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Abstract

Leading ’t Hooft coupling corrections to the photoemission rate of the planar limit of a

strongly-coupled N = 4 SYM plasma are investigated using the gauge/string duality. We

consider the full O(α′3) type IIB string theory corrections to the supergravity action, includ-

ing higher order terms with the Ramond-Ramond five-form field strength. We extend our

previous results presented in [1]. Photoemission rates depend on the ’t Hooft coupling, and

their curves suggest an interpolating behaviour from strong towards weak coupling regimes.

Their slopes at zero light-like momentum give the electrical conductivity as a function of the

’t Hooft coupling, in full agreement with our previous results of [2]. Furthermore, we also

study the effect of corrections beyond the large N limit.
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1 Introduction

Electrically charged particles in a quark gluon plasma (QGP) emit photons. An analysis

of these photons can lead to very valuable information about the medium in which they

are produced. On the one hand, transport coefficients related to the electric charge such

as electrical conductivity and charge diffusion constant characterize the dynamics of long

wavelength, low frequency fluctuations in a plasma. They are effectively related to ultra-soft

photons, i.e. those with momentum much smaller than the equilibrium temperature of the

medium, T . Ultra-soft photons eventually probe the hydrodynamical regime of the plasma,

with momentum k ≤ λ2T , where λ is the ’t Hooft coupling defined as λ ≡ g2YMN , where

gYM is the SYM theory coupling and N the rank of its gauge group, SU(N) in the present

case. On the other hand, it is possible to scrutinize a thermally equilibrated plasma for a

long range of emitted photon wavelengths. This precisely gives shape to the photoemission

rate from a plasma as a function of the energy of the photons. It includes ultra-soft, soft and

hard photons, thus providing extremely useful information about the dynamical structure of

the medium.

For a weakly coupled QCD plasma, transport coefficients and photoemission rates have

been calculated using perturbative quantum field theory in [3, 4, 5, 6, 7, 8] and references

therein. These references are particularly important since Arnold, Moore and Yaffe have

obtained the first complete leading order results for the photoemission rates in QCD [5].

They conclude that, in addition to well known 2 ←→ 2 particle processes, near-collinear

Bremsstrahlung and inelastic pair annihilation also make leading order contributions. The

Landau-Pomeranchuk-Migdal (LPM) suppression, which is the effect produced by multiple

soft scatterings, may occur during the emission of the photon and has important implications

on the consistent treatment of the above mentioned processes. The LPM effect leads to an

O(1) suppression of these near-collinear processes.

There are indications, however, that the QGPs produced at the Relativistic Heavy Ion

Collider (RHIC) and at the Large Hadron Collider (LHC) are in the strongly-coupled regime

of QCD [9, 10, 11, 12, 13, 14, 15, 16, 17]. This is where the gauge/string duality enters.

This duality allows us to compute properties of a strongly coupled gauge theory in terms of

a weakly coupled holographic dual string theory description [18, 19, 20]. We ought to admit

that at present there is no complete or exact holographic string theory dual model which

accounts for all the relevant properties of real QCD, not even in the planar limit of the gauge

theory. For reasons which shall be explained below, the holographic string theory dual model

which has been considered so far for these investigations is in fact dual to the large N limit

of the strongly-coupled SU(N) N = 4 supersymmetric Yang-Mills (SYM) plasma.

The holographic dual model of the planar limit of the strongly-coupled SU(N) N = 4

SYM plasma is defined in terms of a type IIB supergravity background given by a direct

product of an Anti-de Sitter-Schwarzschild black hole in five dimensions (AdS5BH) times a
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five sphere S5. There is a number of considerations to take into account at the moment of

extrapolating this dual description of the large N limit of N = 4 SYM theory in order to

make contact with QCD. Firstly, as it is well known at zero temperature these theories are

very different. Indeed, the field content is different: while QCD has three colour degrees of

freedom and three flavours, matter is in the fundamental representation of the gauge group

SU(3), it shows colour confinement, has explicit and spontaneous chiral symmetry breaking,

and displays a discrete spectrum; on the other hand, in the N = 4 SYM theory all their

fields transform in the adjoint representation of SU(N), it is not a confining theory, conformal

symmetry is preserved at quantum level, and it is a supersymmetric theory with the maximal

number of supersymmetries in four dimensions. At finite equilibrium temperature, T , above

the critical temperature of QCD, Tc, where hadrons become a deconfined QGP, there are

two regimes. For T >> Tc, again the two types of plasmas related to these two theories

behave very differently too: while in QCD the coupling runs to weak coupling, leading to a

free gas of quarks and gluons; in the case of the N = 4 SYM plasma, the coupling, which

remains constant, is strong. Thus, it leads to a strongly coupled plasma. However, in the

intermediate region where T is just above Tc, both plasmas behave somewhat similarly. In

this case QCD behaves as a strongly coupled plasma of gluons and fundamental matter.

These degrees of freedom are deconfined, there is screening and the correlation lengths are

finite. Interestingly, the N = 4 SYM plasma shares those properties because it is a strongly

coupled plasma of gluons and adjoint matter fields, it is also deconfined, shows screening,

and has finite correlation lengths. Moreover, quantum field theories lattice calculations

indicate that for certain properties the similarities can be made even quantitatively (see

for instance [21] and references therein). Therefore, one may assume that for T > Tc but

not T >> Tc, there is a parametric region where one can focus on in order to describe

the rates for the emission of photons from a thermally equilibrated SYM plasma using the

gauge/string duality at finite yet strong ’t Hooft coupling.

A very important step towards the understanding of the photoemission process and electric

charge transport coefficients of QGP in terms of the N = 4 SYM plasma has been done in

a very nice paper by Caron-Huot, Kovtun, Moore, Starinets and Yaffe [22]. They consider

the two limiting situations: for very large and very small ’t Hooft coupling. In the strongly

coupled case they consider the pure type IIB supergravity description of the large N limit

of the N = 4 SYM plasma, which we summarize in section 3. In the opposite limit they

consider a perturbative quantum field theory description of the N = 4 SYM plasma, using

similar ideas as in [5]. In section 5 we shall briefly review some perturbative results of [22].

In the light of the new experimental findings suggesting that the QGP plasma at RHIC

and LHC is in the strongly coupled regime of QCD, a more realistic outlook requires a

consideration of the ’t Hooft coupling expansion around the infinitely strongly-coupled regime

of the plasma. On the string theory side, we must therefore consider the full O(α′3) type IIB
string theory corrections to the supergravity action. It includes a number of terms which
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arise from the supersymmetric completion to the standard power-four ten-dimensional Weyl-

tensor. These new terms are constructed from a rank-6 tensor which contains the Ramond-

Ramond five-form field strength. This is indeed a very complicated task from the technical

point of view. However, it is worth carrying out since it yields the precise structure of the

’t Hooft coupling corrections to the strong coupling regime. Using this procedure we have

obtained very interesting results, which we briefly describe here and present in full detail in

section 4.

Our results show the following features. Firstly, the slopes of the photoemission rates,

which at zero light-like momentum give the electrical conductivity as a function of the ’t Hooft

coupling, are in full agreement with our previous results of [2]: the electrical conductivity

increases as the ’t Hooft coupling decreases. This concerns the hydrodynamic regime of

the plasma. Secondly, for higher momentum, the height of the peaks decrease as the ’t

Hooft coupling increases (i.e. as we approach the limit of infinite coupling), their maxima

are shifted towards the ultraviolet and the photoemission rate curves cross downwards the

limiting strongly coupled curve for momentum around 3 times the equilibrium temperature.

Another important feature which comes from our results is that the number of emitted

photons increases as the ’t Hooft coupling weakens. These features show an interpolating

trend from the supergravity calculation of the strongly coupled gauge theory towards the

perturbative quantum field theory calculation in the weakly coupled N = 4 supersymmetric

Yang-Mills plasma. In addition to describing these effects in more detail in the general

discussion and conclusions section below, we will also consider the effect of including non-

planar perturbative 1/N corrections from higher derivative terms in the type IIB action as

well as non-perturbative contributions due to D-instanton effects.

In section 2 we briefly describe generalities about the formalism behind the calculation of

plasma photoemission rates based on the computation of two-point correlators of electromag-

netic currents. A review of strongly coupled N = 4 SYM plasma results entirely obtained

within pure type IIB supergravity, i.e. with no string theory corrections, is presented in

section 3. In section 4, which is the longest section of the paper, we introduce details of the

formalism and results from our calculations of the leading ’t Hooft coupling corrections to

the photoemission rate of a strongly-coupled N = 4 SYM plasma using the gauge/string

duality. Section 5 is devoted to a very brief review of results in the weakly coupled regime.

