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Induced electromagnetic fields in non-linear QED
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The Euler-Heisenberg effective Lagrangian is used to obtain general expressions for electric and
magnetic fields induced by non-linearity, to leading order in the non-linear expansion parameter, and
for quasistatic situations. These expressions are then used to compute the induced electromagnetic
fields due to a spherical shell with uniform charge distribution on the surface, in the presence of an
external constant magnetic field. The induced electric field contains several multipole terms with
unusual angular dependences. Most importantly, the leading term of the induced magnetic field is
due to an induced magnetic dipole moment.
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There has been a steady increase in the intensity of mod-
ern lasers [1] with associated peak electric fields reach-
ing 1014 V/m, and envisaged fields of 1015 − 1016 V/m
in the near future. Such intense fields are approaching
the critical value Ec ≃ 1018 V/m beyond which unusual
properties of the QED vacuum are expected to manifest
themselves through non-linearity [2]-[3]. In this paper we
consider the framework of the Euler-Heisenberg electro-
dynamics [2] and obtain general expressions for electro-
magnetic fields induced by non-linearity, to leading order
in the non-linear expansion parameter, and in the qua-
sistatic limit. These induced fields are given in terms of
volume integrals of the electric and magnetic fields in the
ordinary (linear) Maxwell theory. The latter are deter-
mined as usual by classical external charge and current
distributions. As an application we consider a spheri-
cal shell with a static uniform charge distribution on the
surface, and in the presence of an external constant mag-
netic field. The induced electromagnetic fields can be
calculated analytically to leading order in the non-linear
expansion parameter.
We begin by considering weak electromagnetic fields
in the quasistatic (low frequency) approximation, and
choosing the one-loop effective Lagrangian to be that of
Euler-Heisenberg

L(1) = ζ
(
4F2 + 7G2

)
+ ... (1)

where the omitted terms are of higher order in the ex-
pansion parameter ζ, which in SI units is given by

ζ =
2α2ε20~

3

45m4
ec

5
≃ 1.3× 10−52 J m

V4 , (2)

with α = e2/(4πε0~c) the electromagnetic fine structure
constant, and c the speed of light. The invariants F and
G are defined as

F =
1

2

(
E2 − c2 B2

)
= −

1

4
FµνF

µν , (3)

G = c E ·B = −
1

4
Fµν F̃

µν , (4)

with Fµν = ∂µAν − ∂νAµ and F̃µν = 1
2ǫ

µνρσFρσ . The
critical field for the onset of non-linearity is given by

Ec = m2
ec

3/~e ≃ 1.3× 1018 Volt/m , (5)

where me and e are the mass and charge of the electron,
respectively. Considered as a correction to the Maxwell
Lagrangian ε0F for slowly varying configurations the ef-
fective Lagrangian L(1) introduces non-linear terms in
the constitutive equations relating the observable fields
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E and B with the fields D and H originating in the pres-
ence of charges and currents. Indeed, let us consider the
total Lagrangian

L (F ,G) + jµAµ = ε0F + L(1) (F ,G) + jµAµ , (6)

which is a gauge-invariant scalar if j is a conserved cur-
rent, ∂µj

µ = 0. The classical Euler-Lagrange equations
of this system are

∂µ

{(
∂L

∂F

)
Fµν +

(
∂L

∂G

)
F̃µν

}
= jν , (7)

where the field intensities satisfy the identities

∂µF̃
µν = 0 . (8)

From the definitions of the fields D and B as D = ε0E+
P, and H = B

µ0

− M, and using the total Lagrangian

Eq.(1) it follows that

D =
∂L

∂E
=

(
∂L

∂F

)
E+

(
∂L

∂G

)
cB , (9)

H = −
∂L

∂B
=

(
∂L

∂F

)
c2 B−

(
∂L

∂G

)
cE . (10)

