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Abstract 
The Amazon biome, despite its resilience, is being pushed by unsustainable economic drivers 

towards an ecological tipping point where restoration to its previous state may no longer possible. 

This is the result of self-reinforcing interactions between deforestation, climate change and fire. In 

this paper, we develop scenarios that represent movement towards an Amazon tipping point and 

strategies to avert one. We assess the economic, natural capital and ecosystem services impacts of 

these scenarios using the Integrated Economic-Environmental Modeling (IEEM) Platform linked 

with high resolution spatial land use land cover change and ecosystem services modeling 

(IEEM+ESM). This paper’s main contributions are developing: (i) a framework for evaluating 

strategies to avert an Amazon tipping point based on their relative costs, benefits and trade-offs, 

and; (ii) a first approximation of the economic, natural capital and ecosystem services impacts of 

movement towards an Amazon tipping point, and evidence to build the economic case for 

strategies to avert it. We find that a conservative estimate of the cumulative regional cost through 

2050 of an Amazon tipping point would be US$256.6 billion in Gross Domestic Product. Policies 

that would contribute to averting a tipping point, including strongly reducing deforestation, 

investing in climate-adapted agriculture, and improving fire management, would generate 

approximately US$339.3 billion in additional wealth. From a public investment perspective, the 

returns to implementing strategies for averting a tipping point would be US$29.5 billion. 

Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent 

and replicable manner can pave the way for evidence-based approaches to support policy action 

focusing on the design of regional strategies for the Amazon biome and catalyze global 

cooperation and financing to enable their implementation. 
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1.0 Introduction 

There is a broad body of literature, extending back to at least 1991, outlining the mechanisms by 

which climate change, driven by the combination of deforestation and greenhouse gas 

accumulation in the atmosphere, could cause a significant portion of the Amazon biome to shift 

from broadleaf evergreen forests to drought-deciduous or degraded, savanna-like environments 

(Aragão et al., 2008; Malhi et al., 2009; Nobre et al., 1991). This paper evaluates the economic, 

natural capital and ecosystem service costs of continuing to move towards a tipping point in the 

Amazon, as well as the contribution of strategies to avert a one. In quantifying the impacts of 

movement towards a tipping point, our study focuses on continued deforestation and the climate 

risk to agricultural production stemming from increased water stress, increased intensity and 

frequency of droughts, and increased forest fires. Climate change and deforestation are changing 

the composition of Amazon forests (Esquivel-Muelbert et al., 2019) and affecting regional and 

local hydrological cycles, pushing the region toward drier conditions and leading to degradation 

of tropical forest ecosystems. The impacts of these phenomena are multi-scalar, with local, 

regional and global impacts (Lovejoy and Nobre, 2019).  

 

Deforestation by itself can significantly reduce rainfall and lengthen the dry season by reducing 

the net energy and water vapor available for rainfall formation. The hydrological cycle of the 

Amazon depends on transpiration from the forest where as much as 75% of precipitation is 

returned to the air through evapotranspiration and once again recycled as precipitation. 

Deforestation and fire disrupt this cycle by reducing net surface radiation and evapotranspiration 

(Silvério et al., 2015), increasing rainfall runoff and land surface temperature, and ultimately 

decreasing rainfall (Butt et al., 2020; D’Almeida et al., 2007; Leite‐Filho et al., 2020; Silvério et 

al., 2015; Wright et al., 2017). This has impacts for national and regional economies, particularly 

given heavy reliance on rainfed agriculture and South America’s role as a primary exporter of 

agricultural commodities.  

 

As the disruption of the hydrological cycle reduces moisture availability both for natural and 

cultivated plants, the regional ecosystems shift toward plant communities that are more drought 

tolerant and characteristic of a tropical savannah. This tendency towards savannization is 

evidenced in the eastern and south western Amazon. Savannization (Brando et al., 2019; Trumbore 
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et al., 2015) is accelerated by climate change which is already reducing rainfall, increasing 

temperatures, increasing drought frequency and intensity, and increasing forest fires (Brando et 

al., 2020a; Lovejoy and Nobre, 2019; Nobre et al., 2016; Silvério et al., 2013). With more frequent 

anthropogenic fires, the likelihood of forest dieback increases considerably (Brando et al., 2014a). 

 

Together the feedbacks between continued deforestation and climate could lead to a tipping point 

beyond which large areas of the Amazon no longer have sufficient rainfall to support broadleaf 

evergreen forests (Aragão et al., 2008; Malhi et al., 2009; Nepstad et al., 2007). Several studies 

have investigated the deforestation threshold that would cause a tipping point in the Amazon basin. 

Some authors view the tipping point to be imminent (Lovejoy and Nobre, 2019), while others have 

estimated that deforestation of 40% or more would push the Amazon past a tipping point (Nepstad 

et al., 2008; Sampaio et al., 2007; Walker et al., 2009). Therefore, the consensus is that at some 

amount of deforestation, a tipping point will be reached and that it will be reached earlier with 

greenhouse gas-driven climate change. Given this uncertainty, our study focuses on movement 

towards a tipping point and strategies that can delay and potentially avert one.   

 

A tipping point for the Amazon would mean irreparable damage to the structure and function of 

this locally and globally important biome. This would include losses of biodiversity and critical 

material ecosystem services (IPBES, 2019) like agricultural production, forest product output and 

water supply, and; non-material ecosystem services including carbon storage, and nutrient and soil 

retention. With a reduction in natural capital stocks and ecosystem services which are the benefits 

people derive from nature (Daily, 1997), inter-generational wealth and well-being would be 

affected dramatically. This would be felt most acutely by indigenous populations that have for 

centuries sustained their livelihoods in harmony with the Amazon biome.  

 

Over the last seven decades, the human occupation and the arc of deforestation in Brazil have been 

advancing, from the southern extent of the Amazon biome towards its center (Valentim, 2015; 

Valentim and Vosti, 2005). Over this period, close to 20% of the  Amazon biome has been 

converted to other land uses (Smith et al., 2020) and at least 17% of the remaining forest has been 

disturbed since 1995 (Bullock et al. 2020). Economic growth, regional inequality and the 

environmental dynamics of rainforest frontiers are determinants of the intensity of migration flows 
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in the region (Sathler et al., 2019; Schielein and Börner, 2018). The complex interactions between 

socio-economic and environmental systems that feedback and drive changes in land use in the 

Brazilian Amazon are at the center of the debate on sustainable development and are the focus of 

the attention of researchers, policy makers, businesses and civil society at local, national and 

international levels (Betts et al., 2008; Chambwera et al., 2014; Saatchi et al., 2012). Recent studies 

seek to associate environmental and socioeconomic variables at multiple scales as a more robust 

analytical strategy of the complex development processes of the Amazon biome (Cortner et al., 

2019; Garrett et al., 2017; Meyfroidt et al., 2018). 

 

Given the uncertainty in when a tipping point could be reached and the dire consequences of 

crossing one, strong sustainability dictates that urgent action is required to restore balance to the 

Amazon. Sustainable intensification of agriculture and cattle production systems in already 

deforested areas (Strassburg et al., 2014), and extensive economic reforestation of 

characteristically low productivity or abandoned pastures and fields are among the most promising 

measures (Lovejoy and Nobre, 2019). Adopted on a large landscape scale, these measures 

represent important innovation and nature-based solutions capable of effectively reconciling 

inclusive socioeconomic growth while reducing deforestation pressures and stabilizing not only 

the local hydrological system, but also contributing substantially to mitigate global climate change 

(Griscom et al., 2017). Other measures include enhancing conservation efforts, introducing more 

productive silvopastoral and agroforestry systems (Porro et al., 2012), strengthening forest-based 

livelihoods (Schmink, 2011), and developing strong local bioeconomies (Nobre and Nobre, 2018). 

While there is a growing literature on the potential ecological implications of an Amazon tipping 

point, the economic costs and trade-offs between strategies to avert a tipping point are not well 

understood.  

 

This study fills this important gap by assessing the economic impacts of approaching an Amazon 

tipping point and strategies that can still be implemented to avert one. Our assessment goes beyond 

a conventional benefit-cost approach by developing and applying the Integrated Economic-

Environmental Modeling (IEEM) Platform to countries of the region. We link IEEM with spatial 

Ecosystem Services Modeling (IEEM+ESM) to capture a broader set of impacts, from impacts on 

economies and society, to changes in the underpinning natural capital stocks and flows of 
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ecosystem services (Banerjee et al., 2020a). We focus on the most economically important 

countries of the Amazon biome for which reliable economic and environmental data exists, namely 

Brazil, Peru, Colombia, Bolivia, and Ecuador.  

 

In our modeling, we take a scenario analysis approach. We first develop a baseline projection of 

economic development and land use for the region from 2020 to 2050. This baseline reference 

scenario is an artificial modeling artifact developed to estimate the impacts of approaching an 

Amazon tipping point. To this reference scenario, we consider three main dimensions of a tipping 

point: (i) climate change impacts in inducing water stress; (ii) increasing frequency and intensity 

of drought, and; (iii) increasing fire. Upon this future trajectory for the region, which may be 

considered the business-as-usual scenario, we implement policy action aimed at averting a tipping 

point. This policy intervention begins with concerted regional efforts to strongly reduce 

deforestation  over the next 10 years. There are various strategies through which this may be 

achieved which can include improved monitoring and enforcement of existing laws as well as by 

introducing more sustainable productive practices, such as: intensive cattle production systems 

based on mixed grass-legume pastures (Zu Ermgassen et al., 2018), integrated crop-livestock 

systems (Gil et al., 2018), establishing silvopastoral and agroforestry systems in already deforested 

and degraded areas (Porro et al., 2012), sustainable forest management systems, and payment for 

ecosystem services (Valentim, 2015). Experience in Brazil over the last 15 years has generated 

numerous lessons that can be applied in the region to slow deforestation (Ardila et al., 2021; 

Banerjee et al., 2009; Banerjee and Alavalapati, 2010). In addition to strongly reducing 

deforestation, the policy intervention scenario includes a reduction in anthropogenic fire and 

investment in climate adapted agricultural systems including irrigation.  

 

We estimate the effect of our scenarios on standard economic indicators such as Gross Domestic 

Product (GDP), trade, income and employment, as well as robust indicators of economic 

development that include metrics of well-being and wealth (Arrow et al., 2004, 2012; Dasgupta, 

2021; Dasgupta and Ehrlich, 2013; Polasky et al., 2015; Stiglitz et al., 2010, 2009). In addition, 

we estimate effects on natural capital stocks and ecosystem service supply, specifically: carbon 

storage, nutrient and sediment retention and water supply, as well as biodiversity which is the 

foundation of healthy and resilient ecosystem function. Estimates of the effects of our policy 
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scenarios on economic indicators, natural capital stocks and ecosystem service supply are 

compared with the tipping point scenario to determine the net effect of a more sustainable vision 

for the Amazon. 

 

The section that follows provides a brief overview of the IEEM+ESM methodological approach. 

Section 3 presents the key elements of the Amazon tipping point and policy scenarios. Section 4 

provides a high-level overview of the results. Section 5 discusses some of the limitations and future 

directions for this line of research. Section 6 concludes the paper with key findings and policy 

implications. The paper includes Supplementary Information (SI) which provides a detailed 

description of the methods, the science underpinning our scenario design, and a more detailed view 

of the results, including additional country-level results.  

 

2.0 Methods 

2.1. Overview of the IEEM+ESM approach 

The IEEM Platform is an economy-wide decision-making framework for evidence-based public 

policy and investment design (Banerjee et al., 2016; Banerjee et al., 2019b, 2019a). Linked with 

spatial ecosystem services modeling, IEEM+ESM (Banerjee et al., 2020; O. Banerjee et al., 2019a) 

is being used by multilateral institutions such as the Inter-American Development Bank and 

government institutions including Ministries of Finance and Central Banks in future-looking 

analysis of public policy and investment in Latin America and the Caribbean and beyond. 

IEEM+ESM models have been built for around 25 countries and have been applied to hundreds of 

questions of public policy and investment, including analysis of the complex challenges associated 

with the Sustainable Development Goals, the Paris Agreement and Green Growth Strategies.   

 

The value-added of IEEM is: (i) its integration of detailed environmental information through the 

United Nations System of Environmental-Economic Accounting (SEEA) (United Nations et al., 

2014) to represent the economy and the environment in a comprehensive and inter-connected way, 

all consistent with the System of National Accounts (European Commission et al., 2009); (ii) the 

indicators IEEM generates are those demanded by policy makers including GDP, employment and 

poverty, but also metrics of wealth, sustainability, natural capital stocks, and ecosystem services 

supply. Wealth metrics are necessary to inform policies aimed at sustainable economic 
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development rather than once-off, short-run economic growth at the expense of a country’s natural 

capital asset base (Dasgupta, 2021; Lange et al., 2018; Polasky et al., 2015; Stiglitz et al., 2010, 

2009; UNEP, 2018), and; (iii) IEEM’s environmental modeling modules capture the specific 

dynamics of natural capital-based sectors while IEEM’s linkage with spatial ecosystem services 

modeling enables us to estimate impacts on the future flow of market and non-market ecosystem 

services. 

 

At the core of IEEM is a dynamic computable general equilibrium (CGE) model. Black boxes no 

more, CGE models are among the most well-documented class of models in the literature which 

has developed over the last 4 decades, outlining the theory, methods, and strengths and limitations 

of the approach (Burfisher, 2017; Dervis et al., 1982; Dixon and Jorgenson, 2012; Kehoe, 2005; 

Shoven and Whalley, 1992). IEEM’s mathematical structure is documented in (Banerjee and 

Cicowiez, 2020). The database for IEEM is an environmentally extended Social Accounting 

Matrix. The construction of an IEEM database is described in Banerjee et al. (2019b). A user guide 

for a generic version of IEEM, applicable to any country with the corresponding database, is 

available in Banerjee and Cicowiez (2019). 

 

While IEEM may be used to estimate impacts on most material (IPBES, 2019) or provisioning 

ecosystem services (European Environment Agency, 2018; Haines-Young and Potschin, 2012), 

most of which have a market price, our linkage of IEEM with spatial ecosystem services modeling 

enables estimation of impacts on non-material or regulating ecosystem services that do not have a 

market price. The bridge between IEEM and ecosystem services modeling is made through the 

spatial allocation of IEEM-projected demand for land using a Land Use Land Cover (LULC) 

change model. With this model, we generate baseline and scenario-based LULC change maps 

which are used as inputs to the ecosystem services modeling.  

 

We model Amazon tipping point and policy intervention impacts on carbon storage and erosion 

mitigation, water supply and water purification ecosystem services. In addition, we estimate a 

biodiversity index to examine scenario impacts on biodiversity which is the foundation of healthy 

functioning ecosystems and the services they provide. Economic results are estimated for the 

Amazon region as a whole, comprised of the five focal countries, and individually while changes 
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in LULC and ecosystem services supply are calculated across a 1 km by 1 km spatial grid of the 

entire region.  

 

2.2. IEEM models for Brazil, Bolivia, Colombia, Ecuador and Peru 

We constructed IEEM models for the 5 Amazon focal countries. The theoretical and mathematical 

structure of the IEEM modeling framework was developed with sufficient flexibility to account 

for country-specific features of most economies. For results that are comparable and consistent 

across countries and to enable the interpretation of the Amazon tipping point and policy scenarios, 

the theoretical structure of each IEEM model and model closures and rules are the same across 

countries. What differs between each IEEM model used in this exercise is the underpinning data 

which is based on each countries’ System of National Accounts (European Commission et al., 

2009) and their SEEA accounts where available.  

 

IEEM model databases were constructed following the approach outlined in (Banerjee et al., 

2019b). Colombia (DANE, 2017) and Brazil (ANA et al., 2018) are the only two of the five 

countries with SEEA accounts. The land-intensive sectors, namely crops, livestock, forest 

plantations and forests, were regionally disaggregated in each of the five IEEM models. The main 

data sources for this regionalization were LULC data sourced from agricultural census data and 

LULC maps; regional economic accounts, employment and labor supply data were also used to 

regionalize the crop, livestock, forest plantation and forest sectors. Regionalization of the IEEM 

models enables demand for land to be projected for each individual state or department for each 

country. This is important for enabling the LULC change and ecosystem services modeling that 

accurately reflects state/department-level demand for land. More details of the data used in model 

regionalization are provided in SI section 1.   

