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a b s t r a c t 

The electrocatalytic reduction of CO 2 (CO 2 RR) is a promising yet intricate process to alleviate the alarm- 

ing imbalance in the carbon cycle. One of the intricacies of CO 2 RR is its structural sensitivity, which 

is illustrated by the varying onset potentials and selectivities of the reaction products depending on the 

electrode morphology. Here, using electrochemical real-time mass spectrometry (EC-RTMS), we accurately 

determine the onset potentials for seven CO 2 RR products including C 1 , C 2 , and C 3 species on polycrys- 

talline and oxide-derived Cu electrodes. Density functional theory calculations affordably including sol- 

vent and cation effects produce onset potentials of C 2 species matching those obtained with EC-RTMS. 

Our analysis leads us to conclude that the elusive active sites at oxide-derived Cu, known to enhance 

ethanol production, are undercoordinated square ensembles of Cu atoms. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

Powered by renewable electricity, the electrochemical reduction 

of CO 2 (CO 2 RR) is a plausible approach to help compensate the 

tremendous global imbalance of the carbon cycle. In doing so, the 

alarming amounts of CO 2 in the environment can be transformed 

into valuable chemical compounds such as methane, ethanol and 

ethylene [1–3] . As shown by the pioneering works of Hori et al., 

copper is capable of reducing CO 2 beyond the two-electron prod- 

ucts (CO or formic acid) observed on most metals [4–6] . However, 

the predominance of the competing hydrogen evolution, the low 

selectivity toward specific products, and the large overpotentials 

needed to obtain fair current densities still hinder a large-scale im- 

plementation of Cu-based CO 2 electrolyzers. Interestingly, the re- 

dox treatment of Cu electrodes holds promise for addressing some 

of these issues [7 , 8] . 

In fact, oxide-derived copper (OD-Cu) electrocatalysts show 

lower overpotentials and enhanced selectivity toward C 2 products, 

with higher faradaic efficiencies of ethanol compared to regular Cu 

electrodes [7 , 8] . In spite of some hints, the active sites responsible 

for such improvements have not been ascertained yet in experi- 

∗ Corresponding authors. 

E-mail addresses: i.katsounaros@fz-juelich.de (I. Katsounaros), 

f.calle.vallejo@ub.edu (F. Calle-Vallejo). 

ments. For instance, it is known that the presence and extent of 

grain boundaries are connected with the activity improvements of 

OD-Cu [7 , 9] . Furthermore, isotopic labelling experiments of CO 2 RR 

on OD-Cu showed that ethylene and ethanol, the two major C 2 
products, are produced on different active sites [10] . On the other 

hand, ethylene is more abundant than ethanol on pristine Cu(100) 

facets [11] , while increasing amounts of ethanol are observed at 

rough Cu surfaces. 

The recent development of the electrochemical real-time mass 

spectrometry technique (EC-RTMS) allows for accurate, in operando 

detection of CO 2 RR products on OD-Cu and polycrystalline Cu (Cu- 

poly) [12 , 13] . The sensitivity of this real-time technique for reac- 

tion products and intermediates is remarkably high compared to 

established chromatography techniques or nuclear magnetic res- 

onance, which are compatible with steady-state electrolysis [13] . 

The low limits of detection enable a more accurate determination 

of onset potentials based on the detection of products at low for- 

mation rates during potential sweep experiments. This is rather 

useful for CO 2 RR, as different compounds are produced as a func- 

tion of the applied potential and, in some cases, some products 

appear at similar if not identical potentials. 