These equations imply the well known non-linear rela-
tions P = 2ζ(4F E+ 7 cGB), and M = 2 ζ(−4 c2F B+
7 cGE). In terms of the fields D and H, Eqs. (7) and (8)
reduce to the linear Maxwell equations with all the effects
of non-linearity contained in the constitutive equations,
Eqs. (9)-(10). Therefore, the equations for D and H can
be solved as in the usual linear theory, i.e. ∇ · D = j0,
−∂D/∂t+∇×H = j, ∇·B = 0, ∇×E+∂B/∂t = 0. The
inversion of the relations between the fields D and H and
the electromagnetic intensities E and B, Eqs. (9)-(10), is
a very difficult task even for the case of constant fields we
are considering here. But in the range of weak fields one
can employ the asymptotic expansion in Eq. (1) to get a
perturbative expansion of the electromagnetic intensities
in terms of the parameter ζ. In fact, to leading order in
ζ, and after inverting Eqs.(9) and (10) it follows

E =

(
1

ε0
−

8 ζ

ε20
F

)
D−

14 ζ

c ε20
GH , (11)

B =
14 ζ

ε20 c
G D+

1

c2

(
1

ε0
−

8 ζ

ε20
F

)
H . (12)

The general solution of the inhomogeneous equations for
D and H can be written as

D = DM +∇×K , (13)

H = HM +∇φ , (14)

where DM and HM are the solutions in the Maxwell the-
ory which satisfy ∇×DM = 0, and ∇ ·HM = 0. Intro-
ducing two background constant fields E0 and B0, and
recalling that we are considering a quasistatic scenario,
these solutions are

DM = E0 −
1

4π
∇x

∫
j0(y)

|x− y|
d3y , (15)

HM =
B0

µ0
+

1

4π
∇x ×

∫
j(y)

|x− y|
d3y . (16)

The vectors ∇ × K, and ∇φ can be obtained using the
remaining homogeneous equations with the result

∇φ(x) =
ζ c

2πε0
∇x

∫
d3y

|x− y|
∇y · [7GD−

4

c
FH] , (17)

∇×K(x) =
ζ

2πε0
∇x ×

∫
d3y

|x− y|
∇y × [4FD+

7

c
GH] .

(18)

Finally, we define new electric and magnetic fields with
respect to the (linear) Maxwell theory as

E(x) = E(x) −
1

ε0
DM (x) , (19)

B(x) = B(x) − µ0HM (x) , (20)

with ∇ × E(x) = 0, and ∇ · B(x) = 0. Using Eqs.(11),
(13), and (18) in Eq.(19), and Eqs.(12), (14), and (17) in
Eq.(20) it follows at leading order in ζ

E(x) =
ζ

2πε20
∇x

∫
d3y

|x− y|
∇y ·

[
4FMDM +

7

c
GMHM

]
,

(21)

B(x) =
ζ

2π ε20 c
2
∇x ×

∫
d3y

|x− y|
∇y × [−4FMHM

+ 7 cGMDM ] , (22)

which provide general expressions for the induced fields
in terms of the Maxwell fields. The latter can be
determined as usual once the external classical charge
and current distributions are specified.

We consider here a charged spherical shell of radius R
and total charge Q in an external static magnetic field
B0 = B0 ez. The charge density is then

j0(x) =
Q

4πR2
δ(r −R) , (23)
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and the Maxwell displacement vector is

DM (r) =
Q

4 π r2
θ(r −R) er . (24)

Since we should have |DM (x)| < Ec, with Ec the critical
field, Eq.(5), the radius of the sphere is restricted by
R > Rc, with Rc = (Q/4 π ε0 Ec)

1/2, a bound easily
achieved. The divergence of the function in the integral
in Eq.(21) becomes

∇ ·

[
4FMDM +

7

c
GMHM

]
=

(
Q

4π

){[
−

8

ε20

(
Q

4π

)2
1

r7

−
7c2B2

0

r3
(
2 cos2θ − sin2θ

)]
θ(r −R) +

[
2

ε20

(
Q

4πR3

)2

− 2
c2B2

0

R2
+ 7c2 B2

0

cos2θ

R2

]
δ(r −R)

}
, (25)

and the curl of the vector in the integral in Eq. (22) is

∇ × [−4FMHM + 7 cGMDM ] =
c2

ε0
B0 sinθ

(
Q

4π

)2

×

[
2

R4
δ(r −R)−

θ(r −R)

r5

]
eφ . (26)

Substituting Eq.(25) in Eq.(21), and Eq.(26) in Eq.(22),
expanding the inverse distance 1/|x−y| in spherical har-
monics, and using their orthogonality properties one finds
after some lengthy algebra

