-7 breast cancer cell growth in vitro and tumor growth 

in vivo(169).

Non-Canonical Inflammasomes

Aside from the activation of caspase-1 which is referred to as the canonical inflammasome 

pathway, a non-canonical pathway leading to caspase-11 maturation was first described by 

Kayagaki et al. who showed that this process is dependent on NLRP3 and ASC(170). Later, 

caspase-11 was shown to be activated by cytosolic LPS derived from Gram negative bacteria 

that reside in the cytosol, thereby engaging in the protection of mice against infection by 

other LPS producing bacteria(171, 172). Thus, while TLR4 mediates host response to 

extracellular LPS, the NLRP3-dependent caspase-11 pathway mediates host response to 

cytosolic LPS. The cytosolic presence of LPS is a crucial step, as Salmonella which reside in 

a vacuole does not elicit a caspase-11 response. In turn the expression of caspase-11 is 

activated by STAT1 downstream of type I or type II interferon. Others showed that 

caspase-11 is an intracellular receptor of LPS(173). However, caspase-11 also binds to 

endogenous ligand-oxidized phospholipids to elicit inflammasome-dependent 

activities(174). More recently, a caspase-11 substrate, gasdermin D, was identified by 

differential genetic screening strategies, to be important as an effector of pyroptosis and 

NLRP3-dependent inflammasome activation(175, 176).

In addition, to the above mentioned non-canonical pathway, an unconventional one step 

pathway of inflammasome activation exists in human monocytes in response to LPS alone. 

This pathway requires Syk activity and Ca2+ flux mediated by internalization of the CD14/

TLR4 complex. Moreover, caspase-4 and caspase-5 have been shown to mediate IL-1α and 

IL-1β release from human monocytes after LPS stimulation(177).

Inflammasome NLRs in Cancers

In addition to the disease associations described above, the association of chronic 

inflammation with cancer is well established with chronic inflammation contributing to a 

tumor-promoting microenvironment. The following is not intended to be an exhaustive 

review of the field, but rather is presented to highlight the studies of NLRs and their roles in 

cancer. For example, the NLRP3 inflammasome remains the most investigated 

inflammasome with regard to cancer. Several groups have demonstrated the susceptibility of 

Nlrp3 and Casp1 deficient mice to dextran sulfate sodium (DSS)-induced colitis in a model 

of human ulcerative colitis. Defective inflammasome activation leads to loss of epithelial 

integrity, enhances leukocyte infiltration and increases chemokine expression in Nlrp3−/− 

and Casp1−/− mice, leading to increased mortality(178). These results were supported by 

Zaki et al., who showed NLRP3 inflammasome functions as a negative regulator of 

tumorigenesis during colitis-associated cancer, with NLRP3 inflammasome-dependent IL-18 

production protecting against colorectal tumorigenesis(179). Another group showed that the 
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suppressive impact of NLRP3 on colorectal cancer could be attributed to its enhancement of 

IL-18 which then activates natural killer cells(180). However, the protective or aggravating 

function of NLRP3 may be dependent on the severity of disease or factors in the local 

environment. The (181)NLRP3 inflammasome also appears to play a central role in the 

pathology of melanomas, gastric cancer and hepatocellular carcinoma(181). The NLRP3 

inflammasome is constitutively expressed in human melanoma cells(182, 183). In the case 

of gastric cancer, Mycoplasma hyorhinis was shown to promote tumor development via 

NLRP3 inflammasome activation(184). Interestingly, IL-1β, but not IL-18, released from 

macrophages treated with M. hyorhinis promotes cell migration and invasion to exacerbate 

gastric cancer. The expression of NLRP3 inflammasome is down-regulated in hepatic 

parenchymal cells in hepatocellular carcinoma(185). Loss of NLRP3 inflammasome 

activation positively correlates with a higher pathological grade in hepatocellular 

carcinogenesis.

