

- ORIGINAL ARTICLE -

Service Migration in a Distributed Virtualization System
Migración de Servicios en un Sistema de Virtualización Distribuido

Pablo Pessolani , Luis Santiago Re and Tomás Andrés Fleitas
 Department of Information Systems Engineering

Universidad Tecnológica Nacional – Facultad Regional Santa Fe
Santa Fe, Argentina

{ppessolani, lsre, tafleitas}@frsf.utn.edu.ar

Abstract

Cloud applications are usually formed by different
components (microservices) that may be located in
different virtual and/or physical computers. To
achieve the desired level of performance,
availability, scalability, and robustness in this kind
of system developers are forced to maintain and
configure complex sets of infrastructure, platforms,
and frameworks which are expensive to implement,
operate and manage. Another approach would be to
use a Distributed Virtualization System (DVS) that
provides a mechanism that each component could
use to communicate with others, regardless of their
location and thus, avoiding the potential problems
and complexity added by their distributed execution.
This communication mechanism already has useful
features for developing commercial-class distributed
applications, such as replication support (active and
passive) and process migration. This article
describes the mechanisms used for the migration of
server processes between nodes of a DVS cluster
transparently for client and server processes, doing
special focus on how to solve the problem of
keeping client/server communications active even
when the server process location has changed.

Keywords: Virtualization, Process Migration,
Distributed Systems.

Resumen

Las aplicaciones desarrolladas para ejecutar en la
nube suelen estar constituidas por múltiples
componentes (microservicios) que se localizan en
diferentes computadores físicos o virtuales. Para
alcanzar los niveles de rendimiento, disponibilidad,
escalabilidad y robustez, en este tipo de sistemas los
desarrolladores se ven forzados a mantener y
configurar complejos conjuntos de infraestructura,
plataformas y marcos de trabajo que son costosos de
implementar, operar y gestionar. Otra forma de
resolver este problema es haciendo uso de un

Sistema de Virtualización Distribuido (DVS) el que
provee un mecanismo que permite comunicar entre
sí los componentes de la aplicación en forma
transparente a su localización, ocultando los
problemas y complejidades añadidos por su
ejecución distribuida. Este mecanismo de
comunicaciones cuenta con características
específicas para el desarrollo de aplicaciones
distribuidas de clase-comercial tales como el soporte
de Replicación (Activa y Pasiva) y de Migración de
Procesos. En este artículo se describen los
mecanismos que permiten realizar una migración de
procesos servidores entre nodos de un cluster de un
DVS en forma transparente para los procesos
clientes y servidores, y la forma como se resuelve el
problema de mantener activas las comunicaciones
cliente/servidor aun cuando el proceso servidor haya
cambiado de ubicación.

Palabras claves: Virtualización, Migración de
Procesos, Sistemas Distribuidos

1. Introduction

Nowadays, applications developed for the cloud
demand more and more resources, which cannot be
provided by a single computer. To increase their
computing and storage power, as well as to provide
high availability and robustness they run in a
distributed environment. Using a distributed system,
the computing and storage capabilities can be
extended to a cluster of physical machines (nodes).
Although there are several distributed processing
technologies, those that offer simpler ways of
implementation, operation, and maintenance are
highly valued because they reduce costs. Also,
technologies that provide a Single System Image
(SSI) are really useful because they abstract the
users and programmers from issues such as the
location and migration of processes, the use of
internal IP addresses, TCP/UDP ports, etc., and
more importantly, because they hide failures by
using replication mechanisms. A Distributed
Virtualization System (DVS) is a technology that
has all these features [1]. A DVS offers distributed

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 177 -

https://orcid.org/0000-0002-1388-0831

virtual runtime environments in which multiple
isolated applications can be executed. The resources
available to the DVS are scattered in several nodes
of a cluster, but it offers aggregation capabilities
(allows multiple nodes of a cluster to be used by the
same application), and partitioning (allows multiple
components of different applications to be executed
in the same node) simultaneously. Each distributed
application runs within an isolated domain or
execution context called a Distributed Container
(DC). A topological diagram of a DVS cluster is
shown in Fig. 1.

Fig. 1. Example of a DVS topology.

An issue that must be considered when using a
distributed application refers to the location of a
service used by an external or internal client, or by
another component of the application itself. One
way to solve this problem, without using the DVS
Inter-Process Communication (IPC) facilities, would
be to use existing Internet protocols. With the DNS
protocol, the IP address of the server can be located
in the IP network, and with ARP the MAC address
of the server can be located within a LAN. However,
one issue that must be considered when working
with a cluster is that the network and its nodes may
fail, preventing continuity in the delivery of a given
service. A similar problem presents process
migration, which is in general used in those cases in
which a cluster node, where a service is running, is
overloaded or its disconnection has been planned to
maintain the node's hardware. The applications that
use this service must not be disrupted by the
migration to maintain service availability. The
destination node of the migrated service will have
another IP address (and other MAC address), which
forces service clients to know about these new
addresses to continue operating with it.