The material of this section is used in the last section of the article in order to carry out a

general discussion of our results.

2 Derivation of photoemission rates in SYM plasmas

In this section we very briefly review the formalism needed in order to derive the photoemis-

sion rate in plasmas from thermal field theory. Since we expect to be able to compare our

results with those of reference [22], when possible we mainly follow its notation through this
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paper. Also, the same assumptions as in [22] are considered here: the plasma is in thermal

equilibrium; we do not include prompt photons produced by the initial scattering of partons

from the colliding nuclei; and, the electromagnetic coupling constant, e, is considered small

enough in order to ensure that photons are not to be re-scattered.

Consider the minimal coupling of a photon to the electromagnetic current Jemµ of the SYM

plasma. Recall that the SU(N) N = 4 gauge supermultiplet is {Aa
µ, ψp, φpq}, where a is the

SU(N) colour index, p, q = 1, · · ·, 4, and all the fields transform in the adjoint representation

of the gauge group. They are SU(N) gauge bosons, 4 Weyl fermions and 6 real scalars,

respectively. Furthermore, since there is an anomaly free global SU(4) R-symmetry, there

is an associated global R-symmetry current, Jµ. The way to consider the electromagnetic

coupling is by adding a U(1) gauge field Aµ which couples to the conserved current of a U(1)

subgroup of the full SU(4) R-symmetry group [22], under the assumption that, to leading

order in e, Jemµ ≡ Jµ. Thus, the Lagrangian can be written as

L = LSYM + e Jemµ Aµ − 1

4
F 2
U(1) , (1)

where LSYM is the Lagrangian of the N = 4 SYM theory and F 2
U(1) is the kinetic term of

the photon field.

We denote the photon four-momentum as K ≡ (k0, ~k), which is a null four-vector having

its time component fixed by the on-shell condition k0 = |~k|. We use the mostly plus signature

for the Minkowski metric in four dimensions, denoted by ηµν = (−,+,+,+). First, let us

consider the Wightman function of electromagnetic currents defined as

C<
µν(K) =

∫

d4X e−iK·X < Jemµ (0)Jemν (X) > , (2)

which in thermal equilibrium is related to the spectral density χµν(K) by

C<
µν(K) = nb(k

0)χµν(K) , (3)

with the Bose-Einstein distribution function nb(k
0) = 1/(eβk

0 − 1). In addition, the spectral

density is given by the imaginary part of the retarded current-current correlation function

χµν(K) = −2 ImCret
µν (K) . (4)

The number of photons which are produced per unit time per unit volume is denoted by Γγ.

At leading order in e the photoemission rate is given by

dΓγ =
e2

2|~k|
ηµν C<

µν(K) |k0=|~k|
d3k

(2π)3
. (5)

Notice that this formula for the photoemission rate holds to leading order in the electro-

magnetic coupling e. On the other hand, and very importantly for our purposes, it is valid

non-perturbatively in all other interactions, i.e. the strong interaction [22].
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It is worth mentioning that the slope of the photoemission rate in the zero-frequency limit

is proportional to the electrical conductivity of the plasma, σ, which can also be determined

by the current-current correlator using the Kubo formula:

σ = lim
k0→0

e2

6T
ηµν C<

µν(k
0, ~k = 0) . (6)

In the next section we describe the computation of the plasma photoemission rate in infinitely

strongly-coupled plasma.

3 Review of photoemission rates at strong ’t Hooft

coupling

The AdS5BH ×S5 background, which is an exact solution of type IIB supergravity, is given

by

ds2 =
(

r0
R

)2 1

u

(

−f(u) dt2 + d~x2
)

+
R2

4u2f(u)
du2 +R2 dΩ2

5 , (7)

where f(u) = 1−u2, and R is the radius of the AdS5 and the five-sphere. The AdS-boundary

is at u = 0 and the black hole horizon is at u = 1. For the AdS5 coordinates we use indices

m = {(µ = 0, 1, 2, 3), 5}. It is well known that this is the holographic dual background to

the large N limit of the SU(N) N = 4 SYM theory at finite temperature T .

As mentioned, the purpose of the present work is to investigate the O(λ−3/2) ’t Hooft

coupling corrections to the photoemission rate of a SU(N) N = 4 SYM plasma produced

by the leading order α′3 corrections to the pure type IIB supergravity calculation. In this

section we briefly review some of the calculations of [22], which are applicable for the λ→∞
limit. The idea is to obtain the correlation functions of two R-symmetry currents using the

methods developed in references [23, 24].

The general form of the correlator at finite temperature is obtained by taking into account

rotation and gauge invariance:

Cret
µν (K) = ΠT(k0, k)PT

µν(K) + ΠL(k0, k)PL
µν(K) , (8)

where the transverse and longitudinal projectors are defined such that PT
0µ(K) = 0, PT

ij (K) =

δij − kikj/k2, and PL
µν(K) = Pµν(K) − PT

µν(K), with Pµν = ηµν − KµKν/K
2. We use the

notation for the photon light-like momentum defined in the previous section and k = |~k|.
The trace of the spectral function is

χµ
µ(k

0, k) = −4 ImΠT(k0, k)− 2 ImΠL(k0, k) . (9)

For light-like momentum only ΠT contributes. Therefore, it is the only relevant part for the

computation of the photoemission rate.
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The gauge/string duality establishes a precise prescription to compute a two-point cor-

relator of conserved currents in a strongly coupled SYM theory. The idea is the following:

the insertion of an operator of the SYM theory at the AdS-boundary induces a fluctuation

of a certain ten-dimensional background field. Specifically, using the gauge/string duality

prescription, a global U(1) symmetry current in the SYM theory couples to a U(1) gauge

field in the bulk, Am. From the SYM theory point of view the U(1) group is a subgroup

of the SU(4) R-symmetry group of the N = 4 SYM theory. Recall that the SU(4) group

is isomorphic to the SO(6) group, which obviously is the global symmetry which generates

rotations among the 6 real scalars of the vector supermultiplet of the gauge theory. On the

other hand, from the supergravity side, the isometry group of the five sphere is SO(6). Thus,

there is a U(1) subgroup, which is related to vector fluctuations of the metric, whose gauge

field is precisely the Aµ Abelian gauge field. Therefore, the point is to solve the linearised

equations of motion for the vector perturbations of the metric. The definition of the two-

form field strength is Fmn = ∂mAn − ∂nAm. With the identification Ei ≡ F0i one can write

down the EOMs for the vector fluctuation by splitting them into the transverse (x, y), and

longitudinal (z) components as follows:

E ′′x,y −
2u

f(u)
E ′x,y +

̟2
0 − κ20f(u)
uf 2(u)

Ex,y = 0 , (10)

E ′′z −
2̟2

0u

f(u)(̟2
0 − κ20f(u))

E ′z +
̟2

0 − κ20f(u)
uf 2(u)

Ez = 0 , (11)

where primes denote derivatives with respect to the radial coordinate u, and one defines

̟0 ≡ k0/(2πT ) and κ0 ≡ k/(2πT ). The solution of these EOMs have been discussed in

[22], so here we just quote their results in the following equations. First, notice that the

correlators are determined by the boundary term of the five-dimensional on-shell Maxwell

action

SB =
N2T 2

16
lim
u→0

∫

d4K

(2π)4

[

f(u)

κ20f(u)−̟2
0

E ′z(u,K)Ez(u,−K)− f(u)

̟2
0

E ′x,y(u,K) · Ex,y(u,−K)

]

(12)

and by applying the Lorentzian AdS/CFT prescription [23] it turns out that the transverse

component which is the only one actually needed for the computation of the photoemission

rate is given by [22]

ΠT (k0, k) = −N
2T 2

8
lim
u→0

E ′x(u,K)

Ex(u,K)
. (13)

For light-like momenta there is an analytical solution to the EOM above which can be written

in terms of a hypergeometric function

Ex(u) = (1− u)−i̟0/2 (1 + u)−̟0/2
2F1

(

1− 1

2
(1 + i)̟0, −

1

2
(1 + i)̟0; 1− i̟0;

1

2
(1− u)

)

.

(14)
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Thus, the trace of the spectral function for light-like momenta is

χµ
µ(k

0 = k) =
N2T 2̟0

8
| 2F1

(

1− 1

2
(1 + i)̟0, 1 +

1

2
(1− i)̟0; 1− i̟0; −1

)

|−2 . (15)

In addition, the electrical conductivity is given by

σ = e2
N2T

16π
, (16)

which has been obtained from the Kubo formula quoted in the previous section.

