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a b s t r a c t

A multichannel S-matrix framework for singular quantum mechan-
ics (SQM) subsumes the renormalization and self-adjoint exten-
sion methods and resolves its boundary-condition ambiguities. In
addition to the standard channel accessible to a distant (‘‘asymp-
totic’’) observer, one supplementary channel opens up at each co-
ordinate singularity, where local outgoing and ingoing singularity
waves coexist. The channels are linked by a fully unitary S-matrix,
which governs all possible scenarios, including cases with an ap-
parent nonunitary behavior as viewed from asymptotic distances.
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1. Introduction

The central construct in quantum scattering processes is the S-matrix. However, while the or-
thodox formulation of the S-matrix is applicable to regular quantum mechanics and quantum field
theory, its generalization for singular quantum mechanics (SQM) remains an open problem. In ef-
fect, the S-matrix orthodoxy is called into question due to the breakdown of the regular bound-
ary condition at the singularity; this can be described as the loss of discriminating value when
two linearly independent solutions remain equally acceptable for attractive singularities [1–5]. In
addition, there is the issue of the possible emergence of nonunitary solutions [6,7] and the sin-
gular nature of the bound-state spectrum [8–16]. These extreme departures from regular quan-
tum mechanics are evident for strongly singular attractive potentials—see definitions in Refs.
[1,2], and in our Section 2.

In this paper we circumvent the divergence and unitarity challenges posed by SQM through a
novel multichannel framework that comprehensively subsumes the well-established renormalization
schemes of Refs. [8–14] and themethod of self-adjoint extensions [15,16]. The latter is an efficient tech-
nique to handle this breakdown and the ensuing indeterminacy of the solutions by properly defining
the domain of the Hamiltonian to guarantee self-adjointness. Our framework does provide a prac-
tical implementation of this technique, but also extends its usefulness beyond self-adjointness. In
effect, the generalized framework consistently includes physical realizations with effective absorp-
tion [6,7] or emission by the singular potential—including, for example, the absorption of particles
by charged nanowires (with conformal quantum mechanics) [17,18], the scattering by polarizable
molecules (with an inverse quartic potential) [6], and miscellaneous applications to black holes
[19–21] and D-branes [22–25].

In the proposed framework, a singularity point is treated as the opening of a new channel in lieu of
a boundary condition. A consequence of this constructive approach is the existence of associated local
outgoing and ingoing waves near the singularity—the natural generalization of the solutions used for
the inverse quartic potential in Ref. [6] and the inverse square potential in Ref. [7]. In our framework,
the crucial guiding criterion is the acceptance, on an equal footing, of these ‘‘singularity waves’’ as basic
building blocks. In its final form, two related quantities are considered:

1. A unitary multichannel S-matrix [S], which effects a separation of the singular behavior at a point
(for example, r ∼ 0) from the longer-range properties of the interaction.

2. An effective or asymptotic S-matrix Sasymp, which directly yields the scattering observables viewed
by an asymptotic observer according to the standard procedures of regular quantum mechanics.

While Sasymp may fail to be unitary due to the boundary condition ambiguities, the S-matrix [S] is
guaranteed to satisfy unitarity for the quantum system that includes a channel connected to the
singularity. In other words, when the singularity point is redefined as external to the given system
(i.e., removed from the observable physics), unitarity is automatically restored within the enlarged
multichannel system. Specifically, the S-matrix Sasymp is obtained via a Möbius transformation [26] of
a complex-valued singularity parameter Ω (which specifies an auxiliary ‘‘boundary condition’’), with
coefficients provided by the multichannel S-matrix [S].

We have organized our paper as follows. In Section 2 we define singular potentials and SQM, and
thereby discuss the boundary condition at the singularity and derive the existence of local ingoing
and outgoing waves. The multichannel framework and properties of the S-matrix are introduced in
Section 3, leading to the definition of the effective asymptotic S-matrix Sasymp in Section 4. In Section 5
we derive the multichannel S-matrix [S] for conformal quantum mechanics (Section 5.1) and for the
inverse quartic potential (Section 5.2); for the conformal case, we extensively consider additional
features arising from its SO(2,1) symmetry. The paper concludes in Section 6 with a comparative
discussion of the multichannel S-matrix versus earlier approaches to SQM and related physical
realizations. In the appendices, we discuss transformation properties andwe include twomodels that
modify conformal quantum mechanics in the infrared, verifying the robustness of the framework.
Additional analytic properties and technical subtleties of this versatile framework are left for a
forthcoming follow-up paper.
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2. Singular interactions: definition, boundary conditions, and ‘‘singularity waves’’

2.1. Singular quantum mechanics (SQM): definition

To properly set up our novel multichannel framework in its simplest form, we will define singular
quantum mechanics by focusing our analysis on the cases where a strong definition of the concept of
singular potential is in place. This assumes a sufficiently attractive interaction in the neighborhood of
the coordinate singularity.

In the main body of the literature, singular potentials are defined within a broader class (weak
or generic definition), including also the repulsive ones [1,2]. In all cases, the singular class involves
interactions at least as dominant as 1/r2 (order of the angular-momentum potential) around the
singular point, which we will call coordinate singularity, and is herein identified as r = 0 (see
exceptions below, after Eq. (2)). In other words, a regular potential is defined as one for which
limr→0 r2V (r) = 0; and a singular one does not satisfy this condition. A (properly) singular potential
is defined by the condition limr→0 r2V (r) = ±∞, where the ± sign corresponds respectively to
repulsive/attractive potentials (near the singularity). For amarginally singular or transitionally singular
potential (known as the inverse square potential), the limit above is a finite constant: limr→0 r2V (r) =

λISP (this is p = 2 in Eqs. (1)–(2) below); but in the presence of logarithmic singularities, the marginal
class is defined by the limit limr→0 r2+ϵV (r) = 0, ∞ for all ϵ

>
< 0 [1].

For the sake of simplicity, we will restrict our analysis to any problem where the relevant physics
is described by the class of Schrödinger-like equations

d2

dr2
+ k2 − V (r) −

(l + ν)2 − 1/4
r2


u(r) = 0, (1)

in which the term

V (r)
(r→0)
∼ −

λ

rp
, (2)

is the singular interaction. The parameters l and ν (usually associated with angular momentum and
spatial dimensionality) are to be adjusted within a given application (see Section 2.2); moreover, the
coordinate singularity may be at a point other than the origin, for example the Schwarzschild radius
of a spherically symmetric black hole, causing a mismatch between the power −2 of the angular
momentum and the order of the singular potential [13,19,20]. In most cases, though, the angular
momentum is combined at the same order with the inverse square potential. Thus, our formalism
broadly applies to any problem that reduces to the limiting form of Eqs. (1)–(2) as r → 0. The
potentials of Eq. (2) are the most commonly occurring in physical applications, including the ones
listed in Section 1 and in Section 2.2. But other functional forms are possible, including those with
logarithmic and exponential singularities at the origin [1].