When virtual machines (VMs) are used on
hypervisors such as VMware ESXi [2] or KVM [3],
the migration at the VM level is solved using virtual
networks where the source VM is connected to a
distributed virtual switch, then migrated to the
destination host keeping its MAC and IP addresses
and connected to the same virtual switch.

The problem of maintaining communications
between a client and a server after server migration

can be faced with such as those used by VM
migration. These solutions rely on network
management and use two different approaches: to
keep an IP address when performing a migration or
changing it. One possible solution is to transform the
problem of migrating VMs between independent
subnets into a problem of migrating VMs in the
same subnet. Tools such as OpenFlow [4] and
VXLAN [5] can be used which are based on
tunneling strategies, modified routing [6], and layer
2 expansion [5, 7].

Another solution is to use a load balancer, which,
in short, operates as a reverse proxy by which clients
connect to servers. At the time of migration, the load
balancer could be in charge of preserving the
information necessary to reestablish the
communication of the clients with the migrated
server transparently. This technology is widely used
in certain scenarios such as web applications, where
end-users send requests from their devices as clients,
and the load balancer is the one that establishes a
session with the corresponding server, thus
distributing and balancing the load between them.
But, in a scenario where both client and server are
part of the same cluster, the use of a load balancer
could be detrimental, since it centralizes
communications among clients and servers,
transforming it into a single point of potential failure
and this could end up reducing service availability.

Using a DVS is a simpler and more transparent
solution that handles the state and configuration of
the cluster in a distributed way. A DVS maintains
the identification of its nodes and the nodes which
compose each DC. A highly valued feature a DVS
has is the mechanisms to maintain communications
between clients and a server process, even when
changes in the location of the latter may occur as a
result of its migration to another node in the cluster.

When a server changes its location from a source
node to a destination node, the processes that
communicate with it must be able to maintain their
communications despite the change and in a
transparent way, to simplify programming,
management, and maintenance.

There are several ways to handle this problem
using a DVS. First, by enabling a distributed service
called RADAR [8], which manages the location of
services that require fault tolerance or, as in this
case, process migration. Second, by using DVS's
specific commands meant to be used to notify the
location of certain processes (generally servers) in
the cluster, and to keep ongoing communications
between the processes alive. Third, by using the
DVS APIs to develop an application that manages
migrations.

One of the main components of a DVS is the
Distributed Virtualization Kernel (DVK), which is
integrated into the Linux kernel as a module. All the
mentioned utilities are available through the DVK
APIs. In the test scenarios presented in this article,

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 178 -

RADAR has not to be used, to focus on the
mechanisms that the DVS can use to support process
migration, but not in replication scenarios.

The process migration support available in a DVS
is fully transparent to the underlying network
because it does not require additional network
configurations to those already established when
configuring the DVS, and therefore, simplifies its
deployment, use, and maintenance.

Another problem that process migration usually
presents is the treatment of PIDs (Process
IDentifier). When a process is migrated, it will have
a PID assigned to it at the source node and another,
generally different PID, will be assigned to it at the
destination node. If the process, once migrated,
makes a getpid() system call, it will obtain a
different value than what it could have obtained in
the source node. For this reason, a virtualization
layer must be implemented, in which the process
PID becomes a global attribute of the process,
associated with a local PID in the node where it is
being executed in a given moment. Several
distributed virtual OSs which keep the process’ PID
unchanged after it has migrated have been
implemented for the DVS.

This article presents how process migration is
done in a DVS without disrupting active
communications, as a proof of concept of one of the
many features a DVS has. The main contribution of
this work relies on explaining the particular
approach used in a DVS with its underlying
migration support which allows providing services
with greater availability.

The rest of the article is organized as follows:
Section 2 refers to related works. Section 3 provides
an overview of background technologies and Section
4 describes how DVS process migration works.
Section 5 presents the scenarios used, and the results
of the evaluation of process migration and finally,
the conclusions and future work are summarized in
Section 6.
2. Related Works

The problem raised is not unknown by the
scientific community, so previous research and
development works have been carried out to solve it.

