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To comprehend the recent Brookhaven National Laboratory experiment E788 on 4
ΛHe, we have outlined

a simple theoretical framework, based on the independent-particle shell model, for the one-nucleon-
induced nonmesonic weak decay spectra. Basically, the shapes of all the spectra are tailored by the
kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged
here by the one-meson-exchange potential. In spite of the straightforwardness of the approach a good
agreement with data is achieved. This might be an indication that the final-state-interactions and the
two-nucleon induced processes are not very important in the decay of this hypernucleus. We have
also found that the π + K exchange potential with soft vertex-form-factor cutoffs (Λπ ≈ 0.7 GeV,
ΛK ≈ 0.9 GeV), is able to account simultaneously for the available experimental data related to Γp and
Γn for 4

ΛH, 4
ΛHe, and 5

ΛHe.
© 2009 Elsevier B.V. Open access under CC BY license.
The nonmesonic weak decay (NMWD) of Λ hypernuclei, ΛN →
nN (N = p,n), is very interesting in several aspects. First, it im-
plies the most radical mutation of an elementary particle when
embedded in a nuclear environment: without producing any addi-
tional on-shell particle, as does the mesonic weak decay Λ → π N ,
the mass is changed by 176 MeV, and the strangeness by 1S = 1.
Second, it is the main decay channel for medium and heavy hy-
pernuclei. Third, as such it offers the best opportunity to examine
the strangeness-changing nonleptonic weak interaction between
hadrons. Fourth, it plays a dominant role in the stability of rotat-
ing neutron stars with respect to gravitational wave emission [1,2].
Finally, with the incorporation of strangeness, the (N, Z) radioac-
tivity domain is extended to three dimensions (N, Z , S). Therefore,
the understanding of the NMWD cannot but help to advance our
knowledge of physics.
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Several important experimental advances in NMWD have been
made in recent years, which have allowed to establish more pre-
cise values of the neutron- and proton-induced transition rates
Γn ≡ Γ (Λn → nn) and Γp ≡ Γ (Λp → np), solving in this way the
long-standing puzzle of the branching ratio Γn/p ≡ Γn/Γp . They
are: (1) the new high quality measurements of single-nucleon
spectra SN (E), as a function of one-nucleon energy EN ≡ E done
in Refs. [3–6], and (2) the first measurements of the two-particle-
coincidence spectra as a function of the sum of kinetic energies
En + EN ≡ E , SnN (E), and of the opening angle θnN ≡ θ , SnN (cos θ),
done in Refs. [6–11].

Particularly interesting is the Brookhaven National Laboratory
experiment E788 on 4

ΛHe, performed by Parker et al. [6], which
highlighted that the effects of the Final State Interactions (FSI) on
the one-nucleon induced decay, as well as the contributions of the
two-nucleon induced decays, ΛN N → nN N , could be very small in
this case, if any. Therefore one might hope that the Independent
Particle Shell Model (IPSM) [12–17] could be an adequate frame-
work to account for the NMWD spectra of this hypernucleus. The
aim of the present work is to verify this expectation.
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To derive the expressions for the NMWD rates we start from
the Fermi Golden Rule. For a hypernucleus with spin J I decaying
to residual nuclei with spins J F , and two free nucleons nN (with
total spin S and total kinetic energy EnN = En + EN ), the transition
rate reads [15]

ΓN = 2π
X

S MS J F M F

Z ¯̄hpnpN SM S J F M F |V | J I MI i
¯̄2

× δ(EnN + E R − ΔN )
dpn

(2π)3

dpN

(2π)3
. (1)

The NMWD dynamics, contained within the weak hypernuclear
transition potential V , will be described by the one-meson ex-
change (OME) model, whose most commonly used version in-
cludes the exchange of the full pseudoscalar (π, K , η) and vector
(ρ,ω, K ∗) meson octets (PSVE), with the weak coupling constants
obtained from soft meson theorems and SU(6)W [12,18]. The wave
functions for the kets |pnpN SM S J F M F i and | J I MI i are assumed to
be antisymmetrized and normalized, and the two emitted nucleons
n and N are described by plane waves. Initial and final short range
correlations are included phenomenologically at a simple Jastrow-
like level, while the finite nucleon size effects at the interaction
vertices are gauged by monopole form factors [12,15]. Moreover,

