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Predictive performance of machine and
statistical learning methods: Impact of
data-generating processes on external
validity in the “large N, small p” setting
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Abstract

Machine learning approaches are increasingly suggested as tools to improve prediction of clinical outcomes. We aimed

to identify when machine learning methods perform better than a classical learning method. We hereto examined the

impact of the data-generating process on the relative predictive accuracy of six machine and statistical learning methods:

bagged classification trees, stochastic gradient boosting machines using trees as the base learners, random forests, the

lasso, ridge regression, and unpenalized logistic regression. We performed simulations in two large cardiovascular

datasets which each comprised an independent derivation and validation sample collected from temporally distinct

periods: patients hospitalized with acute myocardial infarction (AMI, n¼ 9484 vs. n¼ 7000) and patients hospitalized

with congestive heart failure (CHF, n¼ 8240 vs. n¼ 7608). We used six data-generating processes based on each of the

six learning methods to simulate outcomes in the derivation and validation samples based on 33 and 28 predictors in the

AMI and CHF data sets, respectively. We applied six prediction methods in each of the simulated derivation samples and

evaluated performance in the simulated validation samples according to c-statistic, generalized R2, Brier score, and

calibration. While no method had uniformly superior performance across all six data-generating process and eight

performance metrics, (un)penalized logistic regression and boosted trees tended to have superior performance to the

other methods across a range of data-generating processes and performance metrics. This study confirms that classical

statistical learning methods perform well in low-dimensional settings with large data sets.
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1 Introduction

Predicting the probability of the occurrence of a binary outcome or event is of key importance in clinical medicine.

Accurate prediction of the probability of adverse outcomes, such as mortality, allows for effective risk prediction
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to inform clinical decision making. There is increasing interest in the use of machine learning methods to estimate
patient prognosis.

Hastie and colleagues use the term ‘learning’ to describe the process of making predictions about outcomes
using empirical data.1 Breiman suggested that there are two cultures in the use of statistical models.2 The first
assumes underlying stochastic models through which the data were generated, while the second treats the data
mechanism as unknown and is based on the use of algorithms for prediction. For the purposes of the current
paper, we use the term ‘statistical learning’ to describe the use of parametric models for prediction. We use the
term ‘machine learning’ to describe the use of algorithms for prediction. Thus, bagged classification trees, random
forests, and boosted trees would be examples of machine learning methods, while unpenalized logistic regression
would be an example of a statistical learning method. Penalized regression, such as the lasso, is embraced by both
cultures although these are highly parametric statistical models in the purest sense.

Several studies have compared the relative performance of methods from the machine learning literature with
that of conventional statistical methods for predicting patient outcomes. Christodoulou and colleagues reviewed
71 studies that employed both types of methods for predicting binary outcomes.3 They found that, in those
comparisons that were at low risk for bias, the mean difference in c-statistic between the two types of approaches
was 0. However, for those comparisons at high risk of bias, the mean logit of the c-statistic was 0.34 higher for
machine learning than for logistic regression. Similarly, Couronn�e and colleagues applied random forests and
logistic regression to 243 real datasets and found that, on average, the c-statistic for random forests was 0.041
higher than for logistic regression.4 However, they also found that the results were dependent on the criteria to
select datasets for inclusion in the analyses.

Our objective was to identify when machine learning methods perform better than a classical learning method.
We hereto compare the relative predictive accuracy of five common machine learning and statistical methods with
that of conventional unpenalized logistic regression. We considered six different data-generating processes, each
based on a different machine or statistical learning method, and focused on external validation. The paper is
structured as follows: In Section 2, we introduce the data on which the simulations will be based, describe six
different machine and statistical learning methods, and describe the design of our simulations. In Section 3, we
report the results of these simulations. Finally, in Section 4, we summarize our findings and place them in the
context of the existing literature.

2 Methods

We performed simulations in two cohorts of patients hospitalized with cardiovascular disease. Within each
cohort, six different data-generating processes were used, each based on fitting a different statistical or machine
learning method to a derivation sample. Simulated binary outcomes were then generated in both the derivation
sample and in an independent validation sample using the fitted model. In this section, we describe the data, the
models and algorithms used, the data-generating processes and the statistical analyses that were conducted.

2.1 Data sources

We used data from The Enhanced Feedback for Effective Cardiac Treatment (EFFECT) Study,5 which collected
data on patients hospitalized with heart disease during two distinct temporal periods. During the first phase
(referred to as EFFECT Phase 1), detailed clinical data were collected on patients hospitalized with acute myo-
cardial infarction (AMI) and congestive heart failure (CHF) between April 1, 1999 and March 31, 2001 at 86
hospital corporations in Ontario, Canada, by retrospective chart review. During the second phase (referred to as
EFFECT Phase 2), data were abstracted on patients hospitalized with these two conditions between 1 April 2004
and 31 March 2005 at 81 Ontario hospital corporations. Data on patient demographics, vital signs and physical
examination at presentation, medical history, and results of laboratory tests were collected for these samples. In
our simulations, we consider external validation. We used the two EFFECT Phase 1 samples (AMI and CHF) as
derivation samples and the two EFFECT Phase 2 samples (AMI and CHF) as validation samples.

For the current study, data were available on 9484 and 7000 patients hospitalized with a diagnosis of AMI
during the first and second phases of the study, respectively (8240 and 7608 for CHF, respectively).

The outcome was a binary variable denoting whether the patient died within 30 days of hospital admission
(including out-of-hospital deaths). In each of the Phase 1 and Phase 2 AMI samples, 19.6% of patients died within
30 days of hospital admission. In the Phase 1 CHF sample, 32.7% of patients died within 30 days of hospital
admission, while in the Phase 2 CHF sample, 31.2% of patients died within 30 days of hospital admission.
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Outcomes were ascertained through linkage with provincial death registries. Thus, loss to follow-up was not an

issue in ascertaining mortality.
We considered 33 candidate predictor variables in the AMI sample. These consisted of demographic character-

istics (age, sex); presentation characteristics (cardiogenic shock, acute congestive heart failure/pulmonary edema);

vital signs on presentation (systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate); classic

cardiac risk factors (diabetes, hypertension, current smoker, dyslipidemia, family history of coronary artery

disease); comorbid conditions (cerebrovascular disease/transient ischemic attack, angina, cancer, dementia,

peptic ulcer disease, previous AMI, asthma, depression, peripheral vascular disease, previous revascularization,

congestive heart failure, hyperthyroidism, aortic stenosis); and laboratory tests (hemoglobin, white blood count,

sodium, potassium, glucose, urea, creatinine). The variance inflation factors (VIFs) for these 33 variables in the