Furthermore, computational studies have shown that solvation 

and cation effects are key to accurately predict the CO 2 RR activ- 

ity and selectivity of Cu electrodes [1 , 14–18 ]. Remarkably, several 

experimental investigations have shown that alkaline cations en- 

hance the production of multi-carbon species [19–22] . Different 

https://doi.org/10.1016/j.electacta.2021.138247 

0013-4686/© 2021 Elsevier Ltd. All rights reserved. 
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approaches have been used to model these effects. Using static cal- 

culations, solvation can be modelled using implicit solvent mod- 

els [23] , ad hoc corrections [14 , 24 , 25] , explicit water layers [17 , 26] , 

or using micro-solvation models in which explicit water molecules 

are added in the vicinity of the adsorbates to capture their hydro- 

gen bonds [27 , 28] . On the other hand, (solvated) cations can be 

modelled through an electric field [29] , by including them within 

an explicit water bilayer [26 , 30] , by adsorbing them next to the 

adsorbates [16 , 22 , 31] , or by means of continuum models of the 

double-layer [32] . Specific choices for the modelling of these ef- 

fects depend on the system size and complexity, usually attempt- 

ing to compromise computational expenses and accuracy. 

In this work, we provide the onset potentials for seven CO 2 RR 

products including C 1 , C 2 , and C 3 species using EC-RTMS experi- 

ments. In addition, we show that calculations affordably including 

solvent and cation effects produce onset potentials of C 2 species 

matching those obtained experimentally with EC-RTMS. This helps 

in outlining a plausible geometric structure of the active sites at 

OD-Cu and leads to interesting mechanistic conclusions. 

2. Methods 

2.1. Experimental details 

Details on the analysis of gaseous and liquid products with elec- 

trochemical real-time mass spectrometry (EC-RTMS) have been de- 

scribed previously [13 , 33] . Linear sweep voltammetry at a scan rate 

of 3 mV s −1 was conducted from −0.4 to −1.1 V RHE for Cu-poly and 

from −0.1 to −0.8 V RHE for OD-Cu, always in the negative direction 

of the potential (V RHE denotes potentials in the reversible hydro- 

gen electrode scale). The starting potentials were such that neither 

CO 2 reduction nor extensive hydrogen evolution takes place, while 

the surface oxidation state remains unaltered until the measure- 

ment starts. Parallel to the electrochemical data of current and po- 

tential versus time, information on the formed products was ob- 

tained versus time as well, with a data acquisition frequency of 

ca. 1.7 Hz for the gas analysis and 2 Hz for the liquid analysis. 

The mass spectrometric data were synchronized with the elec- 

trochemical data after the measurement, taking into account the 

time needed for the formed products to reach the corresponding 

mass spectrometer, and eventually the intensities for each product 

were expressed as a function of the applied potential after post- 

correction for the remaining 36–41 Ω after 85% positive feedback 

compensation. The evaluation procedure to determine the onset 

potential of each product from the respective mass spectrometry 

signals is described in section S1 of the Supporting Information 

(SI). 

For the preparation of Cu-poly and OD-Cu electrodes, we em- 

ployed the same procedure described in a previous work [13] . 

The thermally oxidized electrodes were reduced electrochemically 

at −1.2 V RHE for 10 min before the linear sweep voltammetry 

was applied, to make sure that the oxide reduction did not in- 

terfere with the product evolution during the linear sweep. Ultra- 

pure water (18.2 M Ω cm, TOC < 5 ppb, Merck Milli-Q IQ 70 0 0) was 

used for the preparation of the electrolyte, right before each mea- 

surement. For the CO 2 reduction experiments, the electrolyte was 

0.1 M KHCO 3 (analysis grade, Merck) saturated in CO 2 (99.998%, 

Air Liquide) and the resulting pH of the solution was 6.8. For the 

acetaldehyde reduction experiments, the electrolyte was 0.05 M 

Na 2 HPO 4 (99%, VWR), 0.05 M NaH 2 PO 4 �2H 2 O (99%, VWR) (pH set 

to 6.8 equal to the pH of 0.1 M KHCO 3 saturated in CO 2 ) and 1 mM 

acetaldehyde ( ≥99.0%, VWR) saturated in Argon (99.998%, Air Liq- 

uide). In either case, the electrolyte was sparged with the respec- 

tive gas for 30 min before the measurement started, and sparging 

was maintained throughout the entire measurement. 