E R = |pn + pN |2
2M(A − 2)

= EnN + 2 cos θnN
√

En EN

A − 2
, (2)

is the recoil energy of the residual nucleus, and ΔN ≡ Δ+ eN + eΛ

is the liberated energy, with Δ = M − MΛ = 176 MeV, and eN and
eΛ being the nucleon and hyperon separation energies, which were
taken from Refs. [19] and [20] respectively.

Following step by step the developments done in Refs. [21–23],
in connection with the asymmetry parameter, Eq. (1) can be cast
in the form

ΓN = 4

π

Z
d cos θ

Z
p2

N dpN

Z
p2

n dpn

× δ(EnN + E R − ΔN )IN (p, P ), (3)

where the quantity [15,16,22,23]

IN (p, P ) =
J=1X
J=0

F J (N)
X
SlT

M2(p P , lS J T ; N), (4)

depends on the spectroscopic factors F J (N), and on the transition
matrix elements M(p P , lS J T ; N). Those, in turn, depend on the
c.m. and relative momenta, which are given in terms of the inte-
gration variables in (3) by

P =
q

(A − 2)
¡
2MΔN − p2

n − p2
N

¢
, (5)

and

p =
s

MΔN − A

4(A − 2)
P 2, (6)

where the energy conservation condition has been used. The cor-
rectness of Eq. (3) for N = p can be easily verified by confronting
it with the expression [22, Eq. (3.1)] for ω0 ≡ Γp , and noticing that
the quantity

P
lL O(P ;L)I0(p; jp, l) in that reference is equal to

I p(p, P ) here. The relative-space part of the two-body nuclear ma-
trix elements (NME), that govern the NMWD dynamics proper, are
contained within the M’s and depend on the momenta only via
p (see [22, Eq. (B1)]). Moreover, this p-dependence is very weak
in the region of interest and allows to compute the NMEs at the
fixed value of p = √

MΔN [22,23]. As a consequence this part can
be factored out of the integrals in Eq. (3), which explains why only
the transition rates, but not the normalized spectra, significantly
depend on the intrinsic NMWD dynamics [24]. Notice, however,
that the M’s as a whole do strongly depend on P through the
center-of-mass overlaps of the two-body wave functions.

Next, the δ-function in (3) can be put in the form

A − 2

A − 1

2M

|p+
n − p−

n |
£
δ
¡

pn − p+
n

¢ + δ
¡

pn − p−
n

¢¤
, (7)

where

p±
n = (A − 1)−1

h
−pN cos θnN

±
q

2M(A − 2)(A − 1)ΔN − p2
N

£
(A − 1)2 − cos2 θnN

¤ i
. (8)

Doing this, Eq. (3) becomes

ΓN = 8M

π

A − 2

A − 1

+1Z
−1

d cos θnN

Z
p2

N dpN
(p+

n )2

|p+
n − p−

n |
£

IN (p, P )
¤

pn→p+
n

+ ¡
p+

n ↔ p−
n

¢
, (9)

where the notation [IN (p, P )]pn→p+
n

indicates that IN (p, P ) is to
be computed with P and p given by Eqs. (5) and (6) with pn re-
placed by p+

n . We have shown numerically that the last term in
(9) is negligibly small in comparison with the first one and there-
fore it will be omitted from now on. With the simple change of
variable p → √

2M E one finally gets

ΓN = (A − 2)
8M3

π

+1Z
−1

d cos θnN

Emax
NZ

0

dEN

s
EN

E 0
N

E+
n IN (p+, P+), (10)

where

E 0
N = (A − 2)(A − 1)ΔN − EN

£
(A − 1)2 − cos2 θnN

¤
, (11)