Phase 1 AMI sample ranged from 1.0 to 2.2, while the VIFs ranged from 1.0 to 2.1 in the Phase 2 AMI sample,

suggesting limited collinearity.
We considered 28 candidate predictor variables in the CHF sample. These consisted of demographic character-

istics (age, sex); vital signs on admission (systolic blood pressure, heart rate, respiratory rate); signs and symptoms

(neck vein distension, S3, S4, rales> 50% of lung field, pulmonary edema, cardiomegaly); comorbid conditions

(diabetes, cerebrovascular disease/transient ischemic attack, previous AMI, atrial fibrillation, peripheral vascular

disease, chronic obstructive pulmonary disease, dementia, cirrhosis, cancer); left bundle branch block; and lab-

oratory tests (hemoglobin, white blood count, sodium, potassium, glucose, urea, creatinine). The VIFs for these

28 variables in the Phase 1 CHF sample ranged from 1.0 to 1.9, while the VIFs ranged from 1.0 to 2.0 in the Phase

2 CHF sample. Thus, multicollinearity was limited in both the AMI and CHF samples.
It is important to note that the multivariate distribution of these covariates (including correlation between

covariates) reflect those observed in two distinct populations of patients with cardiovascular disease (patients

hospitalized with AMI and patients hospitalized with CHF).

2.2 Statistical and machine learning methods for predicting mortality

We considered six different methods for predicting the probability of 30-day mortality for patients hospitalized

with cardiovascular disease: unpenalized (or conventional) logistic regression, bootstrap aggregated (bagged)

classification trees, random forests of classification trees, boosted trees, ridge regression, and the lasso.

Readers are referred elsewhere for details on these methods.1,6–10

For bagged classification trees, a classification tree was grown in each of 500 bootstrap samples. A hyper-

parameter was the minimum size of the terminal nodes. Selection of the hyper-parameters for all six methods is

described in the following section. For random forests, 500 classification trees were grown. For random forests,

there were two hyper-parameters: the minimum size of terminal nodes and the number of variables randomly

sampled as candidates for defining each binary split. For boosted trees we applied Friedman’s stochastic gradient

boosting machines using trees as the base learners (we refer to hereafter as boosted trees).9,11,12 For boosted trees,

we considered sequences of 100 trees. There were two hyper-parameters: the interaction depth (specifying the

maximum depth of each tree) and the shrinkage or learning rate parameter. When using unpenalized logistic

regression to predict the probability of 30-day mortality, the regression model included as main effects all the

variables listed above. The relationship between the log-odds of death and each continuous variable was modeled

used restricted cubic smoothing splines.13 For unpenalized logistic regression, there was one hyper-parameter: the

number of knots used when constructing restricted cubic splines. Both ridge regression and the lasso considered

the variables included in the unpenalized logistic regression model (however, for continuous variables, only linear

terms were considered).
For all methods, we used implementations available in the R statistical programming language (R version

3.6.1, R Foundation for Statistical Computing, Vienna, Austria). For bagging and random forests, we used the

randomForest function from the randomForest package (version 4.6–14). When fitting bagged classification trees,

the mtry parameter was set to 33 (AMI sample) or 28 (CHF sample), so that all variables were considered at each

split. The number of trees (500) was the default in this implementation. For boosted trees, we used the gbm

function from the gbm package (version 2.5.1)). The number of trees (100) was the default in this implementation.

We used the lrm and rcs functions from the rms package (version 5.1–3.1) to estimate the unpenalized logistic

regression model incorporating restricted cubic regression splines with standard maximum likelihood for model

estimation. Ridge regression and the lasso were implemented using the functions cv.glmnet (for estimating the k
parameter using 10-fold cross-validation) and glmnet from the glmnet package (version 2.0–18).
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Bagged classification trees and random forests of classification are classifiers. In the current paper, we are
focused on estimating probabilities rather than on classification. A predicted probability of the occurrence of the
outcome was extracted from each of these two methods using the estimated class probabilities provided by the
randomForest function.

2.3 Hyper-parameter tuning

Hyper-parameter tuning was performed in the EFFECT Phase 1 sample. A user-derived grid search was used for
bagged classification trees, boosted trees, random forests and unpenalized logistic regression. The grid had one
dimension for bagged classification trees (minimum size of terminal nodes) and unpenalized logistic regression
(number of knots for the restricted cubic splines) and two dimensions for boosted trees (interaction depth and
shrinkage or learning rate) and random forests (number of sampled candidate variables and minimum size of
terminal nodes). For a given point on this grid (e.g. for a given number of sampled candidate variables and
minimum size of terminal nodes for random forests), the EFFECT Phase 1 sample was randomly divided into 10
approximately equally sized groups. The given model, with the parameters set to those of the grid point, was fit in
nine of the groups. The fitted model was then applied to the remaining group and predicted probabilities of the
outcome were obtained for each subject in this remaining group. The accuracy of predictions was quantified using
the Brier score (defined in a subsequent section). This process was conducted 10 times, so that each of the 10
groups was used once for validating predictions. The Brier score was then averaged across all 10 iterations of this
procedure. The grid point that resulted in the lowest value of the Brier score was selected for all subsequent
applications of that method. For both ridge regression and the lasso, the tuning parameter k was estimated using
ten-fold cross-validation in the derivation sample using the cv.glmnet function from the glmnet package.

In the AMI sample, the grid searches resulted in the following values for the hyper-parameters: bagged clas-
sification trees (minimum terminal node size: 19), boosted trees (interaction depth: 3; shrinkage/learning rate:
0.075), random forests (number of randomly sampled variables: 4; minimum terminal node size: 10), unpenalized
logistic regression (number of knots: 4), lasso (k¼ 0.000877), and ridge regression (k¼ 0.0146).

In the CHF sample, the grid searches resulted in the following values for the hyper-parameters: bagged clas-
sification trees (minimum terminal node size: 19), boosted trees (interaction depth: 3; shrinkage/learning rate:
0.095), random forests (number of randomly sampled variables: 4; minimum terminal node size: 20), unpenalized
logistic regression (number of knots: 4), lasso (k¼ 0.00139), and ridge regression (k¼ 0.0121).