Finally, the photoemission rate is given by

dΓγ

dk
=
αemN

2T 3

16π2

(k/T )2

ek/T − 1
| 2F1

(

1− (1 + i)k

4πT
, 1 +

(1− i)k
4πT

; 1− ik

2πT
; −1

)

|−2 , (17)

which holds in the large N limit and for large λ (where the supergravity approximation is

valid, 1 << λ << N), and is valid for the whole range of photon energies.

Now, we proceed to investigate the leading ’t Hooft coupling corrections to these expres-

sions and analyse their physical implications.

4 ’t Hooft coupling corrections to photoemission rates

In this section we present the general corrections to type IIB supergravity action at leading

order in α′. Firstly, in subsection 4.1 we describe the formalism needed to account for

higher derivative corrections to the effective IIB action. Then, we focus on O(α′3) string

theory corrections and develop the vector perturbations we need for the computation of

the current-current correlators. In subsection 4.2 we carry out the computation of ’t Hooft

coupling corrections to photoemission rates, whose results we show in subsection 4.3. Our

results concerning the effects of leading 1/N corrections and non-perturbative instanton

contributions are restricted to the electrical conductivity of the plasma, and are presented

in the discussion and conclusions, in the last section of the paper.

4.1 Higher derivative corrections to the effective IIB action and

vector perturbations

To begin with, we consider the leading type IIB string theory corrections to the supergravity

action SSUGRA
IIB which are given in the term S3

R4 . The total action that we shall consider is

SIIB = SSUGRA
IIB + S3

R4 . (18)
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At the strong ’t Hooft coupling limit the holographic dual model is derived from type IIB

supergravity, i.e. for α′ → 0. This contains the Einstein-Hilbert action coupled to the

dilaton and the Ramond-Ramond five-form field strength

SSUGRA
IIB =

1

2κ210

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)

2
]

. (19)

Effects of higher curvature terms which includes O(α′3), perturbative 1/N corrections as

well as instanton corrections were considered in the presence of D3-branes in type IIB string

theory by Green and Stahn in [25]. This reference proposes a supersymmetric completion of

the C4 term, where C is the ten-dimensional Weyl tensor, leading to the following correction:

S3
R4 =

α′3g3/2s

32πG

∫

d10x
∫

d16θ
√−g f (0,0)(τ, τ̄)[(θΓmnpθ)(θΓqrsθ)Rmnpqrs]

4 + c.c. , (20)

where τ is the complex scalar field given by τ1 + iτ2 ≡ a+ ie−φ, with a being the axion and

eφ = gs the string coupling. The function f (0,0)(τ, τ̄) is the so-called modular form. The

tensor R tensor is defined in terms of the Weyl tensor and

F+ = (1 + ∗)F5/2 , (21)

as given in [25, 26, 27, 28]

Rmnpqrs =
1

8
gpsCmnqr +

i

48
DmF

+
npqrs +

1

384
F+
mnpklF

+ kl
qrs . (22)

The action (20) was arrived at using the fact that the physical content of type IIB super-

gravity can be arranged in a scalar superfield Φ(x, θ), where θa, with a = 1, · · ·, 16, is a

complex Weyl spinor of SO(1, 9). The matrices Γ have the usual definitions [27].

The modular form is presented in [29] and is given by the following expression

f (0,0)(τ, τ̄ ) = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 + 8πτ

1/2
2

∑

m6=0,n≥0

|m|
|n| e

2πi|mn|τ1K1(2π|mn|τ2) , (23)

where K1 is the modified Bessel function of second kind which comes from the non-perturba-

tive D-instantons contributions. Recall that the zeta function ζ(3) is the coefficient of the

first perturbative correction in the Eisenstein series of the modular form. Note that in

the background we consider with N coincident parallel D3 branes, the axion vanishes, thus

τ1 = 0, while τ2 = g−1s . Therefore, for small values of gs the modular form becomes

f (0,0)(τ, τ̄) = 2(4πN)3/2
(

ζ(3)

λ3/2
+

λ1/2

48N2
+

e−8π
2N/λ

2π1/2N3/2

)

. (24)

It is interesting to mention that Green and Stahn also have shown that the D3-brane solution

in supergravity does not get renormalised by higher derivative terms [25]. Previously Banks

and Green had shown that AdS5 × S5 is a solution to all orders in α′ [30].
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Now, we focus on the large N limit of the dual SU(N) N = 4 SYM theory. Later on,

in the conclusions, we shall return to the consequences of the general corrections to the

electrical conductivity.

The finite leading ’t Hooft coupling corrections are accounted for by the following action

[28]

Sα′

IIB =
R6

2κ210

∫

d10x
√
−G

[

γe−
3

2
φ
(

C4 + C3T + C2T 2 + CT 3 + T 4
)]

, (25)

obtained from the action (20) in the large N limit, where γ ≡ 1
8
ζ(3) (α′/R2)3, where R4 =

4πgsNα
′2. Since λ = g2YMN ≡ 4πgsN , we get γ = 1

8
ζ(3) 1

λ3/2 . This action was computed in

[27], using the methods of [31].

The C4 term is a dimension-eight operator, defined as follows:

C4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC

rsp
h Cq

rsk , (26)

where Cq
rsk is the Weyl tensor. The tensor T is defined by

Tabcdef = i∇aF
+
bcdef +

1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

, (27)

where the indices [a, b, c] and [d, e, f ] are antisymmetrized in each squared brackets, and

symmetrized with respect to interchange of abc↔ def [27].

At finite temperature the metric only gets corrections from the C4 term. This is so

because the tensor T vanishes on the uncorrected supergravity solution [28]. The solution

to the Einstein equations derived from the pure supergravity action (19) is an AdS5BH×S5

background. There are N units of flux of F5 through the sphere, and the volume form of S5 is

denoted by ǫ. On the field theory side, N is the rank of the gauge group, and it corresponds

to the number of parallel D3-branes whose back-reaction deforms the space-time leading to

the above metric in the near horizon limit. The current operator Jµ(x) is dual to the s-wave

mode of the vectorial fluctuation on this background.

Next, we have to obtain the Lagrangian for the vectorial perturbation in this background.

Thus, we must construct a consistent perturbed Ansatz for both the metric and the Ramond-

Ramond five-form field strength, such that a U(1) subgroup of the SU(4) R-symmetry group

is obtained [32, 33, 34]. Then, by plugging this consistent perturbation Ansatz into the full

action (up to O(α′3)) and integrating out the five-sphere, one obtains the desired action

for the U(1) gauge field in the AdS5BH . Therefore, by studying the bulk solutions of the

Maxwell equations in the AdS5BH with certain boundary conditions we can obtain the

retarded correlation functions [23, 24, 22] of the operator Jµ(x).

Higher-curvature corrections to the type IIB supergravity action correspond to finite ’t

Hooft coupling corrections in the field theory. Suppose that we are interested in a certain

observable of the gauge theory, O. If one carries out a series expansion of it in inverse powers
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of the ’t Hooft coupling one schematically can write it as: O0 +O1/λ
n1 + · · ·. The power n1

is a positive number corresponding to the leading α′3 correction to the type IIB supergravity

action. In the present case, we consider thatO is the product of two electromagnetic currents.

Thus, we obtain the leading correction in λ using the gauge/string duality. The leading

order corrections come from terms O(α′3) in the ten-dimensional action. It is important to

recall that these corrections dot no modify the metric at zero temperature [30]. At finite

temperature things are different as shown in [35, 36] where corrections to the metric were

obtained, and then further improved in [26, 37, 38].

Higher curvature corrections on the spin-2 sector of the fluctuations have been investigated

in [39, 40, 41, 42], among other references. They are relevant to the computation of the

viscosity and mass-diffusion constants of the plasma.

In our case, we investigate vector fluctuations of the background. The method to carry

out the calculation consists of two steps. Firstly, we have to obtain the minimal gauge-field

kinetic term using the vector-perturbed metric including the α′3 corrections to it, and the

same for the five-form field strength. Then, the corrections to the gauge field Lagrangian

coming directly from the higher-derivative operators have to be computed. The reason

why these two steps are different is that the first one will require insertion of the corrected

perturbation Ansätze into the minimal ten-dimensional type IIB supergravity two-derivative

part Eq.(19). The second step requires insertion of the uncorrected perturbation Ansätze

into the higher-curvature terms in ten dimensions.

Our plan here is to start from the corrected metric and F5 solutions, then proposing an

Ansätze for the perturbations that may be inserted into Eq.(19).