In essence, the classification above is motivated by the change in the analytic properties of the
solutions and the S-matrix for Eq. (1)when the exponent p crosses the p = 2 threshold. In the language
of differential equations [27], the point r = 0 is an irregular singular point for p > 2, a regular singular
point for p = 2, and an ordinary (nonsingular) point for p < 2. Now, even though the scattering
quantities (involving integral equations and related analytical tools) have peculiar properties for all
generalized singular potentials, the observable physics becomes distinctly more dramatic (e.g., the
‘‘fall to the center’’ phenomenon [3]) only in the attractive case, which we will often refer to as the
strong coupling regime. In effect (see Section 2.3), all strongly attractive singular potentials yield two
linearly independent wave-like solutions that are equally acceptable from a first-principle physical
viewpoint [1,2]—thus, they pose an indeterminacy or ‘‘loss of boundary condition’’ [11,28]. In this
paper, we will not address the weak coupling regime, i.e., the repulsive singular interactions; notice
that we still refer to strongly repulsive interactions as belonging to the weak-coupling regime, by
abuse of language. Of course, assuming that the strong-coupling results are established, these can
then be extended to weak coupling by an appropriate analytic continuation. Within this context, the
inverse square potential—defining conformal quantum mechanics (CQM)—is the marginal case, for
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which there is a nonzero critical coupling [3,4,9,11]. The subtle issues involved in the extension from
the strong to theweak coupling, and the existence of amedium-couplingwindow for CQM [29]will be
discussed in a forthcoming follow-up paper, along with additional analytic properties of the S-matrix.

Another qualification of our proposed framework involves contact (point or zero-range)
interactions, which include Dirac delta functions and derivatives. These generalized functions are also
related to boundary conditions, though they represent appropriate limits of finite potentials in actual
phenomenological applications. In principle, they could be added to our description as subsidiary
boundary conditions, but they play a role distinctly different from power-law singular interactions.
In contradistinction, the latter can be appropriately called non-contact singular potentials, and they
are the main focus of our approach. Contact interactions may still be hiding in power-law SQM via
the boundary conditions and/or as renormalization counterterms, but their presence will not be
acknowledged in the absence of additional physical justification. This distinction, based on physical
considerations, is of prime importance to properly interpret some of the results associated with
domains of operators and self-adjoint extensions—an issue that is crucial to a proper interpretation
of the medium-weak (intermediate) coupling in CQM, as discussed in Ref. [29]. We will extend our
study of analytic properties of ourmultichannel framework in our follow-uppaper,where these subtle
issues and distinctions will be further dissected.

2.2. SQM: range of applicability

As mentioned in Section 1, SQM can have a wide range of applications. Thus, depending on the
context, Eq. (1) may have very different physical interpretations.

For the particular case of nonrelativistic quantum mechanics, Eq. (1) is the familiar radial
counterpart of the ordinary Schrödinger equation, generically derived via the representation Ψ (r) =

Ylm(�)u(r)/r (d−1)/2 of themultidimensional wave function in d spatial dimensions, with ν = d/2−1.
In addition, even in the notoriously difficult cases of anisotropic singularities [12,13], a reduction
process can be justified in any number of dimensions to an effective one-dimensional form similar
to Eq. (1). In these cases, the usual quantum-mechanical interpretation can be enforced.

As it turns out, the analysis of physical systems using Eq. (1) is not limited to nonrelativistic quantum
mechanics. In effect, equationswith a leading singularity of the form (1) arise from a reduction process
in miscellaneous applications such as the near-horizon physics and concomitant thermodynamics
of black holes [19,20,30,31], D-branes [22–25], gauge theories [13,32], and quantum cosmology
[33,34]—due to space limitations, the list of applications and references is incomplete. Parentheti-
cally, as mentioned above, the generic theory still applies but care should be exercised in these cases
when the angular momentum does not appear at the same order with the inverse square potential
[13,19,20].

2.3. SQM: singularity waves

From the foregoing discussion, the nature of the singular point r = 0 in Eq. (1) unambiguously
leads to the generic definition of singular potentials. As we will see next, it is possible to derive the
explicit form of the solutions as r → 0 and verify that there is a breakdown of the boundary condition
at the singularity for the sufficiently attractive case [1–5] with p = 2 and for all attractive cases with
p > 2.

Specifically, in the presence of a sufficiently attractive singular potential, there exists a set of
solutions

Bsing =


u+(r), u−(r)


(3)

that behave as local outgoing/ingoingwaveswith respect to the singularity.Without loss of generality,
the near-singularity waves u±(r) are properly defined through their functional form in the limit
r ∼ 0, which can be completely characterized by the WKB method. Even though this semiclassical
technique is usually regarded as an ‘‘approximation’’ or estimate, WKB becomes ‘‘asymptotically
exact’’ near a coordinate singularity (singular point of differential equation) [1,20]. In other words, to
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any desired degree of accuracy with respect to r (with the similarity symbol standing for asymptotic
approximation hereafter),

u±(r)
(r→0)
∼

1
kWKB,sing(r)

exp

±i

 r

r0
dr ′ kWKB,sing(r ′)


, (4)

where kWKB,sing(r) is the leading part of the WKB local wavenumber (with respect to r → 0) and r0 is
an arbitrary integration point. From the dominant near-singularity contribution, it follows that

kWKB,sing(r)
(r→0)
∼


√

λ r−p/2 if p > 2
Θ

r
if p = 2.

(5)

Thus, by separate direct integration in Eq. (4) for the properly and marginally singular cases, the
singularity waves are given by

u±(r)
(r→0)
∼

rp/4

λ1/4
exp


∓2 i λ1/2 r−(p/2−1)

(p − 2)

r
r0


(6)

(r→0)
∼

rp/4

λ1/4
exp


∓2 i λ1/2 r−(p/2−1)

(p − 2)


(7)

and

u±(r)
(r→0)
∼


r
Θ

exp[±iΘ ln (µr)] . (8)

For p > 2 in Eq. (7), the integral in the exponent yields an arbitrary additive constant, which is given
by the integration point r0; but this is of higher order in the asymptotic expansionwith respect to 1/r .
It should be noticed that, by contrast, the integration constant does not disappear for p = 2, where
µ is a floating inverse length that arises from the arbitrary integration point, i.e., µ = r−1

0 in Eq. (8),
which can also be written a simple power-law behavior with imaginary exponent,

u±(r)
(r→0)
∼


r
Θ

( µ r )±iΘ . (9)

Moreover, the case p = 2 includes the Langer correction [35] corresponding the critical coupling
λ = 1/4. Thus, the shifted coupling constant

Θ2
≡ λ − 1/4 (10)

(or its square root) becomes the relevant variable in what follows. Furthermore, in the particular
case of nonrelativistic quantum mechanics (but not for quantum fields in black hole backgrounds)
the angular momentum is merged with the marginally singular p = 2 term (same order), leading to
an effective interaction coupling. In that case, all the formulas for CQM in this section should involve
the replacements λ → λ − (l + ν)2 + 1/4 and, for the critical coupling per angular-momentum
channel [11]: λ(∗)

= (l + ν)2, i.e., Θ2
l = λ − λ(∗).

Interestingly, these expressions can be combined into the single form

u±(r)
(r→0)
∼

rp/4

λ̃1/4
exp


∓2 i λ̃1/2 r−(p/2−1)

(p − 2)


, (11)

by direct integration of the generic case—but keeping the integration point r0 as in Eq. (6), which we
omit for the sake of simplicity. Here,

λ̃ =


λ for p > 2
λ − 1/4 = Θ2 for p = 2. (12)
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The marginally singular case indeed satisfies Eq. (11), as can be verified by taking the limit p → 2 of
what appears to be a singular expression. In this case, using p = 2+ϵ, the exponent in Eq. (11), before
dropping the integration point r0, becomes

y = ∓2iλ̂1/2µ−ϵ/2

r−ϵ/2/ϵ − r−ϵ/2

0 /ϵ


, (13)

where r0 = µ−1 is an arbitrary integration point defining a floating undetermined inverse length µ,
and λ̃ = λ̂µ−(p−2), with µ̂ dimensionless, as required by dimensional analysis. In the limit ϵ → 0,
with Aϵ

= 1+ϵ ln A+· · ·, the exponent indeed becomes y = ±iΘ ln (µr). This simple algebra clearly
illustrates the peculiar features involved in CQM, p = 2: (i) the existence of a critical coupling; (ii) the
scale/conformal invariance (i.e., SO(2,1) symmetry); (iii) the ensuing emergence of an arbitrary scale
µ. These issues will be further explored in Section 5.1.