Process migration is called homogeneous when it
is carried out between machines (virtual and/or
physical) with the same architecture (ISA) and same
OS. Process migration is called heterogeneous when
it is carried out between machines with different
architecture or OS. Within these, process migrations
done at the user-level are differentiated from the
ones done at the kernel-level. The former is
generally easier to implement and maintain but, it
has certain disadvantages, such as the inability to
migrate certain processes, and the need to use
system calls, which are slow and expensive.

To carry out a homogeneous process migration,
five well-known algorithms are mentioned and
briefly explained below [9]:

• Total-copy algorithm: it consists of
suspending the process, then transferring all
its status information, and finally resuming
it on the destination node. It is simple, easy,
and does not have residual dependencies,
but it has a long delay caused by having to
transfer the whole state of the process.

• Pre-copy algorithm: it consists of
transferring the whole state of the process,
then suspending it and transferring the
changes that may have occurred in its state,
and finally resuming it in the destination
node. Despite being a bit more complex
than the Total-copy algorithm, this
algorithm has a lower downtime.

• On-demand pages algorithm: the largest

part of a process state is its virtual address
space so, on this algorithm, the process is
suspended, then transfers its state except for
the virtual address space, which will be
requested, if required in the destination
node. This approach is fast, but it maintains
dependencies with the source node,
meaning that the source node must keep on
the information on the migrated process
until it finishes.

• File server algorithm: it is very similar to

the on-demand pages algorithm, but it
introduces a third node called the file
server, which will precisely be in charge of
storing the virtual address space of the
migrated process, to avoid dependency
between different possible nodes, and
always keep dependencies only with the
file server node.

• Nonfreezing algorithm: this algorithm

proposes two important optimizations
against the previous ones. On the one hand,
about the virtual address space, it looks for
the pages in use at the time of migration.
Only migrates those together with the
process state, the rest are sent later and in
case of page faults, they are handled as in
the on-demand page algorithm. On the
other hand, this algorithm separates the
communications module of a process from
the rest of its state, to first migrate the
process but not its communications,
queuing the messages that arrive during this

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 179 -

time, and then just migrates the
communications module. This achieves to
considerably reduce the communications
freeze time.

Handling communications during a process
migration is something that increases its complexity.
Some techniques used by classic Distributed
Operating Systems (DOS) to perform process
migrations while maintaining their communications
are analyzed below.

2.1. Mosix

Mosix [10, 11] can be used to build a DOS in a
Linux cluster. Mosix is implemented as a kernel-
level loadable module and has a set of tools and
libraries. In Mosix, a process that has been migrated
shares the runtime environment of its Unique Home
Node (UHN), the node on which it was started.

Two algorithms are provided for sharing
resources: load balancing and remote node memory
usage. When a node's memory runs out, the remote
node memory usage algorithm is triggered. A given
process is migrated to a node that has enough free
memory, but it maintains interaction with its original
environment. The context of the process selected for
migration is divided into two parts: deputy and
remote. The attached context remains in UHN and
cannot be migrated. The remote part of a process is a
user context and can be migrated. Therefore, all
processes that have been migrated to other nodes
interact with the user's environment through the
UHN and use the remote node's resources when
possible.

This way of migrating processes represents
leaving a residual dependency on the UHN that
affects the availability of the service provided by the
process, but, on the other hand, the migration has no
consequences on the IP addressing (as an associated
process of the migrated one remains in the kernel on
the UHN) and communications remain
uninterrupted. For this reason, Mosix provides
transparent process migration and automatic load
balancing across the cluster.

2.2. OpenSSI

OpenSSI [11] is a Single System Image DOS. To
manage and balance loads, OpenSSI implements and
uses a process migration mechanism. The migration
scheme used in OpenSSI is derived from the one
used by Mosix, but unlike it, it does not require a
deputy process on the source node. This is achieved
through the use of a virtualization layer implemented
as a Linux kernel extension that manages Vprocs
(virtual processes). For example, the PID of a
process remains even after it has migrated to another

node. This PID is virtual and is associated with the
real PID of the local node (node where the process is
running).

2.3. Kerrighed

Kerrighed [11] is another SSI DOS that
additionally implements Distributed Shared Memory
(DSM). It implements several useful mechanisms
when migrating processes or threads (memory
sharing supports thread migration). It first performs
the checkpoint of a process to obtain relevant
information about its status and then performs the
migration itself through a stream exclusively
dedicated to this, which guarantees a high-efficiency
level. However, a disadvantage of Kerrighed is the
inability to add or remove nodes to a cluster after it
has been started and a failure of one node can cause
the failure of the entire cluster.