As mentioned before, the only piece of the O(α′3)-action which affects the metric is the

C4 term. This induces the following corrected metric [35, 36, 37]

ds2 =
(

r0
R

)2 1

u

(

−f(u)K2(u) dt2 + d~x2
)

+
R2

4u2f(u)
P 2(u) du2 +R2L2(u) dΩ2

5 , (28)

where we have used similar notation as for Eq.(7). The functions of u in the above metric

are

K(u) = exp [γ (a(u) + 4b(u))] , P (u) = exp [γ b(u)] , L(u) = exp [γ c(u)] , (29)

where there are the following exponents, which are functions of the radial coordinate

a(u) = −1625
8

u2 − 175 u4 +
10005

16
u6 ,

b(u) =
325

8
u2 +

1075

32
u4 − 4835

32
u6 ,

c(u) =
15

32
(1 + u2) u4 . (30)
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In addition, the radius of the black hole horizon gets corrections given by

r0 =
πTR2

(1 + 265
16
γ)
. (31)

T has been already identified as the physical equilibrium temperature of the plasma. Thus,

having obtained the corrected metric Eq.(28), we have to focus upon the appropriate pertur-

bation Ansätze. The vectorial perturbation we are interested in enters the metric and the F5

solution, in contrast to the metric tensor perturbations - needed for mass-transport phenom-

ena in the hydrodynamical regime of the plasma - the latter only enter the metric Ansatz,

but not the F5 Ansatz. This observation obviously makes the computation of the corrections

to the mass-transport coefficients much more straightforward compared with the electric

charge-transport coefficients as well as other plasma properties beyond the hydrodynamical

domain.

We first obtain the kinetic term for the gauge fields. For this purpose we plug the corrected

Ansatz into the two-derivative supergravity action Eq.(19). The metric Ansatz reads

ds2 =
[

gmn +
4

3
R2L(u)2AmAn

]

dxmdxn +R2L(u)2 dΩ2
5 +

4√
3
R2L(u)2

×
(

sin2 y1 dy3 + cos2 y1 sin2 y2 dy4 + cos2 y1 cos2 y2 dy5
)

Am dx
m , (32)

where the metric of the unit five-sphere is given by

dΩ2
5 = dy21 + cos2 y1 dy

2
2 + sin2 y1 dy

2
3 + cos2 y1 sin2 y2 dy

2
4 + cos2 y1 cos2 y2 dy

2
5 . (33)

Notice that since we are only interested in the terms which are quadratic in the gauge-field

perturbations we can write the F5 Ansatz as follows

G5 = −
4

R
ǫ+

R3L(u)3√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (34)

where F2 = dA is the Abelian field strength and ǫ is a deformation of the volume form of the

metric of the AdS5-Schwarzschild black hole. We should mention that we are not interested

in the part of G5 which does not contain the vector perturbations because it only contributes

to the potential of the metric, and is thus accounted for by the use of the corrected metric

in the computation. The Hodge dual ∗ is taken with respect to the ten-dimensional metric,

while ∗ denotes the Hodge dual with respect to the five-dimensional metric piece of the black

hole. In addition, we have the usual definitions for the coordinates on the S5

µ1 = sin y1 , µ2 = cos y1 sin y2 , µ3 = cos y1 cos y2 ,

φ1 = y3 , φ2 = y4 , φ3 = y5 . (35)

12



By inserting these Ansätze into Eq.(19), and discarding all the higher (massive) Kaluza-Klein

harmonics of the five-sphere, we get the following action for the zero-mode Abelian gauge

field Am

SSUGRA
IIB = − Ñ2

64π2R

∫

d4x du
√−g L7(u) gmp gnq Fmn Fpq . (36)

Above we have written the Abelian field strength, defined as Fmn = ∂mAn − ∂nAm, the

partial derivatives are ∂m = ∂/∂xm, while xm = (t, ~x, u), with t and ~x = (x1, x2, x3), are

the Minkowski coordinates, and g ≡ det(gmn), which only involves the metric of AdS5-

Schwarzschild black hole. Also notice that L(u) straightforwardly comes from the dimen-

sional reduction [43]. The volume of the five-sphere has been included in Ñ .

Now, we should get the effect of the eight-derivative corrections of Eq.(25). In order to

achieve this we must determine the five-dimensional operators that arise once the perturbed

metric and five-form field strength Ansätze are inserted into Eq.(25). As in [44], we use the

uncorrected Ansätze at this point. Indeed, we can do it because using the corrected ones

generates terms of even higher order in γ. Clearly, the uncorrected Ansätze are derived from

the ones displayed here by taking L(u), K(u), P (u) → 1 and ǫ → ǫ. Next, we explain how

to calculate the explicit contributions from the ten-dimensional operators, leading to the

photoemission rates.

4.2 ’t Hooft coupling corrections to photoemission rates

In order to calculate the ’t Hooft coupling corrections to photoemission rates we now per-

form the explicit dimensional reduction on S5, including the leading type IIB string theory

corrections discussed in the previous subsection. This is done along the lines of our previous

work [2]3. For this purpose it is necessary to write explicitly all the terms of the full set of

higher derivative ten-dimensional operators which come from the supersymmetric completion

obtained in [25]. We use the definitions introduced in [27]

C4 + C3T + C2T 2 + CT 3 + T 4 ≡ 1

86016

∑

i

niMi . (37)

Thus, we can write the two contributions to the C4 term as follows

C4 = −43008
86016

CabcdCabefCceghCdgfh + CabcdCaecfCbgehCdgfh . (38)

Repeated indices means usual Lorentz contractions. In order to extract the quadratic terms

in the vectorial fluctuations of the metric we should notice that they can straightforwardly

3The main difference with respect to our previous calculation of the electrical conductivity of plasma in [2]
is that while for the conductivity it is only needed to consider the dependence Am(u), for the photoemission
rate it is necessary to consider the dependence Am(t, z, u) which is not a trivial extension of our former
calculations in [2]. Thus, having the Am(t, z, u) dependence implies actually a much more complicated
calculation.

13



be computed by expanding the ten-dimensional Weyl tensor as C = C0 + C1 + C2, where

the sub-indices label the number of times that the Abelian gauge field occurs. Obviously,

a similar expansion can be made for the T tensor: T = T0 + T1 + T2. In addition, from a

straightforward explicit calculation on the present background it can be shown that all the

components of T2 are zero. This fact is responsible of an important simplification of the actual

computations. Also, T0 is zero for any compactification which contains a five-dimensional

Einstein manifold [28], and therefore it vanishes in the case we consider here.

Now, let us look at terms of the form C3 T ;

C3T =
3

2
CabcdCaefgCbfhiTcdeghi . (39)

Their only possible contributions comes in fact from terms like C1C
2
0T1, C0C1C0T1 and

C2
0C1T1.
Then, let us study operators like C2T 2. We find a few contractions which can be collected

in the following terms

C2T 2 =
1

86016
(30240CabcdCabceTdfghijTefhgij + 7392CabcdCabefTcdghijTefghij
−4032CabcdCaecfTbeghijTdfghij − 4032CabcdCaecfTbghdijTeghfij
−118272CabcdCaefgTbcehijTdfhgij − 26880CabcdCaefgTbcehijTdhifgj
+112896CabcdCaefgTbcfhijTdehgij − 96768CabcdCaefgTbcheijTdfhgij) .

(40)

The vanishing result of T0 implies that terms like C0C1T0T1 also vanish. Then, the only

possible type of contribution from these terms is of the form C2
0T 2

1 . Making use of the same

arguments all the terms like CT 3 and T 4 include a factor T0 and, therefore, are not present

in a reduction upon a generic five-dimensional Einstein manifold [44].

Now, we proceed to explicitly calculate the operators above. Firstly, we must calculate

the ten-dimensional Weyl tensor with and without vector fluctuations. Secondly, we need

to obtain T1, and by its definition it can be separated into one piece which contains the

covariant derivative, defined by

(∇F5)abcdef = i∇aF
+
bcdef , (41)

and a second piece which does not contain covariant derivatives which reads

T̄abcdef =
1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

. (42)

So, we can write this tensor as T1 = ∇F5 + T̄ .
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Let us define F+ = F(e) + F(m). Thus, with the obvious meaning of the electric and

magnetic contribution, for the electric part we have

F(e) = −
4

R
ǫ+

R3

√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (43)

where ∗ indicates the Hodge dual operation with respect to the AdS5-Schwarzschild black

hole metric. It is convenient to split the electric part into the background plus a fluctuation,

F(e) = F
(0)
(e) + F

(f)
(e) , (44)

and similarly for the magnetic terms. Therefore, in components we have

(F
(0)
(e) )µνρσδ = −

4

R

√−g ǫµνρσδ , (45)

where g is the determinant of theAdS piece of the metric, in fact g = det gAdS = −r40/(2u3R3).

