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Abstract

We show here how to use pieces of thermodynamics’ first law to generate probability distributions for generalized

ensembles when only level-population changes are involved. Such microstate occupation modifications, if properly

constrained via first law ingredients, can be associated not exclusively to heat and acquire a more general meaning.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The first law of thermodynamics is one of physics’ most important statements. Together with the
second law, the two constitute strong pillars of our understanding of Nature. In statistical mechanics
an underlying microscopic substratum is added that is able to explain not only these laws but the
whole of thermodynamics itself [1–4], one of whose basic ingredients is a microscopic probability
distribution (PD) that controls the population of microstates of the system under consideration [1].
We will be concerned here only with changes that affect exclusively microstate-population. The way these
changes are related to changes in a system’s extensive quantities provides the essential content of the first law
[2]. In this effort we show that the above mentioned PD establishes a link between this aspect of the first
law, on the one hand, and the Maximum Entropy principle (MaxEnt), on the other, according to the scheme
given below.
�
 Hypothesis: for

�
 a given a concave entropic form (or information measure) S together with

�
 (1) a mean internal energy U, (2) mean values An � hAni; ðn ¼ 1; . . . ;MÞ of M additional extensive
quantities An, and (3) a temperature T,
e front matter r 2006 Elsevier B.V. All rights reserved.
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�
 Thesis: then, for any system described by

(1) a microscopic PD fpig, and
(2) assuming a reversible process via pi ! pi þ dpi,
(3) one can verify that:

(1) if the PD fpig maximizes S this entails dU ¼ T dS �
PM

n¼1 gn dAn, or, alternatively,
(2) if dU ¼ T dS �

PM
n¼1 gn dAn, this predetermines a unique PD that maximizes S.
It should be remarked that, curiously enough, this uniqueness of the PD does not demand (at this stage)
concavity (or convexity) of the entropy with regard to the distribution of probabilities, a requirement that
arises a posteriori, in further developing the theory of statistical mechanics [1]. The transit from (1) to (2) has
been studied, for instance, in Refs. [5,6] (by no means an exhaustive list!). Succinctly, given a specific S-form,

dU ¼ T dS �
XM
n¼1

gn dAn 3 MaxEnt prob. distr. fpig.

2. The proof

Consider a rather general information measure of the form

S ¼ k
X

i

pi f ðpiÞ, (1)

where for simplicity’s sake, Boltzmann’s constant is denoted just by k. The sum runs over a set of quantum
numbers, collectively denoted by i (characterizing levels of energy �i), which specify an appropriate basis in
Hilbert’s space and P ¼ fpig is an (as yet unknown) un-normalized PD such that

P
i pi ¼ constant, the

‘‘constant’’ being set eventually equal to unity (often it is preferably, for practical purposes, to postpone
normalization until the pertinent computation is finished).

Let f be an arbitrary smooth function of the pi, in such a way pi f ðpiÞ is a concave function. Further, consider
M quantities An that represent mean values of extensive physical quantities An. These take, for the state i, the
value an

i with probability pi. Also, we suppose that g is another arbitrary smooth, monotonic function of the pi

such that gð0Þ ¼ 0 and gð1Þ ¼ 1. We do not need to require the condition
P

i gðpiÞ ¼ 1. The mean energy U and
the An are given by

U ¼
X

i

�igðpiÞ; An ¼
X

i

an
i gðpiÞ. (2)

Assume now that the probability-set P changes in the fashion

pi ! pi þ dpi with
X

i

dpi ¼ 0 ðnormalization!Þ, (3)

which in turn generates corresponding changes dS; dAn, and dU in, respectively, S, An, and U.
The essential point that we are introducing in this effort is that we want to make sure that, in the above

described circumstances, the following condition, related to the first law, is obeyed:

dU � T dS þ
XM
n¼1

dAnln ¼ 0, (4)

with T the temperature. As a consequence of (4), a little algebra yields, up to first order in the dpi, the
conditionX

i

½C
ð1Þ
i þ C

ð2Þ
i �dpi �

X
Ki dpi ¼ 0,
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C
ð1Þ
i ¼

XM
n¼1

ln an
i þ �i

" #
g0ðpiÞ; C

ð2Þ
i ¼ �kT ½ f ðpiÞ þ pi f 0ðpiÞ�, (5)

where the primes indicate derivative with respect to pi. Eq. (5) should hopefully yield one and just one
expression for the pi.
2.1. Equality of the Ki in Eq. (5)