E+
n =

hq
E 0

N − p
EN cos θnN

i2
(A − 1)−2, (12)

and P+ and p+ are to be computed from Eqs. (5) and (6) with pn

replaced by p+
n . It might be worth noticing that, while E 0

N does not
have a direct physical meaning, E+

n is the energy of the neutron
that is the decay partner of the nucleon N with energy EN . The
maximum energy of integration in (10) is

Emax
N = A − 1

A
ΔN . (13)

This ensures that p+
n , given by Eq. (8), is real. In order to ensure

that it also be positive, as it must, one has to enforce the conditionq
E 0

N >
p

EN cos θnN (14)

throughout the integration.
The decay rate in Eq. (3) can be rewritten in terms of energy

variables as

ΓN = 8M3

π

Z
d cos θnN

Z
dEN

Z
dEn

p
EN En

× δ(EnN + E R − ΔN )IN (p, P ), (15)

and the energy-conserving δ-function as

A − 2

2
√

En EN
δ
£

cos θnN − CnN (En, EN )
¤
, (16)

where

CnN (En, EN ) = (A − 2)ΔN − (A − 1)(En + EN )

2
√

En EN
. (17)

Thus, upon eliminating the delta, one gets

ΓN = 4M3(A − 2)

π

Emax
NZ

dEN

Emax
NZ

dEn IN (p, P ), (18)
0 0
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with the constraint

−1 < CnN (En, EN ) < +1 (19)

to be imposed throughout the integration. Here, the variables P
and p in IN (p, P ) can be computed from

P = p
2M(A − 2)(ΔN − En − EN ) (20)

and Eq. (6).
We note that in Ref. [24] the kinetic energy sum spectra have

been evaluated from

ΓN = 4M3

π

p
A(A − 2)3

×
ΔNZ

Emin
nN

dEnN

q
(ΔN − EnN )

¡
EnN − Emin

nN

¢
IN (p, P ), (21)

with

Emin
nN = ΔN

A − 2

A
, (22)

and p and P given by Eq. (6) and

P = p
2M(A − 2)(ΔN − EnN ). (23)

Here, however, in order to be able to take one-nucleon detection
energy thresholds into account, it is more convenient to start from
Eq. (18) rewritten in the form

ΓN = 4M3(A − 2)

π

ΔNZ
Emin

nN

dEnN

Emax
NZ

0

dEN

×
Emax

NZ
0

dEn IN (p, P )δ(EN + En − EnN ). (24)

To implement angular cuts, one has simply to alter the lower
and/or upper limits in inequality (19).

The needed transition probability densities SN (EN ),
SnN (cos θnN ), and SnN (EnN ) can now be obtained by performing
derivatives on EN , cos θnN , and EnN in the appropriate equation
for ΓN , namely, Eq. (10) or Eq. (18) for the first, Eq. (10) for the
second, and Eq. (21) or Eq. (24) for the third one.

The experimental data on NMWD rates in the s-shell are com-
pared in Table 1 with the most recent theoretical results. As can
be seen, no calculation, in which the same model and the same
parametrization have been employed for all three nuclei, is capa-
ble of reproducing all the data, which might imply that no one
of them describes the full dynamics of these processes. In partic-
ular, using the PSVE model [16] it was not possible to account,
either for the 4

ΛHe, or for the 5
ΛHe data, while the potentials

constructed by Itonaga et al. [14], from the correlated 2π cou-
pled to ρ and/or σ mesons, are conflicting with the recent 4

ΛHe
data for Γnm and Γn/p [6]. The only calculation done with the
PSVE model that reproduces the 5

ΛHe data is the one by Chu-
millas et al. [31], but, unfortunately, the results for the remain-
ing two s-shell hypernuclei are not given. We have repeated now
the calculation done previously in Ref. [16] for the PSVE and the
one-(π + K ) exchange (PKE) models, but with values of the size
parameter, b, taken from Ref. [14]: b(4