The Hodge dual gives

(F
(0)
(m))abcde = −

4

R
R5
√
detS5ǫabcde . (46)

Let us focus on the fluctuation. Actually, for this calculation we only need the U(1) gauge

component Ax(t, z, u), where in this notation t = x1 and z = x4. Notice that if we were

interested in the electrical conductivity it is enough to consider the Ax(u) dependence, which

largely simplifies the calculation [2] in comparison with the actual calculation of the pho-

toemission rates that we make in this work. Therefore, we have to deal with the following

non-vanishing components of the two-form field strength: Ftx, Fzx and Fux, all of them

with the full dependence on t, z and u AdS-coordinates. We use the following definition:

F = dA = 1
2!
Fµν/
√
3 dxµ ∧ dxν .

So, the fluctuations of the electric part induce fluctuations in the F5 Ramond-Ramond

field strength which are given by

(F
(f)
(e) )yiyjtyz = Feux(t, z, u) bij ǫyiyjtyz , (47)

(F
(f)
(e) )yiyjyzu = Fetx(t, z, u) bij ǫyiyjyzu , (48)

(F
(f)
(e) )yiyjtyu = Fezx(t, z, u) bij ǫyiyjtyu , (49)

where

Feux(t, z, u) = −R
3

√
3

1

2

√−g (2FuxG
xxGuu) , (50)

Fetx(t, z, u) =
R3

√
3

1

2

√−g (2FtxG
ttGxx) , (51)

Fezx(t, z, u) =
R3

√
3

1

2

√−g (2FzxG
zzGxx) , (52)
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where the pairs (ij) are (13), (14), (15), (24) and (25). The indices i, j run over the co-

ordinates of S5, and correspond to the coordinates x6, x7, x8, x9 and x10. The bij functions

are:

b13 = 2 sin y1 cos y1 , b14 = −2 sin2 y2 sin y1 cos y1 , b15 = −2 cos2 y2 sin y1 cos y1 ,
b24 = 2 cos2 y1 sin y2 cos y2 , b25 = −2 cos2 y1 sin y2 cos y2 . (53)

The fluctuations on the magnetic part are obtained after performing the ten-dimensional

Hodge dual operation on the corresponding electrical fluctuations above. We present the full

expression in the appendix.

The kinetic term of the gauge field coming from the Ramond-Ramond five-form field

strength becomes

− 1

4 · 5! F
2
5 = −2

3
R2 F 2 − 8

R2
, (54)

which is exactly what is expected. Recall that the scalar curvature piece R10 of the action

gives −1/3R2 F 2, where F 2 denotes FµνF
µν .

As we have seen in our previous paper [44], the eight-derivative O(α′3) corrections intro-
duce a large number of higher-derivative operators after the compactification on a general

five-dimensional Einstein manifold is done. We must take account of them properly to solve

the equation of motion within perturbation theory. The situation is entirely analogous to

that studied in [39], where the authors were concerned with the tensor perturbations of the

metric, but the rationale is the same. We have discussed this for vectorial perturbations of

the metric in [2, 44]. Lagrangian for the transverse mode Ax reads

Stotal = − Ñ2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du

[

γAWA
′′
kA−k + (B1 + γBW )A′kA

′
−k

+γCWA
′
kA−k + (D1 + γDW )AkA−k + γEWA

′′
kA
′′
−k + γFWA

′′
kA
′
−k

]

, (55)

where we have introduced the following Fourier transform of the field Ax,

Ax(t, ~x, u) =
∫

d4k

(2π)4
e−iωt+iqz Ak(u) . (56)

There are also a number of boundary terms that must be included for this higher-derivative

Lagrangian to make sense, and this is discussed in detail in [39, 45]. The coefficients B1 and

D1 arise directly from the minimal kinetic term F 2. The subscript W indicates that the

particular coefficient comes directly from the eight-derivative corrections, and the functions

AW → FW are written below. Moreover, B1 and D1 contain some γ-dependence, but they

are non-vanishing in the γ → 0 limit, while every other coefficient vanishes in that limit.

The equation of motion is given by

A′′x + p1A
′
x + p0Ax = γ

1

2f(u)
G(Ax) , (57)

16



where

G(Ax) = AW A′′x + CWA
′
x + 2 (δD1 +DW )Ax − ∂u (2δB1A

′
x + 2BWA

′
x + CWAx + FWA

′′
x)

+∂2u (AWAx + 2EWA
′′
x + FWA

′
x) , (58)

where B1 − B1|γ→0 = δB1 and D1 − D1|γ→0 = δD1. First we have the coefficients with no

γ-dependence p0 and p1, given by

p0 =
̟2

0 − f(u)κ20
uf 2(u)

and p1 =
f ′(u)

f(u)
, (59)

where ̟0 = k0/(2πT ) and κ0 = k/(2πT ). For the coefficients originating from the F 2 term

in the action of the gauge field, we obtain

B1 =
K(u)f(u)L7(u)

P (u)
,

D1 = −K(u)P (u)L7(u)

[

̟2 − f(u)K2(u)κ2

uf(u)K2(u)

]

, (60)

where ̟ = k0R
2/(2r0) and κ = kR2/(2r0). At this stage it is convenient to reduce the

equation to a second-order differential equation using a simple trick [48]. The idea is that

γA′′x = −γ (p1A′x + p0Ax) + O(γ2). Thus, we may reduce the entire RHS of the equation

of motion to terms which are first or zeroth order in derivatives. The resulting equation is

given by

A′′x +

[

p1 −
γ

2f(u)
[θ1(u)− p1θ2(u)]

]

A′x +

[

p0 −
γ

2f(u)
[θ0(u)− p0θ2(u)]

]

Ax = O(γ2) ,

(61)

where

θ0(u) = 2 (δD1 +DW )− C ′W + A′′W − 4E ′W p′0 + 2EW (p1p
′
0 − p′′0) ,

θ1(u) = 2A′W − 2 (δB1 +BW )′ + F ′′W − 4E ′W (p′1 + p0) + 2EW [p1(p
′
1 + p0)− p′′1 − 2p′0] ,

θ2(u) = 2AW − 2 (δB1 +BW ) + F ′W + 2E ′′W − 4E ′W p1 + 2EW [p21 − 2p′1 − p0] .
(62)

In order to solve Eq.(61), the first step is to examine the singularity structure of the equation

at the horizon u = 1. As usual, we change variables to x = 1− u, so that the singularity is

at x = 0, then insert the functional form Ax = xβ . We obtain the indicial equation:

β2 +
(

ω

4πT

)2

= 0 . (63)
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This is of course the same indicial equation that would have been obtained in the infinite ’t

Hooft coupling limit. Thus, as long as the Lagrangian originates from a gauge-invariant series

of operators, then the indicial equation is unchanged. The fact that the indicial equation is

unchanged is a consequence of the gauge-invariance in five dimensions, which is in turn a

consequence of the U(1) isometry of the internal manifold S5, but it is not a consequence of

supersymmetry. This behaviour is expected [40, 46, 47, 48] for scalar and tensor fluctuations

of the metric.

At this point, we have to solve the equation of motion for Ax. First, we have to specify

the functions AW , BW , CW , DW , EW and FW in the action Eq.(55). We have computed them

explicitly and obtained the following expressions:

AW (t, z, u) =
4γ

9
u5
[

157
(

u2 − 1
)

κ20 + 275̟2
0

]

, (64)

BW (t, z, u) =
γ

9
u4
[

u
(

−26214u3 + 29423u+ 8844̟2
0 + 6012κ20

(

u2 − 1
))

− 9853
]

, (65)

CW (t, z, u) =
4γ

9
u4
[

κ20
(

3360u2 − 3046
)

− (1543u2 + 4540)̟2
0

u2 − 1

]

, (66)

DW (t, z, u) =
γu3

9 (u2 − 1)2

[

−3872u̟4
0 +

(

1191u4 + 3857u2 − 5384κ20
(

u2 − 1
)

u+ 3796
)

̟2
0

+κ20
(

u2 − 1
)2 (−1512uκ20 + 5241u2 − 2332

)

]

, (67)

EW (t, z, u) = −3872γ
9

u6
[

u2 − 1
]2
, (68)

FW (t, z, u) = −2γ
9
u5
(

u2 − 1
) [

9719u2 − 6397
]

. (69)

Finally, to enable us to carry out analytic computations of the photoemission spectrum

in the high-momentum limit, and as an aide to the understanding of the physics behind

the corrected equation of motion, we can rewrite the EOM in the Schrödinger basis. We

transform the field variable as follows:

Ax(u) = Σ(u)Ψ(u) ,

Σ(u) =
1

288

√

f(u)
(

u2γ
(

u2
(

37760κ20u− 87539u2 + 343897
)

− 11700
)

+ 288
)

. (70)

giving us the Schrödinger-like equation:

Ψ′′(u) = V (u)Ψ(u)

V (u) = − 1

144 (u2 − 1)2

[

144(uκ20 + 1) + γ(u2 − 1)
(

1838319u6 − 4752055u4

+2098482u2 + κ20
(

1011173u4 + 245442u2 − 16470
)

u− 11700
)]

. (71)

We can study the structure of the relative difference between this γ-corrected potential and

the uncorrected one (for γ = 0 which corresponds to ’t Hooft coupling going to infinity).
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Figure 1: Difference between the numerical potential minus the analytical one for λ→∞, divided
by the analytical one for λ→∞, as a function of the radial coordinate of the black hole u. Long-
dashed, dashed, small-dashed, tiny-dashed, and dotted lines correspond to decreasing values of
λ = 200, 150, 100, 50 and 35, respectively.