An alternative derivation follows from the solutions of differential equation (1) with k = 0, as
the term k2 becomes negligible when r → 0 (i.e., it is of higher order in the asymptotic expansion
with respect to 1/r). For p > 2, the solution is of the form u ∝

√
r Z−1/n


−2

√
λ r−n/2/n


,

where n = p − 2 > 0 and Zs(ξ) (with s = −1/n) stands for a generic Bessel function. Notice
that as 1/r → ∞, the argument can be evaluated with the asymptotics of Bessel functions, with

the Hankel functions Z = H(1,2) having the correct outgoing/incoming behavior, H(1,2)
s (ξ)

(ξ→∞)
∼

√
2/πξ exp {±i [ξ − sπ/2 − π/4]}. As a result, for p > 2, u± ∝ r1/2


r−n/2

−1/2 e∓2i
√

λ r−n/2/n

(factoring out several constants), which is indeed of the form (7), with the correct prefactor given by
enforcingWKB normalization. On the other hand, the kr ∼ 0 limit for p = 2 of Eq. (1) is dimensionally
homogeneous, i.e., it is a Cauchy-Euler differential equation [36],whence Eq. (9) follows; and yet again,
the factor µ arises from dimensional homogeneity.

In addition, it should be noticed that the proper WKB amplitude prefactors in Eqs. (4)–(11)
are needed for a correct local definition compatible with probability conservation; moreover, the
‘‘minimalist’’ normalization of Eqs. (4)–(11) simplifies the current-conservation relationships, but
other normalizations are also possible. These issues are further discussed in Sections 3 and 4—thus
playing a critical role in specific calculations (see Section 5 for particular cases). A key feature of the
solutions u±(r) displayed in Eq. (11) is its independence with respect to the details of the physics at
much longer length scales. Moreover, such near-singularity form of u±(r) is valid for all interactions
with p ≥ 2, thus covering all singular cases of physical interest. The particular cases p = 2 and p = 4
will be further discussed in this paper.

We can now see that the loss of boundary condition [11,28] in Eq. (1), i.e., the indeterminacy of
the solutions, is a direct consequence of the defining clear-cut dominance of the singular interaction
over the kinetic part of the Hamiltonian. Straightforward scaling of the terms of Eq. (1) shows that
strong singular behavior occurs when a potential diverges in terms of the coordinate r at least as

V (r)
(r→0)
∝ −r−p, with p ≥ 2 and r = 0 being the coordinate singularity. In effect, for r ∼ 0,

the preponderance of the singular interaction drives the states of the system to an ever increasing
oscillatory behavior with respect to decreasing values of r . As a consequence, the evolution of the
system and the properties of the associated states for r → 0 are governed in principle by both states
of the basis set (3).

The building blocks u±(r) of Eq. (3) play a preferential role as ‘‘singularity probes’’, i.e., they capture
the leading behavior of the theory when r ∼ 0. Thus, in terms of these singularity waves, the general
solution to Eq. (1) admits the expansion

u(r) = C (+)u+(r) + C (−)u−(r), (14)

which we will conveniently rewrite in the form

u(r) ∝ Ω u+(r) + u−(r). (15)

In Eq. (15) the proportionality symbol indicates that a factor C (−) is extracted and

Ω =
C (+)

C (−)
(16)
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can be regarded as a ‘‘singularity parameter’’ measuring the relative probability amplitudes of
outgoing (emission) to ingoing (absorption) waves associated with the neighborhood of r = 0. In
essence, a particular choice of Ω is tantamount to specifying an auxiliary ‘‘boundary condition’’.
It should be noticed that, for the particular values |Ω| = 1, the analysis of Section 4.2 shows
that evolution is unitary, i.e., probability-current-conserving and thus corresponds to a self-adjoint
differential operator: the effective Hamiltonian is self-adjoint—an issue that will be further analyzed
in the follow-up paper. Notice that this amounts to introducing an arbitrary phase γ associated with
an infinite family of self-adjoint extensions, and which leads to the relative phase between the two
singularity waves, as first proposed in Ref. [15] and further elaborated in Ref. [4]. In our multichannel
S-matrix language, this amounts to

Ω = −e2iγ H⇒ uself-adjoint
(r→0)
∝

1
kWKB,sing(r)

sin
 r

kWKB,sing(r ′)dr ′
+ γ


(17)

(with asymptotic proportionality involving a constant−2ieiγ ). Notice that the arbitrariness of γ leads
to an infinite set of quantum theories labeled by specific values of a self-adjoint extension parameter.

In short, unlike the case of regular quantum systems: both states u±(r) are in principle on an
equal footing; and the various linear combinations (15) may exhibit different degrees of probability
loss or gain. Clearly, only the use of additional information arising from the ultraviolet physics can
circumvent this peculiar indeterminacy. The central result of our proposal is that this information
about the singular interaction can be completely subsumed in amultichannel framework, as discussed
in the next section.

3. Multichannel framework for singular quantummechanics: transfer and scattering matrices

3.1. Singular potentials: bases and indeterminacy

The indeterminacy posed by a coordinate singularity involves the set Bsing =


u+(r), u−(r)


of

Eq. (3), whose existence suggests the following procedure as a treatment for this ‘‘pathology’’. In this
approach, the singularity is now regarded as a ‘‘hole’’ Psing to be excluded from the relevant domain
for Eq. (1), i.e, D0 = D − Psing, with outgoing and ingoing waves connecting the disjoint parts D0
and Psing. Thus, Psing effectively behaves as a ‘‘singularity channel’’, describing quantum-mechanical
transference of probability to and from an ultraviolet sector. In this view, Psing can exhibit a variety of
behaviors according to the short-scale physics—including cases where neglecting the role played by
Psing may be construed as apparent nonunitarity.

In order to implement this idea, one additional step is needed. As in regular quantum mechanics,
the observables can be determined by measurements performed via an observer at asymptotic
infinity. One may also view this process as defining a ‘‘channel’’ that connects the physical domain
D0 to asymptotic infinity. The details of the determination of physical observables, leading to the
asymptotic S-matrix Sasymp, will be further developed in the next section. These details rely on
two independent solutions u1,2(r) of Eq. (1) that behave as outgoing/ingoing waves at infinity.
Correspondingly, the building blocks u1,2(r) can serve as another set

Basymp =


u1(r), u2(r)


(18)

of the two-dimensional space of solutions, distinct from that of Eq. (3), i.e.,

u(r) = C (1)u1(r) + C (2)u2(r). (19)

Furthermore, the solutions to Eq. (1) turn into a free-wave form e±ikr (or quasi-free for the conformal
case) as r ∼ ∞; correspondingly, in our treatment, we will adopt the convention

u1,2(r)
(r→∞)