2.4 Six data-generating processes for simulating outcomes

We considered six different data-generating processes for each of the two diseases (AMI and CHF). We describe
the approach in detail for the AMI sample. An identical approach was used with the CHF sample. We used the
EFFECT Phase 1 sample as the derivation sample and the EFFECT Phase 2 sample as the validation sample. For
a given learning method (e.g. random forests), the method was fit in the EFFECT Phase 1. The fitted model was
then applied to both the derivation sample (EFFECT Phase 1) and the validation sample (EFFECT Phase 2).
Using the model/algorithm fit in the derivation sample, a predicted probability of the outcome (death within
30 days of hospital admission) was obtained for each subject in each of the two datasets (Phase 1 (derivation
sample) and Phase 2 (validation sample)). Using these predicted probabilities, a binary outcome was simulated for
each subject using a Bernoulli distribution with the given subject-specific probability. Thus, the simulated out-
comes reflected the multivariable relationship between the baseline covariates and the outcome that were implied
by the fitted algorithm (e.g. random forests). This process was repeated 1000 times, resulting in 1000 pairs of
derivation and test samples. This process was repeated for each of the six different statistical/machine learning
methods. Thus, we had a data-generating process based on bagged classification trees, boosted trees, random
forests, ridge regression, the lasso, and unpenalized logistic regression. This approach to simulating outcomes is
similar to that which was used in a previous study that examined the ‘data-hungriness’ of different statistical and
machine learning methods.14

2.5 Determining the performance of different predictive methods under different

data-generating processes

For a given pair of derivation and validation samples, we fit each of the six statistical/machine learning methods
(bagged classification trees, boosted trees, random forests, the lasso, ridge regression, and unpenalized logistic
regression) in the derivation sample and then applied the fitted model to the test or validation sample. In the test
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or validation sample, we obtained, for each subject, a predicted probability of the outcome for each of the six
prediction methods. The performance of the predictions obtained using each method was assessed using eight
measures. The c-statistic (equivalent to the area under the receiver operating characteristic (ROC) curve) indicates
discriminative ability. The c-statistic is defined as the proportion of all possible pairs of subjects, one of whom
experienced the outcome of interest and one of whom did not, in which the subject who experienced the outcome
of interest had a higher predicted probability of the outcome occurring than does the subject who did not
experience the outcome. Nagelkerke’s generalized R2 statistic, the Brier score, the integrated calibration index
(ICI), E90, the calibration intercept and the calibration slope were used to assess calibration of predictions (i.e.
correspondence between observed outcome proportions to predicted risks).13,15,16 Nagelkerke’s generalized R2

statistic is defined as 1�expð�LR=NÞ
1�expð�L0=NÞ , where LR is the global likelihood ratio test statistic for comparing the model

with p predictors to the null model, L0 is the -2 log likelihood for the null model, and N is the sample size.13 Brier’s

score is defined as 1
N

XN

i¼1
ðP̂i � YiÞ2, where Yi and P̂i denote the observed outcome and predicted probability for

the ith subject, respectively. Lower values of the Brier score indicate greater predictive accuracy. The ICI is a
calibration metric that denotes the mean differences between observed proportions and the predicted probability
of the outcome. It is equivalent to the weighted difference between a smoothed calibration curve and the diagonal
line denoting perfect calibration, averaged across the distribution of predicted risk.16,17 E90 is a calibration
metrics that denote the 90th percentile of the absolute differences between observed proportion and predicted
probability of the outcome.13,16 The calibration slope on the logit scale assesses deviation between observed and
expected probabilities of mortality across the range of predicted risk. Deviation of the calibration slope from unity
denotes miscalibration and indicates whether there was a need to shrink predicted probabilities at model devel-
opment. The calibration intercept and slope are obtained by using logistic regression to regress the binary out-
come on the linear predictor (log-odds) derived from the predicted probability. These seven performance measures
were computed using the val.prob function from the rms package (version 5.1–3.1). Finally, we computed the
negative of the out-of-sample binomial log-likelihood of the estimated probabilities in the validation sample.

Thus, when outcomes were simulated in the derivation and validation samples using random forests, we
assessed the predictive accuracy of bagged classification trees, boosted trees, random forests, the lasso and
ridge regression, and unpenalized logistic regression. This process was repeated using the datasets in which
outcomes were simulated using the five other data-generating processes. The steps in the simulations are described
in Box 1 for the random forests data-generating process (a similar process is used for each of the other five data-
generating processes).

Box 1. Design of Monte Carlo simulations, starting with a random forest model.

1. Fit a random forest to the EFFECT1 sample using the observed outcomes. The observed outcomes are no longer used after this

step.

2. Apply the random forest fit in Step 1 to both the EFFECT1 and EFFECT2 samples. Obtain a predicted probability of the

outcome for each subject in the EFFECT1 and EFFECT2 samples using the fitted model.

3. Generate a binary outcome for each subject in the EFFECT1 and EFFECT2 samples using a Bernoulli random variable with

subject-specific probability equal to the predicted probability obtained in Step 2. These are the simulated outcomes that will be

used in all subsequent steps.

4. Apply a given analysis method (e.g. unpenalized logistic regression) by fitting that model to the EFFECT1 sample with the

simulated outcomes generated in Step 3.

5. Apply the fitted model from Step 4 to the EFFECT2 sample.

6. For each subject in the EFFECT2 sample, obtain a predicted probability of the outcome based on the fitted analysis model that

was applied to the EFFECT2 sample in Step 5.

7. Use the eight performance metrics to compare the predicted probability of the outcome obtained in Step 6 with the simulated

binary outcome generated in Step 3.

8. Repeat Steps 3 to 7 1000 times. Summarize the performance metrics across the 1000 simulation replicates.

9. Repeat Steps 3 to 8 for a total of six analysis methods (lasso, ridge regression and unpenalized logistic regression; random

forest, bagged classification trees, boosted trees).

10. Repeat Steps 1 to 9 with the five other data-generating processes (bagged classification trees, boosted trees, the lasso, ridge

regression, and unpenalized logistic regression).
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3 Results

We present the simulations results for the AMI and CHF samples separately. For each performance metric, we

summarize the results across the 1000 simulation replicates using boxplots, with one boxplot for each combination

of data-generating process and analytic method.

3.1 AMI sample

The performance of the six prediction methods under the six different data-generating processes is reported in

Figures 1 and 2. Under the three tree-based data-generating processes, the use of boosted trees and unpenalized

logistic regression tended to result in predictions with the highest c-statistics in the test samples (top-left panel in

Figure 1). Under the three logistic regression-based data-generating processes, the use of unpenalized logistic

regression tended to result in predictions with the highest c-statistics. When the data-generating process was based

on either the lasso or ridge regression, the use of the three logistic regression-based approaches tended to result in

estimates with similar c-statistics. Across all six data-generating processes, the use of bagged classification trees

tended to result in estimates with the lowest c-statistic.
Boosted trees and unpenalized logistic regression tended to result in estimates with high R2, regardless of the

data-generating process (top-right panel in Figure 1). Random forests resulted in the highest R2 when the out-

comes were generated using either bagged classification trees or random forests. Under the four other data-

generating processes, the use of boosted trees and unpenalized logistic regression tended to result in predictions

with the highest generalized R2 statistic in the test samples. The lasso and ridge regression had performance

comparable to that of unpenalized logistic regression when outcomes were generated using either the lasso or ridge

regression. Bagged classification trees resulted in the lowest R2 across all six data-generating processes.