ΛH) = b(4
ΛHe) = 1.65 fm, and

b(5
ΛHe) = 1.358 fm. In Table 1, they are labelled, respectively, as
P1 and P2, and both are very far from data.1 We do not know
how these b-values have been adjusted, but they seem to be more
realistic than those used in Ref. [16]. In fact, they are consistent

with the estimate b = 1
2

q
2
3 (RN + RΛ), where RN and RΛ are,

respectively, the root-mean-square distances of the nucleons and
the Λ from the center of mass of the hypernucleus. This yields
b(4

ΛH) = b(4
ΛHe) = 1.53 fm, and b(5

ΛHe) = 1.33 fm [20]. The rel-
ative and the c.m. oscillator parameters are simply evaluated as
br = b

√
2 and bR = b/

√
2. We have also tried [26, Eqs. (36) and

(37)], used by Inoue et al., but this has little influence on our re-
sults.

To improve the agreement we could either: (1) add more
mesons, (2) modify the model parameters, or (3) incorporate ad-
ditional degrees of freedom. We have chosen the second option,
trying to use the smallest number of mesons. The simplest possi-
bility is, of course, the one-pion exchange potential. We have found
that for the monopole vertex-form-factor cutoff parameter of the
pion, Λπ . 0.7 GeV, and the size parameter b & 1.6 fm it is pos-
sible to account for the 4

ΛHe data but not for that of 5
ΛHe. Next,

we have examined the PKE model, for fixed values of the size pa-
rameters b mentioned above. In Fig. 1 is shown the dependence of
ΓN on the π and K cutoff parameters Λπ and ΛK . Roughly speak-
ing, Γp(4

ΛHe) and Γp(5
ΛHe) depend mainly on Λπ , while Γp(4

ΛH)

and Γn(4
ΛHe) depend mainly on ΛK and the other two rates de-

pend with about equal weight on both. The similarities and the
differences in the behaviors of Γp and Γn for the three hypernu-
clei are mainly due to the spectroscopic factors, exhibited in [16,
Table 1]. The b-values also play a significant role. The most rele-
vant issue here is, however, that there is a region of rather soft
Λπ and ΛK where all the ΓN are reproduced fairly well.2 In Ta-
ble 1 are shown the results for Λπ = 0.7 GeV and ΛK = 0.9 GeV,
labelled as P3, which we call the soft π + K exchange (SPKE) po-
tential, and which will be used in the evaluation of the NMWD
spectra of 4

ΛHe in what follows. We note that they are similar to
the results T3, obtained by Sasaki et al. [28] within the PKE model
with Λπ = 0.8 GeV and ΛK = 1.2 GeV. It is interesting to remark

that the 1T = 1
2 prediction

Γn(4
ΛHe)

Γp(4
ΛH)

= 2 is quite well fulfilled for

the SPKE model. Yet, the relationship
Γn(4

ΛH)

Γp(4
ΛHe)

= Γn
Γp

(5
ΛHe) is satis-

fied only approximately. The reason for that are the differences in
the binding energies and the values of the b parameter.

We are aware that the OME models predict a too large and
negative asymmetry parameter aΛ in 5

ΛHe [13,21–23,28,30], and
also that there are two recent proposals to bring this value into
agreement with experiments by going beyond the OME model
and incorporating new scalar–isoscalar terms. Namely, Chumillas
et al. [31] have pointed out that these new terms come from the
exchange of correlated 2π coupled to σ , plus uncorrelated 2π ex-
changes, while Itonaga et al. [32] had to invoke the axial-vector
a1 meson to reproduce the data for aΛ in 5

ΛHe. The 2π -exchange
potentials are rather cumbersome, and it is somewhat controver-
sial to which extent these new mechanisms alter the transition
rates. The first group [31] affirms that the 2π exchanges leave
them basically unaltered, as seen from the results T7 and T70 in
Table 1. Yet, the second group [32] asserts that the axial-vector