Figure 1 shows the difference between the numerical potential minus the analytical one

for λ → ∞, divided by the analytical one for large λ → ∞, as a function of the radial

coordinate of the black hole, u. Long-dashed, dashed, small-dashed, tiny-dashed, and dotted

lines correspond to decreasing values of λ = 200, 150, 100, 50 and 35, respectively. Notice the

smooth behaviour of the corrected potential as a function of λ and also the fact that they

coincide exactly at u = 1. This is behind the fact that the indicial equation is unchanged

from the uncorrected case. Notice also that there is an exact cancelation of all κ4 as well

as κ40 terms in the potential, which is consequence of the supersymmetric structure of the

higher derivative corrections in the ten-dimensional action4. As a consequence, the plasma

structure functions show a slight enhancement (at ultra-high momenta) from their values at

λ→∞ as the coupling decreases, as has been shown in our previous work [45]. The next step

is to actually solve the EOM for Ax. We do this by a numerical solution of Eq.(71). With

this numerical solution we compute the trace of the spectral function and the photoemission

rate for any value of the ’t Hooft coupling at finite yet strong coupling. We show our results

in the next subsection.

4Notice that although in Eq.(71) we have set the light-like momenta condition, the validity of the state-
ment about the power four-momentum and frequency terms cancelation is quite general, and we have ex-
plicitly checked that.
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4.3 Results of photoemission with ’t Hooft coupling corrections

First, let us describe our results for the trace of the spectral function. Its asymptotic be-

haviour can be evaluated analytically for low- and high-momentum, and numerically for the

remaining momentum domain. This gives [1, 22]

χµ
µ(κ0)

1
2
N2T 2

=











(

1 + 14993
9
γ
)

κ0 +O(k3) κ0 ≪ 1

35/6

2

Γ( 2

3
)

Γ( 1

3
)
(1 + 5γ) κ

2/3
0 +O(1) κ0 ≫ 1

. (72)

The coefficient of κ0 in the low-momentum regime of Eq.(72) means that the electrical

conductivity of the strongly-coupled plasma is enhanced by a factor
(

1 + 14993
9
γ
)

due to the

finite λ corrections [44]. This is as expected from the perturbative computations in [22] since

the weakly-coupled plasma has a larger mean-free-path per collision, allowing more efficient

diffusion of electric charge, and hence a higher electrical conductivity. On other hand, for

the higher momentum, the results of [22] imply that the spectral function at weak coupling

should go like κ
1/2
0 in the ultraviolet. Given the fact that the spectral function at λ → ∞

goes like κ
2/3
0 , in that regime one would have expected our result in Eq.(72) to display some

smooth interpolation between κ
1/2
0 and κ

2/3
0 . We do not obtain such an interpolation, finding

instead that the finite coupling corrections do not change the momentum-dependence for

large momentum. Moreover, we find an enhancement by a factor (1+5γ) in that regime (see

also [45]). The fact that the leading κ0 behaviour is unchanged by the corrections could have

been seen from the Schrödinger-like potential above: the only κ0-dependence is κ
2
0, identically

to the λ→∞ case. Terms like κ40, which could have changed the high-momentum functional

dependence of χµ
µ(κ0), vanish. Figure 2 shows the trace of the spectral function χµ

µ divided

by κ0 as a function of the light-like momentum k for the cases when λ is large. Solid, long-

dashed, dashed and small-dashed lines correspond to decreasing values of λ = ∞, 200, 150,
and 100, respectively.

In figure 3 we show the photoemission rates of a strongly-coupled N = 4 supersymmetric

Yang-Mills plasma as a function of photon momentum divided by the equilibrium temper-

ature, k/T . In fact the curves show dΓγ/dk divided by αem(N2 − 1)T 3. Different curves

correspond to different large values of the ’t Hooft coupling: solid, long-dashed, dashed,

small-dashed, tiny-dashed, and dotted lines correspond to decreasing values of λ from λ =∞
(in fact it is the analytical expression from supergravity with no string theory corrections),

and then λ = 200, 150, 100, 50 and 35, respectively. These curves have been obtained using

the gauge/strings duality, considering the full O(α′3) type IIB string theory corrections to

the supergravity action. It is evident that the behaviour of the photoemission rates depend

upon the values of the ’t Hooft coupling. Their slopes at zero momentum give the electri-

cal conductivity as a function of the ’t Hooft coupling in full agreement with our previous

results of [2]. The height of the peaks decrease as the ’t Hooft coupling increases, their max-

ima are shifted towards the ultraviolet and the photoemission rate curves cross downwards
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Figure 2: Trace of the spectral function χµ
µ divided by κ0 as a function of k for the cases when

λ is large. Solid, long-dashed, dashed and small-dashed lines correspond to decreasing values of
λ =∞, 200, 150, and 100, respectively.

the limiting strongly coupled (pure supergravity) curve for momentum around three times

the equilibrium temperature. These features are expected from perturbative quantum field

theory calculations in the weakly coupled N = 4 supersymmetric Yang-Mills plasma and

from the supergravity calculation of the large N strongly coupled theory. However, at much

higher momentum, all these curves cross upwards the extreme strongly coupled one. This

behaviour is exemplified in figure 4 for the large ’t Hooft coupling case (solid line) compared

with λ = 50 (tiny-dashed line), for a relatively large photon frequency in comparison with

the equilibrium temperature, actually the crossing occurs around k ≈ 17.4T . For larger val-

ues of the momentum all curves approach the solid one. This result is in agreement with our

former results on deep inelastic scattering structure functions from N = 4 supersymmetric

Yang-Mills plasma with string theory corrections [45]. The reason for such a behaviour comes

from the fact that at O(α′3) in string theory, the Schrödinger-like potential describing the

dynamics of the photo-production gets no corrections like the fourth power of momentum

and frequency. This is caused by an exact cancelation of this power of momentum contri-

butions from the C4-term and its supersymmetric completion at O(α′3) in the string theory

type IIB action.

5 Weakly coupled SYM plasma photoemission rates

In this section we very briefly describe the results for the weakly coupled regime of SYM

obtained by [22]. We include this in order to be able to compare our results in the previous
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Figure 3: Photoemission spectrum for different values of λ, as a function of the light-like momentum
of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we show
the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed, tiny-
dashed, and dotted lines correspond to decreasing values of λ, from λ = ∞ (in fact it is the
analytical expression from supergravity with no string theory corrections), and 200, 150, 100, 50
and 35, respectively.
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Figure 4: Photoemission spectrum as a function of the light-like momentum of the emitted photon
divided by the equilibrium temperature, k/T . As before we show the curves for dΓγ/dk divided by
αem(N2 − 1)T 3. Solid and tiny-dashed lines correspond to values of λ = ∞ and 50, respectively.
This figure shows the typical large photon momentum behaviour having a crossing around k/T ≈
17.4, for larger momentum the tiny-dashed curve approaches the solid line.
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section for large values of λ and see how they help to understand a broader picture of the

plasma structure in terms of the ’t Hooft coupling.

The computations of the spectral function in the weakly coupled regime has been done us-

ing perturbative SYM theory [22], also previous results for perturbative QCD were obtained

in [5, 4]. For light-like momenta the contribution to the trace of the spectral function ap-

pears at two-loop level. The key point is that in a thermal system the expansion of physical

quantities in powers of the ’t Hooft coupling is not the same as the diagrammatic expansion

in loops. Basically, what happens is that there is sensitivity to energy and momentum scales

which are parametrically small in comparison with the equilibrium temperature. In the sit-

uation where one considers light-like momentum this complication already arises at the first

non-trivial order. To deal with this, it is necessary to carry out an infinite resummation

of diagrams in order to find the leading order weak-coupling photon production rate. This

rate can be split into a contribution from a Compton-like 2 ↔ 2 scattering process and

near-collinear Bremsstrahlung and pair-annihilation processes, which are further corrected

due to the Lipatov-Pomeranchuk-Migdal suppression effect. The complete presentation of

all these processes and effects for QCD is given in [5, 4] and references therein. Also in [22]

is presented a detailed comparison between QCD and SYM in the pertubative domain of

both theories. Here we just quote some of their results relevant for our discussion.