E(x) = −
Q

8πε30µ0
ζ ∇x

{
B2

0

|x|
(1 + 7cos2θ)

−
7

3

B2
0R

2

|x|3
(3 cos 2 θ+ 1)−

µ0

10π2ε0

Q2

|x|5

}
, (27)

B(x) =
2 ζ

ε30
∇x ×

[
Q2

48π2

B0 × x

|x|3

(
1

R
+

3

4 |x|

)]
, (28)

which is the final result for the induced fields. The elec-
tric field E(x) has monopole and quadrupole type terms
with peculiar polar angle dependences, and a higher mul-
tipole term with no angular dependence, the latter being
independent of the external field B0. The leading order
(in 1/|x|) term in the the magnetic field above is due to
an induced magnetic dipole moment of strength

m =
c2

6 πε20
ζ
Q2

R
B0 , (29)

where the magnetic field Bd produced by a magnetic
dipole is defined as

Bd(x) = ∇×

[
µ0

4π

m× x

|x|3

]
. (30)

This induced effect is perhaps the most dramatic conse-
quence of non-linearity, as the magnetic field in the lin-
ear theory is only B0. In contrast, the induced electric
field, although peculiar in terms of its polar angle depen-
dence, is an extremely small correction to a preexisting
Coulomb field. To maximize the strength of the induced
dipole moment one would need to increase the electric
charge Q on the spherical shell and reduce its radius R.
However, due to dielectric breakdown which in air takes
place for |Eb| ≃ 3× 106V/m, there is a compromise rela-
tion between the maximum amount of charge, Qmax and
the minimum radius Rmin, i.e.

Qmax

R2
min

≃ 3× 10−4 C

m2
. (31)

Using this relation in Eq.(29) gives

|m| ≃ R3
min(m) |B0| (T) × 10−21Am2 , (32)

where the radius is expressed in meters and the
external magnetic field in Tesla. For instance, for
|B0| = 10T and Rmin = 10−2m one would have
|m| ≃ 10−26Am2, which is comparable to the magnetic
moment of the proton, measured with extreme accuracy,
i.e. mp = 1.408690424(4) × 10−26Am2 . Detection
of such a tiny effect would be quite challenging, but
its observation would provide a clear confirmation of
non-linear phenomena in QED.

After this work was completed we became aware of a
related calculation in the framework of the Born-Infeld
non-linear Lagrangian [4], which also exhibits an induced
magnetic dipole moment for a point charge in an external
magnetic field.

This work was supported in part by CONICET PIP-
6160, and Universidad Nacional de La Plata 11/X381
(Argentina), by FONDECYT 1051067, 7070178,
1060653, and Centro de Estudios Subatomicos (Chile),
and by NRF (South Africa). The authors wish to thank
D. Aschman, G. Tupper, H, Schoerer, and G. Werth for
discussions.



4

[1] Y.I. Salamin, S.X. Hu, K.Z. Hatsagortysan, and C.H. Kei-
tel, Phys. Rep. 427, 41 (2006); M. Marklund and P.K.
Shukla, Rev. Mod. Phys. 78, 591 (2006)

[2] W. Heinsenberg and H. Euler, Z. Phys. 98, 714 (1936),
English translation in W. Korolevski and H. Kleinert,
arXiv:physics/0605038; V. Weisskopf, K. Dan. Vidensk.
Selsk. Mat. Fys. Medd. 14, 6 (1936), English transla-
tion in Early Quantum Electrodynamics: A source book,
A.I. Miller ed., (Cambridge University Press, 1994); J.

Schwinger, Phys. Rev. 82, 664 (1951).
[3] For recent reviews see e.g. W. Dittrich and H. Gies, Prob-

ing the Quantum Vacuum (Springer-Verlag, Berlin, 2000);
G.V. Dunne, in From Fields to Strings, Vol. 1, 445, M.
Shifman, A. Vainshtein, and J. Wheater eds. (World Sci-
entific, Singapore, 2005).

[4] S.O Vellozo, et al. arXiv:0712.0322.

http://arxiv.org/abs/physics/0605038
http://arxiv.org/abs/0712.0322

	References