Fig. 1. Side views of the four different slab models used in this work. Top: Cu(100) 

(blue), 4AD@Cu(100) (green). Bottom: Cu(111) (orange), and 4AD@Cu(111) (red). De- 

tails on the number of atoms per layer and the number of layers in the slabs are 

provided in the Computational Methods section. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

2.2. Computational details 

The DFT simulations were carried out using the VASP code 

[34] with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional [35] , and the PAW method [36] . To model Cu-poly and 

OD-Cu, we studied four different types of active sites: Cu(111) 

terraces; Cu(100) terraces; 4AD@Cu(100) and 4AD@Cu(111), which 

contain 4-atom islands on top of (100) and (111) terraces, re- 

spectively. A side view of the active sites is shown in Fig. 1 . A 

(4 
√ 
2 × 4 

√ 
2) R 45 ° supercell slab of 32 atoms per layer was used 

to model the Cu(100) and 4AD@Cu(100) surfaces. For Cu(111) and 

4AD@Cu(111) a p (4 × 4) supercell including 16 atoms per layer 

was used. These large supercells help avoid lateral interactions be- 

tween atom islands, adsorbates, and cations. All the slabs were 

modelled with the converged PBE lattice constant of Cu (3.64 Å) 

and were composed of four atomic layers. The adsorbates, Cu is- 

lands, and the top two layers of the slabs were allowed to re- 

lax in all directions, while the bottom layers were fixed at the 

bulk equilibrium distances. The plane-wave cutoff was 450 eV. The 

Methfessel-Paxton approach was used to smear the Fermi level 

with an electronic temperature of 0.2 eV, always extrapolating the 

total energies to 0 K. The numerical integration in the reciprocal 

space was carried out using Monkhorst-Pack grids of 2 × 2 × 1 

for Cu(100) and 4AD@Cu(100) and 3 × 3 × 1 for Cu(111) and 

4AD@Cu(111), which guaranteed convergence of the adsorption en- 

ergies within ±0.05 eV. Periodically repeated images in the vertical 

direction were separated by more than 13 Å of vacuum and dipole 

corrections were also applied. The conjugate-gradient optimization 

algorithm was used for the geometry optimizations, with itera- 

tions performed until the maximal force on all atoms was below 

0.05 eV Å −1 . Boxes of 9 × 10 × 11 Å 3 were used to calculate the 

isolated molecules in this study, considering the Ŵ-point only, us- 

ing Gaussian smearing and an electronic temperature of 0.001 eV 

with further extrapolation to 0 K. On average, 10 different initial 

configurations were relaxed for each adsorbate on each active site, 

2 
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Fig. 2. Onset potentials of seven compounds from the reduction of CO 2 , and onset of ethanol from the reduction of acetaldehyde. Error bars show the standard deviation of 

three independent measurements. 

including, when possible, monodentate, bidentate, and tridentate 

configurations. 

Reaction free energies were approximated as �G ≈ �E DF T + 

�ZP E − T �S + �E solv ation , where �E DF T is the DFT-calculated reac- 

tion energy, �ZP E is the zero-point energy change, T �S is the cor- 

responding entropy change at 298.15 K, and �E solv ation contains ad- 

hoc solvation corrections depending on the chemical nature of the 

adsorbates [14 , 25] . For free molecules, all contributions are con- 

sidered in �S and the values were obtained from thermodynamic 

tables, while for adsorbates �S only includes the vibrational en- 

tropies. ZPE and TS vib values are obtained from DFT calculations of 

vibrational frequencies making use of the harmonic-oscillator ap- 

proximation. 

Proton-electron pairs were modelled using the computational 

hydrogen electrode [37] . Cation effects were modelled by the ex- 

plicit inclusion of a potassium atom over the slabs. In each case, 

we found around each adsorbate the most favorable position of the 

cation by relaxing different initial geometries. We did not compute 

proton-electron transfer barriers in this study, as Rossmeisl et al. 

recently noted that there is “not (yet) a method to obtain electro- 

chemical barriers between realistic states at constant electrochem- 

ical conditions” [38] . Nevertheless, CO-CO coupling happens upon 

an electron transfer, so its barrier was assessed by means of the 

climbing-image nudged elastic band method [39] , verifying that 

only one imaginary frequency along the reaction coordinate was 

present at the saddle point. 