2.4. Amoeba

Amoeba is an ancient SSI DOS developed by A.
S. Tanenbaum based on a microkernel [12]. It uses a
high-performance network protocol called FLIP [13]
that supports RPC, group communications (GCS),
support for process migration, and important
security features. Each process is assigned a
Network Service Access Points (NSAPs) that are
independent of their location, so they can be located
at any node in the cluster. This feature facilitates
process migration.

The process migration implementation in
Amoeba is based on three key points. First, separate
the migration mechanism from the policy to be used,
that is, separate how a migration is carried out from
when and where it is carried out. On the other hand,
achieve transparency for the processes, that is, they
should not worry about where they are being
executed, or about possible migrations of both
themselves and other processes with which they are
related. And finally, avoid residual dependencies
preventing a process from continuing to depend on
its original node.

3. Background Technology

This section presents the developments,
products, and tools that have been studied and
analyzed as technological support for the design, and
implementation of process migration in a DVS
prototype.

3.1. M3-IPC

The DVK provides programmers with an
advanced IPC mechanism named M3-IPC [14]

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 180 -

which is available at all nodes of the DVS cluster.
M3-IPC provides APIs to carry out transparent
communications between processes located in the
same (local) or other (remote) node. To send
messages and data between processes of different
nodes, M3-IPC uses Communications Proxies
processes. Those proxies can use different
transport/network protocols which can include
encryption, compression of data, and batching of
messages. It also hides communication disruptions
that involve replicated server processes in case of
server failure or when it migrates to another node of
the DVS cluster. On a process migration,
communications are reestablished after the process
has migrated or returned to its source node (failed
migration).

M3-IPC processes are identified by endpoints
that are not related to the location of each process,
and then it does not change after a process
migration. This feature becomes an important
property that facilitates application programming,
deployment, and operation.

3.2. CRIU

One of the most used sequences of actions when
migrating a process is: 1) carry out a checkpoint,
which consists of stopping the process to capture
and store its status at a given point in time; 2)
transferring the stored state of the process from the
source node to the destination node, and finally 3)
restore the state of the process and execute it from
this checkpoint.

The first implementations were carried out with
the intervention of the kernel, which caused that this
solution was not accepted by the Linux community
[15].

In particular, the CRIU project [16] solves this
problem, since it implements the user-space
checkpoint and restores mechanism, using the
available kernel interfaces through system calls or
pseudo-filesystems such as /proc. One of those most
important interfaces to accomplish this task is the
ptrace system call, which provides a means for one
process to observe and control the execution of
another process and examine and change its memory
and registers.

Finally, in the restore, CRIU allows to re-identify
the process with the PID that it had during the
checkpoint. To achieve this, CRIU writes one
number less than the desired PID to
/proc/sys/kernel/ns_last_pid and then validates that
the newly created process has the correct PID,
otherwise the process restore is aborted.

It was not possible to integrate CRIU to DVS in
these instances due to incompatibilities in the
architectures of both products. The stable versions of
CRIU require 64-bit architectures, but the current

version of the DVS prototype only supports the i386
and i686 architectures, both 32-bit.

3.3. DMTCP

DMTCP [17, 18] is a tool that provides
checkpoint and restore (C/R) mechanisms at the
user-level. Each process to be supervised by
DMTCP must be associated with a coordinator
process (Fig. 2) at the time of its execution. This
allows the coordinator to later capture the status of
these processes on demand. Then, when a process
fails or is terminated for some reason, it can be
resumed from one of the captured states. However,
the resumption of these processes must necessarily
be done using DMTCP.

Fig. 2. DMTCP components (from [18]).

The DMTCP Coordinator communicates with
the processes it controls through a thread called
Coordinator Thread (CT). In this way, when the
Coordinator requests that a process checkpoint be
generated, it sends a command to the CT. Upon
receiving this command, the CT generates a
SIGUSR2 signal so that each thread of the process is
suspended and the image to be stored in a file can be
generated.

DMTCP only captures the state of a process and
then resumes it, possibly on another node. However,
sending the process state between nodes and
handling its communications must be done
separately, using some other tools, because DMTCP
does not provide these features. Once the process
image file has been obtained, it must be transferred
to the destination node. In the latter, the
dmtcp_restart command is executed, and the process
is restarted.

4. Process Migration in a DVS

Process migration is a technique used to
dynamically load balance between the nodes of a
cluster to relieve a node that requires repair. It is also
used to consolidate services in a fewer number of
active nodes during periods of low demand and thus
reduce the energy consumption of the infrastructure.

The DVS supports that a process associated with

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 181 -

an endpoint can be migrated from its source node to
a destination node without having to modify the
applications (neither the migrated process nor the
processes that communicate with it). Its goal is for
the communications to remain active but suspended
while the migration process is being carried out.
Then, once the migration is finished, the
communications are reestablished without changing
the behavior of the involved processes, except for
perceiving an additional delay. This property of the
communication system is known as Migration
Transparency.