1 It is more than evident that the value of b is important in scaling the magni-
tudes of the ΓN . The differences between the PSVE results shown here and those
reported in Ref. [16] arise from the values of b used. In the latter case that value

was taken to be b =
q

h̄
Mω , with h̄ω = 45A−1/3 − 25A−2/3 MeV. We do not know

the origin of the discrepancy with Chumillas et al. [31].
2 To reproduce the combined effect of short-range correlation and form factor

reductions Bennhold and Ramos [33] have used a monopole form factor with a very
soft cutoff of Λπ ≈ 0.6 GeV.
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Table 1
The NMWD rates in the s-shell. (A) Experimental: E1 [25]: E2 [6]; E3 [8]; E4 [9], (B) Theoretical: T1 – (π +DQ) [26]; T2 – (π +4BPI) [27]; T3 – (PKE) [28]; T30 – (π + K +DQ)
[28]; T4 – (π + 2π/σ + 2π/ρ + ω) [14]; T5 – (PSVE) [16]; T6 – (π + K + σ + DQ) [29], T7 – (PSVE) [31]; T70 – (PSVE + 2π + 2π/σ ) [31]. (C) Present results: P1 – (PSVE);
P2 – (PKE); P3 – (SPKE).

4
ΛH 4

ΛHe 5
ΛHe

Γp Γn Γnm Γn/p Γp Γn Γnm Γn/p Γp Γn Γnm Γn/p

(A)
E1 0.17+0.11

−0.11 0.16+0.02
−0.02 0.01+0.04

−0.01 0.17+0.05
−0.05 0.06+0.25

−0.06

E2 0.180+0.028
−0.028 6 0.035 0.177+0.029

−0.029 6 0.19
E3 0.424+0.024

−0.024
E4 0.45+0.14

−0.14

(B)
T1 0.047 0.126 0.174 2.66 0.214 0.038 0.253 0.178 0.421 0.206 0.627 0.489
T2 0.034 0.002 0.036 18.2 0.030 0.170 0.200 0.17 0.192 0.174 0.366 1.10
T3 0.005 0.067 0.071 14.2 0.145 0.009 0.155 0.064 0.207 0.097 0.304 0.466
T30 0.030 0.157 0.187 5.32 0.214 0.004 0.218 0.019 0.304 0.219 0.523 0.720
T4 0.040 0.088 0.128 2.17 0.223 0.081 0.303 0.363 0.305 0.118 0.422 0.386
T5 0.014 0.154 0.168 10.4 0.477 0.030 0.507 0.061 0.461 0.148 0.609 0.320
T6 0.035 0.093 0.128 2.70 0.165 0.069 0.235 0.417 0.253 0.392 0.392 0.548
T7 0.257 0.122 0.474 0.379
T70 0.275 0.114 0.415 0.388

(C)
P1 0.014 0.144 0.159 9.98 0.463 0.029 0.492 0.062 0.701 0.229 0.930 0.327
P2 0.005 0.143 0.149 27.9 0.357 0.011 0.368 0.031 0.534 0.231 0.766 0.433
P3 0.005 0.071 0.076 2.70 0.179 0.012 0.191 0.068 0.281 0.121 0.402 0.431
meson contributions, not only bring the asymmetry parameter aΛ

into agreement with recent measurement, but improve also the
Γn/Γp ratio such as to become well comparable to the experi-
mental data. Anyhow, in no one of these works are discussed the
transition rates in 4

ΛHe and 4
ΛH.

The transition probability densities SN (E), SnN (E), and
SnN (cos θ) contain the same dynamics, i.e., the same NMEs, but in-
volve different phase-space kinematics for each case. In particular,
the proton spectrum S p(E) is related with the expected number
of protons dNp(E) detected within the energy interval dE through
the relation

dNp(E)

dE
= C p(E)S p(E), (25)

where C p(E) depends on the proton experimental environment
and includes all quantities and effects not considered in S p(E),
such as the number of produced hypernuclei, the detection effi-
ciency and acceptance, etc. In experiment E788, after correction for
acceptance, the remaining C p(E) factor is approximately energy-
independent in the region beyond the detection threshold, E0

p [34].
In what follows, we will always compare our predictions with the
experimental spectra that have been corrected for acceptance and
take into account the detection threshold. Thus we can write, for
the expected number of detected protons above this threshold,