Firstly, notice that the differential photoemission rate can be recast into the emission rate

per unit volume as a function of the photon momentum

dΓγ

dk
=
αem
π

k ηµν C<
µν(K) . (73)

At low frequencies the trace of the spectral function approaches a constant which is propor-

tional to the electrical conductivity of the plasma:

dΓγ

dk
=
σT

π2
k . (74)

In figure 5 we show the photoemission rates per unit volume per unit time, divided by

αem(N2−1)T 3, both in the non-perturbative and perturbative regimes. The non-pertubative

case is the same as before in figure 3 in the previous section, and we repeat it here for

comparison with the weakly coupled regime of the SYM theory.

It is very interesting the fact that for weakly coupled N = 4 supersymmetric Yang-Mills

plasma the hydrodynamical regime in which Eq.(74) holds is as narrow as k/T ≤ λ2, with λ

small. Its slope σT/π2 is parametrically large and the photoemission rate has a maximum.

For larger photon momentum we take the expression from [22]

dΓγ

dk
=

(N2 − 1)αem
4π2

k nf (k)m
2
∞ [ln(T/m∞) + Ctot(k/T )] . (75)

being nf(k) the fermion statistical factor (with a minus sign), while the thermal correction

to the hard fermion propagation in the medium is given by m2
∞ = λT 2. The integral called
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Ctot(k/T ) was numerically solved in [22] and also can be written in the following form:

Ctot(k/T ) =
1

2
ln(2k/T ) + C2←→2(k/T ) + Cbrem(k/T ) + Cpair(k/T ) . (76)

The numerical results from [22] are reproduced quite accurately by the expressions:

C2←→2(k/T ) ≃ 2.01 T/k − 0.158− 0.615 e−0.187k/T ,

Cbrem(k/T ) + Cpair(k/T ) ≃ 0.954 (T/k)3/2 ln(2.36 + T/k) + 0.069 + 0.0289 k/T ,

(77)

which hold in the range 0.2 < k/T < 20. In figure 5 we have also shown a small-dashed stiff

curve which corresponds to the value of λ = 0.2 and a long-dashed curve for λ = 0.5, both

obtained using the combined expressions Eq.(76) and Eq.(77). For weak coupling, it can be

seen that the photoemission rates decrease as the coupling decreases, except for very low

frequencies, where they are very much enhanced compared to the strongly coupled regime.

On the other hand, for large photon momentum the strongly coupled plasma displays larger

photo-production rate. This effect is due to the suppression which is produced by the m∞
factor, proportional to the ’t Hooft coupling, in the weakly coupled expression.

6 General discussion and conclusions

In this work we have investigated ’t Hooft coupling corrections to the photoemission rate of a

strongly-coupled N = 4 supersymmetric Yang-Mills plasma by the means of the gauge/string

duality. We consider the full O(α′3) type IIB string theory corrections to the supergravity

action. The behaviour of the photoemission rates depend upon the values of the ’t Hooft

coupling. Their slopes at zero momentum give the electrical conductivity as a function of the

’t Hooft coupling. Beyond the hydrodynamical regime of the plasma, as discussed before, the

peak of the photoemission is enhanced by the corrections, and the momentum of maximal

emission shifts towards the infrared, taking the corrected curves closer to the weakly coupled

result. Simple numerical analysis on the light-like spectral function yields that the maximal

rate is given by

dΓγ

dk

∣

∣

∣

∣

∣

max

≃ 0.0156695
(

1 +
[

1115.3− 265

8

]

γ
)

+O(γ2) , (78)

in units of αemN
2T 3, where we have made explicit the factor −265/8γ coming from the

overall normalization of the action. For the peak displacement we estimate the position of

the peak kmax as

kmax ≃ 1.48469 (1− 842.425γ)T +O(γ2) , (79)
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Figure 5: Photoemission spectrum for different values of λ, as a function of the light-like momen-
tum of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we
show the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed,
tiny-dashed, and dotted lines correspond to decreasing values of λ = very large (in fact it is the
analytical expression from supergravity with no string theory corrections), to 200, 150, 100, 50 and
35, respectively. On the other hand, we show two additional curves corresponding to the weakly
coupled SYM obtained in [22]: a small-dashed line and a long-dashed line, which represent the
perturbative SYM plasma for λ = 0.2 and 0.5, respectively.
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which turns out to be independent of the overall normalization of the action, making it an

excellent candidate for comparing disparate gauge theories. Furthermore, we obtain the total

number of photons emitted, given by the area under the curves in figure 3. This is enhanced

by a factor
Ntotal(γ)

Ntotal(0)
≃ 1 +

[

461.941− 265

8

]

γ +O(γ2) , (80)

due to the fact that the weakly-coupled theory dominates in the infrared, where Bose-

suppression (due to nb(k)) is small.

These features are expected from perturbative quantum field theory calculations in the

weakly coupled N = 4 supersymmetric Yang-Mills plasma and from the supergravity cal-

culation of the large N strongly coupled theory [22]. There is a (λ-independent) crossover

point around k/T ∼ 2.92, where the corrected curves dip below the λ→∞ result. However,

at much higher momentum, all these curves cross upwards the extreme strongly coupled one,

leading to that the asymptotic values of the λ-corrected curves for large k/T are given by

(1 + 5γ) times the infinite coupling result, as in Eq.(72). Although the range of momentum

of figure 3 does not extend to cover this asymptotic behaviour, we show this behaviour in

figure 4. This means that the finite-λ corrections enhance the photoemission rate in the deep

ultraviolet domain, contrary to the expectations of [22]. Obviously, we are not guaranteed

that the weakly-coupled result should be approached by strongly-coupled corrections com-

puted in perturbation theory, especially not for a situation where the functional dependence

on momenta is expected to be different, so we are not unduly concerned by this apparent

discrepancy [1]. It would be very revealing to understand these cross-over points, as well as

their scaling with λ.

The overall picture which emerges from our calculations is the following: the peaks of the

photoemission rates are displaced towards low frequencies as λ decreases. It implies that

soft photons are produced more efficiently at weaker values of the ’t Hooft coupling, in the

strong coupling regime. On the other hand, for harder photons the emission is dominated

by stronger values of the coupling. But then, due to the effect described in the previous

paragraph, the t’ Hooft coupling corrected curves dominate for much larger values of the

ratio k/T . Still there is a notorious separation of the behaviour at the weak and strong

coupling regimes: for the asymptotic behaviour of the weak coupling regime the fall off goes

proportional to k3/2e−k/T , while for all the strongly coupled curves it falls down as k5/2e−k/T .

Let us consider very briefly what happens if we consider finite N corrections. Using the

modular form introduced in subsection 4.1, since it factorises out from the Green-Stahn ac-

tion (20) we obtain the corrections to the plasma conductivity (recall that this is proportional

to the slope of the photoemission rate at zero frequency)

σ = σ0 +
14993

72
σ0

(

ζ(3)

λ3/2
+

λ1/2

48N2
+

e−8π
2N/λ

2π1/2N3/2

)

. (81)
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where as we have seen σ0 = e2TN2/16π. At this point one may wonder whether this result

can be compared with those obtained from lattice QCD. Obviously, any statement in the

context of the present work has to be considered with several caveats, coming from differences

between QCD and the N = 4 SYM theory. Said that, it is possible to make contact with

lattice QCD at some extent. We must take into account that in lattice QCD calculation

N = 3 typically, and there are other differences with respect to the planar limit of the SYM

plasma. In a recent estimation of the electrical conductivity it was found σ ≃ 0.4e2T , above

Tc of quenched lattice QCD [49]. A more recent calculation [50] shows that 1/3e2T ≤ σ ≤ e2T

from the vector current correlation function from lattice computations at temperatures about

1.5 to 2 Tc, the values of αs = g2YM/4π are between 0.3 and 0.4, where these values were

obtained by matching the Debye mass screening in QCD and in N = 4 SYM at finite T . If

we use the parametrization σ = ρe2T and extract ρ from our equation (81), using naively

N = 3, and evaluating the electrical conductivity for λ = 11.3, 15.08 and 6π, which lead to

αs =0.3, 0.4 and 0.5, respectively, we obtain ρ =1.64, 1.28 and 1.101, respectively. So, we

can see how close is the lowest value 1.101 to the upper value of the conductivity obtained

from lattice QCD in [50].