To migrate a process in a DVS, the DVK of each
of the involved nodes (source, destination, and
communication counterparts) must be notified that
the process whose endpoint is in an active state will
be migrated. It is assumed that there is a distributed
process management system that runs in each of the
nodes of the DVS cluster, although all this operation
can be done manually or through scripts, as shown
in the tests presented in the next section. Using a
command line or a web application, the migration
manager is instructed that a given process will be
migrated (MIGR_START) which has as parameters
the process to be migrated identified by the {DC,
endpoint} tuple.

This MIGR_START command is broadcasted to
all DVS nodes, and each node will take different
actions depending on the state of the endpoint in that
node. These states can be:

• Active: This means that the process
(PROC_RUNNING) to be migrated is
executing on that node (source), so the
endpoint is active and upon receiving the
migration start command, it will go to the
MIGRATING state until the migration is
finished or aborted. The DVK ensures that
no messages will be received/sent by that
endpoint.

• Backup: This means that the endpoint has
been registered as a backup type process
(MIS_RMTBACKUP) and the process to be
migrated (Primary) is running on another
node (REMOTE). The endpoint will go into
a state waiting for migration (MIGRATING)
and no messages will be received/sent by
that endpoint.

• Remote: This means that the endpoint has
been registered as a remote process and is
running in another node (REMOTE) of the
DVS cluster. The endpoint will go into a
state waiting for migration (MIGRATING)
and no messages will be received/sent by
that endpoint.

• Not registered: This means that there is no
record of the process to be migrated in this
node’s DVK, so there will be no changes.

Once communications with the endpoint to be

migrated have stopped, the process can be migrated
from the source node to the destination node with
any tool designed to do so. DMTCP was the tool
used to test DVS migration scenarios because it fully
runs in user-space avoiding architecture
compatibility issues and facilitating debugging.
Furthermore, it is easy to use and does not require
kernel modifications.

Although a single DMTCP Coordinator can be
used in a DVS, one or multiple Coordinators by each
node can be run (each one using its own TCP port),
avoiding performance bottlenecks and scalability
issues.

Once the migration is finished, a
MIGR_COMMIT command must be executed on all
the DVS nodes, which will execute different actions
depending on the endpoint type on the node:

• Source Node: the endpoint will be

registered as remote (REMOTE), pointing
to the destination node.

• Destination Node: the endpoint will be
registered as active (PROC_RUNNING) in
the local node.

• Nodes with endpoint registered as Remote:

the type of endpoint will be kept as remote,
but the DVK will modify the node ID
where the endpoint is located, from the
source node to the destination node.

• Unregistered: There are no changes on

these nodes.

Once the MIGR_COMMIT is received, the DVK
of each node where the endpoint is bound
reestablishes its communications. If the process
migration fails; a MIGR_ROLLBACK command
must be sent to all the DVS nodes to abort the
migration. Then, the endpoint in each node returns
to its state before starting the migration, and its
communications previously stopped are reactivated.

5. Evaluation

This section describes the test scenarios used to
verify the correct operation of the M3-IPC migration
support in a DVS cluster.

It should be considered that the tests had to be
carried out in a virtualized environment and not a
physical environment as a consequence of the

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 182 -

inability to access university labs during 2020 and
2021 due to the regulations established by the
national government about COVID-19. This does
not imply important consequences for the proof of
concept that is to be demonstrated for the following
reasons:

• Currently, most applications run in

virtualized environments, so in some way,
the test environment would be similar to a
production environment.

• The goal of these tests is to demonstrate the

correct behavior of the communications
migrating the server counterpart. It is not
intended to evaluate the performance of the
migration itself because the major impact
would be the migration tool used (in this
case, DMTCP), the file transfer software
(in this case, rsync), and the testing
infrastructure (node hardware and
networking).

The hardware used to perform the tests was a PC

with an AMD Ryzen 5 5600x with 6 cores (12
threads) CPU, 16 GBytes of RAM, and SATA disks.
The virtualization was carried out using VMware
Workstation version 15.5.0 running on Windows 10
and a cluster of 3 nodes was configured, each node
in a VM: NODE0, NODE1, and NODE2. Each VM
was assigned a vCPU and 1 GB of RAM. The VMs
were clones of each other running Linux kernel
4.9.88 modified with the DVK module. All tests
were run 10 times.