∼
1

√
k
e∓iπ/4 e±ikr , (20)
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Fig. 1. Graphical depiction of the multichannel framework as a ‘‘black box’’ linking the near-singularity domain (r ∼ 0) with
the asymptotic domain (r ∼ ∞). In all singular systems one could identify at least one relevant scale L (and possibly more than
one) for the hierarchical definitions r ≪ L and r ≫ L of the two domains above. The transitional domain (r ∼ L) includes
a generic interaction that governs the coefficients of the multichannel matrices. The arrows to the left and to the right of the
‘‘black box’’ represent the outgoing and ingoing building blocks (waves) at the singularity,u+ andu− , and at asymptotic infinity,
u1 and u2 .

where the chosen phaseswill prove convenient for comparisonwith asymptotic expansions of Hankel
functions, as discussed in Section 4. It should be noticed that, when the potential has a long-range tail
V (r) ∼ −λr−δ , the asymptotic behavior is governed by the counterpart of Eq. (4) at infinity with the
extra phase, i.e.,

u1,2(r)
(r→∞)

∼ e∓iπ/4 1
kWKB,sing(r)

exp

±i

 r

dr ′ kWKB,sing(r ′)


(21)

(r→∞)
∼

1
√
k
e∓iπ/4 e±ikr e±iλr1−δ/2k(1−δ), (22)

which yields an asymptotic position-dependent factor e±iλr1−δ/2k(1−δ) when δ ≤ 1; for the critical
case δ = 1, considered in Appendix B, the extra factor is e±iλ ln(µr)/2k (with some convenient scale
µ). It should be noticed that, if this procedure looks almost identical (Eqs. (4) and (21)), it is because
the point at infinity is a singular point of Eq. (1)—thus, WKB is also asymptotically exact, and the
outgoing/incoming waves play a similar role.

3.2. Multichannel framework

As a consequence of the above choices, a two-channel framework for one singularity (N = 1) is
naturally defined in terms of:

• Channel Psing with set Bsing, Eq. (3), uniquely characterized by the ‘‘ultraviolet’’ near-singularity
behavior (4) (or (11)).

• Channel Pasymp, with set Basymp, Eq. (18), uniquely characterized by the infrared asymptotic
behavior (20) or (22).

The relationship between the basis sets is determined by the physics in the transitional region, which
may include any generic potential, as displayed in the geometry of Fig. 1. This connection between the
singularity, described via


u+ u−


, and asymptotic infinity, described via [u1 u2], can be analytically

represented in matrix form

uj(r) =


σ=±

ασ
j uσ (r) (for j = 1, 2), (23)
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i.e., 
u1 u2


=


u+ u−


α


. (24)

Thus, for the all-important case of one singular interaction, the multichannel framework is
encapsulated in a transfer matrix

α


=


α+

1 α+

2
α−

1 α−

2


, (25)

with the elementsασ
j defined by the transformation equation (23). Eq. (24) is equivalent to the relation

C (+)

C (−)


=


α

 
C (1)

C (2)


(26)

between the amplitude coefficients.
The elements of the first column are selected via C (1)

= 1, C (2)
= 0: let α+

1 ≡ α, α−

1 ≡ β , where α
and β are arbitrary complex parameters. Similarly, the elements of the second column correspond to
C (1)

= 0, C (2)
= 1; however, this selection amounts to time-reversal of the first column in the form:

α+

2 = β , andα−

2 = α, where the overbar notation represents the time-reversed variables—i.e., the ‘‘in’’
asymptotic state is the time-reversed ‘‘out’’ asymptotic state, and likewise with the near-singularity
states. Then,when the condition of time-reversal symmetry applies:α+

2 = β = β∗ andα−

2 = α = α∗.
This is known from general properties (as a consequence of Eq. (1)), but can also be directly rederived
by writing u1 = αu+ + βu− from Eq. (23), followed by complex conjugation u∗

1 = α∗u∗
+

+ β∗u∗
−
and

identification of the basis functions u∗
±

= u∓ and u∗

1,2 = u2,1, whence u2 = β∗u+ + α∗u−. Then, the
transfer matrix has the generic time-reversal invariant form

[α] =


α β∗

β α∗


. (27)

This restriction reduces [α] to a dependence from 8 real parameters to only four real parameters
(namely, time-reversal amounts to 4 real constraints). As we will see in the next subsection, there
is an additional constraint related to the property of current conservation.

3.3. Currents and associated properties

Eq. (1) is of Sturm–Liouville type, for which, in general, theWronskianW

u, v


of two solutions u

and v is completely determined by the coefficients of the differential equation [36]. This also applies

to W

u∗, v


due to the reality of the coefficients. In particular, for a given eigenvalue in Eq. (1), this

implies that W

u∗, v


= const; under such conditions, with u = v and setting J[u] = W [u∗, u]/i, a

conserved current is defined by the familiar expression

J

u


=
1
i
u∗(r)u′(r) + c.c., (28)

where c.c. stands for the complex conjugate and u′(r) = du/dr . This quantity is indeed proportional
to the quantum-mechanical probability current in ordinary quantummechanics (viz., in natural units
h̄ = 1 andm = 2).

With the conventional normalizations chosen in Eqs. (4) and (20), Eq. (28) yields the constant
currents

J

u±


= ±2, J


u1,2


= ±2 (29)
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for the given bases; and

J

C (+)u+(r) + C (−)u−(r)


= 2

C (+)
2 −

C (−)
2 (30)

J

C (1)u1(r) + C (2)u2(r)


= 2

C (1)
2 −

C (2)
2 , (31)

for the generic functions of Eqs. (14) and (19).
Eqs. (23) and (24) give the components of the set (18) of basis functions u1 and u2 in the singularity

basis (3), in terms of the transfer-matrix coefficients. From the values of W

u∗

1, u1


, W


u∗

2, u2


,

W

u∗

1, u2


, andW


u1, u2


(which are all constant for a given eigenvalue k2 in Eq. (1)), the following

conditions are respectively established: the first two,

|α|
2
− |β|

2
= 1, |α|

2
− |β|

2
= 1 (32)

specify current conservation, i.e., Eqs. (30) and (31), while the last two equations correlate the
solutions u1 and u2, which amounts to the basic set of time-reversal relations

β = β∗ α = α∗. (33)

The set of ancillary current-conservation equations (32),which amount to just a single conditionunder
time-reversal invariance, further restricts the degrees of freedom of the transfer matrix to only 3 real
parameters. This exhausts all the basic restrictions, because the number of suchWronskians involving
the basis (18) and its complex conjugate is actually 10, but two of these are trivially zero and the other
four are equivalent (by complex conjugation) to the 4 relations (32)–(33).

It should be noticed that, in scattering theory, a ‘‘mixed basis’’ is usually considered, which
essentially consists of the outgoing states on either side, i.e., u1 and u−. These linearly independent
states are usually defined with an ad-hoc normalization

ǔ1 =


u+ + Ru−, for x ∼ 0
T u1, for x ∼ ∞

(34)

ǔ− =


u2 + R′u1, for x ∼ ∞

T ′u−, for x ∼ 0. (35)

From the values ofW

ǔ∗

1, ǔ1


,W


ǔ∗

−
, ǔ−


,W


ǔ∗

1, ǔ−


, andW


ǔ1, ǔ−


, the following conditions are

respectively established:

|R|
2
+ |T |

2
= 1, |R′

|
2
+ |T ′

|
2

= 1 (36)

R∗T ′
+ T ∗R′

= 0, T ′
= T . (37)

The first two equations specify current conservation, i.e., via Eqs. (30) and (31); while the last two
correlate the solutions ǔ− and ǔ1, in away that amounts to the basic set of time-reversal relations [37],
as implied by the time reversal of Eq. (1). As for the basis (18) (with transfer-matrix coefficients) above,
no additional restrictions are implied by current conservation and time-reversal invariance, because
the number ofWronskians involving the basis (34)– (35) and its complex conjugate is also 10,with two
of these being trivial and the other four being equivalent (by complex conjugation) to the 4 relations
(36)–(37).