N̄p =
Emax

pZ
E0

p

dNp(E)

dE
dE = C̄ p

Emax
pZ

E0
p

S p(E)dE = C̄ pΓ̄p . (26)

This allows us to rewrite (25) in the form3

dNp(E)

dE
= N̄p

S p(E)

Γ̄p

¡
E > E0

p

¢
. (27)

3 A similar expression is valid for the β-decay strength function (see, for instance,
[35, Eq. (5)]).
The spectrum S p(E) is normalized to the experimental one by
replacing N̄p in (27) with the acceptance-corrected number of ac-
tually observed protons,

N̄exp
p =

mX
i=1

1Nexp
p (Ei), (28)

where 1Nexp
p (Ei) is the acceptance-corrected number of protons

measured at energy Ei within a fixed energy bin 1E p , and m is the
number of bins beyond the detection threshold. Thus, the quantity
that we have to confront with data is

1Np(E) = N̄exp
p 1E p

S p(E)

Γ̄p
, (29)

where the barred symbols (N̄exp
p = 4546, and Γ̄p = 0.168) indicate

that the proton threshold E0
p = 40 MeV [34] has been considered

in the numerical evaluation of the corresponding quantities. In
contrast to 1Nexp

p (Ei), 1Np(E) is a continuous function of E .
As the one-proton (one-neutron) induced decay prompts the

emission of an np (nn) pair, one has in the same way for the one-
neutron spectrum

1Nn(E) = N̄exp
n 1En

S p(E) + 2Sn(E)

Γ̄p + 2Γ̄n
. (30)

Here, N̄exp
n = 3565, and Γ̄p +2Γ̄n = 0.198 have been evaluated with

a neutron threshold of 30 MeV [34]. In Fig. 2, our results are com-
pared with the measurements of Parker et al. [6].

A similar, but somewhat different, procedure is followed for
the coincidence spectra. The main difference arises from the fact
that the angular-correlation spectra, 1Nexp

nN (cos θi), as well as the
kinetic energy sum data, 1Nexp

nN (Ei), besides being acceptance-
corrected, were measured with detection thresholds of 30 MeV for
both neutrons and protons. More, in the selection of the kinetic en-
ergy sum data it was also applied an angular cut of cos θnN < −0.5.
In order to make the presentation simple, the observables that
comprise only the energy cuts, and those that include both the
energy and the angular cuts, will be indicated by putting, respec-
tively, a tilde and a hat over the corresponding symbols.
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Fig. 1. Decay rates Γp and Γn of 4
ΛH, 4

ΛHe and 5
ΛHe, for fixed values of the size parameters, b(4

ΛH) = b(4
ΛHe) = 1.65 fm and b(5

ΛHe) = 1.358 fm [14], as a function of pion
and kaon cutoff parameters Λπ and ΛK .
Thus, the number of nN pairs measured in coincidence can be
expressed as

N̂exp
nN =

kX
i=1

g1N
exp
nN (cos θi) =

lX
i=1

d1N
exp
nN (Ei), (31)

where the angular bins with cos θi > −0.5 are excluded from the
first summation. The g1N

exp
nN (cos θi) and d1N

exp
nN (Ei) data should be

compared, respectively, with

g1NnN (cos θ) = N̂exp
nN 1 cos θnN

S̃nN (cos θ)

Γ̂N
, (32)

and

d1NnN (E) = N̂exp
nN 1EnN

ŜnN (E)

Γ̂N
. (33)

Here, from Ref. [34] N̂exp
np = 4821, N̂exp

nn = 2075, 1 cos θnN = 0.04

and 1EnN = 10 MeV, while Γ̂p = 0.1709 and Γ̂n = 0.0113. These re-
sults (Theory A) are compared with the E788 data in Figs. 3 and 4.
For completeness, in the same figures are also shown the results
for S̃nN (cos θ) → SnN (cos θ), ŜnN (E) → SnN (E) and Γ̂N → ΓN , i.e.,
when no energy and angular cuts are considered in the theoretical
evaluation, and Γp = 0.1793 and Γn = 0.0122 (Theory B).