Figure 1. AMI sample: model performance assessed using c-statistic, R-squared, Brier score, and negative log-likelihood. (There are
eight panels across each pair of figures, one panel for each of the eight metrics of model performance. Each panel consists of six sets of
six box plots. Each box plot describes the variation in the given performance metric across the 1,000 simulation replicates when a
particular data-generating process and analytic method were used.)
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Unpenalized logistic regression tended to result in estimates with the lowest Brier score when outcomes were
generated using one of the three logistic regression-based data-generating processes (bottom-left panel of
Figure 1). When outcomes were generated using either the lasso or ridge regression, then these two methods
tended to result in estimates with a Brier score comparable to that of unpenalized logistic regression. When
outcomes were generated using either bagged classification trees or random forests, then the use of random
forests tended to result in estimates with the lowest Brier score. When outcomes were generated using boosted
trees, then both boosted trees and unpenalized logistic regression tended to result in estimates with the lowest
Brier score.

When outcomes were generated using a logistic regression-based approach, then unpenalized logistic regression
tended to result in estimates with among lowest the out-of-sample negative log-likelihood (bottom-right panel in
Figure 1). The lasso and ridge regression had performance comparable to that of unpenalized logistic regression
when outcomes were simulated under either the lasso or ridge regression. The use of random forests resulted in
estimates with the lowest negative log-likelihood when outcomes were generated using either bagged classification
trees or random forests. Boosted trees resulted in estimates with the lowest negative log-likelihood when outcomes
were generated using boosted trees; however, unpenalized logistic regression had performance that approached
that of boosted trees in this scenario.

When a logistic regression-based approach was used to simulated outcomes, the lasso and unpenalized logistic
regression tended to result in estimates with the lowest ICI (top-left panel in Figure 2) and E90 (top-right panel in
Figure 2), with the lasso tending to be slightly preferable to unpenalized logistic regression. Random forests
tended to result in estimates with the lowest ICI and E90 when outcomes were generated using bagged classifi-
cation trees or random forests. Unpenalized logistic regression tended to result in estimates with the lowest ICI
and E90 when outcomes were generated using boosted trees (although boosted trees tended to be a close
competitor).

Boosted trees tended to result in calibration intercepts very close to zero across five of the six data-generating
processes (bottom-left panel in Figure 2). The one exception was when outcomes were generated using a random
forest. Across five of the six data-generating processes, bagged classification trees resulted in estimates with a

Figure 2. AMI sample: model performance assessed using ICI, E90, calibration intercept, and calibration slope.
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calibration intercept furthest from zero. The lasso resulted in estimates with calibration intercepts closer to zero

than did unpenalized logistic regression across all six data-generating processes. Across five of the six data-

generating processes, the use of the lasso and unpenalized logistic regression tended to result in estimates with

a calibration intercept closer to zero than did the use of random forests (the one exception being when outcomes

were generated using a random forest).
The use of bagged classification trees resulted in calibration slopes further from unity than the other five

methods across all six data-generating processes (bottom-right panel in Figure 2). When using a logistic

regression-based data-generating process, the use of the lasso resulted in estimates with calibration slope closer

to unity than did the other five methods. When using a tree-based data-generating process, the use of boosted

trees tended to result in calibration slopes close to unity.

3.2 CHF sample

The performance of the six different prediction methods under the six data-generating processes is reported in

Figures 3 and 4. Under the three tree-based data-generating processes, the use of boosted trees, random forests and

unpenalized logistic regression tended to result in predictions with the highest c-statistics in the test samples (top-left

panel in Figure 3). Under the three logistic regression-based data-generating processes, the use of unpenalized

logistic regression tended to result in predictions with the highest c-statistics. When the data-generating process

was based on either the lasso or ridge regression, the use of the three logistic regression-based approaches tended to

result in estimates with comparable c-statistics. Across four of the six data-generating processes, the use of bagged

classification trees tended to result in estimates with the lowest c-statistic.
Boosted trees and unpenalized logistic regression tended to result in estimates with high R2, regardless of the

data-generating process (top-right panel in Figure 3). Random forests only resulted in estimates with the highest

R2 when outcomes were generated using bagged classification trees. The lasso and ridge regression had perfor-

mance comparable to that of unpenalized logistic regression when outcomes were generated using either the lasso

Figure 3. CHF sample: model performance assessed using c-statistic, R-squared, Brier score, and negative log-likelihood.
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or ridge regression. Bagged classification trees resulted in the lowest R2 across five of the six data-generating
processes.

Unpenalized logistic regression tended to result in estimates with the lowest Brier score when outcomes were
generated using one of the three logistic regression-based data-generating processes (bottom-left panel of Figure
3). When outcomes were generated using either the lasso or ridge regression, then these two methods tended to
result in estimates with a Brier score comparable to that of unpenalized logistic regression. When outcomes were
generated using either bagged classification trees or random forests, then the use of random forests tended to
result in estimates with the lowest Brier score. When outcomes were generated using boosted trees, then both
boosted trees and unpenalized logistic regression tended to result in estimates with the lowest Brier score.

When outcomes were generated using a logistic regression-based approach, then unpenalized logistic regression
tended to result in estimates with among the lowest negative log-likelihood (bottom-right panel in Figure 3). The
lasso and ridge regression had performance comparable to that of unpenalized logistic regression when outcomes
were simulated under either the lasso or ridge regression. The use of random forests resulted in estimates with
amongst the lowest negative log-likelihood when outcomes were generated using either bagged classification trees
or random forests. Boosted trees and unpenalized logistic regression resulted in estimates with the lowest negative
log-likelihood when outcomes were generated using boosted trees.

When a logistic regression-based approach was used to simulated outcomes, boosted trees, the lasso and
unpenalized logistic regression tended to result in estimates with the lowest ICI (top-left panel in Figure 4) and
E90 (top-right panel in Figure 4). The lasso and ridge regression tended to result in estimates with the lowest ICI
and E90 when outcomes were generated using bagged classification trees or random forests. Boosted trees and
unpenalized logistic regression tended to result in estimates with the lowest ICI and E90 when outcomes were
generated using boosted trees.

Boosted trees tended to result in calibration intercepts very close to zero across five of the six data-generating
processes (bottom-left panel in Figure 4). The one exception was when outcomes were generated using a random
forest. Across five of the six data-generating processes, bagged classification trees resulted in estimates with a
calibration intercept furthest from zero. The lasso resulted in estimates with calibration intercepts closer to zero

Figure 4. CHF sample: model performance assessed using ICI, E90, calibration intercept, and calibration slope.
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than did unpenalized logistic regression across five of the six data-generating processes. Across five of the six data-
generating processes, the use of the lasso and unpenalized logistic regression tended to result in estimates with a
calibration intercept closer to zero than did the use of random forests (the one exception being when outcomes
were generated using a random forest). Even when outcomes were generated using random forests, the use of the
lasso resulted in estimates with a calibration intercept closer to zero than did the use of random forests.