The parameters in Eqs. (34) and (35) are the familiar amplitude transmission (T , T ′) and reflection
(R, R′) coefficients, which we have conveniently normalized via Eqs. (11) and (20). Their squared
moduli represent the ratio of transmitted or reflected currents relative to the incident currents for the
solutions (34) and (35). As we will see next, this particular basis set can be compactly described by
the S-matrix framework.
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Fig. 2. Computation of the elements of the multichannel S-matrix in terms of reflection and transmission coefficients. The
coefficients T and R are associated with transmission and reflection by the ‘‘black box’’ or transitional domain, as caused by
the generic interaction, for right movers—they determine the first column of the S-matrix. Likewise, the coefficients T ′ and R′

are associatedwith leftmovers (in parentheses)—theydetermine the second columnof the S-matrix. Thedouble arrows indicate
that the attached labels are amplitude coefficients (as opposed to the single arrows of Fig. 1 representing basis functions).

3.4. S-matrix

The S-matrix [ S ] provides an alternative representation for the two-channel framework, with its
well-known properties in all areas of physics and applied science. Moreover, this framework lends

itself for a generalization to any number of channels. In this approach, the ‘‘in’’ states

u+ u2


with

respect to the transitional domain (‘‘black box’’ in Fig. 1) are related to the corresponding ‘‘out’’ states
u− u1


by the multichannel S-matrix

[S] =


S−

+
S−

2
S1
+

S12


, (38)

so that
u+ u2


=


u− u1


[S] . (39)

Eq. (39) is equivalent to the relation
C (−)

C (1)


= [S]


C (+)

C (2)


(40)

between the amplitude coefficients.
The S-matrix [S] can be rewritten in terms of the transmission and reflection coefficients associated

with the passage through the transitional domain displayed in Fig. 1, as the following argument shows.
Let T and R be the transmission and reflection coefficients for propagation from left to right; and
T ′ and R′ the transmission and reflection coefficients for propagation from right to left. In the two-
step argument represented in Fig. 2: consider first an incident right mover with ‘‘initial amplitudes’’
C (+)

= 1 and C (2)
= 0, leading to a transmitted amplitude C (1)

= T and a reflected amplitude
C (−)

= R, as shown by the first entries in Fig. 2. Then, substituting the initial amplitudes in Eq. (40),
the first column of [S] is selected as


R
T


. In a similar manner, as shown by the second entries in Fig. 2,

for an incident left mover with ‘‘initial amplitudes’’ C (2)
= 1 and C (+)

= 0, leading to a transmitted
amplitude C (−)

= T ′ and a reflected amplitude C (1)
= R′, Eq. (40) selects the second column of [S]:

T ′

R′


. As a result,

[S] =


R T ′

T R′


, (41)
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i.e., S is completely characterized in terms of the transmission coefficients: T = S1
+
and T ′

= S−

2 , and
reflection coefficients: R = S−

+ and R′
= S12 , for the transitions left–right and right–left connecting

the singularity channel to asymptotic infinity. This representation of the S-matrix is guaranteed to be
unitarydue to probability conservation; and symmetric, whenever time-reversal invariance is satisfied.
These properties are given by Eqs. (36) and (37).

Moreover, the corresponding connection with the transfer matrix (27) is given by the ratios

S−

+
= R =

β

α
(42)

S1
+

= T =
1
α

. (43)

As can be easily verified, Eqs. (32) and (33) are thus equivalent to Eqs. (36) and (37).
It should be pointed out that while the transfer matrix is specific to our analysis of a single-

singularity system, the multichannel S-matrix allows for generalizations to an arbitrary number N
of singularities (via an (N + 1) × (N + 1) matrix).

4. Asymptotic S-matrix

4.1. Singular-system asymptotics

A crucial point in this framework is that the standard scattering parameters measured by an ob-
server at asymptotic infinity are not simply conveyed by the S-matrix (38). By contrast, the scattering
parameters are to be provided through the usual algorithms of regular quantummechanics by means
of an asymptotic S-matrix Sasymp, which is defined for each angular momentum in terms of the expan-
sion

u(r)
(r→∞)

∼
√
r

A(1)(k)H(1)

l+ν(kr) + A(2)(k)H(2)
l+ν(kr)


, (44)

with H(1,2)
l+ν (kr) being Hankel functions. Eq. (44) leads directly to the S-matrix as the simple ratio

Sasymp =
A(1)

A(2)
; (45)

thus, we can conveniently rewrite

u(r)
(r→∞)

∝
√
r

Sasymp H

(1)
l+ν(kr) + H(2)

l+ν(kr)

. (46)

Furthermore, an asymptotic exponential approximation to Eq. (46) can be derived from the iden-

tity [38] H(1,2)
p (ξ)

(ξ→∞)
∼

√
2/πξ exp {±i [ξ − pπ/2 − π/4]}, and compared against the r ∼ ∞ form

of the more general expansion (19) for each singular interaction, with Eq. (20) restricting its normal-
ization properties. The ensuing comparison of the resolution

u(r) = C (1)u1(r) + C (2)u2(r) ∝ Ŝasymp u1(r) + u2(r) (47)

with Eqs. (44)–(46) leads to A(1)/A(2)
= eiπ(l+ν)C (1)/C (2), i.e., it yields the factorization

Sasymp = eiπ(l+ν) Ŝasymp, (48)

in terms of the reduced matrix elements Ŝasymp and an l- and d-dependent phase factor.
Given the expansions of Eqs. (15) and (47), which amount to two different resolutions of the wave

function, the ‘‘components’’ Ŝasymp and Ω are related via the matrix equation
Ω

1


∝


α

 
Ŝasymp

1


. (49)
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As this is a proportionality relation, after taking appropriate ratios, Ŝasymp is given by the inverse
Möbius transformation [26]

Ŝasymp =
α∗ Ω − β∗

−β Ω + α
(50)

(by inversion of the transfer matrix

ασ
j


). Alternatively, from Eqs. (42) and (43),

Ŝasymp = ∆
Ω − R∗

R Ω − 1
(51)

where the functional dependence includes a pure phase

∆ = −
T

T ∗
=

R′

R∗
(52)

in addition to the Blaschke factor B(Ω; R) = (Ω − R∗) / (R Ω − 1), which provides a Möbius
transformation of the hyperbolic type [26]. In Eq. (52), time-reversal is used explicitly in the form
R′

= ∆R∗; in these terms, e.g.,

Ŝasymp(Ω = 0) = R′, (53)

which calibrates the S-matrix for the Ω = 0 case as the reflection coefficient from the right (for a left
mover)—this is the case of ‘‘total absorption’’ that is most commonly considered in the literature (see
next subsection). Thus, in general, the asymptotic S-matrix is completely characterized via the left-
and right-reflection coefficients:

Ŝasymp =
1 − Ω/R∗

1 − RΩ
Ŝasymp(Ω = 0). (54)

Inspection of Eq. (50)–(54) suggests a convenient alternative normalization of the singularity and
asymptotic waves, such that

Ω̃ = −Ω eiδR , (55)

and

S̃ = Ŝasymp e−iδ,

where δ = δ∆ − δR , with phases defined via
∆ = eiδ∆

R = |R|eiδR .
(56)

It should be noticed, by the definition of ∆, that δ∆ = 2δT + π (where T = |T |eiδT ). With this
alternative normalization, the asymptotic S-matrix can be parametrized by

S̃ =
Ω̃ + |R|

|R| Ω̃ + 1
, (57)

whose functional form is depicted in Fig. 3.