3. Results and discussion 

We employed EC-RTMS together with linear sweep voltam- 

metry to determine experimentally the onset potentials from the 

reduction of CO 2 for the following seven liquid and gaseous 

compounds: methane, ethylene, ethanol, acetaldehyde, 1-propanol, 

propionaldehyde and allyl alcohol. We also determined the onset 

potential for ethanol from the reduction of acetaldehyde. Fig. 2 

shows the results for Cu-poly and OD-Cu electrodes, while a repre- 

sentative dataset can be found in the SI, Figure S2. All onset poten- 

tials are characterized by a small and constant standard deviation 

determined by three independent measurements, underlining the 

high reproducibility of the experiments. 

On Cu-poly, methane shows the most negative onset poten- 

tial with −0.88 ± 0.02 V RHE . Different C 2 compounds (ethylene, 

ethanol) as well as C 3 compounds (1-propanol, propionaldehyde, 

allyl alcohol) show similarly negative onset potentials, ranging 

from −0.70 to −0.86 V RHE , the least negative being the onset for 

acetaldehyde ( −0.70 ± 0.03 V RHE ). Small deviations in these mea- 

surements might arise from different sensitivity of the instrumen- 

tal method toward the detection of individual compounds. The fact 

that the experimental onset potentials are relatively similar for all 

C 2 + products on Cu-poly suggests that their onset is controlled by 

a common potential-limiting step, early in the reaction pathway. 

Interestingly, ethanol is produced from acetaldehyde reduction 

at a clearly less negative onset potential than from CO 2 ( −0.51 

± 0.03 V RHE versus −0.82 ± 0.03 V RHE ), which further supports 

that the onset potential for CO 2 reduction to ethanol through the 

acetaldehyde intermediate [13 , 40] is determined by another step, 

earlier in the reaction sequence, as shown by DFT-based models 

[14 , 16 , 25 , 41] . 

On OD-Cu, the onset potentials for all products of CO 2 reduction 

(except for methane, which is not detected) are shifted substan- 

tially to more positive values, spanning now from −0.49 ± 0.01 

V RHE for ethanol to −0.59 ± 0.02 V RHE for allyl alcohol. As the on- 

set potentials are similar among all C 2 + products, we conclude that 

they likely still share a common potential-limiting step on OD-Cu, 

as is the case on Cu-poly. The onset potential for ethanol from the 

reduction of acetaldehyde shifts accordingly to more positive val- 

ues ( −0.27 ± 0.04 V RHE ) on OD-Cu, again more positive than from 

CO 2 on the same electrode, in line with the finding on Cu-poly. 

The significant shift of 250 mV on average for the onset potential 

of all reactions on OD-Cu compared to Cu-poly is ascribed to the 

creation of new active sites after the thermal treatment and sub- 

sequent oxide reduction [7–10 , 42 , 43] . We note that changes in the 

local pH or the local concentration of CO 2 , which can be induced 

at the interface due to the higher roughness of OD-Cu and modify 

3 
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Fig. 3. Schematic representation of the reaction pathways for CO 2 RR to C 2 species. Cu, C, O, and H atoms are depicted in grey, brown, red, and pink. EtOH: ethanol. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Free-energy diagrams including solvent and cation effects for all intermediates of the CO 2 RR to C 2 species on Cu(100) (blue) and 4AD@Cu(100) (green) at 0 V RHE . The 

same colors in a lighter tone are used to represent the ethanol pathway, which drifts away from that of ethylene upon the tenth proton-electron transfer. The corresponding 

intermediates toward ethylene are noted for each proton-electron transfer in black (gray for the ethanol pathway). EtOH: Ethanol. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

the product distribution [44–47] , are negligible here because the 

onsets were determined at rather low current densities and con- 

tinuous electrolyte flow was employed. 