The use of bagged classification trees resulted in calibration slopes further from unity than the other five
methods across all six data-generating processes (bottom-right panel in Figure 4). When using a logistic
regression-based data-generating process, the use of the lasso resulted in estimates with calibration slope closer
to unity than did the other five methods. When using a tree-based data-generating process, the use of boosted
trees tended to result in calibration slopes close to unity.

4 Discussion

There is a growing interest in comparing the relative performance of different machine and statistical learning
methods for predicting patient outcomes. In order to better understand differences in the relative performance of
competing learning methods, we used six different data-generating processes, each based upon a different learning
method. This enabled us to examine the performance of methods different from those under which the data were
generated compared to the method that was used to generate the data.

None of the six estimation methods had consistently superior performance across all eight performance metrics
and across both samples. However, unpenalized logistic regression and boosted trees tended to have superior
performance compared to the other six methods across a range of performance metrics. Furthermore, even when
outcomes were generated using bagged classification trees, the use of bagging resulted in poorer performance
compared to that of the competing methods. A potential explanation for the poor performance is that, in the
presence of strong predictors, the grown regression trees may be correlated with one another. Random forests
attempt to solve this problem by only considering a random sample of the predictors at each split.

When an algorithm (i.e. bagging, boosting or random forests) was used to generate the outcomes, the estima-
tion of a prediction model with this algorithm tended to result in estimates with the best performance across the
difference metrics; as might be expected. Some exceptions occurred. For instance, when outcomes were generated
using bagged classification trees, random forests or boosted trees often resulted in estimates with the best per-
formance. Furthermore, unpenalized logistic regression often had performance similar to that of the best-
performing algorithm when outcomes were simulated using an algorithm.

We considered eight different metrics for assessing the performance of prognostic models. All eight were
included in the current study to allow for a comprehensive assessment of the relative performance of different
methods. However, in practice, greater emphasis is often placed on a small subset of these eight metrics. In
practice, the c-statistic is often used as a measure of overall performance. Calibration is a second key component
of model validation. In specific applied studies, the focus would often be on assessing calibration visually used
smoothed calibration curves. As this is not feasible in studies using Monte Carlo simulations, we use the ICI as a
summary measure of calibration as it represents the weighted average distance from the smoothed calibration
curve and the diagonal line denoting perfect calibration. When focusing on the c-statistic, one would conclude
that unpenalized logistic regression and boosted trees performed well across a wide variety of scenarios. When
focusing on the ICI, the lasso performed well across a variety of scenarios. When outcomes were generated using a
logistic regression-based method, then the use of the lasso often resulted in estimates the lowest ICI.

A strength of the current study was that our simulations were based on two real data sets, each with a realistic
correlation structure between predictors and with realistic associations between predictors and outcomes. This is
in contrast to many simulation studies, in which both the correlation structure between predictors and the
strength of prognostic associations is chosen rather arbitrarily. Admittedly, other types of prediction problems
may have stronger correlation structures, which might favor other methods than in our case studies. A second
strength of the current study was our assessment of external validity. Due to the availability of independent
derivation and validation samples that were obtained in temporally distinct eras, we were able examine the
performance of each method in more recent independent validation samples.

Limitations to the current study included that both real datasets were of approximately the same size and both
had approximately the same number of predictor variables (33 and 28 in the AMI and CHF samples, respective-
ly). It is conceivable that different results could be observed with datasets of substantially different sizes (small n)
or with a much larger number of predictor variables (large p). Moreover, the derivation and validation samples
(Phase I versus II) were relatively similar. Differences in case-mix may be larger in independent validation studies
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from different regions.18 Given that both our samples were of moderate to large size and contained a relatively
small number of candidate predictor variables, the results of our simulations may not hold in other settings. In
particular, the relative performance of the different prediction methods may differ in small n, large p scenarios.
However, our sample sizes and number of candidate predictor variables are reflective of those in many clinical
studies in which there is an interest in applying machine learning methods for predicting patient outcomes.
Another limitation of the current study is its focus on predicting the probability of binary outcomes. Due to
space constraints, we were unable to consider continuous and time-to-event (or survival) outcomes. However,
predicting the occurrence of binary outcomes is an important issue in biomedical research, and many authors are
interested in using machine learning methods for this purpose. The relative performance of these methods for
predicting continuous and time-to-event outcomes merits examination in a subsequent study. A final limitation is
that while the correlation structures for the candidate predictor variables reflected those observed for patients
hospitalized with cardiovascular disease, it is conceivable that different results would be observed in settings with
substantially different correlation structures. However, the fact that our simulations are based on empirical data
on patients with cardiovascular disease, strengthens the generalizability of our findings when considering future
application of statistical and machine learning methods in similar clinical contexts.

The focus of the current study was on the relative predictive accuracy of different learning methods when
outcomes were simulated using different methods. While our focus was on using different performance metrics for
assessing predictive accuracy, it should be highlighted that logistic regression-based approaches offer an inter-
pretative advantage compared to tree-based ensemble methods. Logistic regression-based approaches produce
odds ratios that allow one to quantify the relative contribution of each covariate to the outcome. In scenarios in
which logistic regression-based approaches had comparable performance to that of machine learning methods,
this would suggest that the logistic regression-based approaches should be preferred.

Many studies have compared the performance of logistic regression with that of machine learning methods
using empirical datasets. As noted in section 1, Christodoulou and colleagues reviewed 71 studies that employed
both types of methods for predicting binary outcomes.3 For those comparisons at low risk of bias, the difference
in the logit of the c-statistic between logistic regression and machine learning methods was 0 (95% CI: �0.18 to
0.18), while for those comparisons at high risk of bias, the logit of the c-statistic was, on average, 0.34 higher (95%
CI: 0.20 to 0.47) for machine learning methods. Calibration was not assessed in the majority of studies. Similarly,
Couronn�e and colleagues applied both random forests and logistic regression to 243 real datasets.4 The mean
difference between the c-statistic between random forests and logistic regression was 0.041 (95% CI: 0.031–0.053),
with random forests having, on average, higher c-statistics than logistic regression. They observed that their
results were dependent on the criteria used to select datasets for inclusion in their analyses. Shin and colleagues
conducted a review of 20 published studies that compared the performance of conventional statistical methods
with that of machine learning methods for predicting mortality and readmission in patients hospitalized with heart
failure.19 In general, machine learning methods tended to result in estimates with higher c-statistics than did
conventional statistical methods. Finally, Hassanipour and colleagues conducted a systematic review incorporat-
ing 10 studies that compared artificial neural networks to logistic regression for predicting outcomes in trauma
patients.20 The pooled estimate of the c-statistic for neural networks was 0.91, while it was 0.89 for logistic
regression. Common to all the comparisons summarized in the above four studies is that they were all conducted
using actual (or empirical) datasets. There is a paucity of studies that have used simulations to compare the
performance of logistic regression with that of machine learning methods for prediction. An advantage to the use
of simulations is that the investigator knows what the ‘truth’ is, and can compare the estimates obtained using
different methods to those obtained when using the ‘true’ model. Van der Ploeg used simulations similar to our
simulations, when assessing the relative ‘data hungriness’ of different learning methods.14 We are unaware of any
studies that used simulations to compare the performance of logistic regression with that of machine learning
methods for prediction in a new, external setting. There are a small number of studies that used simulations to
compare different methods for classification. Kirasich et al. used simulations to compare the performance of
logistic regression with that of random forests for binary classification (as opposed to binary prediction, as was
done in the current study).21 They found that logistic regression performed with a higher overall accuracy com-
pared to random forests. Similarly, Vafeiadas and colleagues used simulations to compare a set of classification
methods (including logistic regression) to the boosted version of each classifier.22 They found that the boosted
version of each classifier had superior performance to the unboosted version of each classifier. A strength of the
current study is that we considered six different data-generating processes, each based on a different machine or
statistical learning method. In particular, we compared the predictive performance of the method under which
outcomes were simulated with that of other methods. Furthermore, as noted above, our simulations were
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informed by analyses of empirical datasets, so that the correlation structure and prognostic associations reflected