4.2. Absorption, emission, and probability interpretation

At the conceptual level, it should be noticed that the multichannel framework permits a physical
interpretation in which information is not lost—even in cases where absorption or emission are
typically ascribed to an effective nonunitary character of the singular interaction. The procedure that
leads to the interpretation of SQM in terms of absorption and emission is a generalization of the
treatment of Refs. [1,6] and is naturally suggested by the associated singularity waves of Eq. (4). The
phenomenological parameterΩ in Eq. (16) represents the relative probability amplitudes of outgoing
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Fig. 3. Asymptotic S-matrix of Eqs. (50)–(54), with normalization via S̃ ≡ e−iδ Ŝasymp , as a function of the alternative singularity
parameter Ω̃ = −ΩeiδR for generic values of the reflection coefficient’s modulus |R|—notice the phase factor ∆ is absorbed
in the parameter definitions. The points singled out in the figure are: the unitarity points, U, for self-adjoint states; u± , for the
behavior driven by the singularity waves u± ∝ ũ± of Eqs. (4)–(11); and u1,2 for the behavior driven by the asymptotic waves
u1,2 ∝ ũ1,2 of Eq. (20). In addition to the values depicted in this graph, the complex-valued S-matrix S̃ and the parameter Ω̃ have
arbitrary phases, so that the points in this figure can be regarded as real-line intersections of mappings from the complex Ω̃

plane to the complex S̃ plane; nonetheless, the pointsu± andu1,2 do correspond to real Ω̃ , while the unitarity points correspond
to unit circles in both planes. For conformal quantum mechanics, ∆ = −Q−2iΘ

= eiδR and |R| = e−πΘ .

(emission) to ingoing (absorption) waves. In this scheme, Ω = 0 corresponds to total absorption and
|Ω| = ∞ to total emission for a local observer near the singularity.

In this generalized framework, the asymptotic S-matrix is no longer required to be unitary and
the associated loss of self-adjointness of the Hamiltonian is consistent with the singular nature of
the interaction. This peculiar behavior should be contrasted with that of regular potentials, for which
a non-unitary evolution is only possible via a complex potential rather than via singular boundary
conditions. This important property of singular potentials can be understood from Eqs. (30) and (31),

which, by comparisonwith Eqs. (16), (45) and (48) imply that
Ŝasymp

2−1 =

|Ω|

2
− 1


|C (−)/C (2)

|
2,

leading to

sgn (J) = sgn
Ŝasymp

2 − 1


= sgn

|Ω|

2
− 1


, (58)

from which the following conclusions can be drawn (see Fig. 3).
First, we conclude that the net flux or current J defined from Eq. (28) satisfies the conditions:

• J = 0 iff |Ω| = 1
• J < 0, i.e., the flux is ingoing, iff |Ω| < 1, with maximummagnitude for Ω = 0.
• J > 0, i.e., the flux is outgoing, iff |Ω| > 1, with maximummagnitude for Ω = ∞.

Second, the various cases can be interpreted and classified in terms of the asymptotic S-matrix as
follows:

1. Elastic scattering or ‘‘self-adjoint behavior’’ is defined to correspond to probability conservation,
which is equivalent to the unitarity of the S-matrix, so that

Ŝasymp

 = 1. The associated
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phenomenological characterization, from Eq. (58), involves |Ω| = 1 (cf. Refs. [4,15], with Ω =

−e2iγ and γ being a real phase).
2. Net local absorption at the singularity amounts to net probability loss, which is equivalent to the

existence of a nonunitary S-matrix with elements
Ŝasymp

 < 1. The associated phenomenological
characterization, from Eq. (58), involves |Ω| < 1.

3. Similarly, net emission at the singularity amounts to net probability gain, and nonunitary S-matrix
elements

Ŝasymp

 > 1; correspondingly, |Ω| > 1.

The analysis of this subsection is especially relevant for applications where an absorption or
capture cross section needs to be computed. For each channel, the absorptivity is defined by

A = 1 −
Sasymp

2 = 1 −

Ŝasymp

2 . (59)

This corresponds to a scattering setup with an ad hoc normalization unity for an incoming asymptotic
wave, yielding an outgoing asymptotic wave of amplitude Sasymp. From Eqs. (30) and (31), the
conserved current yields a net ingoing flux A that measures the absorbed probability (as a fraction of
unity). This also implies that, for the particular case with Ω = 0, the absorptivity is measured by the
transmission coefficient alone: A|Ω=0 = |T |

2.
In summary, the flux argument of the previous paragraph is completely general, leading to a prac-

tical rule for the absorption cross section σabs; for example, in d = 3 dimensions, the usual quantum-
mechanical partial-l capture cross section is σabs,l = Al πk−2 with σabs,l = Al[Γ (d)/2][Ωd−2/
(d − 1)]k−(d−1) in d dimensions (according to the volume Ωd−2/(d − 1) of the ball bounded by the
unit sphere Sd−2 of (d − 2) dimensions)—these values can be easily verified by direct computation
with Gegenbauer polynomials [11]. What these general arguments show is that the ‘‘absorbed flux’’
is transferred to another channel at each singularity point. In short, this is how unitarity is restored
for singular potentials within the multichannel framework.

5. Particular cases and applications of singular interactions

The basic strategy to completely characterize the observables is to find the coefficients of the
S-matrix. For the case of one singular point outlined in the previous sections, this is systematically
achieved via the two-channel framework. The most efficient algorithm consists in finding the
connection between the bases of the two channels via the transfer matrix coefficients. This involves
either finding the resolution of Eqs. (23) and (24) or their inverse transformation. For the former, under
the conditions of unitarity and time-reversal symmetry, the transfer matrix coefficients (27) can be
directly obtained from

u1 = αu+ + βu−. (60)

For the latter, as follows from the inverse transfer matrix,

u+ = α∗u1 − βu2. (61)

From Eqs. (60) and (61) one could derive the other two equations by consistency with the other
coefficients via u2 = u∗

1 and u− = u∗
+
; but in practice, only one equation, either (60) or (61) suffices

for a complete determination of the observables.

5.1. Conformal quantum mechanics

Conformal quantum mechanics (CQM) is selected by the exponent p = 2 in Eqs. (1)–(2), where
the interaction is called the inverse square potential (ISP), and for which the system is scale and con-
formally invariant [9–13]—with an SO(2,1) Schrödinger-type symmetry associated with an additional
timeparameter [39–41]. The corresponding singularitywaves involve a logarithmic phase in the expo-
nent as described by Eq. (8), or its alternative power-law expressionwith imaginary exponent, Eq. (9).
From the analysis of Section 2.3, these functions require an arbitrary inverse-length scale µ, which is
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also mandatory by general arguments based on dimensional analysis and scale invariance. Eq. (9), as
derived directly from a Cauchy–Euler differential equation [36], highlights the fact that, sufficiently
close to the singularity, the equation is not only conformal but also homogeneous. In other words, all
physical scales disappear altogether—this scale-invariant singular behavior is the signature of CQM
and inevitably yields the arbitrary scale µ. The robustness of this behavior is specifically verified by
the generalizations discussed in Appendix B.