Furthermore, the thermodynamics of each proton-electron 

transfer of CO 2 RR to C 2 products (ethylene and ethanol) were cal- 

culated for four different active sites by combining well-known 

CO 2 reduction pathways to ∗CO via ∗COOH [27 , 48–51 ] with ∗CO 

reduction pathways that comply with several experimental obser- 

vations [14 , 16 , 25] . The active sites selected for this study were 

Cu(111), as it is the most stable surface termination; Cu(100), 

known to facilitate C-C coupling and for being ethylene selective 

[14] ; 4AD@Cu(100), a square, four-atom island likely present in 

4 
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OD-Cu, the surface of which is extremely rough [52] and ethanol 

selective [16] ; and, for completeness, 4AD@Cu(111), a four-atom is- 

land with hexagonal symmetry, which, as shown in previous works 

[16] and in Table S3, enhances CO dimerization with respect to 

Cu(111) but is not as active as the studied square sites, namely 

Cu(100) and 4AD@Cu(100). 

A schematic representation of the modelled pathway is shown 

in Fig. 3 . We find that the hydrogenation of adsorbed CO molecules 

(2 ∗CO + H + + e − → ∗C 2 O 2 H) is the potential-limiting step of the 

reaction for ethylene and ethanol production on the analyzed ac- 

tive sites, in line with previous experimental and computational 

studies [6 , 14 , 53] . The fact that C-C coupling is involved in the 

potential-limiting step for C 2 products is also in agreement with 

the similar onset potentials determined experimentally with EC- 

RTMS for C 2 and C 3 products, bearing in mind that C 3 products 

are formed via a chemical reaction between C 1 and C 2 species 

[54–56] . We note here that ∗CO hydrogenation to either ∗COH or 
∗CHO is also the potential-limiting step for CO 2 RR to methane 

[17 , 24 , 27 , 57 , 58] . The onset potentials for CO 2 RR to both ethylene 

and ethanol are −0.50, −0.52, −1.14, and −0.66 V RHE for Cu(100), 

4AD@Cu(100), Cu(111), and 4AD@Cu(111), respectively, calculated 

based on values from Table S3. 

In Fig. 4 , we show the calculated free-energy diagrams for these 

two surface models using the pathways in Fig. 3 . After noting that 

(i) the calculated onset potentials for Cu(100) and 4AD@Cu(100) 

agree well with those determined experimentally for ethylene and 

ethanol on OD-Cu, and (ii) Cu(100) is selective to ethylene and 

4AD@Cu(100) is selective to ethanol, we believe that the active 

sites present at OD-Cu responsible for ethylene and ethanol evolu- 

tion resemble Cu(100) terraces and 4AD@Cu(100) islands, respec- 

tively. Cu(111) and 4AD@Cu(111) are not shown in Fig. 4 because 

they are not active toward C 2 products, given their unfavorable en- 

ergetics of CO dimerization (see Table S3). 

4. Conclusions 

Because it is energy-intensive, the hydrogenation of ∗CO 

impedes an efficient CO 2 electroreduction. Hydrogenating ∗CO 

monomers is more difficult than hydrogenating ∗CO dimers on Cu 

electrodes. These two observations help explain why the onset po- 

tentials for all C 2 + reaction products at a given electrode are sim- 

ilar and why more negative potentials are required for producing 

C 1 species compared to C 2 and C 3 species. 

Furthermore, the notable differences in the experimental onset 

potentials between polycrystalline and oxide-derived copper elec- 

trodes, indicate the presence of a unique set of active sites in the 

latter. Based on DFT calculations affordably including solvent and 

cation effects, we propose that such sites are formed by square, 

four-atom ensembles of Cu atoms. Such configuration renders on- 

set potentials for C 2 products that match the experimental val- 

ues and complies with several experimental facts, namely that (i) 

oxide-derived Cu electrodes are extremely rough, (ii) square facets 

facilitate ∗CO coupling, and (iii) undercoordination favors ethanol 

production. 