 

2.3. Land use land cover change modeling 

IEEM demand for land is spatially allocated across a 1 km by 1 km grid with the LULC change 

model which is used to generate baseline and scenario-based projected LULC maps. These maps 

are the main variable of change used in the ecosystem services modeling, with most other 

parameters held constant. We use the CLUE (Conversion of Land Use and its Effects; Verburg et 

al., 2008, 1999; Verburg and Overmars, 2009a) modeling framework to spatially allocate LULC 
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change using empirically quantified relationships between land use and location factors, in 

combination with the dynamic modeling of competition between land use types. CLUE is among 

the most widely used spatial LULC change models and has been applied on different scales across 

the globe. The version of the CLUE model family we use is the Dynamic CLUE (Dyna-CLUE) 

model which is appropriate for smaller regional extents compared with global LULC modeling 

(Veldkamp and Verburg, 2004; Verburg et al., 2002; Verburg and Overmars, 2009b). 

 

Figure 1. Overview of the Dyna-CLUE modeling procedure 

 
Source: Verburg et al. (2002). 

 
The Dyna-CLUE model is sub-divided into two distinct modules: a non-spatial demand module 

and a spatially explicit allocation procedure (Figure 1). The non-spatial module calculates the area 

change for all land use types at the aggregate level and in this case is an input derived from IEEM. 

IEEM demand for land is spatially explicit at the level of the states/departments of the countries 

that share the Amazon and Cerrado biomes. Within the second module of Dyna-CLUE, these 

demands are translated into land use changes at different locations within the study region using a 

raster-based system.  

 

Figure 2 provides an overview of the information required by Dyna-CLUE. This information is 

subdivided into four categories that together create a set of conditions and possibilities for which 

the model calculates the best solution in an iterative procedure. Detailed information on the 

suitability analysis and all Dyna-CLUE model parameters and procedures is provided in SI section 

3. This section includes all variables used as location characteristics, their description as well as 

specific values used for each land use type. 
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Figure 2. Overview of the information flow in the Dyna-CLUE model. 

 
Source: (Verburg et al., 2002). 

 
For the land use demand module, different model specifications are possible ranging from simple 

trend extrapolations to complex economic models, such as in this case with the linkage of Dyna-

CLUE with IEEM. The results from the demand module need to specify, on an annual basis, the 

area covered by the different land use types, which is a direct input to the allocation module. 

Annual demands for forest, forest plantation, cropland and grazing areas are generated by IEEM. 

This demand is allocated based on a combination of empirical estimations, spatial analyses and 

dynamic modelling. In an intermediate step to the allocation of demand for land, Dyna-CLUE 

calculates suitability maps for each land use type which reflect the probability of each land use 

class occurring for each pixel.  

 

To apply the LULC model, several regions were identified by aggregating country 

states/departments that share the Amazon and Cerrado biomes. Figure 3 displays the 

states/departments selected, their country borders, and an overlay of the Amazon biome, Amazon 

Cerrado biome, the Cerrado biome, and an aggregation of non-Amazon/Cerrado biomes. Each 

state/department was run in Dyna-CLUE separately and then aggregated in post-processing.  
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Figure 3. Regional disaggregation indicating state/department, country and biome extents. 

 
Source: Authors’ own elaboration. 

 

SI section 3 provides an overview of how annual bioclimatic spatial data was prepared to 

operationalize the scenarios in Dyna-CLUE. Also in SI section 3, we provide maps summarizing 

land use land cover change for each of the scenarios.  

 

2.4. Ecosystem service modeling 

The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) suite of models (Sharp 

et al., 2020) was used to calculate scenario-based, spatially-explicit changes in ecosystem services 

supply. The InVEST models are open source, are very well documented and are the most widely 

used set of tools for ecosystem services modeling globally. InVEST combines LULC maps and 

biophysical information to calculate ecosystem services, with the option to add additional 

parameters to assist in ecosystem services valuation. In this paper, we parameterize and apply four 

ecosystem services models, namely: the sediment delivery ratio model used to calculate the 
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Revised Universal Soil Loss Equation; the carbon storage model used to calculate carbon storage 

and carbon sequestration potential; the annual water yield model to calculate water supply, and; 

the nutrient delivery ratio model which is used as a proxy for the water purification potential of 

landscapes in absorbing nitrogen and phosphorus. Detailed information on the ecosystem services 

models used and their inputs is documented in SI section 4. 

 

In addition to the ecosystem services modeled, we also evaluated how scenarios impacted 

biodiversity by calculating composite Biodiversity Intactness Indices (Hudson et al., 2017; 

Newbold et al., 2016). The Biodiversity Intactness Index is a coefficient based on the average 

abundance of species originally present across undisturbed habitats (Newbold et al., 2016). Our 

estimations are based on the PREDICTS database, an extensive database collecting case study 

information on the relationship between land use and biodiversity, with over 32 million 

observations from 32,000 locations and covering 50,000 species (Trustees of the Natural History 

Museum, 2020).   

 

3.0. Baseline and scenario design 

3.1. IEEM baseline 

The baseline projection (BASE) in IEEM is the reference scenario. This baseline is an artificial 

modeling artifact developed for the sole purpose of enabling an estimation of the impacts of 

approaching a tipping point. Compared with this artificial reference scenario, we consider three 

main dimensions of an Amazon tipping point, namely climate change impacts in inducing water 

stress, increasing frequency and intensity of drought and increasing fire. In the BASE, IEEM 

models for each country are updated from their base year to the year 2020 based on observed trends 

of GDP and sectoral, population and labor force growth. For the period 2020 to 2050, GDP growth 

follows the projections from the latest IMF World Economic Outlook (IMF, 2019) while 

population growth rates are drawn from the United Nations’ population projections (United 

Nations et al., 2019). GDP growth is exogenous in the BASE and imposed in IEEM by 

endogenously adjusting total factor productivity.  

 

The BASE projection includes a projection of demand for crop, livestock, natural forest and forest 

plantation land, as well as a projection of deforestation which is based on historical trends. These 
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LULC trends are implemented in IEEM exogenously. The supply of agricultural land grows by 

the rate of deforestation. Figure 4 shows the BASE levels of deforestation across the five focal 

countries. Details specific to each IEEM country model including deforestation projections are 

provided in SI section 1.  

 

Figure 4. Deforestation projections across Amazon focal countries in hectares. Note that Brazil’s 
projection is read from the secondary y-axis. 

Source: IEEM+ESM results. 
 

In all scenarios other than BASE, GDP growth is endogenous and total factor productivity is 

exogenous. In addition, we assume that government demand for government services, transfers 

from government to households, and domestic and foreign government net financing are all kept 

fixed as shares of GDP at their base-year values. Taxes are fixed at their base-year rates, which 

means that they will grow at a similar pace as the overall economy. The flows from extractive 

natural capital assets such as petroleum and minerals grow at the same rate as GDP which captures 

the dynamics of new discoveries. 

 

At the macro level, IEEM, like any other CGE model, requires the specification of equilibrating 

mechanisms known as model closures for three macroeconomic balances, namely the: (i) 

government closure; (ii) savings-investment closure, and; (iii) balance of payments closure. For 

the BASE projection, the following closures are used: (i) the government’s accounts are balanced 

through adjustments in the direct tax rate; (ii) the savings-investment balance is achieved with 
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private domestic investment equal to household savings as a fixed share of GDP at the base-year 

value. Private foreign investment is financed through the balance of payments. Government 

investment is a fixed share of the government budget which in turn is a fixed share of GDP at its 

base-year value, and; (iii) the real exchange rate equilibrates the balance of payments by 

influencing export and import quantities and values. The non-trade-related payments in the balance 

of payments, specifically, transfers and non-government net foreign financing and foreign direct 

investment, are non-clearing and kept fixed as shares of GDP1. 

  

3.2. Amazon tipping point scenario 

The following provides an overview of the three main components of the Amazon tipping point 

scenario. Detailed information on scenario design is presented in SI section 2. 

 

YIELD: This scenario captures projected declines in agricultural productivity due to regional and 

global climate change. Tropical South America has already become warmer and drier, and these 

trends are expected to continue. To model the relationship between climate change and agricultural 

productivity, crop productivity specifically, we use historical crop yield data (1981-2017; 

(CONABIO, n.d.) combined with observed climate data from the 30-year period from 1981 to 

2010, and future climate projections from 2020 to 2050. This approach enables the estimation of 

potential declines in agricultural productivity as regional climate becomes warmer and drier 

(IPCC, 2014). The input climate data used was monthly temperature and precipitation data based 

on 25 models from the Coupled Model Intercomparison Project 5 (CMIP5)2.  

 

We calculate the Maximum Cumulative Water Deficit (MCWD) for each year from 1981 to 2050 

as a proxy for crop water demand. The MCWD is an index of dryness that integrates the effects of 

rainfall and temperature into a single variable. We calculate the MCWD following the methods 

described by Malhi et al. (2009) and adapted by Castanho et al. (2020). Our estimations with a 

 
1 Furthermore, in the BASE, we impose exogenous projections for all non-trade items in the current account of the 
balance of payments, such as transfers. In the capital account, we impose exogenous projections for government and 
non-government foreign borrowing. In turn, this means that foreign savings follows an exogenous path which is equal 
to the sum of government and non-government foreign borrowing and foreign direct investment. Consequently, the 
real exchange rate will adjust to balance the inflows and outflows of foreign exchange, and as a result, exports and 
imports will adjust. 
2 For more information on the Coupled Model Intercomparison Project, see: https://esgf-node.llnl.gov/projects/cmip5/  

https://esgf-node.llnl.gov/projects/cmip5/
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linear mixed model based on this historical data reveal a linear relationship between MCWD and 

crop yield. This relationship, projected to 2050, is implemented in IEEM as a crop productivity 

shock calibrated to the conditions of each state/department in our focal countries.  

 

DRGHT: In this second component of the Amazon tipping point scenario, we simulate the 

expectation that extreme drought events will become more frequent and intense as climate 

changes. To quantify the increasing likelihood of extreme droughts and their potential effect on 

agricultural output in a drought year, we use the Standardized Precipitation-Evapotranspiration 

Index (SPEI) from 1981 to 2050 for each state/department of our focal countries. The SPEI is an 

index of drought severity that has been used widely to characterize the effects of droughts on 

agricultural yields (Beguería et al., 2014; Matiu et al., 2017). 

 

In applying the SPEI to this analysis, we consider values lower than one standard deviation from 

the historical mean (less than -1.6) to represent an extreme drought that is likely to cause major 

crop losses. For the historical time series and projected SPEI values, we calculate the probability 

of drought occurring in any given year over our analytical period. To apply this in IEEM, a random 

draw is made for each year to determine if a drought will occur in that year; this approach is 

implemented for each department/state of the 5 focal countries. For example, if the probability of 

drought occurring is 5% on average in the Colombian state of Amazonas, the random draw will 

assign a drought year 5 times out of every 100 years. For every extreme drought year drawn, we 

estimate a 15% loss in crop productivity relative to the BASE. This magnitude of crop loss is based 

on Woetzel et al. (2020). While regional drying could also decrease livestock and pasture 

productivity by as much as 5% (Girardi and Deconto, 2008), our approach is conservative and only 

considers impacts on crop productivity.  

 

FIR: Is the third and final component of the Amazon tipping point scenario and captures how 

climate change is expected to increase the frequency and intensity of fire. In the Amazon, fire is a 

novel disturbance and can rapidly degrade tropical forests that lack the adaptions needed to resist 

fire-related damage (Aragão et al., 2008). Combined with climate change, fire will be a key factor 

determining what kind of forests exist in the future and whether those forests can sustain critical 

ecosystem services over the long-term (Nobre et al. 2016).   
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This scenario relies on recent modeling and projections of burned area for a 192 million hectare 

region of the southern Amazon (Brando et al. 2020b). We combine these model outputs with future 

projections of forest flammability based on the MCWD and dry season length to estimate the 

vulnerability of Amazon forests to fire under future climate. These burned area estimates are 

implemented in IEEM as forest losses that go beyond the deforestation and land clearing use of 

fire which is accounted for in our BASE projection of deforestation.  

 

Fire is only applied in those states/departments that exhibit a dry season length that is longer than 

the specified threshold of 3 months. For each year where the dry season length is greater than or 

equal to three months, we multiply the average percent burned area with the current standing forest 

stock for that state/department in that year. We assume that 0.5% of the area burned in a given 

year is converted to crops. The remaining burned area is left idle and unproductive. The spatial 

distribution of fire is determined through allocation rules in the LULC change modeling and its 

impacts on potential ecosystem services are accounted for in the ecosystem services modeling 

(Faria et al., 2017).  

 

COMBI: This scenario represents all three components of the Amazon tipping point and is the 

joint implementation of YIELD, DRGHT and FIR.  

 

3.3. Policy intervention 

The policy intervention scenario is designed to avert an Amazon tipping point and is comprised of 

three main components that are described as follows: 

 

NDEFOR: The first component of the policy intervention to avert an Amazon tipping point is the 

elimination of deforestation by 2030. In effect, this scenario could be interpreted as a policy of 

zero net deforestation. The annual cost of this policy is estimated at US$5.5 billion and based on 

data from Stabile et al. (2020). This cost is distributed across countries based on their share of the 

Amazon biome (58.4% in Brazil, 12.8% in Peru, 7.7% in Bolivia, 7.1% in Colombia, and 1% in 

Ecuador) and is financed through international cooperation thus sharing the costs of eliminating 

this source of emissions given its global significance not only for climate change but also for 
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biodiversity, natural capital and ecosystem services. In IEEM, any expenditure must be met with 

corresponding income. While different financing mechanisms may be applied, we have chosen 

this financing arrangement to focus on the multiple benefits of net zero deforestation including 

non-market benefits. Future analysis could consider various alternative financing mechanisms, 

including green bonds, the reallocation and more efficient use of existing resources, and taxes and 

transfers. Note that this scenario maintains the crop yield impacts of the YIELD and DRGHT 

scenarios.  

 

The NDEFOR scenario reflects a consolidated government and civil society effort to monitor, 

enforce and effectively control deforestation across our 5 Amazon focal countries. Strongly 

reducing deforestation in the Amazon and Cerrado forests is the only near-term solution to 

mitigating regional climate change (see Costa et al. 2019). Native vegetation helps cool the land 

surface and triggers the onset of the rainy season, both of which are critical for rainfed agriculture. 

Forest clearing has a direct and immediate effect on the water and energy balance, resulting in 

regional warming and changes to the timing and availability of water in the system.  

 

Forest clearing also has indirect effects including large-scale feedbacks to regional rainfall regimes 

(Spracklen et al., 2012; Spracklen and Garcia‐Carreras, 2015; Staal et al., 2018) such as reductions 

in evapotranspiration, and changes to land-atmosphere feedbacks, which spur the onset of the rainy 

season (Costa et al., 2019; Yin et al., 2014) and reduce air dryness (Barkhordarian et al., 2019). 

Our implementation of this scenario in IEEM does not include these regional climate mitigation 

effects of eliminating deforestation and therefore the economic response to net zero deforestation 

are not fully captured and thus underestimated. Recent evidence that could support inclusion of 

these effects are provided in (Strand et al., 2018) and the feedbacks between deforestation and 

regional climate are increasingly well-documented and are an important part of the economic and 

ecological case for eliminating deforestation (Stabile et al., 2020).  

 

NDEFOR2:  This scenario represents a more ‘middle of the road’ perspective with respect to 

deforestation and reduces deforestation to a lesser extent than in the previous scenario. In Brazil’s 

Legal Amazon there are 212 Federal and State Sustainable Use Conservation Units (81.56 million 

hectares), in addition to 424 Indigenous Lands (115.34 million hectares), adding up to a total area 
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of 196.4 million hectares, representing 74% of the Amazon territory with forest as the predominant 

land cover. The over 1.3 million indigenous and traditional inhabitants that live in these areas have 

immeasurable knowledge of biodiversity and depend on the sustainable use of natural capital for 

their socio-cultural and economic wellbeing. Some of these populations have a cultural reliance 

on slash and burn shifting agriculture for their food security, as they have done so over the last 

12,000 years (Clement, 1999; Clement et al., 2015). As a result, even in the best environmental 

governance scenario, there will still be some level of deforestation taking place in the Amazon. 

This deforestation may also be compensated by secondary forest regeneration as result of the 

shifting practices of alternating a short agricultural cycle (3-5 years) with a long fallow cycle (20-

30 years) to restore carbon and nutrient stock in the native vegetation and to restore soil fertility 

(Coomes et al., 2000; Valentim and Vosti, 2005; Vliet et al., 2013).  