While the r ∼ 0 behavior of the singularity waves given by Eqs. (8) and (9) is valid for any system
in which the near-singularity physics is conformal, it is of special interest to examine more closely
the global solutions for the intrinsically conformal problem, i.e., CQM deprived of any additional long-
distance scales. In this ‘‘pure CQM’’ case, the exact solutions are given in terms of Bessel functions,
i.e.,

u±(r) = N±(k; µ)
√
r J±iΘ(kr). (62)

In Eq. (62) the normalization factor N±(k; µ) is adjusted to satisfy Eq. (9) from the expansion [38]

Jp(z)
(z→0)
∼ [Γ (p + 1)]−1(z/2)p, i.e.,

N±(k; µ) =
Γ (1 ± iΘ)

√
Θ


k
2µ

∓iΘ

=


π

sinh (πΘ)
Q∓iΘ , (63)

where

Q =
k

2µ e−γΘ
, (64)

with Γ (1 ± iΘ) = |Γ (1 ± iΘ)| e±iδΘ defining

δΘ = phase [Γ (1 + iΘ)] , γΘ = −δΘ/Θ, (65)

and |Γ (1 ± iΘ)| =
√

(πΘ) / sinh (πΘ) because [38] Γ (1 + iΘ) Γ (1 − iΘ) = πΘ/ sinh (πΘ). The
required relation between the sets Bsing [given by Eq. (62)–(63)] and Basymp (given by Eq. (20)) can be
easily established after rewriting the asymptotic conformal waves as

u1,2(r) = e∓πΘ/2


π r
2

H(1,2)
iΘ (kr) (66)

(from Eq. (20) and the asymptotics of Hankel functions) and applying the Bessel-function identities
H(1,2)

s (ξ) = ±i[e∓iπsJs(ξ) − J−s(ξ)]/ sin(πs), which imply the exact linear transformations

u1,2(r) = ±


π

2
1

sinh(πΘ)


1
N+

e±πΘ/2u+(r) −
1
N−

e∓πΘ/2u−(r)


. (67)

This conforms with Eq. (60) (and its complex conjugate). As a result, the transformation coefficients
in Eqs. (23) and (24) become

α
β


≡ α±

1 = ±
1

√
2πΘ

Γ (1 ∓ iΘ) e±πΘ/2


k
2µ

±iΘ

(68)

= ±


1

2 sinh(πΘ)
e±πΘ/2 Q±iΘ . (69)

Correspondingly, from Eqs. (37) and (41)–(43), the multichannel S-matrix is given by

[S] =


−e−πΘ Q−2iΘ


1 − e−2πΘ Q−iΘ

1 − e−2πΘ Q−iΘ e−πΘ


, (70)
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and the asymptotic S-matrix takes the generic form

Ŝasymp =
Γ (1 + iΘ) eπΘ/2 (k/2µ)−iΘ Ω + Γ (1 − iΘ) e−πΘ/2 (k/2µ)iΘ

Γ (1 + iΘ) e−πΘ/2 (k/2µ)−iΘ Ω + Γ (1 − iΘ) eπΘ/2 (k/2µ)iΘ
(71)

=
eπΘ/2 Q−iΘ Ω + e−πΘ/2 Q iΘ

e−πΘ/2 Q−iΘ Ω + eπΘ/2 Q iΘ
. (72)

Notice that, for conformal quantum mechanics, |R| = e−πΘ , and ∆ = −Q−2iΘ
= eiδR , so that

δR = δ∆ and δ = 0, leading to Ω̃ = −Ω∆ in Eq. (55).
Moreover, the scale invariance of CQM leads to the presence of the arbitrary scale µ in the above

expressions (manifested as a logarithmic phase). As a consequence, there exists a factor ambiguity in the
elements of the transfer matrix and the multichannel S-matrix associated with the conformal singularity.
Specifically, under the scale change µ → µ̃, the corresponding change in the conformal singularity
waves is given by

u±(r; µ̃) =


µ̃

µ

±iΘ

u±(r; µ). (73)

Then, the transformed transfer matrix involves α̃±

1 = α±

1 (µ̃/µ)∓iΘ , i.e.,
α̃


=


(µ̃/µ)

−iΘ
α (µ̃/µ)

−iΘ
β∗

(µ̃/µ)
iΘ

β (µ̃/µ)
iΘ

α∗


, (74)

where, as before,α+

1 = α andα−

1 = β . In addition, the ‘‘relative components’’ of the singularitywaves
imply that the singularity parameter Ω satisfies the relation

Ω̃ =


µ̃

µ

−2iΘ

Ω ; (75)

therefore, Ω is only defined up to a phase factor—in such a way that the combination Ω̃

µ̃

2iΘ
=

Ω µ2iΘ is an invariant under the dimensional rescalings µ → µ̃. Finally, the asymptotic S-matrix (72)
is guaranteed to satisfy the invariance condition

Ŝasymp


Ω̃;


α̃


= Ŝasymp


Ω; [α]


, (76)

as required by the fixed normalization condition (20).
A byproduct of the arbitrariness with respect to µ is the freedom to select any normalization of

choice. For example, a naturally convenient selection would be provided by a real, energy-independent
normalization of the exact solutions (62); it follows that this would amount to

N̂± =
|Γ (1 ± iΘ)|

√
Θ

=


π

sinh (πΘ)
, (77)

which corresponds to µ = keγΘ /2, so that Q = 1. If we denote these Bessel-like building blocks by

J±(r) = N̂±

√
r J±iΘ(kr), (78)

the relationship between the two bases is given by

J±(r) =


k
2µ

±iΘ

e∓iδΘ u±(r), (79)

which leads to

Ŝasymp =
eπΘ/2 Ω̃ + e−πΘ/2

e−πΘ/2 Ω̃ + eπΘ/2
=

eπΘ Ω̃ + 1

e−πΘ Ω̃ + 1
e−πΘ , (80)
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where Ω̃ = Ω Q−2iΘ is the related singularity parameter. It should be noticed that this equivalent to
Eq. (57).

In summary, the critical condition that the theory satisfies is that, regardless of the choice
of normalization, all physical observables are uniquely defined. However, the expressions for the
multichannelmatrices (transfer and S-matrix) still exhibit the scale ambiguity inherent in a conformal
theory. While the form of Eq. (72) is useful for a comparison of all known approaches to CQM, that of
Eq. (80) suffices for many purposes—i.e, the quantities Ω and Ω̃ only differ by a pure phase factor.

It should be noticed that the definition of asymptotic states under strict conformal invariance
(i.e., in the absence of additional scales) is usually not regarded as a well-posed problem [42]. In our
framework, this ismanifested by the long-range behavior of the conformal potential, which inevitably
mixes with the free-wave solutions, i.e., with the angular momentum, through the combination
Θ =


λ − (l + ν)2. However, one could still define the phase shifts by generalizing the approach

used for regular potentials. The ultimate justification of this ad hoc procedure lies in the use of a cutoff
scale beyond which the interaction behaves as a short-range potential and the separation is uniquely
defined. For example, via the regularized potential Ṽ (r) = V (r)f (r), with f (r) = o(1) as r → ∞, the
scattering matrix and phase shifts are uniquely determined.