NLRP3 inflammasome activation has also been implicated in adaptive immune responses to 

cancer vaccines(186). The NLRP3 inflammasome is activated during chemotherapy. Dying 

tumor cells release ATP that is sensed by the P2X7 receptors of dendritic cells leading to 

NLRP3 inflammasome activation. However when anti-tumor responses elicited by dendritic 

cell vaccination was tested, NLRP3 expression was found to be upregulated in tumor-

associated myeloid derived suppressor cells (MDSCs), thus suppressing anti-tumor 

response(187). Nlrp3−/− mice have fewer MDSCs accumulating at the tumor site and 

increased survival upon dendritic cell vaccination. Since this research focused on different 

adaptive immune cell populations, the differences may be attributable to differences in tumor 

cell types, in vaccine formulation or in stimuli for NLRP3 inflammasome activation. 

Increased IL-1β secretion in the tumor microenvironment has also been linked to promotion 

of inflammation, early angiogenic response, as well as tumor induction and progression(188, 

189).

Additional evidence has linked other inflammasomes to cancer. For instance, Hu et al. 

showed that regulation of inflammation-induced tumorigenesis is mediated by NLRC4 and 

caspase-1(190). In the AOM-DSS inflammation-induced colorectal cancer model, Casp1−/− 

and Nlrc4−/− mice exhibited increased tumor load and number per mice. Caspase-1 and 

NLRC4 are relatively highly expressed in both colonic epithelial cells and CD45+ 

hematopoietic cells in the colon. In contrast, NLRP3 expression is primarily restricted to the 

hematopoietic compartment. These results concluded that an intrinsic epithelial cell effect 

exacerbates tumorigenesis in the absence of caspase-1 or NLRC4 activity.

Multiple associations of NAIP with cancers have been noted. NAIP expression is 

significantly elevated in malignantly transformed oral squamous cell carcinomas(191). The 

Naip allele is methylated in normal oral mucosa tissues. NAIP expression is increased in 

breast cancer(192) and is associated with an unfavorable prognosis. In the case of prostate 

cancer, several inhibitor of apoptosis protein members including NAIP are increased(193).

Linkage of NLRP6 to cancer has been derived from the study of mouse models of colon 

cancer. For example, Chen et al. established an association of NLRP6 with a colon cancer 

model, when they showed that Nlrp6 deficient mice are more susceptible to DSS-induced 
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colitis and colitis-associated colon tumorigenesis as compared to wild type controls(125). 

NLRP6 controls epithelial self-renewal and colorectal carcinogenesis upon injury due to 

DSS.

Lastly, studies of the adaptor ASC have demonstrated a role in various types of cancers. 

ASC is overexpressed in several tumors, triggering apoptosis and formation of ASC specks. 

Studies have shown methylation-associated silencing of ASC across many cancer 

types(194). However, the mechanisms underlying regulation of ASC silencing or 

overexpression remain largely undetermined. ASC is inactivated in almost 40% of breast 

cancers(195). Yokoyama et al. supported these findings by showing ASC methylation 

present in colorectal cancer tissues(196). Histone deacetylation of the ASC gene is also seen 

in ovarian cancer. Additionally, aberrant methylation and inactivation of ASC has been seen 

in glioblastoma, prostate cancer, lung cancer, hepatocellular carcinoma and melanoma(197–

199). Liu et al. identified a dual role of ASC in human melanoma tumorigenesis with ASC 

expression in metastatic melanoma down-regulated as compared to levels in primary 

melanoma(200). This reveals a complex role played by ASC in regulating cell proliferation. 

ASC may act as a potential modulator of inflammatory responses by coordinating the 

activity of NLRs and cytokine activating caspases in mammalian cells.

Inflammasome NLRs in Other Diseases

Above, we discussed the genetic and expression correlations of specific inflammasome 

genes to various diseases. Here, we intend to highlight where the inflammasome is 

implicated in other autoimmune and inflammatory diseases. In the case of Alzheimer’s 

disease, caspase-1 expression was elevated in brain samples from Alzheimer’s patients as 

well as from mice carrying mutations associated with familial Alzheimer’s disease. 

Interestingly, mice lacking Nlrp3 or Casp1 showed less inflammasome activation and more 

protection from poor clinical outcomes associated with neuroinflammatory disease(201). It 

was found that phagocytosis of the β–amyloid protein by human microglia can activate the 

NLRP3 inflammasome and cause IL-1β release(53). This NLRP3 activation appears to be 

stimulated with lysosomal destabilization and subsequent release of cathepsin B caused by 

β-amyloid phagocytosis. The NLRP3 inflammasome also plays a significant role in the 

autoimmune demyelinating disease model of multiple sclerosis (MS) where experimental 

Nlrp3−/−, Casp1−/− and Il18−/− mice displayed delayed demyelination(202, 203). Moreover, 

the efficacy of IFN-β in an EAE model of MS was dependent on NLRP3 activity(204). 