  

For this scenario, the reduction in deforestation was calculated based on one of the lowest levels 

of net change in forest cover reported for the Brazilian Amazon region over the last 15 years. This 

low level of net change was estimated based on Project MapBiomas data and was reported for 

2009-2010, equivalent to 257,634.4 hectares (Project MapBiomas, 2020). This level of net change 

was implemented in IEEM as the target level of deforestation to be reached in the year 2050. The 

relationship between deforestation in 2009-2010 and deforestation in the year 2018 in Brazil is 

8.95% (i.e., = 256,634 ha / 2,678,984 ha * 100). For other countries, we imposed a reduction that, 

in 2050, was equivalent to 8.95% of the value recorded in 2018. The costs of reducing deforestation 

were implemented in IEEM in the same way as in NDEFOR. 

 

NFIR: The second component of the policy intervention scenario represents comprehensive 

efforts to control and prevent fires in the face of drier, more fire-prone climate conditions. We 

assume that effective implementation of fire management could prevent an additional 50-75% of 

the projected burned area (Brando et al. 2020b). Fire is one of the biggest drivers of forest 

degradation in the Amazon and is likely to increase as the regional climate becomes warmer and 

drier. Strongly reducing deforestation as captured through our NDEFOR scenario prevents build-

up of ignition sources in the landscape and reduces the probability of fires used for land clearing 

escaping. To implement this scenario in IEEM, we imposed a gradual reduction of burned areas 

relative to the FIR scenario. The annual cost of improving fire management was estimated at 
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US$71.9 million and was distributed across countries based on their share of the Amazon biome. 

The cost of reducing fire was financed in IEEM through a combination of 50% international 

cooperation and a 50% increase in direct taxation in each of the focal countries. 

 

This scenario simulates an aggressive fire management program operating on several fronts  

(Brando et al. 2020a). Elements of this programmatic approach include: (i) expanding the network 

of well-trained and equipped fire brigades to suppress accidental ignitions and illegal wildfires; 

(ii) developing climate-smart, fire-free land management systems to minimize fire ignition sources 

in the landscape; (iii) implementing command-and-control enforcement to stop deforestation and 

prevent escaped wildfires; (iv) improving fire early warning systems to help guide prevention and 

suppression efforts, and efficiently allocate resources months before the fire season starts, and; (v) 

investing in fire prevention to protect vulnerable areas through fire breaks; controlled burns to 

reduce fuel loads; and coordination with indigenous and traditional communities. 

 

YIELD50: The third and final component of the policy intervention scenario simulates the 

introduction of climate-adapted crop varieties, targeted irrigation and other adaptation measures 

intended to enhance crop productivity under a future warmer and drier climate. These measures 

could mitigate up to 50% of projected productivity losses relative to the YIELD scenario in average 

years, though crops remain vulnerable to the extreme droughts simulated in the DRGHT scenario. 

The annual cost of implementing this scenario is US$1.3 billion and is distributed by country and 

state/department according to the relative size of each country’s agricultural sector GDP. This 

investment is financed in each country through an increase in the stock of government domestic 

debt. This scenario also accounts for the expansion of irrigated agriculture, particularly in Brazil’s 

Amazon and Cerrado region (Rattis et al., In review). 

 

Farmers and ranchers are likely to adapt management practices to new climate and market 

conditions to mitigate crop productivity declines and crop losses. Adaptation strategies might 

include changing crop varieties (e.g. climate and drought-adapted varieties); shifting the timing 

and intensity of cultivation (e.g. switching from double- to single-cropping; planting later in the 

wet season); double cropping in the same area using varieties with shorter growing cycle (soy-

corn, for example) (de Souza, 2019) or early planting of corn into existing planted soy crops 
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(Vasconcellos and Torres, 2020); no-tillage planting, currently used in 80% of the area cultivated 

with annual crops in Brazil and some other South American countries (Motter and de Almeida, 

2015) to reduce soil erosion, nutrient leaching, conserve soil organic matter and soil moisture, and 

reduce greenhouse gas emissions from agriculture, and; experimenting with climate adapted 

agroforestry or crop rotation systems that are more resilient to climate change.  

Irrigation is a key adaptation strategy and will likely increase in drier agricultural regions like 

Brazil’s Amazon-Cerrado region, where large swaths of cropland have already moved outside the 

optimal climate zone (Pousa et al., 2019; Rattis et al., In review). The National Water Agency of 

Brazil estimates that there are 76 million hectares of irrigable land in Brazil, but that figure includes 

areas without the logistical capacity to irrigate. Taking logistics and economic suitability into 

account, the National Water Agency projects that an additional 11.2 million hectares are 

effectively available for irrigation today, but realistically 3.14 million hectares could be installed 

by 2030. On average, central pivot irrigation has grown by 4% per year over the last 10 years 

(Fontenelle et al. 2019).  

Following Brazilian government projections, we assume that irrigated area will reach 

approximately 10 million hectares by 2030 (an increase of 45%, relative to 2015) and reach 18 

million hectares by 2050 (Ayrimoraes et al. 2017). While the expansion of irrigated agriculture 

upwards of 18 million hectares by 2050 is expected and would mitigate most climate-induced 

losses in agricultural productivity (Girardi and Deconto 2008), we adopt a more conservative 

approach and assume that interventions imposed in this scenario mitigate 50% of the crop 

productivity losses relative to the YIELD scenario. Also, we assumed no additional irrigation 

expansion beyond baseline projections for the other 4 Amazon countries because: (i) they are 

generally more buffered against the drying and warming trends that are already being observed in 

the Amazon and Cerrado regions of Brazil, and; (ii) information on potential expansion of irrigated 

agriculture as a climate adaptation strategy in these countries was relatively scarce, and what 

information was available suggested relatively small increases in irrigated agriculture relative to 

the projected increase in Brazil.  

 

POL: The POL scenario is the consolidated policy response to averting an Amazon tipping point 

and is comprised of the joint implementation of NDEFOR, NFIR and YIELD50. 
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POL2: This scenario is the same as POL except that it includes the more conservative 

NDEFOR2 scenario together with NFIR and YIELD50.  

4.0. Results 
4.1. Land use land cover change impacts 
  
The IEEM+ESM workflow begins with implementation of the BASE and Amazon tipping point 

scenarios in IEEM. IEEM results are used to drive change in LULC which then translates into 

impacts on ecosystem services supply. Given this workflow, our presentation of results begins 

with demand for land estimated with IEEM, how it is spatially distributed with the LULC change 

model, and then how this LULC change affects future ecosystem services supply. An overview of 

LULC in Figure 5 shows the region’s original LULC and scenarios-based LULC in 2050. Note 

that for the presentation of LULC results, we focus on the tipping point scenario (COMBI) and the 

coordinated policy action scenario (POL). Enlarged versions on these maps can be found in SI 

section 3.  

 

A close-up view of LULC in Brazil is shown in Figure 6 which illustrates the fine spatial detail of 

the modeling that is possible at a 1 km by 1 km spatial resolution. This figure identifies areas that 

were subject to change in the Amazon tipping point (COMBI) and the policy (POL) scenarios. 

LULC was modeled individually for the Amazon region’s 26 different states/departments. The 

level of detail that results from such an analysis is uncommon when modeling LULC at a national 

scale and enables a detailed analysis of LULC change, which is the main driver of changes in 

future ecosystem service supply. This detailed analysis can also inform the spatial targeting of 

policies aimed to avert an Amazon tipping point.  
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Figure 5. Land use land cover change results for the BASE, Amazon tipping point and policy 
intervention scenarios. 

 
Source: IEEM+ESM results.  
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Figure 6. Close-up image of a region in the state of Pará, Brazil, illustrating the fine spatial 
resolution that was implemented across the case study countries. 

Source: IEEM+ESM results. 
 

Figure 7, Figure 8 and Figure 9 show the potential annual change in deforestation and IEEM 

demand for crop and livestock land in Brazil to illustrate when and how scenario shocks translate 

into impacts on land use allocation in the LULC change modeling.    
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Figure 7. Annual change in deforestation in Brazil, illustrating how the tipping point (COMBI) 
and policy (POL) scenarios impact demand and allocation of land use.  

 
Source: IEEM+ESM results. 

 

Figure 8. Annual change in demand for cropland in Brazil, illustrating how the tipping point 
(COMBI) and policy (POL) scenarios impact demand and allocation of land use. 

 
Source: IEEM+ESM results. 
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Figure 9. Annual change in demand for livestock land in Brazil, illustrating how the tipping point 
(COMBI) and policy (POL) scenarios impact demand and allocation of land use. 

 
Source: IEEM+ESM results. 

 

4.2. Ecosystem services impacts 
 
Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 present a collection of maps 

displaying potential changes in future ecosystem service supply in the Amazon tipping point 

(COMBI) and policy (POL) scenarios for all ecosystem services, as well as potential changes in 

the Biodiversity Intactness Index. While impacts on ecosystem services supply were estimated for 

all scenarios, we focus on the Amazon tipping point and policy intervention scenarios in the 

presentation of results. The differences in ecosystem services and biodiversity are calculated as 

the comparative magnitude of change between the Amazon tipping point (COMBI) and BASE 

scenario in 2050, and; the comparative magnitude of change between the policy intervention 

(POL) scenario and the tipping point scenario (COMBI) in 2050. These maps summarize impacts 

over states/departments and regions which were aggregated up from the original 1 km spatial 

resolution.   

 

In terms of erosion mitigation ecosystem services, the tipping points scenario would have spatially 

diverse impacts across the region, with a loss of erosion mitigation services particularly acute 

across Bolivia (more than 25% loss), along the western slope of the Andes in Peru, and in the 

Colombian Amazon (5-25% loss). Paraná in Brazil would experience a more than 25% loss of 

erosion mitigation services, followed by Minas Gerais (5-25%), Pará, Roraima, Rondônia, and 

Acre (up to 5% loss of services). Colombia’s non-Amazon region would experience a loss of up 

to 5% in erosion mitigation ecosystem services. Polices to avert a tipping point would have a 
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drastic impact on improving ecosystem services supply, largely increasing ecosystem services 

flows by more than 50% across much of the region. Bolivia’s Amazon region is an exception 

where a 25% loss of ecosystem services would be experienced.  

 

Where carbon storage for climate mitigation is concerned, a tipping point would result in large 

losses of carbon capture in some of Brazil’s northeastern states including Alagoas, Pernambuco, 

Paraíba, Rio Grande do Norte, and Ceará with a loss of more than 25%, while Piauí would 

experience a reduction of 5-25%. Rio Grande do Sul, Santa Catarina and Paraná would experience 

a loss of more than 25%. The Colombian and Ecuadorian Amazon would experience a loss of up 

to 5% along with the Bolivian Amazon, and the Brazilian states of Amazonas, Acre and Roraima. 

With the implementation of concerted policy action to avert a tipping point, carbon storage services 

would increase by more than 25% across most of the region.  

 

Considering water quality, and focusing on nitrogen exports, reductions in water quality would be 

most acute in Bolivia’s south and in Brazil’s south eastern states of Minas Gerais, Sao Paulo and 

Paraná with a reduction of more than 25%. A 5 to 25% reduction in water quality would be found 

in the case of Peru’s Andes and coast and the Brazilian states of Roraima, Amapá, Pará, Maranhão, 

Pará, Mato Grosso and Mato Gross del Sul. Policy intervention would have a strong impact in 

improving water quality equivalent to greater than 50% for much of the region. In the case of 

Minas Gerais, there would be an increase of over 25% and in Paraná, there would be a reduction 

in water quality of 5-25%.   

 

Changes in water yield would be the most divergent compared with other ecosystem service 

results. Figure 10 shows that there would be a negative and generally higher magnitude of impact 

on water yield in the policy intervention scenario compared with the Amazon tipping point 

scenario. This is likely driven by the elimination of deforestation. Reforestation has been found to 

impact water yield in often conflicting ways, however, and has been shown to produce reductions 

in water yield in many studies (Filoso et al., 2017). This aligns with the structure of the InVEST 

water yield model (Sharp et al., 2020), as higher forest cover means there is a reduction in the 

water available for other uses. 
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Finally, with regard to biodiversity, the Colombian, Ecuadorian and Bolivian Amazon, would 

experience a reduction in biodiversity of up to 5% with respect to the BASE in 2050. The Brazilian 

states of Amazonas, Roraima, Pará, Mato Gross, Mato Grosso del Sul, Maranhão, Piaui and Bahía 

would experience a similar loss of biodiversity. The state of Minas Gerais and Goiás would 

experience a loss of 5 to 25% while Sao Paulo and Paraná would experience the greatest loss of 

more than 25%. Policy intervention to avert an Amazon tipping point would increase biodiversity 

almost across the entire region.  
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Figure 10. Comparison of the tipping point (COMBI) and policy (POL) scenarios with BASE in 
2050 for annual water yield (AWY) as a percent change. 
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Figure 11. Comparison of the tipping point (COMBI) and policy (POL) scenarios with the BASE in 2050 

for erosion mitigation ecosystem service as a percentage change.  

 

Source: IEEM+ESM results. 
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Figure 12. Comparison of the tipping point (COMBI) and policy (POL) scenarios with the BASE 
in 2050 for carbon storage ecosystem services as a percentage change. 

 
Source: IEEM+ESM results. 
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Figure 13. Comparison of the tipping point (COMBI) and policy (POL) scenarios with the BASE 
in 2050 for water quality (nitrogen retention) ecosystem services as a percentage change.  

 

Source: IEEM+ESM results. 
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Figure 14. Comparison of the tipping point (COMBI) and policy (POL) scenarios with the BASE 
in 2050 for water quality (phosphorus retention) ecosystem services as a percentage change. 

 
Source: IEEM+ESM results. 
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Figure 15. Comparison of the tipping point (COMBI) and policy (POL) scenarios with the BASE 
in 2050 for the Biodiversity Intactness Index as a percentage change. Note the small, grey square 
region in the state of Goiás is the Brasilia Federal District and was excluded from the analysis.  

Source: IEEM+ESM results. 
 

Several drivers of change between scenarios and ecosystem services can be highlighted that relate 

both to the functioning of the ecosystem service models themselves, as well as changes in 

biophysical and bioclimatic inputs. For example, the soil loss results from erosion mitigation 
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ecosystem services model are highly sensitive to the cover-management (C-factor) assigned to 

different land use types (Hamel et al., 2017). The C-factor accounts for the effect of plants, soil, 

biomass, and other physical characteristics, in mitigating erosion. Forests have the highest 

potential to mitigate soil loss while cropland and livestock areas have comparatively higher C-

factor values and therefore higher erosion potential. As a result, continued deforestation trends in 

the BASE and Amazon tipping point scenarios explain the strong reduction in erosion mitigation 

ecosystem services with the conversion of forest to livestock and crop area. Similar trends in the 

carbon storage results are explained in the same way, as forested areas have the highest potential 

for carbon storage. Strongly reducing deforestation is therefore fundamental to reversing both 

these trends.  

 

With regard to water quality and water supply ecosystem services models, several inputs help 

explain the negative changes in the BASE and Amazon tipping point scenarios in 2050, as well as 

their relative improvement in the policy intervention scenario. Generally, forested areas have lower 

nitrogen and phosphorus loads and higher nutrient retention potentials compared to crop and 

livestock areas, and thus deforestation tends to have a negative impact on nutrient retention and 

water quality. In addition, bioclimatic inputs, specifically precipitation and plant 

evapotranspiration are strongly influenced by climate change over our analytical period to the year 

2050. Precipitation plays a key role in nutrient retention as increased rainfall in areas of lower 

nutrient retention potential can intensify nutrient run-off and thus reduce water quality (Salata et 

al., 2017).  

 

As described in SI section 4, precipitation on average is projected to increase in the peripheral 

areas of the study region, which contributes to explaining why this periphery shows lower water 

quality and nutrient retention potential. A similar conclusion may be drawn for reductions in water 

yield in peripheral regions, with changes in plant evapotranspiration, another key input to the water 

yield ecosystem services mode. Our future climate models show increases in plant 

evapotranspiration, primarily in the central (Brazilian/Colombian) Amazon region, with less 

change in peripheral regions. Higher plant evapotranspiration indicates a higher potential for soil 

dryness and a greater depth at which soil moisture dissipates. Reductions in precipitation and plant 
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evapotranspiration combined tend to reinforce reductions in overall water yield that arise from the 

elimination of deforestation as discussed above (Redhead et al., 2016). 