For the test mockup, a specific client and server
were developed in a way to allow recording the
status of each one of them, a fundamental aspect to
detect possible changes in their behavior due to the
migration of the server. At the start, the server
process allocates a specified amount of memory and
fills it with random data. This is done to have
processes with several memory sizes.

The client sends a request message to the server,
transfers a block of random data, and then it waits
for the reply message. These operations were
repeated 100 times for each test. Based on this
interaction between the programs, the test itself
consisted of performing the migration of the server
process while the communications were being
carried out and then verifying that they were
resumed correctly after the server process has
migrated or performed a rollback if it can’t. The
migration scenarios are detailed below.

5.1. Migrating the Server from a Remote
Node to the Client’s Local Node

In this scenario, initially, the client process is
running on NODE1 and the server process is
running on NODE0, both in the DC0 environment.
The DMTCP coordinator also runs on NODE0 but
does not belong to any DC. It is important to
highlight that the process to be migrated must be
executed by a program that reports to the DMTCP
coordinator. The steps to carry out the migration of
the server to NODE1 are the following (Fig. 3):

• The DVK of NODE1 is notified that the

server will initiate a migration
(dvk_migr_start). In this way, the DVK
stops the client's communication with the
server and waits to be notified when the
server is available again, either because it
migrated successfully or because the
migration failed.

• The DVK of NODE0 is notified that the
server process will start a migration
(dvk_migr_start). In this way, the DVS
stops communications to and from the
server.

• Using the dmtcp_command command, a

checkpoint of the server process in NODE0
is carried out, which captures its status in
an image file and then ends it.

• The image file is transferred from NODE0

to NODE1 with a tool such as rsync.

• The server process is resumed from its
image file with DMTCP on NODE1 using
the dmtcp_restart command.

• If the migration was successful, the DVK

of NODE1 is notified so that it resumes the
communications of the migrated process
(dvk_migr_commit), which unlocks both
the client and the server to continue to
exchange messages.

• Otherwise (failed migration), the DVK is

notified to restore the server process on
NODE0 (dvk_migr_rollback) and then the
DVK on NODE1 to unlock the client to
continue to exchange messages.

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 183 -

Fig. 3. Server migration from a remote node to the

Client’s local node.

5.2. Migrating the Server from the
Client’s Local Node to a Remote
Node

In this scenario, initially, both the client process
and the server are running on NODE1, both in the
DC0 environment. The DMTCP coordinator also
runs on NODE1 but does not belong to any DC. The
steps to carry out the migration of the server to
NODE0 are the following (Fig. 4):

• The DVK of NODE1 is notified that the

server will initiate a migration
(dvk_migr_start). In this way, the DVK
stops the client's communication with the
server and waits to be notified when the
server is available again, either because it
migrated successfully or because the
migration failed.

• The DVK of NODE0 is notified that the
client process is located in NODE1. This is
required so that after the server is migrated,
messages are routed correctly to the client.

• Through the dmtcp_command command, a
checkpoint of the server process in NODE1
is carried out, which captures its status in
an image file and then ends it.

• The image file is transferred from NODE1

to NODE0 with a tool such as rsync.

• The server process is resumed from its
image file with DMTCP on NODE0 using
the dmtcp_restart command.

• If the result of the migration was

successful, the DVK of NODE1 is notified
so that it resumes the communications of
the migrated process (dvk_migr_commit),
which unlocks both the client and the server
to continue to exchange messages.

• Otherwise (failed migration), the DVK is

notified to restore the server process on
NODE1 (dvk_migr_rollback) and then
unlock the client to continue to exchange
messages.

Fig. 4. Server migration from the Client’s local node to a

remote node.

5.3. Migrating the Server from a Remote
Node to another Remote Node

In this scenario, initially, the client process is
running on NODE2 and the server process is
running on NODE0, both in the DC0 environment.
The DMTCP coordinator also runs on NODE0 but
does not belong to any DC. The steps to carry out
the migration of the server to NODE1 are the
following (Fig. 5):

• The NODE2 DVK is notified that the

server will initiate a migration
(dvk_migr_start). In this way, the DVK
stops the client's communication with the
server and waits to be notified when the
server is available again, either because it
migrated successfully or because the
migration failed.

• The DVK of NODE1 is notified that the
client process is located in NODE2. This is
required so that after the server is migrated,
messages are routed correctly to the client.

• The DVK of NODE0 is notified that the

server process will start a migration
(dvk_migr_start). In this way, the DVS
stops communications to and from the
client.

• Using the dmtcp_command command, a

checkpoint of the server process in NODE0

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 184 -

is carried out, which captures its status in
an image file and then ends it.

• The image file is transferred from NODE0

to NODE1 with a tool such as rsync.