Lastly, observations point to a link between inflammasome and the autoimmune disease 

systemic lupus erythematosus (SLE). Leukocytes from SLE patients have increased AIM2 

expression, even though there is no direct correlation between AIM2 expression and SLE 

disease activity(205). Similarly, in a mouse model of lupus, both IL-1β and IL-18 are 

important for disease progression, suggesting a possible inflammasome link(206).

Conclusions

The inflammasome has been a robust field of intensive investigation, uncovering significant 

revelations of an important family of regulators of health and disease. However, multiple 

questions remain unaddressed: the identity of ligands for several NLRs, the mechanism(s) of 
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ligand binding, the specific signaling pathways for regulation, cell-specific regulation of 

function in normal as well as in diseased hosts. Moreover, functions of NLRs beyond their 

roles in immunity remain largely unexplored. Discoveries emerging from investigating NLR 

biology promise to provide key insights into key pathways regulating immunity, 

inflammation and homeostasis.
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Figure 1. NLRs function in healthy and dysregulated disease states in the human body
NLRs recognized to be involved in various healthy or disease states are shown.
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Figure 2. NLRs have a conserved tripartite structure and some form inflammasomes
NLRs have a conserved tripartite structure with an N-terminal effector domain, a central 

nucleotide binding domain (NBD) and C-terminal leucine rich repeats (LRR). The effector 

domains of NLRs may include: acidic transactivation domain (AD), baculoviral inhibitory 

repeat (BIR)-like domain, caspase recruitment domain (CARD), pyrin domain or domain of 

unknown function (X). In general, NLRP1, NLRP3, NLRP6, NLRP7, NLRC4, NAIP and 

AIM2 are known to form inflammasomes, while CIITA, NOD1, NOD2, NLRC3, NLRC5, 

NLRX1, NLRP10 and NLRP12 do not.
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Figure 3. NLRP3 inflammasome is activated in response to multiple signals
The NLRP3 inflammasome is activated in response to several PAMPs and DAMPs 

including, but not limited to nucleic acids, lipopolysaccharide (LPS), lipooligosaccharide 

(LOS), muramyl dipeptide (MDP), ATP, uric acid crystals, hyaluronan sulfate, heparin 

sulfate, β-amyloid, asbestos and silica. NLRP3 inflammasome formation is a two signal 

process. The first signal involves priming: LPS engagement of TLR4 leads to NF-κB 

activation causing increased expression of NLRP3 and IL-1β (Step-1). NLRP3 forms a 

multi-protein inflammasome complex with the adaptor apoptosis-associated speck-like 

protein containing a CARD (ASC) and pro-caspase-1. NLRP3 and ASC undergo 

deubiquitination prior to inflammasome assembly. After priming, canonical inflammasome 

activation requires a second signal. The second signal may be the release of mitochondrial 

factors into the cytoplasm such as ROS, mitochondrial DNA (mtDNA), or cardiolipin 

(Step-2), potassium efflux (Step-3) or lysosomal cathepsin release (Step-4). After receiving 

the second signal, NLRP3 recruits ASC via pyrin-pyrin interactions. ASC utilizes its CARD 

domain to recruit pro-caspase-1 by CARD-CARD interactions, thus leading to processing of 

pro-caspase-1 to active caspase-1 (Step-5). In turn, caspase-1 is critical for the processing 

Jha et al. Page 28

Microbiol Spectr. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and release of IL-1β and IL-18. We gratefully acknowledge the support of National 

Institutes of Health funding (U19-AI109965 and U19-AI067798) to JPYT and WJB.

Jha et al. Page 29

Microbiol Spectr. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Activation of Inflammasome NLRs
	NLRP1
	NLRP3
	NLRC4 and NAIP
	NLRP6
	NLRC5, NLRP7 and NLRP12
	AIM2

	Non-Canonical Inflammasomes
	Inflammasome NLRs in Cancers
	Inflammasome NLRs in Other Diseases
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3