 

Figure 16 provides a regional summary of the ecosystem services results discussed, showing the 

percent difference in ecosystem services supply with respect to the initial period for the BASE, 

Amazon tipping point and policy intervention scenarios. The figure shows that most ecosystem 

services and biodiversity impacts would be reduced significantly with policy intervention. The 

exception to this would be annual water yield, for reasons described previously. The most severe 

reductions in ecosystem service provision in the Amazon tipping point scenario would be found 

for water quality, as phosphorus and nitrogen exports would increase by up to 20% and 15%, 

respectively. Following this, overall carbon storage would fall by about 8% in the tipping point 

scenario, compared to a less than 1% reduction in the policy intervention scenario. Results would 

be similar for biodiversity. The smallest overall impacts would be found for soil erosion mitigation 

services and water supply. These results highlight the importance of analyzing results on both a 

regional and sub-regional level as overall, regional trends may otherwise mask severe sub-regional 

impacts that are not uniformly distributed, as is the case illustrated here with soil erosion mitigation 

ecosystem services. 
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Figure 16. Summary of scenario performance, considering the BASE, tipping point (COMBI) 
and policy (POL) scenarios, with respect to future ecosystem services supply. Percentage change 

are with respect to the initial period.  

 
Source: IEEM+ESM results. 
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on reducing yields would pose the greatest losses across countries, with increasing drought also 

important but to a lesser degree. Fire impacts would not register prominently in terms of GDP 

impacts, but would register more so in terms of wealth due to the loss of healthy standing forest 

stock. GDP impacts would vary by scenario and country. For example, while the impact of climate 

change on yields would be felt more severely in Brazil and then Bolivia and Ecuador, the drought 

impact would be felt more acutely in Brazil, followed by Colombia, Bolivia and Peru. Variability 

across scenarios and countries would also hold true in the case of wealth. 

 

The cumulative GDP impact of an Amazon tipping point in Brazil would be on the order of 

US$184.1 billion, followed by US$35.3 billion, US$17.6 billion, US$11.4 billion, and US$8.2 

billion in Colombia, Bolivia, Ecuador, and Peru, respectively. The impact of a tipping point on 

wealth would be smaller, but still important, with a US$55.2 billion in lost wealth in Brazil, 

followed by US$16.9 billion, US$5.4 billion, US$3.98 billion, US$2.3 billion and US$1.7 billion 

in Colombia, Bolivia, Ecuador and Peru.   

 

Table 1. Cumulative impacts on GDP and Genuine Savings as difference from BASE scenario in 
millions of USD. 

Indicator Country YIELD DRGHT FIR COMBI NDEFOR NDEFOR2 YIELD50 NFIR POL POL2
GDP

Brazil -146,800 -33,515 30 -184,121 -191,209 -188,426 -73,928 -129 -81,245 -77,290
Peru -7,107 -1,064 4 -8,200 -9,168 -9,017 -4,104 -35 -5,117 -4,640
Colombia -26,656 -8,430 13 -35,266 -47,158 -44,998 -19,096 -142 -31,177 -27,878
Bolivia -16,271 -1,678 -49 -17,610 -20,238 -21,629 -10,421 -254 -14,555 -13,128
Ecuador -11,408 -30 18 -11,420 -19,746 -15,118 -8,410 -17 -16,775 -12,040

Genuine Savings
Brazil -42,922 -9,880 -743 -55,207 123,561 24,069 -15,886 113 162,804 64,404
Peru -1,218 -184 -318 -1,729 19,233 11,314 252 1 20,952 13,278
Colombia -12,040 -3,773 -809 -16,868 87,660 66,401 -5,893 -166 98,165 77,715
Bolivia -4,685 -441 -36 -5,413 6,769 5,240 -2,042 6 10,062 9,334
Ecuador -2,044 -5 -291 -2,337 45,515 28,170 -463 -52 47,311 29,943  

Source: IEEM+ESM results. 
 

Through the lens of GDP, policies to avert a tipping point, including net zero deforestation, would 

mitigate some of these economic impacts, by more than half in the case of Brazil with a US$81.2 

billion loss to GDP, a US$31.2 billion loss in Colombia, a US$16.8 billion loss in Ecuador, 

US$14.6 billion in Bolivia, and US$5.1 billion in Peru (POL scenario). POL2 which includes a 
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strong reduction in deforestation, would also mitigate some of the negative economic impacts, 

with GDP losses on the order of US$$77.3 billion in Brazil, US$27.9 billion in Colombia, US$13.1 

billion in Bolivia, US$12.0 in Ecuador and US$4.6 in Peru. Strategies to avert a tipping point, 

including net zero deforestation, would generate positive gains for inter-generational wealth; the 

impact of a policy of net zero deforestation is particularly strong. For Brazil, averting a tipping 

point with net zero deforestation (POL scenario) would mean an additional US$162.8 billion in 

wealth, followed by US$98.2 billion in Colombia, US$47.3 billion in Ecuador,, US$20.95 billion 

in Peru and US$10.1 billion in Bolivia. Policies to avert a tipping point that include the strong 

reduction in deforestation would be more modest in terms of inter-generational wealth gains. This 

scenario would result in an increase in wealth of US$64.4 billion in Brazil, US$77.7 billion in 

Colombia, US$29.9 billion in Ecuador, US$13.3 billion in Peru and US$9.3 billion in Bolivia  

 

Specific interventions to expand climate adapted agriculture and irrigation would contribute to 

mitigating agricultural productivity losses and the reduction in wealth, particularly through 

household savings, but only in the case of Peru would these interventions be sufficient to generate 

a positive wealth impact (Table 1). Improved fire management would generate wealth gains in the 

case of Brazil, Colombia, Peru and Bolivia which is a function of the increased stock of standing 

forest. Improved fire management would be insufficient, however in the case of Ecuador, with the 

albeit small reduction in available agricultural land outweighing the positive impact of increased 

standing forest stock.  

 
In interpreting impacts across countries, the costs of the different policy interventions in each 

country provide some insights. The cost of reducing deforestation and fire is proportional to each 

country’s share of the Amazon biome (Table 3). The cost of implementing climate adapted 

agriculture and irrigation was distributed across the five focal countries based on their share of 

total agricultural GDP. As a share of base year GDP, averting a tipping point would be most costly 

for Bolivia, with the cumulative cost representing 39.2% of base year GDP. Policy interventions 

for Peru would represent 11.7% of base year GDP, followed by Brazil (6.4%), Colombia (6.3%), 
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and Ecuador (4.3%). The cost of eliminating deforestation and reducing fire in Brazil would be 

7.6 times higher than in Bolivia. However, Brazil’s GDP is 51 times larger than Bolivia’s GDP.  

 

How the strategies to avert a tipping point are financed in IEEM is also important for interpreting 

the results. In the case of improved fire management, for example, 50% of the investment cost is 

financed through household income tax with the other 50% financed through foreign borrowing. 

Increased income tax has implications for household savings which has a direct impact on wealth. 

Implementing climate adapted agriculture is financed fully in IEEM through an increase in the 

stock of domestic debt. The policy of net zero deforestation is fully financed in IEEM by external 

grants. With various financing mechanisms possible for each of the scenarios and with important 

implications for the results, these alternative financing mechanisms will be explored in subsequent 

analysis.  

 

Table 2. Cumulative investment costs as a share of base year GDP in percent. 
Brazil Peru Colombia Bolivia Ecuador

Share of Amazon (% of total biome) 58 13 7 8 1
Country GDP in base year (millions of USD) $1,892,584 $215,516 $289,667 $37,111 $100,397
Cumulative cost as a percent of base year GDP in percent
NDEFOR 5.0 9.5 4.1 35.0 1.5
NDEFOR2 4.6 8.6 3.7 31.8 1.4
YIELD50 1.3 2.0 2.2 3.8 2.8
NFIR 0.1 0.1 0.1 0.5 0.0
POL 6.4 11.7 6.3 39.2 4.3
POL2 6.0 10.8 5.9 36.1 4.2  
Source: IEEM+ESM results; shares of Amazon biome derived from Coca-Castro et al. (2013). 

 
Another important consideration in interpreting the results is the trajectory of the cost of the 

interventions relative to each counties’ GDP. Figure 17 shows how the costs of the intervention 

strategies are distributed through time. This distribution of costs shows a large initial cost to GDP 

ratio which is indicative of high start-up costs of the intervention strategies. These large up-front 

investments involve large government expenditures relative to GDP, which due to a stronger 

Keynesian effect in the earlier periods, the interventions offset some of the initial difference 

between GDP in the BASE compared with GDP in the policy intervention scenario.  
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Figure 17. Cost to GDP ratio for Amazon focal countries. 

 
Source: IEEM+ESM results. 

 
Figure 18 shows the cumulative impact of each scenario on GDP and wealth for the Amazon region 

as a whole. Reaching an Amazon tipping point would result in a GDP loss of over US$256.6 

billion. Policies to avert a tipping point (POL) would mitigate some of this GDP loss, particularly 

through investment in climate adapted agriculture, though there would still be a US$148.9 billion 

impact on regional GDP nonetheless. Where deforestation is strongly reduced (POL2), the GDP 

impact would be US$135.0 billion. While GDP does not value standing forests, wealth does. We 

find that the outlook completely changes from the perspective of wealth. A policy of net zero 

deforestation across the region, along with policies to adapt agriculture to climate change and 

reduce fire (POL) would generate an additional US$339.3 billion in wealth. Where deforestation 

is strongly reduced (POL2), the policy intervention would generate less wealth, on the order of 

US$195.0 billion. Indeed, the evidence that GDP versus Genuine Savings, our metric of wealth, 

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Co
st 

to
 G

D
P 

ra
tio

Brazil Peru Colombia Bolivia Ecuador



 

43 
 

provides for the design and implementation of policies for the region are in stark contrast and has 

been demonstrated in our previous work (Banerjee et al., 2021).  

 
Figure 18. Cumulative regional impacts on GDP and Genuine wealth as difference from the 

BASE in millions of USD. 

 
Source: IEEM+ESM results. 

 
The GDP trajectory by country, as a difference from business-as-usual, is strongly influenced by 

the climate change projections and derived indicators used to estimate agricultural productivity 

and fire-related shocks throughout the analytical period. Figure 19 shows the trajectory of GDP as 

the difference from BASE for the tipping point scenario on the left. On the right, Figure 19 shows 

the GDP trajectory for the policy intervention scenario (POL) as the difference from the tipping 

point scenario. Note that impacts for Brazil are read from the secondary y-axis due to the relatively 

large impacts compared with other Amazon countries. The cumulative impacts presented in Table 

1 and discussed above provide a useful overview summary. What is interesting to note from this 

figure is the irregularity of impacts through time where some years would register markedly worse 

impacts than others. In the case of Bolivia, policies to avert a tipping point, when considered from 

the perspective of GDP, would appear to gain traction nearing the end of the analytical period.  
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Figure 19. GDP trajectory for the tipping point (COMBI, left) and policy intervention scenario 
(POL, right) in millions of USD. Note: Brazil is shown on secondary y-axis. 

Source: IEEM+ESM results. 
 

Figure 20 shows the trajectory of wealth as a difference from BASE for the tipping point and the 

policy intervention (POL) scenarios as a difference from the tipping point scenario. What we can 

observe from the tipping point figure on the left is that Brazil’s path would follow a relatively steep 

decline throughout the analytical period. Peru would suffer a rather precipitous drop in wealth at 

the end of the period which is due to a fire that destroys a large tract of forest. This important loss 

of natural capital stocks would go undetected from the perspective of GDP. Where policies are 

implemented to avert a tipping point, we would see smoother upward trends for most countries 

while Bolivia would experience a boost to wealth in the initial years with a tendency toward the 

BASE levels of wealth in later years.  

The smoother trend in the policy scenario compared with the tipping point scenario is explained 

by the gradual implementation of the yield improvement shock. Note that the yield improvement 

is relative to the tipping point scenario. Explaining Bolivia’s response to the policy scenario, recall 

the large cost of averting a tipping point relative to the size of Bolivia’s GDP (Table 3). In addition, 

the unit rent used to value the loss of standing forest is comparatively smaller in Bolivia compared 

with that of other countries. This has impacts on the magnitude of the value of the natural capital 

stock component of our wealth indicator. Note that unit rent is directly derived from the System 

of National Accounts and land cover and land use data from each country.   

Furthermore, how the policy intervention is financed has very important impacts on the results. In 

averting a tipping point, the investment costs are imposed in IEEM as a decreasing share of GDP, 

50% of which are financed through direct taxation. Taking Bolivia as an example, we see that in 
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the final years of the policy intervention, the required increase in direct taxation to finance the 

investment would be lower and thus there would be an increase in household disposable income, 

savings, and investment. 

Figure 20. Wealth trajectory as difference from BASE for the tipping point (COMBI, left) and 
the policy intervention (POL) scenario as a difference from the tipping point scenario (COMBI, 

right) in millions of USD. Note: Brazil is shown on secondary y-axis. 

Source: IEEM+ESM results. 
 

Figure 21 shows the trajectory of regional GDP and wealth as a difference from the BASE for the 

Amazon tipping point (COMBI) and as a difference from the tipping point scenario in the case of 

the policy intervention (POL) scenarios. Some of the irregularity evident in country-level impacts 

would be averaged out. The trend from the perspective of GDP would, however, still be downward 

for both the Amazon tipping point and the policy intervention scenario. The good news is that 

wealth for the region would increase steadily with decisive policy action through the elimination 

of deforestation, the implementation of climate adapted agriculture and improved fire 

management.  
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Figure 21. GDP (left) and Genuine Savings (right) trajectory for COMBI and POL in millions of 
USD. 

Source: IEEM+ESM results. 
 

Another form of viewing regional GDP impacts is as a percentage point difference from the BASE 

as shown in Figure 22. Here we find that by 2050, reaching an Amazon tipping point would result 

in GDP that was 0.68 percentage points less than the levels registered in the BASE in 2050. Where 

concerted policy action (POL) would intervene to avert a tipping point, GDP in 2050 would be 

0.37 percentage points below the BASE. Of course, the potential cumulative GDP impact is 

important to keep in mind for both the tipping point and policy scenarios as shown in Figure 18.  

Figure 22. Regional GDP percentage point deviation between the tipping point and the BASE; 
percentage point deviation between the policy intervention (POL) scenario and the tipping point. 

 
Source: IEEM+ESM results. 

 
A distinct advantage of the IEEM Platform is the ability to estimate poverty and distributional 

impacts of scenarios as shown in Figure 23. Clearly the climate change impacts on agricultural 
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productivity of an Amazon tipping point would push the greatest number of people into poverty, 

by over 153 thousand more people than in the BASE. Overall, the tipping point means that at least 

171 thousand more people would be living in poverty across the region. While the policy 

intervention (POL) scenario mitigates some of the increased poverty, poverty would still increase 

by 159.6 thousand when compared with the tipping point scenario and by 125.3 thousand with a 

policy intervention that strongly reduces deforestation (POL2). This result is important in signaling 

the need for complementary policies to mitigate poverty impacts that could arise with policy 

interventions that could have important impacts on land use dynamics across the Amazon, 

particularly those that affect small holder subsistence farmers. Enhancing property rights, 

developing a strong bioeconomy, greater provision of agricultural extension and other services, 

and payment for ecosystem services are examples of complementary policies.   

 
Figure 23. Number of individuals below the poverty line as difference from the BASE in the case 
of the tipping point scenarios, and; as a difference from the tipping point scenario in the case of 

the policy intervention scenarios. 

 
Source: IEEM+ESM results. 

 
Calculating the Net Present Value (NPV) in a benefit-cost analytical framework is a standard 

approach to assessing the economic viability of public policies from a public investment 
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country and scenario. Equivalent variation is interpreted as the amount of income an individual 

would need to receive to be as well-off had an investment project not been implemented (Banerjee 

et al., 2019b).  

 

Brazil, with the greatest investment required to avert an Amazon tipping point (POL), would 

present a negative NPV of US$31.9 billion viewed through the lens of a conventional benefit-cost 

analysis; the NPV of other countries would be much less, about 6% of the NPV of Brazil in the 

case of Colombia for example. Where we consider changes in natural capital stocks and 

environmental quality, strategies to avert a tipping point (POL) would generate an NPV of 

US$17.8 billion for Brazil, US$7.7 in the case of Colombia, US$3.4 billion in Ecuador and US$2.4 

billion in Peru. The NPV of Bolivia would remain negative (US$1.7 billion) with the 

implementation of strategies to avert a tipping point.   