• The server process is resumed from its
image file with DMTCP on NODE1 using
the dmtcp_restart command.

• If the result of the migration was

successful, the DVK of NODE2 is notified
so that it resumes the communications of
the migrated process (dvk_migr_commit),
which unlocks both the client and the server
to continue to exchange messages.

• Otherwise (failed migration), the DVK is

notified to restore the server process on
NODE1 (dvk_migr_rollback) and then
unlock the client to continue to exchange
messages.

Fig. 5. Server migration from one remote node to another

remote node.

5.4. Performance Results

For each scenario, two sets of tests were done.
The first was to transfer the full process image from
the source node to the destination node using rsync.

The second set of tests was to make a process
checkpoint before its migration then, transfers a full
process image then, starts the migration taking
another checkpoint, comparing both process image
generating a differential image file, transfers this
file, build the migrating image using the pre-
migrating image and the differential image.

The rsync tool was used to transfer process
images with compression enabled.

The migration time is computed since the first
process is suspended (the Client) until it resumes its
execution.

The results of the first set of tests are presented
in Fig. 6.

Fig. 6. Migration and Full Process Image Transfer Time.

The full process image transfer time consumes
about 20%-30% of the total migration time. It should
be considered that all tests were executed using user-
space commands. Therefore, the resulting migration
times include components such as the time to
execute several remote commands via ssh which
involves creating a session, identifying, and
authenticating a user (automated), starting a shell,
executing a shell script, and return the output.

To evaluate the performance of transferring a
pre-migration process image file and then, during
migration, transferring the difference image file, the
bsdiff tool was used. Therefore, in the source node,
the difference image file needs to be created using
the pre-migration process image, and the migration
process image. In the destination node, once the
difference image file is received, the migration
process image must be built using the pre-migration
and difference image files.

It is important to note that the differences
between images are about 4 Kbytes, which was the
block of random data that the Client sends to the
Server’s buffer.

The results of the first set of tests are presented
in Fig. 7.

Although the difference process image transfer
time has a minimal impact in migration time, the
total migration time is about 3 times the migration
time transferring the full process image file. The
marked increase in migration time is due to the
execution of the bsdiff command on the source node
creating the difference image file, and on the target
node building the migrated process image file.
Therefore, it seems that it is not convenient to use
the pre-copy approach, at least with user-space tools.

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 185 -

Fig. 7. Migration and Diff Process Image Transfer Time.

For the rest, both in the migration of the full
process image, as in the pre-copy migration, the
growth of the migration time increases linearly with
respect to the process size.

The test scenarios presented refer to successful
migrations but, in all of them, the same tests were
performed simulating failed migrations. The results
obtained showed a correct behavior in terms of
continuing with the exchange of messages between
the client and the server.

6. Conclusions and Future Works

There are several approaches to face process
migration. Some of them are acceptable in terms of
their scalability and availability, but they lack
simplicity in terms of implementation and
management. It is necessary to deal with multiple
configurations, which are generally managed by
different workgroups (developers, operators, IT
security groups, service providers, etc.) and,
although there are useful tools to deal with them,
they increase even more the complexity related to
manage and operate distributed applications.

A DVS provides scalability, reliability, and
availability features, it is simple to implement,
deploy and configure; and lightweight in terms of
requirements, reducing the related costs.

The main contribution of this work relies on
explaining the particular approach used in a DVS
with its underlying migration support which allows
the development of reliable distributed applications.

Current technologies used to support process
migration are based on LAN and IP protocols,
although they are well-known, they are more
complex, and the applications must be written for
the network (such as using sockets). On the other
hand, a DVS provides APIs to write Client/Server
applications without considering the location of the
processes and another approach was used to support

process migration. To reuse code of network
applications, the DVK kernel module is being
modified (in the scope of an ongoing project), so
that M3-IPC can be used as a new socket domain
(AF_M3IPC).

 Several test scenarios of process migration were
evaluated verifying that communications between
processes keep active after successful migrations of
failed ones. Maintaining communications after
process migration increases the availability and
performance of distributed and Cloud applications.
The correct behavior of the client and the server in
all the tests presented here demonstrates one of the
several features that a DVS has. Process migration is
easy to implement in a DVS, and transparent to the
communicating processes. Client processes can
continue receiving service after a server migration,
even when the migration fails.

As future work, it is proposed to develop a
distributed scheduling system that periodically
evaluates the load on each DVS node and, if
necessary, performs a redistribution of the whole
load using process migration to balance the use of
resources.

Competing interests

The authors have declared that no competing interests
exist.