With all this in mind, we conclude that the selective produc- 

tion of a given multi-carbon product from CO 2 RR requires not only 

engineering the C-C coupling step, which takes place early in the 

reaction mechanism, but also the bifurcation step, in which either 

the path toward oxygenates or hydrocarbons is followed. 
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S1  Onset potential determination from mass ion signals 

In electrochemical real-time mass spectrometry, mass ion signals are recorded as a 

response to an electrochemical excitation. Let us assume that such an electrochemical 

excitation leads to the occurrence of a reaction and the formation of a product at time t 

= t0. As a result, the mass ion signal for that product rises from the background at a time 

t = t0 + Δt. The finite response time Δt is caused by the transport of the product together 

with the electrolyte from the cell to the mass spectrometer through the tubings and the 

respective inlet system for each setup. The response time Δt can be determined from 

electrochemical pulse experiments by subtracting the time stamps of the 

electrochemical excitation and the mass spectrometer signature.  

Moreover, when no electrochemical reaction takes place, the mean (µ) and 

standard deviation (σ) of the recorded background signal in the mass spectrometer are 

defined. We calculated the μ and σ from at least 100 data points, to have sufficient 

statistics as illustrated in Figure S1 over 50 seconds. If now, as depicted in Figure S1, a 

linear sweep voltammogram starts from a potential Estart (-0.4 VRHE in the figure) at t = 

t0 = 0, the mass spectrometer signal rises to µ+σ at time t = Δt + t1, where t1 is the time 

needed to reach the potential Eonset where the product is detected. Clark and Bell use the 

one-sigma level as “detection limit” [1]. The one-sigma level above the mean 

background signal ensures that natural fluctuations in the mass spectrometer signal are 

cancelled out. Knowing the t1, the Eonset can be calculated using the sweep rate, υ, from 

the equation: Eonset = Estart - t1 υ, for a negative-going scan. The potential applied vs the 

Ag/AgCl reference electrode is calculated vs the reversible hydrogen electrode and 

post-corrected for the iR drop according to a previously described procedure [2]. 
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Figure S1. Determination of the onset potential from mass spectrometer signals resulting from the 

application of linear sweep voltammetry.   

 

S2  Representative linear sweep voltammetry measurements 

 

Figure S2. Representative linear sweep voltammetry measurements and mass spectrometry signals for 

acetaldehyde on polycrystalline (blue) and oxide-derived (red) copper.  
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S3  Gaseous phase corrections 

The free energies of gaseous molecules were calculated as:  � ≈ ���� + 	
� − �. 

The ZPE values were obtained from vibrational frequency analyses. The TS values were 

extracted from thermodynamic tables at 298.15 K and 1 atm [3]. The values used for all 

of the gases featured in this study are listed in Table S1. Because the PBE exchange-

correlation functional does not describe correctly the free energy of CO(g) and CO2(g), 

corrections to their formation energies of -0.24 eV and 0.19 eV were applied, 

respectively, which are in line with those obtained in previous studies [4],[5],[6]. 

 

Table S1. Zero-point energy and entropy contributions to the free energies of gaseous molecules. All 

values are in eV. 

 

Molecule ZPE TS 

CO2 0.31 0.66 

CO 0.14 0.61 

H2 0.27 0.40 

C2H4 1.36 0.68 

H2O 0.57 0.58 

CH3CHO 1.47 0.82 

C2H5OH 2.11 0.87 

S4  Liquid-phase corrections 

For the products present in the liquid phase (namely water, ethanol, and acetaldehyde), 

the free energies were estimated using the method described in ref. [4], which is based 

on a correction added to the TS values. Specifically, TS values of 0.67 eV, 0.94 eV, and 

0.87 eV were used to estimate the liquid-phase free energies of water, ethanol, and 

acetaldehyde, respectively. 

S5  Solvation contributions to the free energies 

Water-adsorbate interactions, deemed “solvation” corrections (Esol in  � ≈ ���� +

	
� − � + ����) were modeled as an external, ad hoc correction depending on the 

chemical nature of the adsorbates. We used the values reported in previous works [4,7]. 