 
Table 3. Net Present Value based on equivalent variation (EV, left) and adjusted equivalent 

variation (EV*, right) by country and scenario in millions of USD. 
EV EV*
NDEFOR NDEFOR2 YIELD50 NFIR POL POL2 NDEFOR NDEFOR2 YIELD50 NFIR POL POL2

Brazil -78,478 -77,305 -32,344 -102 -31,865 -28,937 -28,823 -58,718 -32,172 -148 17,770 -10,456
Peru -2,426 -2,418 -1,612 -25 -1,443 -1,040 1,389 -856 -1,614 -59 2,372 523
Colombia -3,451 -3,341 -1,388 -9 -1,876 -1,586 5,993 3,797 -1,345 -18 7,565 5,542
Bolivia -3,157 -3,135 -1,317 -29 -1,679 -1,345 -3,143 -3,129 -1,317 -29 -1,665 -1,338
Ecuador -1,536 -1,205 -752 -1 -1,194 -832 3,099 829 -756 -6 3,431 1,182
Total -89,048 -87,404 -37,413 -167 -38,057 -33,739 -21,485 -58,075 -37,204 -260 29,473 -4,546  

Source: IEEM+ESM results. 
 

Figure 24 presents the regional NPV by scenario in millions of USD. The investment in averting 

economic and ecological disaster in the Amazon (POL), when viewed from a conventional benefit-

cost analytical perspective, would result in negative economic returns of US$38 billion. Where we 

consider the value of changes in natural capital stocks and environmental quality, strategies to 

avert a tipping point (POL) would generate positive returns on the order of US$29.6 billion, 

indicating a sound investment in the region’s future.  
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Figure 24. Regional NPV by scenario in millions of USD. 

 
Source: IEEM+ESM results.  

 
 

4.4. Economic transmission pathways 

Before closing our results section, it is useful to consider in more detail some of the main 

transmission pathways that drive the IEEM results presented in the previous section. All results 

generated by IEEM are entirely explainable within the consistent structure of the model and the 

assumptions and input parameters used. The Amazon tipping point and the policy intervention 

scenarios include two drivers of agricultural productivity impacts; the first is the average climate 

change effect which is isolated in the YIELD scenario and the second is the increasing frequency 

and intensity of drought which is isolated in the DRGHT scenario.  

 

Figure 25 outlines the transmission pathways of agricultural productivity shocks in these two 

scenarios. These two drivers, the average climate effect and increasing frequency and intensity of 

drought, reduce agricultural productivity and output, and with increased scarcity, agricultural 

output prices tend to rise. As a result, food processing costs increase and the quantity of processed 

food output declines.  To compensate for reduced productivity, agricultural factor use increases 

which competes with non-agricultural factor use, thus reducing the latter. This puts a downward 

pressure on wages, increases unemployment and reduces household income. With reduced income, 

households consume less, save less and as a result, investment also declines. The combined impact 

of reduced output both of agricultural products and processed food, and the reduction in household 
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income, savings and investment, negatively impacts GDP growth rates as we have seen in the 

YIELD and DROUGHT scenarios presented in Table 1. 

 

Figure 25. Transmission pathways for YIELD and DROUGHT scenarios. 
Source: Authors’ own elaboration. 

 
Figure 26 presents the economic transmission pathway for the FIR scenario. In this scenario, with 

an increase in the frequency and intensity of fire, we assume that a very small area of the total 

burned (0.5%) is converted to agricultural areas3. This increase in the land available for agriculture 

makes it possible to produce more agricultural output which has a positive impact on household 

income and thus on savings and investment, which all have a positive impact on GDP growth. On 

the other hand, fire reduces the standing forest stock which factors in negatively in our calculation 

of wealth and the net present value of policy interventions.  

 

 
3 Note that most fire used in deforestation and land clearing is captured in our BASE projection of deforestation. 

↓Agricultural 
Productivity

↓Agricultural Output   
↑Agricultural Prices

↑Agricultural Factor 
Use

↓Non-agricultural 
Factor Use

↑Cost Food 
Processing

↓Output Processed 
Food

↓Wages and 
↑Unemployment ↓Household Income

↓Household 
Consumption and 

Savings
↓Private Investment

↓GDP



 

51 
 

Figure 26. Transmission pathways for FIR scenario. 

 
Source: Authors’ own elaboration. 

 
Figure 27 shows the transmission pathways of the NDEFOR scenario. Net zero deforestation 

would have important impacts on the economies of the region, reducing the agricultural land 

available and as a result, agricultural output. This pushes the income of households downward, 

which reduces savings and investment. Note that depending on factor ownership and 

unemployment, the poor can be disproportionately affected by such drastic changes in land use 

dynamics. Reductions in income and savings slow GDP growth. As with the FIR scenario, this 

scenario preserves the standing stock of forest which has important positive implications for wealth 

and net present value.  

 
Figure 27. Transmission pathways for NDEFOR scenario. 

 
 

Source: Authors’ own elaboration. 
 
The way in which the investment costs are financed in IEEM (and in the real world) has a strong 

impact on the results presented; Figure 28 outlines the main transmission pathways for the 

financing options used in this analysis. Beginning with investment financed through direct taxation 

in IEEM (Panel A), government spending increases through an increase in the direct tax rate. This 

reduces the availability of household disposable income, consumption, savings and private 

investment, which then exerts a downward pressure on GDP.  Fifty percent of NFIR in IEEM is 

financed through direct taxation.  
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Where investments are financed in IEEM through domestic debt (Panel B), the increase in 

government spending is achieved through the government taking on additional domestic debt 

which in turn lowers the level of private investment. The reduction in the level of private 

investment can have lasting impacts on GDP. The YIELD50 scenario in IEEM is financed fully 

through an increase in the stock of domestic debt.   

Finally, where increased government spending is financed in IEEM through foreign borrowing, 

the foreign debt stock increases and the real exchange rate appreciates. This exchange rate 

appreciation can place downward pressure on exports rendering them less competitive, though 

through a more powerful local currency, imports may increase as a result. NDEFOR is fully 

financed in IEEM through foreign borrowing; clearly, adjusting this assumption would have 

important impacts on the results. Fifty percent of the NFIR scenario in IEEM is financed through 

foreign borrowing.  

Figure 28. Transmission pathways for investment financing options.  

Panel A. Impacts transmitted through investment financing by household income tax. 

 
Panel B. Impacts transmitted through investment financing by domestic debt. 

 
Panel C. Impacts transmitted through investment financing foreign borrowing. 

 
Source: Authors’ own elaboration. 

 
 
5.0. Limitations and future research directions 
 
There are various limitations and caveats to note in the interpretation of the results of this study. 

First, our policy intervention scenarios include a net zero deforestation scenario and a scenario in 

which deforestation is strongly reduced. There are many views on what may be realistic and 
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optimal from a political, social and environmental perspective in the short and medium term, 

across our five focal countries. What our results show is that where deforestation generates new 

land for agricultural production, GDP impacts would be negative. From the perspective of wealth, 

however, the enhancement of natural capital stocks and ecosystem service flows that arise from 

reducing deforestation can more than compensate for these negative impacts as demonstrated in 

Table 1. Our choice of scenarios representing net zero deforestation and a strong reduction in 

deforestation may be viewed as imposing measures reflecting a strong sustainability policy stance 

on the one hand, and a more balanced view on the other, which takes into greater consideration 

short-run costs and adjustment factors which are non-trivial as shown in Figure 23. With the 

IEEM+ESM framework now developed for the five focal countries, subsequent work could 

explore this question in more detail on a country-by-country basis, also taking into account within-

country diversity of conditions.  

 

The IEEM+ESM framework enables the spatial and temporal targeting of policies to reduce 

deforestation. In this study, the LULC change modeling was used to determine what areas were 

deforested and in what sequence. This spatial assignment of deforestation was based on the 

suitability analysis described in section 2.3; in this approach, the areas most suitable for crop and 

livestock production were identified based on regression analysis of multiple biophysical and 

socioeconomic variables. Those areas most suitable for these activities were deforested first. There 

are of course other ways in which the reduction of deforestation could be spatially targeted. This 

could include additional criteria not currently captured in this study, for example, spatial variation 

in the cost of reducing deforestation or the identification of particularly high conservation value 

forests, among others. Indeed, the ecosystem service analysis presented in section 4.2 could be 

used to target areas that were identified as especially productive in the provision of specific 

ecosystem services.   

 

In a whole of economy model such as IEEM, all expenditure must be met by an equivalent source 

of income. Figure 28 provides an overview of the main financing options in IEEM and their 

transmission pathways, which include financing derived from changes in household income tax, 

domestic debt, and foreign borrowing and foreign. For each of our policy intervention scenarios 

which include investments, we have made assumptions on the possible financing mechanisms, for 
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example, in the case of improved fire management, 50% of the investment cost is financed through 

household income tax with the other 50% financed through foreign borrowing. In the case of 

reducing deforestation, our policy intervention scenario finances these measures through a foreign 

grant. Of course, alternative assumptions are possible, which could be evaluated in future work, 

including innovative financing mechanisms such as green bonds and habitat banking, among 

others. 

 

As we have discussed, continued deforestation and fire in the Amazon region is affecting regional 

hydrological cycles with discernable localized impacts including the reduction of rainfall and 

lengthening of the dry season. Our implementation of the policy intervention scenarios in IEEM, 

which include net zero deforestation and strongly reducing deforestation, does not capture these 

potential climate mitigation effects. Our improved agricultural productivity (YIELD) scenario 

includes gains achieved by implementing climate adapted agriculture and irrigation; including the 

climate mitigation effects of reducing deforestation could further enhance these gains, and 

therefore our results underestimate the potential benefits of reducing deforestation. Recent work 

by Strand et al. (2018) provides a basis for how some of these climate mitigation benefits could be 

included (Strand et al., 2018). 

 

In assessing the impacts of movement towards a tipping point, our study focuses on how continued 

deforestation and climate change could affect some provisioning ecosystem services such as food, 

fiber and water, as well as specific regulating ecosystem services, namely water quality, erosion 

mitigation services and carbon sequestration. These ecosystem services were chosen as the focus 

given their relatively high potential to affect economic outcomes and the availability of tools and 

data to model them. There are, however, various other ecosystem services that could be impacted 

by continued deforestation and climate change, including numerous provisioning ecosystem 

services such as: the production of genetic material, and hydro and wave/tidal power; regulating 

services such as stopping landslides, regulating air quality, water flows, wind and fire, pollination, 

habitat, and pest control, and finally; cultural services including recreation, tourism and education 

(European Environment Agency, 2018). Work currently underway is examining the feasibility of 

incorporating these additional services into the tipping point analysis. 

 



 

55 
 

There are a number of uncertainties related to the ecosystem services modeling conducted in this 

study, which in general are characteristic of other ecosystem service modeling efforts. The 

ecosystem service models used in this study are uncalibrated due to a lack of data reliable field 

data across our five focal countries. For example, calibration of the water quality modeling, 

specifically the nitrogen and phosphorous export modeling, would require data from a national 

water quality monitoring program including stream gauges with adequate coverage within and 

across our five focal countries (Banerjee et al., 2020b). While there is less certainty around absolute 

values resulting from this ecosystem services modeling, our presentation of results focuses on 

relative changes between the tipping point and policy intervention scenarios where the direction 

of effect and approximate relative magnitudes provides useful and actionable information from a 

policy making perspective.    

 

Finally, various simplifying assumptions were required with regard to the cost of policy 

interventions. While many experts agree on the importance of reducing deforestation, 

implementing climate adapted agriculture, and improving fire management, there is a great deal 

of uncertainty around the costs of implementing these measures across our five focal countries. In 

building on this study, we are working on generating better estimates of costs for these critical 

intervention measures. Policy makers require this information in order to assess costs, benefits and 

trade-offs involved in preparing national budgets and plans to invest in a more sustainable vision 

for the Amazon region.   

 
6.0. Discussion and conclusions 
 
We evaluated the economic and environmental impacts of reaching a tipping point in the Amazon 

and key strategies to avert it with the IEEM Platform linked with spatial LULC change and 

ecosystem services modeling. The best science available shows that we are at the precipice of an 

Amazon tipping point due to the self-reinforcing interactions between climate change, 

deforestation and fire. We operationalize the tipping point concept as being comprised of 

continued high levels of deforestation across Amazon focal countries, average climate change 

impacts on temperature and precipitation, and increasing frequency and intensity of both drought 

and fire. These different dimensions of a tipping point, in the way we have modeled them, interact 

with regional economies primarily through direct impacts on agricultural productivity and the land 
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market. Both lower productivity and land availability have implications for output and prices. With 

economy-wide implications, no economic sectors are spared the impacts, which would translate 

into reduced economic growth and wealth, and higher levels of poverty across the region. Impacts 

on natural capital stocks and future flows of ecosystem services would be severe.  

 

Coordinated action by Amazon countries would contribute to mitigating the negative economic 

and environmental fall-out of a tipping point. Key strategies to avert disaster should include 

drastically reducing levels of deforestation across the region, improving the management of fire 

and implementing climate-adapted agricultural strategies. We find that since economic and 

environmental damage has gone unchecked for decades and the necessary measures to avert a 

tipping point would require some time to be implemented and take effect, there would still be some 

economic hardship involved in the short-run, as economies invest and adjust to new realities. The 

changes to land use dynamics would be significant, and those households that sustain their 

livelihoods through employment and/or ownership of land and natural capital would be affected. 

Complementary policies may be required to support those that would be disproportionately 

affected, especially those with less capacity to adapt on their own. Nonetheless, our results show 

that strong action taken now could avert disaster and in fact contribute to building wealth for 

current and future generations.  

 

The impacts on natural capital and future ecosystem services flows would also be wealth and 

biodiversity-enhancing. With the implementation of strategies to avert a tipping point, future 

ecosystem services supply would improve greatly. Soil erosion mitigation services for example 

would improve by more than 50% in most regions. Carbon storage would increase almost across 

all countries by more than 25%. Water quality also generally would improve across the region 

with 50% less nutrient exports. Biodiversity would improve with a greater than 25% increase in 

most but a few sub-regions.  

 

The economic impacts of an Amazon tipping point and policies to avert it would vary by country. 

In our results, this is primarily attributed to the importance of agriculture to each country’s 

economy and its share of the Amazon biome. It is no surprise that the cumulative GDP impact of 

a tipping point would be the greatest in Brazil, on the order of US$184.1 billion. The next greatest 



 

57 
 

impact would be under 20% of that of Brazil’s and would be felt in Colombia (US$US35.3 billion), 

followed by Bolivia, Ecuador, and Peru.  

 

In terms of wealth, country variability is again largely explained by the importance of agriculture 

to the country’s economy and its share of the Amazon biome, but also by the returns to forest land 

which vary country to country. For example, the implementation of strategies to avert a tipping 

point in the Brazilian Amazon, including net zero deforestation, would generate an additional 

US$162.8 billion in wealth. Colombia would follow with a US$98.2 billion increase in wealth, 

followed by Peru, Ecuador and Bolivia. While the implementation of policies to avert 

environmental disaster in the Amazon would show short-term costs which is reflected by our 

measure of income flows (i.e. GDP), that these same policies would enhance inter-generational 

wealth makes a strong case for coordinated policy action if commitments to sustainable 

development (goals) are indeed prioritized above short-term gains.   

 

Note that in this analysis, we primarily consider how a tipping point interacts with the economy 

through agricultural productivity and the land market. Clearly, there are many more interactions 

that could be considered, such as health impacts, implications of increased water scarcity, among 

others. As such, we consider the estimates we have presented to be highly conservative and 

indicative of a lower bound in terms of the negative consequences of moving towards an Amazon 

tipping point. 