We conclude that the overall agreement between the measure-
ments of Parker et al. [6] and the present calculations is quite
satisfactory, although we are not considering contributions com-
ing from the two-body induced decay, ΛN N → nN N , nor from the
rescattering of the nucleons produced in the one-body induced de-
cay, ΛN → nN . However, before ending the discussion we would
like to point out that:

1. As expected, the theoretical spectrum 1Np(E), shown in the
upper panel of Fig. 2, is peaked around 85 MeV, corresponding
to the half of the Q -value Δp = 170 MeV. Yet, as the sin-
gle kinetic energy reaches rather abruptly its maximum value
Emax

p = 127 MeV (see Eq. (13)), the proton spectrum shape is
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Fig. 2. Comparison between the experimental and theoretical kinetic energy spectra for protons (upper panel) and neutrons (lower panel). The data are acceptance corrected
[34], and the calculated results are obtained from Eqs. (29) and (30).

Fig. 3. Comparison between experimental opening angle correlations for proton–neutron (upper panel) and neutron–neutron (lower panel) pairs. The data g1N
exp
nN (cos θi)

are acceptance corrected and do not contain events with EN < 30 MeV [34]. The theoretical results are obtained from Eq. (32), with N̂exp
nN only containing events with

cos θnN < −0.5. Two cases are presented: (1) Theory A, where both the angular and the single kinetic energy cuts are taken into account, and (2) Theory B, where the cuts
are not considered in the calculations.
not exactly that of a symmetric bell. Something quite analo-
gous happens in the case of neutrons, as can be seen in the
lower panel of Fig. 2. The experimental data seem to behave
in the same way. To some extent, this behavior of 1Np(E) and
1Nn(E) is akin to the behavior of the 1NnN (E), which sud-
denly collapse at the Q -values.

2. There are no data at really low energies for the proton case
which would allow to exclude the FSI effects for sure, and the
neutron data for low energies are afflicted by large error bars.
However, there is no need to invoke these effects, nor those
of two-nucleon induced NMWD, to explain the data, as occurs
in the proton spectrum of 5

ΛHe [5]. This hints at a new puzzle
in the NMWD, but it is difficult to discern whether it is of
experimental or theoretical nature.

3. The calculated spectra g1Nnp(cos θ) shown in the upper panel
of Fig. 3, are strongly peaked near θ = 180◦ , which agrees with
data fairly well. However, while it is found experimentally that
28% of events occur at opening angles less than 120◦ , theoret-
ically we get that only . 2% of events appear in this angular
region. We find no explanation for this discrepancy. Neverthe-
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Fig. 4. Comparison between experimental kinetic energy sum spectra for proton–neutron (upper panel) and neutron–neutron (lower panel) pairs. The data d1N
exp
nN (Ei) are

acceptance corrected and only contain events with EN > 30 MeV and cos θnN < −0.5 [34]. The theoretical results are obtained from Eq. (33), and two cases are shown:
(1) Theory A, where both cuts are taken into account, and (2) Theory B, where the cuts are not considered in the calculations.
less, the fact that not all events are concentrated at θ = 180◦ ,
is not necessarily indicative of the contributions coming from
the FSI or the ΛN N → nN N decay, as suggested in Ref. [6].

4. The calculated angular correlation g1Nnn(cos θ), shown in the
lower panel of Fig. 3, is quite similar to that of the pn pair;
that is, its back-to-back peak is very pronounced. This behavior
is not exhibited by the experimental distribution. In addition,
while 11% of events are found experimentally for cos θ > −0.5,
in the calculation only . 3% of them appear at these angles.
We feel however that, because of the poor statistics and large
experimental errors, one should not attribute major impor-
tance to such disagreements.