We proceed to show now that all the Ki are equal. As the dpi are linked by the relationX
i

Ki dpi ¼ 0, (6)

we can write, if we are dealing with N micro-states,

dpN ¼ �
XN�1
i¼1

dpi. (7)

Substituting (7) in (6) we obtain

XN�1
i¼1

ðKi � KN Þdpi ¼ 0. (8)

Now, since the N � 1 ‘‘population-variations’’ dpi are independent, this entails that each term in (8) should
vanish by itself, which implies that

Ki ¼ KN for all i ¼ 1; . . . ;N � 1. (9)

Thus, Ki ¼ constant (in the sense of being independent of i) ¼ K for all i.
2.2. The role of K

Interestingly enough, we do not need to give a specific value to K for our present purposes, although it will
become clear below that it is related to the probabilities-normalization constant. We only need to ascertain the
K-role, in the following sense. We have, on account of (9),

K ¼ C
ð1Þ
i þ C

ð2Þ
i ðfor any iÞ,

C
ð1Þ
i ¼

XM
n¼1

ln an
i þ �i

" #
g0ðpiÞ,

C
ð2Þ
i ¼ �kT ½ f ðpiÞ þ pi f 0ðpiÞ�, (10)

so that, if we redefine things in the fashion

T
ð1Þ
i ¼ f ðpiÞ þ pi f 0ðpiÞ,

T
ð2Þ
i ¼ �b

XM
n¼1

ln an
i þ �i

 !
g0ðpiÞ � K

" #
ðb � 1=kTÞ, (11)

we can recast (10) as

T
ð1Þ
i þ T

ð2Þ
i ¼ 0 ðfor any iÞ, (12)

a relation whose importance will be presently become manifest.
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2.3. The MaxEnt route revisited

Assume now that you wish to extremize S subject to the constraints of fixed valued for (i) U and (ii) the M values
An. This is achieved via Lagrange multipliers (1) b and (2) Mgn. We also need a normalization Lagrange multiplier x.

dfpig
S � bU �

XM
n¼1

gn An � x
X

i

pi

" #
¼ 0, (13)

leading to, with gn ¼ bln, to

0 ¼ dpm

X
i

pi f ðpiÞ �
X

i

bgðpiÞ
XM
n¼1

ln an
i þ �i

 !
þ xpi

" # !
, (14)

so that

0 ¼ f ðpiÞ þ pi f 0ðpiÞ � bg0ðpiÞ
XM
n¼1

ln an
i þ �i

 !
þ x

" #
) if x � bK ,

0 ¼ f ðpiÞ þ pi f 0ðpiÞ � b g0ðpiÞ
XM
n¼1

ln an
i þ �i

 !
þ K

" #
) 0 ¼ T

ð1Þ
i þ T

ð2Þ
i . (15)

Clearly, (12) and the last equality of (15) are one and the same equation! The equivalence stated in the Abstract is thus
proven.

3. Discussion

We have here endeavored to show that appropriate manipulation of some ingredients of the first law of
thermodynamics can be used to generate the equilibrium microscopic probability distribution (PD) that
describes a system within the framework of a generalized ensemble [1], and that such an approach is an
alternative to the MaxEnt-one. We were exclusively concerned with changes that affect exclusively microstate-
population and, more specifically, with the way these modifications are related to internal variation of the
system’s extensive quantities [2]. We started with (1) a given concave entropic form (or an information
measure (IM)) S, (2) a mean internal energy U, and M mean values An � hAni ðn ¼ 1; . . . ;MÞ of M extensive
quantities An, (3) a temperature T, and demonstrated that, for any system described by a microscopic
probability distribution (PD) fpig, assuming a reversible process via pi ! pi þ dpi that is forced to verify
the relation dU ¼ T dS �

PM
n¼1 gn dAn, we got an equation that yields a unique PD that maximizes S. By way

of contrast, MaxEnt starts from S and, extremizing it with appropriate constraints, allow one to find the
system’s PD. In other words, dU ¼ T dS �

PM
n¼1 gn dAn3MaxEnt prob. distr. fpig. An alternative route to

microscopic PDs, with some first law flavor, has thus been found in the present communication.
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