 

In terms of the trajectory of impacts of an Amazon tipping point, we find the impacts on both GDP 

and wealth would be quite volatile on an annual basis, with some years differing markedly from 

others. What drives this variability is climate change and the resulting variability in temperature 

and precipitation which are captured in the indicators used to calibrate the agricultural productivity 

shocks in IEEM. The implementation of fire is based on dry season length and projections of areas 

burned, both of which are driven by climate change and climate variability. Where strategies to 

avert a tipping point are implemented, this volatility is reduced somewhat due to the more gradual 

implementation of policies to reduce deforestation, manage fire and implement climate adapted 

agriculture. 
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What are the overall impacts for the region? We find that reaching an Amazon tipping point would 

generate a cumulative GDP loss of over US$256.6 billion. Policies to avert a tipping point 

including zero net deforestation would mitigate some of this GDP loss, resulting in a cumulative 

loss of US$148.9 billion by 2050, nonetheless. From the perspective of wealth, also on a regional 

basis, the panorama changes and there is some hope for leaving a prosperous future for the 

generations to come. Policies for zero net deforestation, climate adapted agricultural practices and 

improved fire management would generate an additional US$339.3 billion dollars in 

intergenerational wealth. Again, averting an Amazon tipping point and generating wealth for 

future generations would imply some short-run costs, which would include increased poverty, on 

the order of 159.6 thousand individuals falling into poverty in the short-run. This potential short-

run negative impact signals the need for spatially targeted, complementary policies, such as 

payment for ecosystem services, the development of a strong bioeconomy, strengthened property 

rights and greater provision of agricultural extension services, among others.  

 

Finally, how a strategy to avert an Amazon tipping point would be financed is of critical 

importance. The question of who will pay cannot be ignored. While we have shown that averting 

a tipping point would generate long-term sustainability and wealth, there would be clear costs to 

bear in the short run. Analysis with IEEM demands that assumptions are made about how every 

line of action is financed; every dollar spent in IEEM must be a dollar earned. While it is beyond 

the scope of this paper to discuss how costs should be distributed between regions within a country, 

between countries, and among the global community, what we have done is layout plainly the 

costs of doing nothing, compared with the costs and benefits of coordinated and decisive action. 

Indeed, a compelling business case is presented: our benefit-cost net present value analysis shows 

that when we consider the value of natural capital, investing in averting a tipping point, including 

zero net deforestation, would provide a return of US$29.5 billion, and that return is generated even 

when applying what is considered to be the high rate of discount of 12% applied by some multi-

lateral development banks, such as the Inter-American Development Bank.  
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Supplementary Information 1 
 

IEEM database and calibration 
IEEM elasticities 

In this study, we focus on structural differences between our Amazon focal countries of Brazil, 
Peru, Colombia, Bolivia and Ecuador. Consequently, we assume the same elasticities for all 
countries. In other words, the four IEEM applications only differ in the structural parameters 
calibrated based on the respective social accounting matrix of each country. In all cases, the values 
for elasticities are the most reliable estimates available from the literature and are as follows: (i) 
the elasticities of substitution among factors are in the 0.2-0.95 range, and lower for natural 
resource activities such as agriculture (0.25) and mining (0.2) (Hertel et al. 2012); (ii) trade-related 
elasticities are in the 2 to 0.9 range for the substitution between imports and domestic purchases 
and transformation between exports and domestic sales, respectively (Sadoulet and de Janvry, 
1995); (iii) the expenditure elasticities for household consumption demand are in the range 0.6-1.4 
(Muhammad et al., 2011), and; (iv) the wage curve unemployment elasticity is -0.5 (Blanchflower 
and Oswald, 2005). 

Brazil  
The base year for Brazil’s SAM is 2014 and was built based on the Supply and Use (SUT) tables 
and Integrated Economic Accounts from Brazil’s System of National Accounts (SNA) developed 
by the Instituto Brasileiro de Geografia e Estatistica (IBGE) (IBGE, 2017a, 2017b). The 
regionalization of crops, livestock and forestry output was conducted using IBGE regional 
accounts data for each of Brazil’s 26 states (IBGE, 2017c). The number of hectares of crops and 
livestock by state was sourced from the Land Use Land Cover (LULC) map (IBGE, 2016). Natural 
forest and forest plantation data was sourced from (Project MapBiomas, 2020). Note that for the 
states of Ceará, Pernambuco, and Rio Grande do Norte, there is no land used in forestry. The 
number of workers by activity was part of the SUT publication (IBGE, 2017a). 
The baseline area in 2015 and the projection for crop, livestock, forest and forest plantations was 
estimated as follows. For all countries in this study, total land in IEEM is fixed. The baseline 
(BASE) deforestation projections for all countries are based on historical trends. In the case of 
Brazil, these trends are derived from (INPE, 2020; Project MapBiomas, 2020). For all countries, 
the area of forest plantations grows at the same rate as the population which is a conservative 
assumption. Deforestation increases the availability of cleared land for crop and livestock 
activities. The distribution of deforested land between crops and livestock is endogenous. 
For all countries, for the period 2020 to 2050, we draw on projections from the latest International 
Monetary Fund’s World Economic Outlook to impose GDP growth rates (IMF, 2019). In the 
BASE projection, GDP growth is exogenous and imposed by endogenously adjusting total factor 
productivity. In all policy scenarios, however, GDP growth is endogenous. In addition, we assume 
that government demand for government services, transfers from government to households, and 
domestic and foreign government net financing are all kept fixed as shares of GDP at their base-
year values. Taxes are fixed at their base-year rates, which means that they will grow at a similar 
pace to the overall economy. For all countries, unless otherwise indicated, population projections 
were obtained from the United Nations Department of Economic and Social Affairs, Population 
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Division (United Nations et al., 2019). Extractive natural capital assets such as petroleum and 
minerals grow at the same rate as GDP which captures the dynamics of new discoveries. 
At the macro level, IEEM, like any other Computable General Equilibrium (CGE) model, requires 
the specification of equilibrating mechanisms known as model closures for three macroeconomic 
balances, namely the: (i) government closure; (ii) savings-investment closure, and; (iii) balance of 
payments closure. For the BASE projection, the following closures are used: (i) the government’s 
accounts are balanced through adjustments in the direct tax rate; (ii) the savings-investment 
balance is achieved with private domestic investment equal to household savings as a fixed share 
of GDP at the base-year value. Private foreign investment is financed through the balance of 
payments. Government investment is a fixed share of the government budget which in turn is a 
fixed share of GDP at its base-year value, and; (iii) the real exchange rate equilibrates the balance 
of payments by influencing export and import quantities and values. The non-trade-related 
payments in the balance of payments, specifically, transfers and non-government net foreign 
financing and foreign direct investment, are non-clearing and kept fixed as shares of GDP4. 
For all countries, among the government-related payments, tax rates are fixed at BASE-year 
values. Fixed GDP shares at base-year values are imposed for the other payments: (i) government 
demand for (alternatively, government provision of) government services; (ii) transfers from 
government to households; and (ii) domestic financing of the government. For non-government 
payments, BASE-year GDP shares are similarly imposed over time for transfers from the rest of 
the world to households, foreign direct investment, non-government net foreign financing, and 
factor income to/from abroad. 
Peru 
The base year for Peru’s SAM is 2017 and was constructed based on the SUT and Integrated 
Economic Accounts from the SNA from the Instituto Nacional de Estadística e Informática (INEI) 
combined with balance of payments and fiscal data from other official sources (INEI, 2018a, 
2018b, 2018c). Deforestation projections are based on official sources from (Ministerio del 
Ambiente, 2020). The regionalization of crops and livestock output for each of Peru’s 24 
Departments was conducted using the 2012 Agricultural Census (INEI, 2012). The number of 
hectares in crops, livestock, and forestry is drawn from LULC map data by department (MINAM, 
2015). The regionalization of forestry was conducted using LULC data (MINAM, 2015). The 
number of workers by activity was derived from the SUT publication (INEI, 2018c). 
Colombia 
The base year for Colombia’s SAM is 2014 and was constructed based on SUT and Integrated 
Economic Accounts from the SNA (DANE, 2015a, 2018). Crop land use and output was 
regionalized according to Colombia’s 32 Departments based on data Evaluaciones Agropecuarias 
Municipales (MADR, 2019). The total livestock area is 34,426,622 ha (DANE, 2016) and is 
regionally disaggregated according to data on herd size from the Livestock Census (ICA, 2019). 
Forest plantations and natural forest areas are regionally disaggregated based on data from IDEAM 

 
4 Furthermore, In the BASE, we impose exogenous projections for all non-trade items in the current account of the 
balance of payments, such as transfers. In the capital account, we impose exogenous projections for government and 
non-government foreign borrowing. In turn, this means that foreign savings follows an exogenous path which is equal 
to the sum of government and non-government foreign borrowing and foreign direct investment. Consequently, the 
real exchange rate will adjust to balance the inflows and outflows of foreign exchange, and as a result, exports and 
imports will adjust. 
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(IDEAM, 2020a) and account for 179,225 ha and 58,518,031 ha of the national territory, 
respectively. This area of forest plantations and natural forest are computed from the base land use 
land cover map for Colombia (IDEAM, 2012). The number of workers by activity is from a 
nationally representative household survey (DANE, 2015b). The LULC base map used was from 
(IDEAM, 2012). Population projections were obtained from Colombia’s National Administrative 
Department of Statistics. 
Establishing the baseline projection of deforestation for each Colombian Department was 
undertaken in two steps. First, the Departmental distribution of deforestation was drawn from 
IDEAM for the period 2014 to 2018 (IDEAM, 2020b). This period was chosen to avoid the spike 
in deforestation that has arisen during the post-conflict period. The forward projection of 
deforestation was based on IDEAM’s projections from 2020 to 2030, which estimated average 
deforestation at the national level, equivalent to 389,154 ha in 2030. Based on this figure, we 
estimate the rate of deforestation by Department and apply it to the standing forest stock each year 
to project deforestation by Department to 2050. 
Bolivia 
The base year for Bolivia’s SAM is 2014 and was built using the SUT and Integrated Economic 
Accounts from the SNA (INE, 2014). Deforestation projections are based (GFW, 2020a).The 
regionalization of crops, livestock, and forestry output according to Bolivia’s 9 Departments was 
conducted using regional accounts from Bolivia (INE, 2019). The number of hectares in crops, 
livestock and forestry is drawn from LULC data by department (UTNIT, 2010). Bolivia’s 
deforestation projections are based on historical data from Global Forest Watch data (GFW, 
2020a). The number of workers by activity was calculated using data from the Bolivian household 
survey Encuesta de Hogares (INE, 2018). 
Ecuador 
The base year for Ecuador’s SAM is 2015 and was constructed based on the SUT and Integrated 
Economic Accounts from Ecuador’s SNA data from the Central Bank of Ecuador (BCE, 2020a, 
2020b). The SAM regionalization of crops, livestock, and forestry output was conducted using the 
Central Bank’s regional accounts data at the provincial level for the country’s 24 Provinces (BCE, 
2020a). The number of hectares in crops and livestock by province was sourced from the Encuesta 
de Superficie y Producción Agropecuaria Continua 2017 (INEC, 2017). The forest area was 
sourced from Ecuador’s Land Use Land Cover (LULC) map, Mapa de Uso y Cobertura de la Tierra 
del Ecuador Continental 2013-2014 (MAGAP et al., 2014, p. 2014; MAGAP and MAE, 2015). 
Labor force participation was obtained from the SUT tables (BCE, 2020c). Ecuador’s deforestation 
projections are based on historical data from Global Forest Watch data (GFW, 2020b).  
 
 
 
  

https://www.zotero.org/google-docs/?Rcimji
https://www.zotero.org/google-docs/?6pfTZl
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Supplementary Information 2  
Detailed Description of Scenario Design 

 
Amazon Tipping Point Scenario Components 

1. Baseline deforestation: BASE scenario.  
We estimated baseline deforestation rates using the best available annual estimates of deforestation 
for each focal country. Data for Brazil came from the National Space Agency (INPE), which 
publishes annual deforestation data summarized at the state level for the Cerrado and Amazon 
biomes (Assis et al., 2019; INPE, 2020) and the MapBiomas Project (Project MapBiomas, 2020). 
Data for Peru came from official sources from the Ministry of the Environment, which publishes 
annual data on forest loss by Department (MINAM, 2020). Data for Colombia was obtained from 
the National Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM, 2012). 
Data for Bolivia and Ecuador were based on World Resources Institute’s Global Forest Watch 
program (GFW, 2020a, 2020b). To implement the BASE scenario, we first calculated the rate of 
deforestation as a proportion of remaining forests for each state. We then took the average rate of 
deforestation for the last decade in the data record and assumed that future deforestation would 
follow the same annual BASEtrend. 
 
2. Climate change impacts on agriculture: YIELD and DRGHT scenarios. 

To quantify the impacts of crop failures as climate becomes less favorable for agriculture, we 
developed statistical models to relate historic variability in crop productivity to existing gradients 
in climate (spatial variability) and periodic shocks to the system during extreme droughts. We 
obtained soybean and late-season maize yields from the National Food Supply Company of Brazil 
(CONAB), which provides state-level averages of crop yield from 1981-2017 (CONAB, 2019). 
This is the longest time series available for the study area and includes the Brazilian states of Mato 
Grosso, Goiás, Maranhão, Tocantins, Piauí, Bahia, and the Federal District of Brasília which 
comprises a large agricultural region that has already experienced climate-induced crop losses. 
 
To quantify regional changes in temperature and dryness, we applied the climate space concept, 
which uses the rainfall and the Maximum Cumulative Water Deficit (MCWD, an index of dryness) 
to delineate the climate envelope which in this case is the range of precipitation and temperature 
that is most suitable for agricultural production. Malhi et al. (2009) used this approach to delineate 
the climatic envelope that defines biomes. Castanho et al. (2020) adapted the approach to quantify 
the effect of future climate change on vegetation distribution and biomass in dryland ecosystems.  

We adapted the approach to quantify changes in the climate space for agriculture. We used a 
generalized linear model in the R statistical package (R Core Team, 2020) to relate historic yields 
to the Maximum Cumulative Water Deficit and the Standardized Precipitation Evapotranspiration 
Index. The resulting statistical models allowed us to make hypothetical yield projections under 
mean future climate conditions. This allowed us to quantify the upper and lower bounds of 
expected crop losses as a percentage of baseline yield for each state, without explicitly modeling 
the sensitivity of specific crops. These results were the basis of our YIELD scenario shocks 
implemented in IEEM. To simulate drought impacts on agriculture in the DRGHT scenario, and 
in addition to yield losses due to changes in the average climatic conditions and the Maximum 
Cumulative Water Deficit (captured in the YIELD scenario), we assumed a 15% loss in yield 
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during extreme drought events, which are expected to become more frequent in the future (Woetzel 
et al., 2020). 

Figure SI 3). Rattis et al. (In Review) found that from 1980-2019, regional warming and drying 
pushed 37% of current agricultural lands in the Amazon and Cerrado region out of the optimum 
climate space for agricultural productivity. This shift in climate space is projected to reach 64% 
by 2030 and 94% by 2060 (Rattis et al., In Review). 

Figure SI 1. Bioclimatic zones for Caatinga, Cerrado, and Amazon rainforest, averaged for the 30-
year period 1950–1979. Biome locations are shown in the inset map (upper left). Climate space is 
defined by annual precipitation and potential maximum cumulative water deficit  (Malhi et al., 
2009). Points are 0.5° grid cells from CRU (Harris et al., 2014). 

 
Source: Adapted from Castanho et al. (2020). 
 
To calculate the Maximum Cumulative Water Deficit, we used monthly temperature and 
precipitation from CMIP5 as described in the main text (Castanho et al., 2020; Malhi et al., 2009). 
Potential Evapotranspiration, required to calculate monthly climatological water deficit, was based 
on the Thornthwaite equation (Thornthwaite and Mather, 1955). We considered the 30-year period 
from 1981-2010 as our climatic baseline and calculated Maximum Cumulative Water Deficit for 
the (bias-corrected) time series from 1981-2100. Our estimations with a linear mixed model based 
on this historical data reveal a linear relationship between Maximum Cumulative Water deficit and 
crop yield. Specifically, for every 100-millimeter decrease in Maximum Cumulative Water 
Deficit, there is a decline of 76.5 kg/ha in soybean and 236 kg/ha in late season corn relative to the 
baseline Figure SI 2. 
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Figure SI 2. Historical relationship between crop yields and Mean Cumulative Water Deficit, from 
1990 to 2020.  

 
Source: Climate data used to calculate Mean Cumulative Water Deficit came CRU (Harris et al., 
2014) and yield data came from CONAB (2019). 
 
To implement the agricultural productivity shock in IEEM in the YIELD scenario, we modify total 
factor productivity for all crops in the relevant regions by applying the average of change in corn 
and soy productivities. To test the sensitivity of results to variations in the productivity shock, we 
also calculated a lower and upper bound where the lower bound (YIELD_LO) applies changes to 
corn productivity to all crops and the upper bound (YIELD_HI) applies change in soy productivity 
to all crops.  
 