those observed in practice.
In conclusion, we found that when assessing internal validity, boosted trees, the lasso, ridge regression and

unpenalized logistic regression tended to have superior performance to other learning methods across a wide

range of data generating processes. Random forests tended to have poor performance when outcomes were
generated under a method other than random forests. When assessing external validity, boosted trees, lasso,

ridge regression and unpenalized logistic regression tended to have superior performance to other learning

methods across a wide range of data generating processes. Importantly, conventional unpenalized logistic regres-
sion without any shrinkage or feature selection tended to have good performance, often exceeding that of com-

peting machine learning methods. Given the importance of external validation when assessing clinical prediction

models, we suggest that greater attention should be placed on the second set of findings.
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Appendix 1. R code for a data-generating process based on random forests

This code is available at https://github.com/peter-austin/SMMR-Machine-Learning-data-generating-processes.

# THIS CODE IS PROVIDED FOR ILLUSTRATIVE PURPOSES AND COMES WITH

# ABSOLUTELY NO WARRANTY.

# 1) Applies a random forest to the EFFECT1 dataset.

# 2) Determines the predicted probability of the event in EFFECT1 and EFFECT2

# data using the model fit to the EFFECT1 data.

# 3) For each subject in each of the two phases of EFFECT, a binary outcome is

# simulated using this predicted probability.

# 4) The other models are then applied to the EFFECT data with these simulated

# outcomes:

# 5) Each model is developed in the EFFECT1 sample (with simulated outcome).

# 6) Each model is then applied to the EFFECT2 sample

# (with the simulated outcome).

library(rms)

library(randomForest)

library(gbm)

library(glmnet)

################################################################################

# Fix number of trees for different methods

################################################################################

n.tree.rf <- 500

n.tree.bagg <- 500

# Default number of trees for RF/Bagging

n.tree.gbm <- 100

# Default number of trees for GBM.

################################################################################

# Read in parameter values from grid search for tuning ML parameters.

################################################################################

tune.bagg.list <- list(bagg.nodesize¼ 0)

tune.bagg <- scan("TUNE/BAGG/bagg.optimal",tune.bagg.list)

tune.gbm.list <- list(gbm.interaction.depth¼ 0,gbm.shrinkage¼ 0)
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tune.gbm <- scan("TUNE/GBM/gbm.optimal",tune.gbm.list)

tune.lrm.list <- list(lrm.knot¼ 0)

tune.lrm <- scan("TUNE/LRM/lrm.optimal",tune.lrm.list)

tune.rf.list <- list(rf.mtry¼ 0,rf.nodesize¼ 0)

tune.rf <- scan("TUNE/RF/rf.optimal",tune.rf.list)

tune.lasso.list <- list(lasso.lambda¼ 0)

tune.lasso <- scan("TUNE/LASSO2/lasso.optimal",tune.lasso.list)

tune.ridge.list <- list(ridge.lambda¼ 0)

tune.ridge <- scan("TUNE/RIDGE2/ridge.optimal",tune.ridge.list)

remove(tune.bagg.list,tune.gbm.list,tune.lrm.list,tune.rf.list,

tune.lasso.list,tune.ridge.list)

################################################################################

# Reads in EFFECT1 and EFFECT2 data from datasets created in SAS.

################################################################################

effect1.df <- read.table("ami_1.txt",header¼T)

effect2.df <- read.table("ami_2.txt",header¼T)

################################################################################

# Create matrices for use with LASSO and ridge regression

################################################################################

attach(effect1.df)

X.derive <- cbind(age,female,cshock,acpulmed,sysbp,

diasbp,hrtrate,resp,diabetes,highbp,smokhx,dyslip,famhxcad,cvatia,

angina,cancer,dementia,pud,prevmi,asthma,depres,perartdis,prevrevasc,

chf,hyprthyr,as,hgb,wbc,sod,pot,glucose,urea,cr)

detach(effect1.df)

attach(effect2.df)

X.valid <- cbind(age,female,cshock,acpulmed,sysbp,

diasbp,hrtrate,resp,diabetes,highbp,smokhx,dyslip,famhxcad,cvatia,

angina,cancer,dementia,pud,prevmi,asthma,depres,perartdis,prevrevasc,

chf,hyprthyr,as,hgb,wbc,sod,pot,glucose,urea,cr)

detach(effect2.df)

################################################################################

# Fits random forest to the EFFECT1 sample.

# Apply fitted model to EFFECT1 and EFFECT2 samples to get predicted probabilities

# to be used to generate outcomes.

# For different data-generating processes, code for the appropriate model

# replaces the random forest code in this block of code.

################################################################################

set.seed(28042020)

rf.effect1 <- randomForest(as.factor(mort1yr)� ageþ femaleþ cshock þ
acpulmedþ sysbp þ
diasbpþ hrtrateþ respþ diabetesþ highbpþ smokhxþ dyslipþ famhxcad þ
cvatiaþ anginaþ cancerþ dementiaþ pudþ prevmiþ asthmaþ depres þ
perartdisþ prevrevascþ chfþ hyprthyrþ asþ hgbþ wbcþ sodþ pot þ
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glucoseþ ureaþ cr,

mtry¼tune.rf$rf.mtry,nodesize¼tune.rf$rf.nodesize,

ntree¼n.tree.rf,replace¼T,importance¼T,

data¼effect1.df)

prob.rf1 <- predict(rf.effect1,type¼"prob",newdata¼effect1.df)[,2]

prob.rf2 <- predict(rf.effect1,type¼"prob",newdata¼effect2.df)[,2]

effect1.df$prob.rf1 <- prob.rf1

effect2.df$prob.rf2 <- prob.rf2

################################################################################

# Main body of simulations.

################################################################################

for (iter in 1:1000){

set.seed(iter)