The studies and results of photoemission and electrical conductivity presented in this

work exclusively concern the N = 4 SYM plasma in thermal equilibrium. Beyond thermal

equilibrium it is possible to carry out very interesting computations such as the one presented

in [51], where the authors consider production of prompt photons from an out-of-equilibrium

N = 4 SYM plasma, including O(α′3) string theory corrections. The work of [51] merges the

formalism introduced in [52] about the photo-production from a out-of-equilibrium strongly

coupled plasma with the one corresponding to O(α′3) string theory corrections to photo-

production [1]. The AdS/CFT description of dilepton production from an out-of-equilibrium

plasma has also been considered [53]. Papers [51, 52, 53] are based on a model of holographic

thermalisation which involves the gravitational collapse of a thin shell in AdS5 in a quasi-

static approximation as in [54, 55]. On the other hand, one can also consider other approach

to holographic thermalisation with a dynamical shell as in [56, 57]. Based on [56, 57],

thermal and electromagnetic quenches for the specific case of AdS4 have been studied [58].

More recently, a systematic study of holographic thermalisation from a collapsing shell of

charged pressureless dust has been considered in [59], which allows one to consider a chemical

potential effect on the thermalisation time scale of the plasma.

There are very interesting directions for further extensions of the work presented here.

One is to look for similar strong coupling corrections to the electrical diffusion constant,

with the idea of discussing about the possibility of a universal bound for electrical charge

transport coefficients [43, 46]. Also, effects of leading ’t Hooft coupling corrections to dilepton

production from a strongly coupled plasma would be interesting to study in this context.

Another interesting situation is the boost invariant plasma. In that case corrections coming

from F5 could have modified the ratio of shear viscosity over entropy density, however in [28]

27



it was concluded that corrections from F5 do not modify the results in this case. However,

likely the situation would be different if one refers to electric charge transport properties.

In addition, the inclusion of an R-charged black hole allows to study the plasma at finite

chemical potential. In this case, as Paulos has shown [27], the EOM are modified by the

F5 corrections. However, while the analysis using only C4-term is prohibitively complicated,

Paulos has shown that the inclusion of its supersymmetric completion gives a simple result.

It would be interesting to see if something similar happens for properties related to electric

charge in the same background.

It would also be very interesting to carry out similar calculation as for the corrections

to electrical conductivity and photoemission rates for other backgrounds with deformations

from the conformal ones [60, 61] and with no conformal symmetry [62, 63]. It would also

be very interesting to be able to compute higher-order corrections to the photoemission rate

for plasmas with fundamental quarks. In that case there are at least two different and very

interesting possibilities. One is the case for a D3D7 plasma which basically consists of the

embedding of D7 branes in the background of a large number of D3 branes [64] at finite

temperature. There are two possible embeddings for this: the Minkowski and the black hole

ones, and there is a Hawking-Page transition which is associated with glueball to deconfined

gluons transition and at higher temperature there is a second transition temperature at

which mesons melt down giving a QGP [65]. Another very different system which actually

is closer to QCD than the D3D7 brane system is the D4D8-anti D8-brane system proposed

by Sakai and Sugimoto [66], which can also be heated up in order to obtain a QGP [67]. α′

corrections to D-brane solutions have been investigated in [37].
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Appendix: The magnetic part of F5 for vector fluctuations

The vector fluctuation Fux

Let us first consider the vector fluctuation Fux. The magnetic part is a ten-dimensional

Hodge dual of the electric one. In components we can write

F f
(m)uxyν1yν2yν3

=
√

| detG10|F f
(e)yiyjtyz

Gyiyi Gyjyj GttGyy Gzz ǫyiyjtyzxuν1ν2ν3 . (82)

Note that this component as a form reads:

F f
(m) =

√

| detG10|
5!5!

F f
(e)yiyjtyz

Gyiyi Gyjyj GttGyy Gzz ǫyiyjtyzxuν1ν2ν3 du∧ dx∧ dyν1 ∧ dyν2 ∧ dyν3 ,
(83)

ǫyiyjtyzxuν1ν2ν3 determines the sign of each piece of the magnetic components as follows.

So, let us label the magnetic components by the indices of the vector fluctuation in the

metric, i.e. ux in this case we have

F f
(m)ux =

√

| det gAdS|F f
(e)uxG

ttGyy Gzz (mux
13 +mux

14 +mux
15 +mux

24 +mux
25 ) . (84)

Then

mux
13 = ǫ13tyzxu245

√
detS5 b13G

y1y1 Gy3y3 = −
√
detS5 b13G

y1y1 Gy3y3 ,

mux
14 = ǫ14tyzxu235

√
detS5 b14G

y1y1 Gy4y4 = +
√
detS5 b14G

y1y1 Gy4y4 ,

mux
15 = ǫ15tyzxu234

√
detS5 b15G

y1y1 Gy5y5 = −
√
detS5 b15G

y1y1 Gy5y5 ,

mux
24 = ǫ24tyzxu135

√
detS5 b24G

y2y2 Gy4y4 = −
√
detS5 b24G

y2y2 Gy4y4 ,

mux
25 = ǫ25tyzxu134

√
detS5 b25G

y2y2 Gy5y5 = +
√
detS5 b25G

y2y2 Gy5y5 .

(85)

The vector fluctuation Ftx

As before, the magnetic part is a 10d Hodge dual of the electric one. In components we

have

F f
(m)txyν1yν2yν3

=
√

| detG10|F f
(e)yiyjyzu

Gyiyi Gyjyj GuuGyy Gzz ǫyiyjyzutxν1ν2ν3 , (86)

As a form it reads:

F f
(m) =

√

| detG10|
5!5!

F f
(e)yiyjyzu

Gyiyi Gyjyj GuuGyy Gzz ǫyiyjyzutxν1ν2ν3 dt∧dx∧dyν1 ∧dyν2∧dyν3 .
(87)
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Again, let us label the magnetic components by the indices of the vector fluctuation in the

metric, i.e. tx

F f
(m)tx =

√

| det gAdS|F f
(e)txG

uuGyy Gzz (mtx
13 +mtx

14 +mtx
15 +mtx

24 +mtx
25) . (88)

Then we have,

mtx
13 = ǫ13yzutx245

√
detS5 b13G

y1y1 Gy3y3 = −
√
detS5 b13G

y1y1 Gy3y3 ,

mtx
14 = ǫ14yzutx235

√
detS5 b14G

y1y1 Gy4y4 = +
√
detS5 b14G

y1y1 Gy4y4 ,

mtx
15 = ǫ15yzutx234

√
detS5 b15G

y1y1 Gy5y5 = −
√
detS5 b15G

y1y1 Gy5y5 ,

mtx
24 = ǫ24yzutx135

√
detS5 b24G

y2y2 Gy4y4 = −
√
detS5 b24G

y2y2 Gy4y4 ,

mtx
25 = ǫ25yzutx134

√
detS5 b25G

y2y2 Gy5y5 = +
√
detS5 b25G

y2y2 Gy5y5 .

(89)

The vector fluctuation Fzx

Similarly with the two previous cases the ten-dimensional Hodge dual of electrical part of

F5 induced by the vector fluctuation Fzx in components is given by

F f
(m)zxyν1yν2yν3

=
√

| detG10|F f
(e)yiyjtyu

Gyiyi Gyjyj GttGyy Guu ǫyiyjtyuxzν1ν2ν3 . (90)

This component as a form reads:

F f
(m) =

√

| detG10|
5!5!

F f
(e)yiyjtyu

Gyiyi Gyjyj GttGyy Guu ǫyiyjtyuxzν1ν2ν3 dx∧dz∧dyν1 ∧dyν2 ∧dyν3 .
(91)

Now, let us label the magnetic components by the indices of the vector fluctuation in the

metric, i.e. zx

F f
(m)zx =

√

| det gAdS|F f
(e)uxG

ttGyy Guu (mzx
13 +mzx

14 +mzx
15 +mzx

24 +mzx
25) . (92)

Then

mzx
13 = ǫ13tyuxz245

√
detS5 b13G

y1y1 Gy3y3 = −
√
detS5 b13G

y1y1 Gy3y3 (−1) ,
mzx

14 = ǫ14tyuxz235
√
detS5 b14G

y1y1 Gy4y4 = +
√
detS5 b14G

y1y1 Gy4y4 (−1) ,
mzx

15 = ǫ15tyuxz234
√
detS5 b15G

y1y1 Gy5y5 = −
√
detS5 b15G

y1y1 Gy5y5 (−1) ,
mzx

24 = ǫ24tyuxz135
√
detS5 b24G

y2y2 Gy4y4 = −
√
detS5 b24G

y2y2 Gy4y4 (−1) ,
mzx

25 = ǫ25tyuxz134
√
detS5 b25G

y2y2 Gy5y5 = +
√
detS5 b25G

y2y2 Gy5y5 (−1) .
(93)
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