Using a similar approach to calculating Maximum Cumulative Water Deficit, we calculated the 
Standardized Precipitation Evapotranspiration Index (SPEI) – a standard metric used to monitor 
droughts (Beguería et al., 2014). We estimated the historic and future frequency of extreme events 
based on a threshold of one standard deviation of the Standardized Precipitation 
Evapotranspiration Index. A negative value indicates an extreme dry year, while a positive value 
indicates an extreme wet year. All climate variables were summarized by state/department for each 
of our Amazon focal country. 
 
We used a generalized linear model in the R statistical package (R Core Team, 2020) to relate 
historic yields to the Maximum Cumulative Water Deficit and the Standardized Precipitation 
Evapotranspiration Index. The resulting statistical models allowed us to make hypothetical yield 
projections under mean future climate conditions. This allowed us to quantify the upper and lower 
bounds of expected crop losses as a percentage of baseline yield for each state, without explicitly 
modeling the sensitivity of specific crops. These results were the basis of our YIELD scenario 
shocks implemented in IEEM. To simulate drought impacts on agriculture in the DRGHT scenario, 
and in addition to yield losses due to changes in the average climatic conditions and the Maximum 
Cumulative Water Deficit (captured in the YIELD scenario), we assumed a 15% loss in yield 
during extreme drought events, which are expected to become more frequent in the future (Woetzel 
et al., 2020). 
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Figure SI 3. Mean climate space of the Amazon-Cerrado region over four decades. The historical 
climate space was defined using observed data (Harris et al., 2014). The future climate space was 
based on the mean of 35 models from CMIP5. Panel A on the left if the climate space distribution. 
Colors correspond to specific combinations of precipitation and Maximum Cumulative Water 
Deficit from Panel B. Panel B on the top right is a scatterplot of all cropland as a function of their 
location in the climate space. Each point corresponds to one pixel on the maps in Panel A. Black 
and purple convex hulls mathematically delimit the climate space occupied by current croplands 
for each decade. Panel C on the bottom right shows the total decadal mean cropland area (km2) 
falling within the optimum climate space, as defined by 1970s climate (black convex hull in Panel 
B). 

 
Source: Figure reproduced from Rattis et al. In Review. 
 
3. Deforestation-climate-fire interactions: FIR scenario.  
To implement the FIR scenario in IEEM, we used previously published model outputs to quantify 
the interactions between deforestation, climate change and fire in the driest region of the southern 
Amazon which is comprised of about 192 million hectares and is where most fires occur (Brando 
et al. 2020b). We used dry-season length as a spatial mask in a Geographic Information System 
(GIS) to distinguish between flammable and non-flammable forests (Figure SI 4). To account for 
the effect of climate change on dry season length, we used data from the Amazon Climate Source, 
a data platform that synthesizes information on observed historical climate (Harris et al., 2014) 
and modeled future climate (Taylor et al., 2012) in the Amazon (WHRC, 2020). We assume that 
Amazon forest areas with a dry season length of greater than or equal to 3 months are eligible to 
burn.  
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Figure SI 4. Land cover, climate, and fire occurrence across the Amazon forest biome. (a) Percent 
tree cover (Hansen et al., 2013). (b) Active fire occurrence from MOD14A1 (Giglio et al., 2016). 
(c) Land surface temperature (from MOD11A2; Wan et al. 2015). (d) Mean dry-season length 
from 1981-2019 calculated from CHIRPS (Funk et al., 2015). 

 
Source: (P. M. Brando et al., 2020b). 

For the FIR scenario and all other scenarios, we assume that future climate will follow the high-
emissions scenario outlined by the Intergovernmental Panel on Climate Change (IPCC, 2014). 
This scenario, referred to as a Representative Concentration Pathway (RCP), assumes that 
atmospheric greenhouse gases will accumulate at the current rate of emissions, causing a climate 
forcing of 8.5 Watts per square meter.  
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Figure SI 5. Global drought risk and heat stress by 2050. The Amazon-Cerrado region stands out as a 
hotspot of future climate risk.  

Source: Figure reproduced from Woetzel et al. (2020). 

Although medium- and low-emission scenarios exist, we focus on RCP8.5 because it most closely 
represents the pathway we are currently on. Moreover, the lag time in the climate system means 
that the three scenarios do not differ substantially until after 2050. Under RCP8.5, dry season 
length is projected to increase from the first period (2016-2039) to the second (2040-2069). As a 
result, several states/departments that are not eligible to burn in the early period of our analysis 
become eligible to burn after 2039 (Figure SI 5 and Figure SI 6). Figure SI 6 describes how 
drought-mediated wildfires impact tropical forests. Droughts can affect vegetation directly through 
physiological responses that reduce carbon stocks and forest growth; they affect flammability 
which in turn affects fire behavior and impacts. The outcome of these interactions is more severe 
fires, lower carbon stocks and reduced productivity. These interactions can also result in positive 
feedbacks through increasing fuel loads and dryness, and consequently fire severity.  
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Figure SI 6. Schematic diagram showing how drought-mediated wildfires impact tropical forests. 
Droughts can affect vegetation directly through physiological responses that reduce carbon stocks 
and forest growth (green). They also affect vegetation by increasing forest flammability (blue), 
and altering fire behavior (red) and fire effects (yellow). The result is more severe fires, lower 
carbon stocks, and reduced productivity. This fire pathway may cause a positive feedback, further 
increasing fuel loads and dryness, and consequently fire severity.  

Source: Figure reproduced from Brando et al. (2019).  
 
We assume that deforestation follows baseline (BASE) trends in this and all components of the 
Amazon tipping point (COMBI) scenario. For each climate period, we assumed that all 
states/departments of our focal countries with a dry season length greater than or equal to 3 months 
were eligible to burn. Using the annual model outputs from Brando et al. (2020b), we multiplied 
the percent burned area expected for that year by the remaining forest area which is tracked in 
IEEM to estimate the annual burned area in each state. For each “flammable” Amazon state, we 
then spatially allocated the burned area in the land use land cover change modeling.  
 
Note that we modeled these deforestation-climate-fire interactions only in the Amazon forest 
biome. Because Amazon forests have not burned historically, they are not fire-adapted and are 
particularly vulnerable to changing fire regimes. Once they become flammable, fire occurrence in 
these forests can lead to abrupt ecosystem change (Brando et al., 2014b). In contrast, savanna 
ecosystems are fire-adapted and have very different historic fire regimes (Andela et al., 2017). 
State-of-the-art fire modeling for the southern Amazon allows us to consider the joint effects of 
climate, ignition sources, and deforestation on burned area in the Amazon.  
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Components of the Policy Intervention Scenario 

1. Zero Deforestation: NDEFOR scenario. 
To implement the NDEFOR intervention, we reduced deforestation after 2020, reaching zero 
deforestation by 2030 Figure 8. One positive feedback of slowing deforestation is a reduction in 
the number of wildfires that escape into primary Amazon forests. These fires can degrade forest 
ecosystems and eventually cause them to change to another stable state or become so degraded 
that they are eventually converted to other uses. To account for this, we assumed that the burned 
area in flammable parts of the Amazon decreased by 50% in NDEFOR (P. M. Brando et al., 
2020b). 
Co-benefits of avoiding deforestation include reduced disease transmission (MacDonald and 
Mordecai, 2019), improved air quality, climate mitigation (Costa et al., 2019; Wright et al., 2017), 
and biodiversity conservation. All of these impacts could have positive impacts on the economy 
and human well-being. For example, the climate regulation effect of stopping deforestation would 
have a positive impact on agricultural productivity by modulating regional rainfall and temperature 
regimes relative to the baseline and Amazon tipping point scenarios. The economic benefits of 
reducing deforestation are captured in IEEM through changes in the total stock of forestland. These 
benefits are taken into account in the calculation of some but not all economic indicators. Some of 
the non-market benefits are quantified in the ecosystem service modeling. 

We recognize that the cost of implementing zero-deforestation policies, including monitoring and 
enforcement, could be substantial. Our preliminary estimate of the investments required is based 
on a recent study outlining a strategy to stop deforestation and increase agricultural production on 
already cleared lands in Brazil. Achieving this would require an estimated investment of US$53 
billion through to the year 2030. Some of this cost could be offset by enhanced monitoring and 
enforcement of forest policy and related laws, which would increase the collection of fines 
(Banerjee and Alavalapati 2010). There is also a potentially large net return on these investments, 
estimated at US$68 billion over the same period (Stabile et al., 2020), but more research is needed 
to constrain these estimates.  
 
3. Fire Prevention: NFIR scenario. 
To implement the fire management (NFIR) scenario in IEEM, we relied on the same key datasets 
as in FIR (P. M. Brando et al., 2020b; WHRC, 2020). To implement NFIR, we assume that 
comprehensive fire prevention and suppression efforts can mitigate an additional 60-75% of the 
burned area, above and beyond the reduction achieved through the NDEFOR scenario  
 
Investments in preventing wildfires would have a number of ecosystem service and human health 
co-benefits. It may also have economic benefits by preventing loss of life, infrastructure, and forest 
resources. For example, high-intensity fires (e.g. FIR) have been shown to cause losses in timber 
production value of up to 10% in intact forest areas, while low-intensity fires (e.g. NDEF) could 
cause losses of up to 5% (de Oliveira et al., 2019). Effective fire suppression would prevent these 
losses. Substantially reducing the burned area would require significant investments in all aspects 
of fire control and prevention, including: 
 

• Expanding the network of well-trained and equipped fire brigades. These brigades can help 
suppress accidental ignitions and illegal wildfires. This strategy receives nearly all of the 
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federal funding available today but remains extremely under-resourced. The Amazon 
Fund’s PrevFogo program, for example, allocated ~US$6.3 million over five years to 
prevent forest fires, but effectively covers only 3.2% of the Brazilian Legal Amazon  (P. 
Brando et al., 2020; Fonseca-Morello et al., 2017).  

• Developing fire-free land management systems. Under a changing climate, fire should be 
eliminated as a strategy for clearing land except in very limited cases. While some research 
has been done into fire-safe agroforestry systems and ‘ecological pastures’ silvopastoral 
systems, very little research has been devoted to developing these systems for operational 
use (Fonseca-Morello et al., 2017). 

• Command-and-control enforcement of illegal fire activity. This requires investments to 
enforce laws geared towards preventing wildfires and illegal deforestation (P. Brando et 
al., 2020; P. M. Brando et al., 2020b). 

• Improving fire early warning systems. This includes weather forecast systems and fire 
behavior models that can help guide fire prevention and suppression efforts and efficiently 
allocate resources months before the fire season starts deforestation (P. Brando et al., 2020; 
P. M. Brando et al., 2020b).  

• Investing in Fire Prevention. In addition to the above, fire management agencies need to 
consider fire prevention and control strategies in highly vulnerable areas. Among other 
things, this might include building fire breaks and conducting controlled burns to reduce 
fuel loads, especially in drought years when mega-fires are more probable. 

 
Implementing these strategies across all Amazon countries would require some ramp-up time. The 
main firefighting program in Brazil today (PrevFogo) focuses primarily on the first aspect of NFIR, 
establishing fire brigades to suppress wildfires. Implementing NFIR would require expanding such 
activities from its current coverage of approximately 3.2% of the Brazilian Amazon (Fonseca-
Morello et al., 2017) to 100% of the most flammable areas across the biome. It would also require 
reallocation of resources towards fire prevention and preparedness rather than fighting fires 
reactively. Extrapolating from the current budget of PrevFogo, the cost of expanding fire-fighting 
efforts would be upwards of US$42 million per year. This first-order estimate is likely very 
conservative, but further work is needed to develop a more realistic estimate. For comparison, the 
United States Federal Government spent US$2 billion on fire suppression in 2016 alone.  
 
These costs should be weighed against the substantial cost of doing nothing, including damage to 
infrastructure, human health, and reduced ecosystem services and degraded natural capital among 
others. Over the near term, the largest impacts of fire would be on biodiversity and ecosystem 
service provision. Potential economic impacts might include: substantial costs in terms of human 
health (e.g. respiratory issues from prolonged exposure to smoke), damage to infrastructure, 
impacts on rural livelihoods (e.g. production of non-timber forest products and subsistence 
agriculture), timber production, and forest plantations, and possible impacts on large-scale 
agricultural production (e.g. via feedbacks on regional climate, pollination services). On the other 
hand, the costs of fire management and prevention, especially in remote areas, are large. 

 3. Agricultural adaptation to climate change: YIELD50 scenario. 

To implement the climate adaptation scenario, we relied on the same future projections of 
Maximum Cumulative Water Deficit and the Standardized Precipitation Evapotranspiration Index 
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which was calculated by state/department in developing the YIELD and DRGHT scenarios. We 
assume that all countries will attempt a mix of adaptation strategies to buffer their agricultural 
output to changing climate, and that these interventions could mitigate approximately 50% of the 
productivity losses projected in average years in our Amazon tipping point (YIELD and COMBI) 
scenarios. Extreme drought events based on the Standardized Precipitation Evapotranspiration 
Index would still cause major crop losses as in DRGHT. This scenario also assumes large-scale 
expansion of irrigation in Brazil, given ongoing policy incentives and research to expand this 
adaptation strategy in the country’s driest agricultural regions (Ayrimoraes et al., 2017; Fontenelle 
et al., 2017). By comparison, the extent of irrigated area in our other focal countries is considered 
relatively small and was not considered in this analysis.  

Farmers and ranchers are likely to adapt management practices to new climate and market 
conditions to mitigate crop losses. Adaptation strategies that could be considered include 
implementing drought-adapted varieties; shifting the timing and intensity of cultivation, including 
switching from double- to single-cropping and planting later in the wet season, and; implementing 
agroforestry or crop rotation systems that are more resilient to climate change. Increasing irrigation 
is another key adaptation strategy that will likely increase in drier agricultural regions like Brazil’s 
Amazon-Cerrado where large swaths of croplands have already moved outside the optimal climate 
zone (Pousa et al., 2019; Rattis et al., In Review). 

As of 2015, irrigation in Brazil spanned several categories: central pivot (20%, 1.4 million ha); 
inundated rice (22%, 1.54 million ha); sugar cane (29.5%, 2.07 million ha); and other corps 
(28.6%, 2 million ha). To approximate potential expansion of irrigation in the region, we followed 
projections from Brazil’s National Water Agency (ANA), which estimate 45% growth in irrigated 
area from 2015 to 2030 and further expansion of approximately 4% per year until 2050 regions 
regions (Ayrimoraes et al., 2017; Fontenelle et al., 2017). Areas with a Maximum Cumulative 
Water Deficit less than or equal to -600 were considered ineligible for irrigation because they are 
likely not dry enough to warrant the initial investment. We selected this threshold based on 
comparison of plots of the Maximum Cumulative Water Deficit for existing irrigated and non-
irrigated areas over time.  

Before 2030, irrigation is expected to expand only to regions where it is already prevalent, that is, 
areas where there is sufficient energy and water infrastructure available. After 2030, expansion 
into new areas is possible with additional investments in energy and water infrastructure. Based 
on Brazil’s National Water Agency projections, we assume an expansion of 11.2 million hectares 
as states enter a drier climate. The overall impact of this scenario captured in IEEM is a 50% 
mitigation of the yield losses projected in our Amazon tipping point scenario (YIELD and 
COMBI).  This is a conservative estimate. Some studies suggest that irrigation can lead to two-
fold increases (or more) in productivity relative to non-irrigated areas. 

The adoption of climate adaptation strategies would require substantial investments in research 
into climate adapted production strategies, water management, drought-adapted crop varieties, and 
irrigation expansion and efficiency. Such investments could have substantial benefits to the 
economy by preventing breadbasket failures and losses in agricultural incomes. They could also 
have important impacts on human well-being by improving food security and nutrition. On the 
other hand, strategies like irrigation will greatly increase water use (including increased 
evaporation from reservoir surfaces as the region becomes drier) and energy demand, taxing an 
already fragile energy grid that depends on hydroelectric power. Water and energy conflicts may 
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arise if irrigation is a big part of the adaptation strategy (e.g. Pousa et al., 2019), but we assume 
sufficient water availability to sustain the projected irrigation expansion until 2050.  