################################################################################

# Random forests data-generating process

# Generate outcomes in EFFECT1 and EFFECT2 using probabilities from RF.

################################################################################

effect1.df$Y <- rbinom(nrow(effect1.df),1,effect1.df$prob.rf1)

effect2.df$Y <- rbinom(nrow(effect2.df),1,effect2.df$prob.rf2)

################################################################################

# Apply logistic regression to simulated data.

################################################################################

lrm.1 <- lrm(Y� rcs(age,tune.lrm$lrm.knot)þ femaleþ cshockþ acpulmed þ
rcs(sysbp,tune.lrm$lrm.knot)þ rcs(diasbp,tune.lrm$lrm.knot) þ
rcs(hrtrate,tune.lrm$lrm.knot)þ rcs(resp,tune.lrm$lrm.knot)þ diabetes þ
highbpþ smokhxþ dyslipþ famhxcadþ cvatiaþ anginaþ cancerþ dementia þ
pudþ prevmiþ asthmaþ depresþ perartdisþ prevrevascþ chfþ hyprthyr þ
asþ rcs(hgb,tune.lrm$lrm.knot)þ rcs(wbc,tune.lrm$lrm.knot) þ
rcs(sod,tune.lrm$lrm.knot)þ rcs(pot,tune.lrm$lrm.knot) þ
rcs(glucose,tune.lrm$lrm.knot)þ rcs(urea,tune.lrm$lrm.knot) þ
rcs(cr,tune.lrm$lrm.knot),

data¼effect1.df)

pred.valid.lrm.xbeta <- predict(lrm.1,newdata¼effect2.df)

pred.valid.lrm <- exp(pred.valid.lrm.xbeta)/(1þ exp(pred.valid.lrm.xbeta))

val.lrm <- val.prob(pred.valid.lrm,effect2.df$Y,pl¼F)

roc.valid.lrm <- val.lrm["C (ROC)"]

r2.valid.lrm <- val.lrm["R2"]

brier.valid.lrm <- val.lrm["Brier"]

ici.valid.lrm <- val.lrm["Eavg"]

E90.valid.lrm <- val.lrm["E90"]

Emax.valid.lrm <- val.lrm["Emax"]

intercept.valid.lrm <- val.lrm["Intercept"]

slope.valid.lrm <- val.lrm["Slope"]

p.valid <- mean(effect2.df$Y)

brier.max.valid <- p.valid*((1-p.valid)^2)þ (1-p.valid)*(p.valid^2)
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brier.max.valid.lrm <- 1 - (brier.valid.lrm/brier.max.valid)

pred.valid.lrm <- ifelse(pred.valid.lrm¼=0,0.00001,pred.valid.lrm)

negLL <- -sum((effect2.df$Y)*log(pred.valid.lrm) þ
(1-effect2.df$Y)*log(1-pred.valid.lrm))

cat(iter,roc.valid.lrm,r2.valid.lrm,brier.valid.lrm,brier.max.valid.lrm,

ici.valid.lrm,E90.valid.lrm,Emax.valid.lrm,intercept.valid.lrm,

slope.valid.lrm,negLL,

file¼"dgp.rf.lrm.out",fill¼T,append¼T)

remove(lrm.1,pred.valid.lrm.xbeta,pred.valid.lrm,val.lrm)

################################################################################

# Apply random forests to the simulated data.

################################################################################

rf.1 <- randomForest(as.factor(Y)� ageþ femaleþ cshockþ acpulmedþ sysbp þ
diasbpþ hrtrateþ respþ diabetesþ highbpþ smokhxþ dyslipþ famhxcad þ
cvatiaþ anginaþ cancerþ dementiaþ pudþ prevmiþ asthmaþ depres þ
perartdisþ prevrevascþ chfþ hyprthyrþ asþ hgbþ wbcþ sodþ pot þ
glucoseþ ureaþ cr,

mtry¼tune.rf$rf.mtry,nodesize¼tune.rf$rf.nodesize,

ntree¼n.tree.rf,replace¼T,importance¼T,

data¼effect1.df)

pred.valid.rf <- predict(rf.1,newdata¼effect2.df,type¼"prob")[,2]

val.rf <- val.prob(pred.valid.rf,effect2.df$Y,pl¼F)

roc.valid.rf <- val.rf["C (ROC)"]

r2.valid.rf <- val.rf["R2"]

brier.valid.rf <- val.rf["Brier"]

ici.valid.rf <- val.rf["Eavg"]

E90.valid.rf <- val.rf["E90"]

Emax.valid.rf <- val.rf["Emax"]

brier.max.valid.rf <- 1 - (brier.valid.rf/brier.max.valid)

intercept.valid.rf <- val.rf["Intercept"]

slope.valid.rf <- val.rf["Slope"]

pred.valid.rf <- ifelse(pred.valid.rf¼=0,0.00001,pred.valid.rf)

negLL <- -sum((effect2.df$Y)*log(pred.valid.rf) þ
(1-effect2.df$Y)*log(1-pred.valid.rf))

cat(iter,roc.valid.rf,r2.valid.rf,brier.valid.rf,brier.max.valid.rf,

ici.valid.rf,E90.valid.rf,Emax.valid.rf,intercept.valid.rf,slope.valid.rf,

negLL,

file¼"dgp.rf.rf.out",fill¼T,append¼T)

remove(rf.1,pred.valid.rf,val.rf,negLL)

################################################################################

# Apply bagged classification trees to the simulated data.

################################################################################

bagg.1 <- randomForest(as.factor(Y)� ageþ femaleþ cshockþ acpulmedþ sysbp þ
diasbpþ hrtrateþ respþ diabetesþ highbpþ smokhxþ dyslipþ famhxcad þ
cvatiaþ anginaþ cancerþ dementiaþ pudþ prevmiþ asthmaþ depres þ
perartdisþ prevrevascþ chfþ hyprthyrþ asþ hgbþ wbcþ sodþ pot þ
glucoseþ ureaþ cr,

mtry¼ 33,ntree¼n.tree.bagg,
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nodesize¼tune.bagg$bagg.nodesize,

replace¼T,importance¼T,

data¼effect1.df)

pred.valid.bagg <- predict(bagg.1,newdata¼effect2.df,type¼"prob")[,2]

val.bagg <- val.prob(pred.valid.bagg,effect2.df$Y,pl¼F)

roc.valid.bagg <- val.bagg["C (ROC)"]

r2.valid.bagg <- val.bagg["R2"]

brier.valid.bagg <- val.bagg["Brier"]

ici.valid.bagg <- val.bagg["Eavg"]

E90.valid.bagg <- val.bagg["E90"]