The specific values used are listed in Table S2. These were obtained by calculating the 

difference in adsorption energies with and without water, using √3×√3 Cu(111) cells 

covered with and without water and *OH, *COH, and *CO. The *OR correction was 
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approximated as 2/3 of that for *ROH, since, in principle, *ROH can make three 

hydrogen bonds with water (two accepting, two donating bonds), while *OR can only 

make two (two accepting bonds). Note that R represents a hydrocarbon chain. Values in 

Table S2 are commensurate with those in the literature [5,8]. 

 

Table S2. Stabilization provided by water-adsorbate interactions to the adsorption energies depending on 

the adsorbates’ chemical structure. All values are given in eV. 

 

Functional group Solvation Correction 

*CO -0.10 

*OH -0.50 

*ROH -0.38 

*OR -0.25 

S6  Adsorption energies 

The respective ZPE, TSvib, and solvation (Esol) corrections, and ∆G values obtained for 

the different adsorbates featured in this study are a combination of data from previous 

works [7] and new calculations performed in this one. All the data are listed in Table 

S3. The most stable configuration (MSC) for each adsorbate is also indicated. *C2O2H 

and *COOH are particular cases in which one part of the adsorbate interacts with the K 

atom and a solvation correction for the other group is included. Liquid acetaldehyde 

was considered when it was more stable than its adsorbed counterpart. Note that 2CO2(g) 

and proton-electron pairs were used as the reference for the free energies in Table S3. 

 

Table S3. Free energies of adsorption and their separate contributions for each species involved in CO2 

electroreduction to C2 species. All values are in eV. 

 

Cu(100) ZPE TSvib MSC ∆G 

2 *COOH 1.22 0.48 K + Solvated (-0.38) 0.05 

2 *CO 0.36 0.33 With K -0.15 

*C2O2H 0.69 0.26 K + Solvated (-0.38) 0.36 

*C2O 0.34 0.19 With K -0.56 

*CHCO 0.60 0.24 With K -0.28 

*CHCHO 0.91 0.17 With K -0.37 

*CH2CHO 1.21 0.20 Solvated (-0.25) -0.64 

*CH3CHO 1.47 0.87 Liquid -0.66 

*CH3CH2O 1.83 0.30 Solvated (-0.25) -1.06 

*O 0.06 0.05 With K -0.73 

*OH 0.34 0.10 Solvated (-0.50) -0.92 
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Cu(111) ZPE TSvib MSC ∆G 

2 *COOH 1.22 0.46 K + Solvated (-0.38) 0.22 

2 *CO 0.35 0.36 With K 0.02 

*C2O2H 0.71 0.31 K + Solvated (-0.38) 1.16 

*C2O 0.34 0.19 With K -0.04 

*CHCO 0.60 0.24 With K 0.06 

*CHCHO 0.90 0.18 With K -0.02 

*CH2CHO 1.19 0.20 With K -0.36 

*CH3CHO 1.47 0.87 Liquid -0.66 

*CH3CH2O 1.84 0.31 Solvated (-0.25) -0.83 

*O 0.07 0.04 With K -0.32 

*OH 0.34 0.08 Solvated (-0.50) -0.96 

 

4AD@Cu(111) ZPE TSvib MSC ∆G 

2 *COOH 1.24 0.44 K + Solvated (-0.38) -0.59 

2 *CO 0.37 0.40 Solvated (-0.20) -0.41 

*C2O2H 0.71 0.25 K + Solvated (-0.38) 0.24 

*C2O 0.34 0.19 With K -0.40 

*CHCO 0.61 0.23 Solvated (-0.10) -0.45 

*CHCHO 0.90 0.18 With K -0.75 

*CH2CHO 1.21 0.25 With K -1.17 

*CH3CHO 1.48 0.26 Solvated (-0.25) -0.84 

*CH3CH2O 1.84 0.32 Solvated (-0.25) -1.28 

*O 0.07 0.04 With K -0.59 

*OH 0.34 0.09 Solvated (-0.50) -1.44 
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