Authors’ contribution

Pablo Pessolani is the leader of the project exposed here.
He conceived the idea and presented the major
components to the research team, assigned the roles to
each member and supervised them. Luis Santiago Re and
Tomás Andrés Fleitas searched for and tested the best
tools available to carry out the experiments. The whole
team worked on the development of the tests and
interpretation of the results. All authors wrote the draft,
read and approved the final manuscript.

References

[1] P. Pessolani, T. Cortes, F. Tinetti, S. Gonnet: “An
Architecture Model for a Distributed Virtualization
System”; Cloud Computing 2018; The Ninth
International Conference on Cloud Computing,
GRIDs, and Virtualization; Barcelona, España.2018.

[2] “VMware Infrastructure Architecture Overview”.
White paper. Available at:
https://www.vmware.com/pdf/vi_architecture_wp.pdf
.Accessed on 2021-04-01.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori:
“KVM: the Linux Virtual Machine Monitor”, In
Proceedings of the 2007 Ottawa Linux Symposium
(OLS’-07), 2007.

[4] R. Bradford, E. Kotsovinos, A. Feldmann, and H.
Schioberg: “Live ¨ Wide-Area Migration of Virtual

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 186 -

Machines Including Local Persistent State,” in
SIGPLAN VEE. ACM, 2007.

[5] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal et al:,
“VXLAN: A Framework for Over-laying Virtualized
Layer 2 Networks over Layer 3 Networks,” Internet
Draft (Work in Progress), 2013.

[6] D. Erickson, G. Gibb, B. Heller, D. Underhill et al.:
“A Demonstration of Virtual Machine Mobility in an
OpenFlow Network,” in SIGCOMM (Demo). ACM,
2008.

[7] K. Kompella and Y. Rekhter, “Virtual Private LAN
Service (VPLS) Using BGP for Auto-Discovery and
Signaling,” RFC 4761 (Proposed Standard), 2007.

[8] Pablo Pessolani; David Gabriel Harispe; Octavio
Garcia Aguirre: “Localizacion y Seguimiento de
Servicios Replicados en un Sistema de Virtualizacion
Distribuido”, Revista Digital del Departamento de
Ingenieria e Investigaciones Tecnologicas; vol.: 5 -
nro. 1 (agosto-2020) ISSN: 2525-1333.

[9] R. Lawrence; “Introduction A Survey of Process
Migration Mechanisms”. Department of Computer
Science University of Manitoba, 1998

[10] A. Barak and A. Shiloh. The MOSIX Cluster
Management System for Distributed Computing on
Linux Clusters and Multi-Cluster private Clouds
white paper, 2016.

[11] P. OsiĔski, E. Niewiadomska-Szynkiewicz:
“Comparative Study of Single System Image
Clusters”, Evolutionary Computation and Global
Optimization 2009 / National Conference 2009 ;
Zawoja, Poland.

[12] S. J. Mullender, G. van Rossum, A. S. Tananbaum,
R. van Renesse, H. van Staveren: "Amoeba: a
distributed operating system for the 1990s", in
Computer, vol. 23, no. 5, pp. 44-53, May 1990

[13] M.F. Kaashoek, R. Renesse, H. van Staveren, and
A.S. Tanenbaum: “FLIP: An Internet-work Protocol

for Supporting Distributed Systems”. ACM
Transactions on Computer Systems, 11(2):73-106,
1993.

[14] P. Pessolani, T. Cortes, F. G. Tinetti, and S. Gonnet:
“An IPC Software Layer for Building a Distributed
Virtualization System”, Congreso Argentino de
Ciencias de la Computación (CACIC 2017) La Plata,
Argentina, October 9-13, 2017

[15] “Criu - checkpoint/restore in user space”. Available
at: https://access.redhat.com/articles/2455211.
Accessed on 2021-04-01.

[16] “CRIU” Available at: https://criu.org/Main_Page,
Accessed on 2021-04-01.

[17] “DMTCP” Available at:
http://dmtcp.sourceforge.net/index.html .Accessed on
2021-04-01.

[18] “DMTCP_Distributed_MultiThreaded_CheckPointin
g_Works“ Available at:
https://es2.slideshare.net/jserv/implement-
checkpointing-for-android/13-. Accessed on 2021-04-
01.

Citation: P. Pessolani, L.S. Re and T.A.
Fleitas. Service Migration in a Distributed
Virtualization System. Journal of Computer
Science & Technology, vol. 21, no. 2, pp.
177-187, 2021.
DOI: 10.24215/16666038.21.e16
Received: April 9, 2021 Accepted: October
6, 2021.
Copyright: This article is distributed under
the terms of the Creative Commons License
CC-BY-NC.

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- 187 -