Emax.valid.bagg <- val.bagg["Emax"]

brier.max.valid.bagg <- 1 - (brier.valid.bagg/brier.max.valid)

intercept.valid.bagg <- val.bagg["Intercept"]

slope.valid.bagg <- val.bagg["Slope"]

pred.valid.bagg <- ifelse(pred.valid.bagg¼=0,0.00001,pred.valid.bagg)

negLL <- -sum((effect2.df$Y)*log(pred.valid.bagg) þ
(1-effect2.df$Y)*log(1-pred.valid.bagg))

cat(iter,roc.valid.bagg,r2.valid.bagg,brier.valid.bagg,brier.max.valid.bagg,

ici.valid.bagg,E90.valid.bagg,Emax.valid.bagg,intercept.valid.bagg,

slope.valid.bagg,negLL,

file¼"dgp.rf.bagg.out",fill¼T,append¼T)

remove(bagg.1,pred.valid.bagg,val.bagg,negLL)

################################################################################

# Apply GBM to the simulated data.

################################################################################

gbm.1 <- gbm(Y� ageþ femaleþ cshockþ acpulmedþ sysbp þ
diasbpþ hrtrateþ respþ diabetesþ highbpþ smokhxþ dyslipþ famhxcad þ
cvatiaþ anginaþ cancerþ dementiaþ pudþ prevmiþ asthmaþ depres þ
perartdisþ prevrevascþ chfþ hyprthyrþ asþ hgbþ wbcþ sodþ pot þ
glucoseþ ureaþ cr,

data¼ effect1.df,

distribution¼ "bernoulli",

n.trees¼ n.tree.gbm,

interaction.depth¼ tune.gbm$gbm.interaction.depth,

shrinkage¼ tune.gbm$gbm.shrinkage,

bag.fraction¼ 0.5,

train.fraction¼ 1.0,

cv.folds¼ 0,

keep.data¼ TRUE)

pred.valid.gbm <- predict(gbm.1,newdata¼effect2.df,n.trees¼n.tree.gbm,

type¼"response")

val.gbm <- val.prob(pred.valid.gbm,effect2.df$Y,pl¼F)

roc.valid.gbm <- val.gbm["C (ROC)"]

r2.valid.gbm <- val.gbm["R2"]

brier.valid.gbm <- val.gbm["Brier"]

ici.valid.gbm <- val.gbm["Eavg"]

E90.valid.gbm <- val.gbm["E90"]

Emax.valid.gbm <- val.gbm["Emax"]

brier.max.valid.gbm <- 1 - (brier.valid.gbm/brier.max.valid)

intercept.valid.gbm <- val.gbm["Intercept"]
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slope.valid.gbm <- val.gbm["Slope"]

pred.valid.gbm <- ifelse(pred.valid.gbm¼=0,0.00001,pred.valid.gbm)

negLL <- -sum((effect2.df$Y)*log(pred.valid.gbm) þ
(1-effect2.df$Y)*log(1-pred.valid.gbm))

cat(iter,roc.valid.gbm,r2.valid.gbm,brier.valid.gbm,brier.max.valid.gbm,

ici.valid.gbm,E90.valid.gbm,Emax.valid.gbm,intercept.valid.gbm,

slope.valid.gbm,negLL,

file¼"dgp.rf.gbm.out",fill¼T,append¼T)

remove(gbm.1,pred.valid.gbm,val.gbm,negLL)

################################################################################

# Apply Lasso to the simulated data.

################################################################################

lasso.1 <- glmnet(X.derive,effect1.df$Y,alpha¼ 1,family¼"binomial",

lambda¼tune.lasso$lasso.lambda)

pred.valid.lasso <- predict(lasso.1,X.valid,s¼tune.lasso$lasso.lambda,

type¼"response")

val.lasso <- val.prob(pred.valid.lasso,effect2.df$Y,pl¼F)

roc.valid.lasso <- val.lasso["C (ROC)"]

r2.valid.lasso <- val.lasso["R2"]

brier.valid.lasso <- val.lasso["Brier"]

ici.valid.lasso <- val.lasso["Eavg"]

E90.valid.lasso <- val.lasso["E90"]

Emax.valid.lasso <- val.lasso["Emax"]

brier.max.valid.lasso <- 1 - (brier.valid.lasso/brier.max.valid)

intercept.valid.lasso <- val.lasso["Intercept"]

slope.valid.lasso <- val.lasso["Slope"]

pred.valid.lasso <- ifelse(pred.valid.lasso¼=0,0.00001,pred.valid.lasso)

negLL <- -sum((effect2.df$Y)*log(pred.valid.lasso) þ
(1-effect2.df$Y)*log(1-pred.valid.lasso))

cat(iter,roc.valid.lasso,r2.valid.lasso,brier.valid.lasso,brier.max.valid.lasso,

ici.valid.lasso,E90.valid.lasso,Emax.valid.lasso,intercept.valid.lasso,

slope.valid.lasso,negLL,

file¼"dgp.rf.lasso.out",fill¼T,append¼T)

remove(lasso.1,pred.valid.lasso,val.lasso,negLL)

################################################################################

# Apply ridge regression to the simulated data.

################################################################################

ridge.1 <- glmnet(X.derive,effect1.df$Y,alpha¼ 0,family¼"binomial",

lambda¼tune.ridge$ridge.lambda)

pred.valid.ridge <- predict(ridge.1,X.valid,s¼tune.ridge$ridge.lambda,

type¼"response")

val.ridge <- val.prob(pred.valid.ridge,effect2.df$Y,pl¼F)

roc.valid.ridge <- val.ridge["C (ROC)"]

r2.valid.ridge <- val.ridge["R2"]

brier.valid.ridge <- val.ridge["Brier"]

ici.valid.ridge <- val.ridge["Eavg"]
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E90.valid.ridge <- val.ridge["E90"]

Emax.valid.ridge <- val.ridge["Emax"]

brier.max.valid.ridge <- 1 - (brier.valid.ridge/brier.max.valid)

intercept.valid.ridge <- val.ridge["Intercept"]

slope.valid.ridge <- val.ridge["Slope"]

pred.valid.ridge <- ifelse(pred.valid.ridge¼=0,0.00001,pred.valid.ridge)

negLL <- -sum((effect2.df$Y)*log(pred.valid.ridge) þ
(1-effect2.df$Y)*log(1-pred.valid.ridge))

cat(iter,roc.valid.ridge,r2.valid.ridge,brier.valid.ridge,brier.max.valid.ridge,

ici.valid.ridge,E90.valid.ridge,Emax.valid.ridge,intercept.valid.ridge,

slope.valid.ridge,negLL,

file¼"dgp.rf.ridge.out",fill¼T,append¼T)

remove(ridge.1,pred.valid.ridge,val.ridge,negLL)

}
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