 
Reports from the International Food Policy Research Institute and the World Bank estimate that 
Latin America would require annual investments (in 2000 USD) on the order of US$30-31 million 
to expand irrigation infrastructure; US$128-129 million to improve irrigation efficiency; and 
US$392-426 million for agricultural research to counteract the effects of climate change on 
nutrition (Nelson et al., 2009). We based our initial cost estimates on these reports, although further 
research is needed to update and improve these estimates for the focal countries in this study. 
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Supplementary Information 3 

Land Use Land Cover Change Modeling 

Climate data preparation for use in land use land cover change modeling 
The operationalization of the Amazon tipping point scenario in CLUE required the creation of 
annual bioclimatic spatial data. This included yearly average temperature, evapo-transpiration 
(PET) as well as average precipitation raster layers. This data was created using modelled future 
climate data provided by WorldClim (Hijmans et al., 2005). For annual temperature, 
evapotranspiration and precipitation, data from 1970-2000 was used as the basis for current 
climatic, or BASE conditions, compared to future climate data averaged between 2040 and 2060 
to approximate data for the year 2050. In order to account for uncertainly in modelling future 
climate in 2050, seventeen future Coupled Model Intercomparison Project 5 (CMIP5)5 simulations 
for the year range 2040 to 2060 were averaged to produce the final 2050 bioclimatic map files. 
The details of these models can be found in the Supplementary Information 4.  
 
To then create annual files, equation 1 was used to approximate an annual rate of change in a 
Geographic Information System.   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅 = � 𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒
𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒

�
1
𝑛𝑛 − 1                                                                       equation 1 

Where: 
• end value was the final averaged 2050 raster modelled as described above; 
• beginning value was the previously obtained 2020 raster, and;  
• n = 30.  

 
This rate of change was then multiplied by the base 2020 file for each bioclimatic variable, and 
then iterated 30 times using the python (3.7) rasterio and GDAL libraries to produce maps 
displaying the compound changes over the period 2020 to 2050 (GDAL/OGR contributors, 2020; 
Gillies et al., 2013).  
 
Note that this bioclimatic spatial data was also applied in calculating future ecosystem services 
supply, in order to consider the cumulative impacts of bioclimatic shocks over time. These effects 
are both direct and indirect. Specifically, the raster files created using the above method for 
modelling future climate changes (equation 1) are used as direct inputs for water supply as well as 
nutrient and soil delivery ratio models in InVEST for the final 2050 model runs. This was 
undertaken to account for changes in climate between the initial time period and 2050. Indirect 
impacts arise since these modelled bioclimatic inputs were used to generate the LULCC 
projections and maps.  
  

 
5 For more information on the Coupled Model Intercomparison Project, see: https://esgf-node.llnl.gov/projects/cmip5/  

https://esgf-node.llnl.gov/projects/cmip5/
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Land Use Land Cover Change maps by scenario. 
 
The following are enlarged LULC maps by scenario. 
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The maps below zoom in on some of the areas experiencing the greatest change in the Amazon 
tipping point and policy scenarios.   
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Supplementary Information 4 
Ecosystem Services Modeling 

Table SI 1 presents the models used for the calculations of future potential evapotranspiration, 
precipitation and temperature.  

Table SI 1. Bioclimatic models averaged for calculation of future PET, precipitation, and 
temperature. 

Model Institution 

ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) and 
Bureau of Meteorology, Australia 

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration 

CCSM4 National Center for Atmospheric Research, USA 

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de Recherche 
et Formation Avances en Calcul Scientifique, France 

GFDL-CM3 NOAA, Geophysical Fluid Dynamics Laboratory, USA 

GISS-E2-R NASA Goddard Institute for Space Studies, USA 

HadGEM2-AO National Institute of Meteorological Research / Korea Meteorological 
Administration 

HadGEM2-CC Met Office Hadley Centre, UK 

HadGEM2-ES Met Office Hadley Centre / Instituto Nacional de Pesquisas Espaciais) 

INM-CM4 Institute for Numerical Mathematics, Russia 

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 
Research Institute (The University of Tokyo), and National Institute for 
Environmental Studies 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 
Research Institute (The University of Tokyo), and National Institute for 
Environmental Studies 

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National 
Institute for Environmental Studies, and Japan Agency for Marine-Earth Science 
and Technology 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M), Germany 

MRI-CGCM3 Meteorological Research Institute, Japan 

NorESM1-M Norwegian Climate Centre 

Source: as indicated in table.  
 
The maps below show regional changes in bioclimatic variables (yearly PET, yearly precipitation 
and yearly average temperature) over time (initial to 2050) used as inputs for InVEST models. 
Evapotranspiration, or PET, is a measure of the depth of which moisture is removed from soil as 
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a result of climatic processes. An increase in the depth of PET indicates an increase in soil dryness. 
Precipitation refers to yearly average rainfall, where red areas on the below map indicate a decrease 
in rainfall, while areas of green and blue shades mean areas receive higher average rainfall. The 
final map shows increases in temperature in degrees, averaged across each regional analyzed. 
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Table SI 2, Table SI 3, Table SI 4 and Table SI 5 present ecosystem service modeling results for 
each ecosystem service and scenario aggregated according to biome.   

Table SI 2. Annual water yield results aggregated to biome level in cubic meters of water yield.  
Biome BASE 2020 BASE 2050 COMBI 2050 POLICY 2050 
Amazon Cerrado 651,343,746,051 384,329,992,511 384,259,015,999 380,354,226,455 
Cerrado 369,957,880,976 260,736,882,637 260,578,588,102 260,267,414,082 
Non-Amazon 884,926,024,086 947,283,044,647 947,262,016,391 944,681,823,132 
Amazon 4,244,726,764,651 3,327,098,677,633 3,326,086,038,235 3,310,707,410,287 

Source: IEEM+ESM results.  
 
Table SI 3. Carbon results aggregated to biome level in elemental C stored.  

Biome BASE 2020 BASE 2050 COMBI 2050 POLICY 2050 
Amazon Cerrado 30,245,831,929 25,880,280,972 25,908,954,906 28,652,033,571 
Cerrado 18,063,792,211 17,465,256,532 17,505,920,788 17,881,539,782 
Non-Amazon 25,713,405,436 24,225,428,387 24,244,754,777 25,257,637,888 
Amazon 119,665,471,086 112,201,340,646 112,606,109,663 117,523,922,664 

Source: IEEM+ESM results. 
 
Table SI 4. Phosphorus flows that reach the stream aggregated to the biome level in kg per year.  

Biome BASE 2020 BASE 2050 COMBI 2050 POLICY 2050 
Amazon Cerrado 32,135,187 66,845,070 68,433,039 43,484,204 
Cerrado 58,719,478 66,235,271 67,613,222 61,546,378 
Non-Amazon 67,581,676 86,057,862 87,441,073 73,990,528 
Amazon 9,809,424 21,386,832 20,678,361 12,770,843 

Source: IEEM+ESM results. 
 

Table SI 5. Nitrogen flows that reach the stream aggregated to the biome level in kg per year. 
Biome BASE 2020 BASE 2050 COMBI 2050 POLICY 2050 
Amazon Cerrado 335,692,919 454,949,408 463,048,791 371,543,199 
Cerrado 427,128,767 452,776,001 462,531,719 439,914,669 
Non-Amazon 460,124,738 542,883,982 549,632,095 502,127,907 
Amazon 385,913,291 452,337,343 445,040,709 399,226,951 

Source: IEEM+ESM results. 
 

Table 4 Soil loss results aggregated to a biome level in tons per hectare. 
Biome BASE 2020 BASE 2050 COMBI 2050 POLICY 2050 
Amazon Cerrado 96,662,276 94,403,589 94,503,940 95,418,418 
Cerrado 104,266,375 103,050,005 102,975,269 103,566,841 
Non-Amazon 1,560,351,983 1,578,322,508 1,578,976,773 1,559,835,730 
Amazon 1,701,901,677 1,728,489,981 1,725,906,721 1,708,785,469 

Source: IEEM+ESM results. 
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Table SI 6 presents regional changes in ecosystem services and Biodiversity Intactness Index 
results between BASE in 2050 and Amazon tipping point in 2050.  

Table SI 6. Regional changes in ecosystem service and Biodiversity Intactness Index results 
between BASE in 2050 and Amazon tipping point in 2050 in percent.  

Region 
ID Region Country AWY Phosphorus Nitrogen Sediment BII Carbon 
1 Maranhão Brazil 0.0% 10.1% 7.7% -1.2% -0.6% -0.4% 
2 Tocantins Brazil -0.1% 0.8% 3.3% -15.4% 0.7% -1.7% 
3 Bahia Brazil 0.0% 10.1% -10.7% -17.1% -1.1% -9.0% 

4 Goiás Brazil 0.1% 32.0% 
-

23846.0% -0.3% -6.5% -10.9% 
5 Minas Gerais Brazil 0.3% 105.4% 683.6% 24.7% -5.2% -11.8% 
6 Distrito Federal Brazil 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
7 Mato Grosso do Sul Brazil 0.1% 2.6% 10.8% -1.3% -1.1% -1.4% 

8 Sao Paulo Brazil 0.3% 52.7% 40.5% -19.4% -47.5% 
-

396.9% 
9 Piaui Brazil 0.0% 2.2% 2.1% -2.0% -1.0% 16.4% 

10 Non-Amazon Brazil -0.1% 5.0% 3.6% -7.8% 0.0% 32.3% 
11 Non-Amazon Peru 0.2% 14.7% 10.0% 5.7% 5.7% -4.4% 
12 Non-Amazon Colombia 0.0% 3.0% 3.2% 3.5% 0.5% -0.4% 
13 Non-Amazon Ecuador 0.0% 0.9% 0.8% 0.4% 1.4% -1.4% 
14 Non-Amazon Bolivia -0.1% 90.3% 285.1% 91.2% 3.3% -2.1% 

15 Parana Brazil 3.7% 36.4% 30.6% 68.2% 
-

320.6% 79.3% 
16 Mato Grosso Brazil 0.0% 4.5% 6.9% -2.4% -0.7% -0.7% 
17 Acre Brazil 0.0% 0.2% 0.2% 0.2% -0.4% 0.3% 
18 Rondônia Brazil 0.0% 5.5% 4.5% 2.0% 0.0% 0.0% 
19 Para Brazil 0.0% 14.1% 12.0% 2.6% -0.1% 0.1% 
20 Roraima Brazil 0.0% 4.3% 6.3% 1.9% -1.1% 1.0% 
21 Amapá Brazil 0.0% -92.1% 9.4% -38.2% 42.8% -39.4% 
22 Amazonas Brazil 0.0% -22.4% -3.0% -3.3% -3.0% 3.2% 
23 Amazon Colombia 0.0% 4.8% -0.1% 14.4% -0.6% 0.5% 
24 Amazon Ecuador -0.1% 2.8% 2.5% 2.4% -1.2% 1.1% 
25 Amazon Peru 1.1% -44.1% -41.8% -44.8% 45.2% -45.5% 
26 Amazon Bolivia 0.1% -75.3% -70.5% 2528.9% -1.5% 0.1% 

Source: IEEM+ESM results. 
 

Table SI 7 presents regional changes in ecosystem services and Biodiversity Intactness Index 
results between BASE in 2050 and the policy scenario in 2050.  
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Table SI 7. Regional changes in ecosystem service and Biodiversity Intactness Index results 
between BASE in 2050 and the policy scenario in 2050 in percent.  

Region 
ID Region Country AWY Phosphorus Nitrogen Sediment BII Carbon 
1 Maranhão Brazil 1.2% -67.2% -64.5% -53.0% 62.6% -63.2% 
2 Tocantins Brazil 0.5% -68.3% -71.3% -77.4% 61.2% -60.0% 
3 Bahia Brazil 0.1% -68.6% -93.7% -86.0% 66.0% -72.0% 

4 Goiás Brazil 0.2% -110.5% 
-

19453.7% -64.7% 60.8% -70.4% 
5 Minas Gerais Brazil 0.4% -91.6% 44.1% -23.9% 64.8% -77.1% 
6 Distrito Federal Brazil 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
7 Mato Grosso do Sul Brazil 1.3% -63.0% -59.6% -57.9% 61.0% -63.6% 
8 Sao Paulo Brazil 0.2% -1.6% 3.2% -3.7% 42.9% -413.6% 
9 Piaui Brazil 0.1% -82.0% -83.2% -55.9% 68.8% -68.2% 

10 Non-Amazon Brazil 
-

0.1% 3.9% 3.0% -169.8% 0.0% 2.2% 
11 Non-Amazon Peru 0.8% -35.1% -25.0% -76.6% 69.7% -70.2% 
12 Non-Amazon Colombia 4.7% -80.0% -70.1% -102.3% 70.6% -71.8% 

13 Non-Amazon Ecuador 
-

0.9% -34.1% -25.3% -92.0% 55.8% -59.7% 
14 Non-Amazon Bolivia 0.2% -74.4% -122.6% -5.6% 63.6% -64.2% 
15 Parana Brazil 2.5% 18.3% 12.1% -47.5% -59.6% 40.8% 
16 Mato Grosso Brazil 1.6% -67.3% -70.1% -34.8% 61.8% -63.6% 
17 Acre Brazil 2.4% -72.6% -68.3% -78.5% 66.9% -70.3% 
18 Rondônia Brazil 4.2% -64.3% -65.9% -73.9% 64.0% -64.1% 
19 Para Brazil 2.5% -76.4% -79.6% -85.0% 66.9% -67.1% 
20 Roraima Brazil 0.3% -70.5% -130.5% -79.9% 68.1% -68.1% 
21 Amapá Brazil 0.0% 95.1% -12.4% -153.7% 69.5% -76.7% 
22 Amazonas Brazil 0.3% -45.0% -66.0% -128.3% 68.7% -69.7% 
23 Amazon Colombia 8.6% -62.2% -72.5% -59.3% 75.0% -74.9% 
24 Amazon Ecuador 3.4% -72.7% -65.7% -71.5% 69.4% -69.1% 
25 Amazon Peru 2.1% -87.4% -83.5% -91.2% 89.3% -89.3% 
26 Amazon Bolivia 0.2% -36.3% -8.3% 1243.0% 65.8% -65.0% 

Source: IEEM+ESM results.  
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Supplementary Information 5 
Additional Scenarios 

 
This section presents additional scenarios developed to reflect a more optimistic view of the 
possibilities for mitigating the average climate change impact on agricultural productivity and 
yields. We introduce two new scenarios, YIELD75 and YIELD90, where YIELD75 mitigates 75% 
of the average climate change impact on agriculture and YIELD90 which mitigates 90% of the 
average climate change impact on agriculture. These scenarios are more optimistic than the 
YIELD50 scenario which assumes a climate change impact mitigation of 50%. Finally, we 
implement a revised policy scenario, POL3, which is the joint implementation of NDEFOR2, 
YIELD90 and NFIR.  
 

Table SI 8. Cumulative impacts on GDP and Genuine Savings as difference from the tipping 
point scenario in millions of USD. 

YIELD75 YIELD90 POL3
GDP

Brazil -36,662 -16,082 -19,478
Peru -5,635 -1,167 -1,709
Colombia -9,904 -7,333 -16,130
Bolivia -5,402 -3,359 -6,384
Ecuador -4,369 -3,348 -6,999

Genuine Savings
Brazil -7,422 -240 80,111
Peru -428 573 13,597
Colombia -2,913 -1,165 82,614
Bolivia -975 -327 11,034
Ecuador -195 243 30,754  

Source: IEEM+ESM results. 
 
Focusing on Brazil, in YIELD75, the GDP impact of climate change would be less when compared 
with the original YIELD50 scenario, from a reduction of US$73,928 million to US$36,662 million. 
In the case of Genuine Savings, results would be less, from US$15,886 million in YIELD50 to 
US$16,082 million in YIELD90. Finally, with POL3, GDP impacts would result in losses 
equivalent to US$19,478 million compared to losses of US$81,245 million in the original POL 
scenario for Brazil. Genuine Savings and wealth would be greatly compromised in the revised 
POL3 scenario amounting to US$80,111 million compared with US$162,804 million in the 
original POL scenario.  
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Table SI 9. Net Present Value based on adjusted equivalent variation by country and scenario in 
millions of USD. 

 

YIELD75 YIELD90 POL3
Brazil -15,838 -7,415 14,353
Peru -2,045 -574 1,565
Colombia -689 -474 6,423
Bolivia -652 -395 -425
Ecuador -391 -290 1,652  

Source: IEEM+ESM results. 
 
Considering NPV in Brazil, the revised POL3 would result in smaller returns on the investment. 
NPV in POL is US$17,770 million compared to US$14,353 million in POL3. 
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