5. Both calculated kinetic energy sum distributions d1NnN (E),
shown in Fig. 4, present a bump at ≈ 160 MeV, with a width of
≈ 30 MeV, which for protons agrees fairly well with the exper-
iment. We would like to stress once more that the spreading in
strength here is totally normal even for a purely one-nucleon
induced decay. The kink at ≈ 130 MeV within the Theory A
comes from the angular cut, and from this one can realize
that the nN kinetic energy sum spectra below this energy are
correlated with the angular coincidence spectra g1NnN (cos θ <

−0.5). The bump observed in the experimental d1Nnn(E) spec-
trum at ≈ 90 MeV is not reproduced by the theory, which
may be indicative of nn coincidences originated from sources
other than Λn decays, as already suggested in Ref. [6]. An-
other source for the difference between our model calculation
and the data may be traced to np and nn final state interac-
tions. Whereas in the former the intensity of this interaction
is reduced owing to the Coulomb repulsion felt by the proton,
in the latter the two neutrons may interact strongly and thus
shift the peak to lower kinetic energy sum.

In summary, to comprehend the recent measurements in 4
ΛHe,

we have outlined for the one-nucleon induced NMWD spectra a
simple theoretical framework based on the IPSM. Once normal-
ized to the transition rate, all the spectra are tailored basically
by the kinematics of the corresponding phase space, depending
very weakly on the dynamics governing the ΛN → nN transition
proper. As a matter of fact, although not shown here, the nor-
malized spectra calculated with PSVE model are, for all practical
purposes, identical to those using the SPKE model, which we have
amply discussed. In spite of the simplicity of the approach, a good
agreement with data is obtained. This might indicate that, neither
the FSI, nor the two-nucleon induced decay processes play a sig-
nificant role in the s-shell, at least not for 4

ΛHe. As a byproduct
we have found that the π + K exchange potential with soft cutoffs
(SPKE) is capable of accounting for the experimental values related
to Γp and Γn in all three 4

ΛH, 4
ΛHe, and 5

ΛHe hypernuclei. This po-
tential is not very different from the PKE model used by Sasaki et
al. [28].

Acknowledgements

This work was partly supported by the Brazilian agencies
FAPESP and CNPq, and by the Argentinian agency CONICET un-
der contract PIP 6159. M.S.H. is the 2007/2008 Martin Gutzwiller
Fellow at the Max-Planck-Institute for the Physics of Complex
Systems-Dresden. We would like to thank G. Garbarino for very
helpful discussions.

References

[1] P.B. Jones, Phys. Rev. Lett. 86 (2001) 1384;
P.B. Jones, Phys. Rev. D 64 (2001) 084003.

[2] J. Schaffner-Bielich, Nucl. Phys. A 804 (2008) 309.
[3] J.H. Kim, et al., Phys. Rev. C 68 (2003) 065201.
[4] S. Okada, et al., Phys. Lett. B 597 (2004) 249.
[5] M. Agnello, et al., Nucl. Phys. A 804 (2008) 151.
[6] J.D. Parker, et al., Phys. Rev. C 76 (2007) 035501.
[7] S. Okada, et al., Nucl. Phys. A 752 (2005) 169c.
[8] H. Outa, et al., Nucl. Phys. A 754 (2005) 157c.
[9] B.H. Kang, et al., Phys. Rev. Lett. 96 (2006) 062301.

[10] M.J. Kim, et al., Phys. Lett. B 641 (2006) 28.
[11] H. Bhang, et al., Eur. Phys. J. A 33 (2007) 259.
[12] A. Parreño, A. Ramos, C. Bennhold, Phys. Rev. C 56 (1997) 339.
[13] A. Parreño, A. Ramos, Phys. Rev. C 65 (2002) 015204.
[14] K. Itonaga, T. Ueda, T. Motoba, Phys. Rev. C 65 (2002) 034617.



110 E. Bauer et al. / Physics Letters B 674 (2009) 103–110
[15] C. Barbero, D. Horvat, F. Krmpotić, T.T.S. Kuo, Z. Narančić, D. Tadić, Phys. Rev.
C 66 (2002) 055209.
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