The difficulties associated with the conformal potential have been discussed using a variety of
methods [8–14], which, remarkably, are subsumed by the multichannel framework. This can be ver-
ified by a straightforward analysis of appropriate limits of Eq. (72). The unitary solutions correspond
to the particular case |Ω| = 1 and can be parametrized as in Ref. [29], where an S-matrix technique
similar to that of our present paper is used (restricted to the unitarity sector); the corresponding so-
lutions in this family coincide with the self-adjoint extensions. In particular, the different methods,
including renormalization approaches, were compared in Ref. [29] via an analysis of the poles of the
S-matrix. For the unitary solutions, the physical applications involve miscellaneous realizations and
models, including the three-body Efimov effect [43], dipole-bound anions in molecular physics [12],
QEDD (in D = d + 1 spacetime dimensions) with chiral symmetry breaking for strong coupling [32],
black hole thermodynamics [19,20,30,31], and the family of Calogero models [44]. These examples
illustrate some of the most interesting realizations of conformal quantum mechanics, for which the
renormalization procedure yields an anomaly or quantum symmetry breaking in the strong-coupling
regime [13,45,46].

5.2. Inverse quartic potential

For the inverse quartic potential [6,47–50], i.e., V (r) = −λ/r4, the corresponding Eq. (1) with
p = 4 can be recast, via the exponential substitution µr = eζ of Appendix A, into the canonical form
of the modified Mathieu equation (i.e., the Mathieu equation of imaginary argument) [38,51–54]

d2w
dζ 2

−

a2 − 2h2 cosh 2ζ


w = 0, (81)

which involves two dimensionless parameters

a = l + ν; h2
= k

√
λ, (82)

where ν = d/2 − 1 (the overbar is used in this subsection to distinguish this dimensionality
parameter from the Floquet parameter ν below). In addition, the characteristic lengthµ−1

=
√

λ/h =

λ1/4/
√
k is used to repackage the exponentials into the symmetric cosh form of themodifiedMathieu

equation [6].
There are several sets of solution functions and parametrizations for Eq. (81). This proliferation

reflects in part its nontrivial nature applied to a wide variety of realizations [54,55]—partial
comparative summaries can be found in Refs. [38,51]. We focus below on the features and definitions
specifically relevant to our scattering problem, with the notation above in accordance to Refs. [25,56].

The most widely used set of solutions involves the modified version of the Floquet-type Mathieu
cosine, sine, and exponential functions: Ceν(ζ , h2), Seν(ζ , h2), and Meν(ζ , h2), along with the second
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solutions Feν(ζ , h2) and Geν(ζ , h2) [38,51–54], where ν = ν(a, h) is the Floquet parameter or
characteristic exponent (associatedwith the periodicity properties of the ordinaryMathieu equation).

The other commonly used set of solutions, the Mathieu–Bessel functionsM(j)
ν (ζ , h) (j = 1, 2, 3, 4)

are defined by their asymptotic behavior for Re(ζ ) ∼ ∞, so that they asymptotically match the
corresponding Bessel functions [Jν ≡ Z (1) for j = 1, Nν ≡ Z (2) for j = 2, H(1)

ν ≡ Z (3) for j = 3,
and H(2)

ν ≡ Z (4) for j = 4]; specifically, M(j)
ν (ζ , h) ∼ Z (j)

ν (2h cosh ζ ) for the corresponding Bessel
function Z (j) as Re(ζ ) ∼ ∞.

A less familiar set was introduced by Wannier [57], specifically tailored for the singularity and
asymptotic waves of the seminal Vogt–Wannier paper [6]. With the suggested notational change of
the comparative study in Refs. [48,49], these Mathieu–Wannier functions are denoted by He(j)(ζ ) ≡

he(j)(iζ ), with j = 1, 2 corresponding to u2,1 and j = 3, 4 corresponding to u± (see below). More
precisely, the functions He(j)(ζ , q, h) involve a parameter q = q(a, h) in lieu of ν, with convenient
expansion algorithms [25,56]. Then, reverting to the original radial variable r (and omitting the q and
h parameter dependence), the asymptotic behaviors for r ∼ ∞ and r ∼ 0 are given by

1
√
r
He(1)(ζ )

(r→∞)
∼

1
√
k

1
r
e−iπ/4e−ikr (83)

1
√
r
He(2)(ζ )

(r→∞)
∼

1
√
k

1
r
eiπ/4eikr (84)

1
√
r
He(3)(ζ )

(r→0)
∼

1
λ1/4

e−iπ/4e−i
√

λ/r (85)

1
√
r
He(4)(ζ )

(r→0)
∼

1
λ1/4

eiπ/4ei
√

λ/r , (86)

thus uniquely specifying the bases

u1,2 =
√
r e∓iπ/2 He(2,1)(ζ ) (87)

u± =
√
r e±iπ/4 He(3,4)(ζ ). (88)

As shown in Refs. [48,49] and reviewed in Refs. [25,56], the conversion formulas to theMathieu–Bessel
functions involve M(3,4)

ν (ζ ) ∝ He(2,1)(ζ ) and M(3,4)
ν (−ζ ) ∝ He(4,3)(ζ ). Then, the transfer- and

S-matrix coefficients can be found from the matching conditions or ‘‘connection formulas’’ for the
Mathieu functions [38,51–54,56]. The difficulty lies in the determination of the auxiliary parameters,
which have been studied in some cases by the use of continued fractions and asymptotic expansions.
For example, for the Mathieu–Wannier functions [57]

He(4)
= −ieΦHe(2)

+

ieΦ cosπν − cosπγ


He(1), (89)

where Φ = Φ(ν, h) and γ = γ (ν, h) are related via the equations

eΦ
= i

sinπγ

sinπν
; R ≡ eiπγ

≡
αν(h)
α−ν(h)

=
M(1)

−ν (0, h)

M(1)
ν (0, h)

, (90)

with αν(h) = Meν(ζ , h2)/M(1)
ν (ζ , h) being the proportionality factor for these basis functions in

the connection formulas; additional details can be gathered from the relevant Refs. [25,48,49,56,57].
Therefore, rewriting Eq. (89) with the bases (87)–(88), one of the connection formulas reads

u− = −ieΦeiπ/4u1 +

ieΦ cosπβ − cosπγ


e−3iπ/4u2, (91)

which, by comparison against Eq. (23) (or the complex conjugate of Eq. (61)), yields the coefficients
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α =

ieΦ cosπβ − cosπγ


e−3iπ/4

=
sinπ(γ + ν)

sinπν
eiπ/4 (92)

β∗
= ieΦeiπ/4

= −
sinπγ

sinπν
eiπ/4. (93)

Thus, from Eq. (43) via the reciprocal of Eq. (92),

T =
sinπν

sinπ(γ + ν)
e−iπ/4 (94)

and, from Eqs. (42), (43), and (52) via the negative ratio of Eq. (93) with (92),

R′
= −iR∗

=
sinπγ

sinπ(γ + ν)
. (95)

Now, Ref. [6] and all the other references mentioned in this subsection (on absorption by the inverse
quartic potential) assume Ω = 0, which is the case of total absorption; for this particular value,
Eq. (53) yields

Ŝasymp(Ω = 0) = R′
=

sinπγ

sinπ(γ + ν)
=

R − 1/R
Reiπν − (Reiπν)−1

(96)

(with R defined in Eq. (90)). These formulas agree with the known result from the literature, when
one includes the extra phase factor of Eq. (48), with ν = 1/2 for d = 3 dimensions. Moreover, partial
wave analysis has been carried out in great detail in several works since the original Ref. [6]; the
absorptivity, defined by Eq. (59) for each angular momentum channel has also been studied in great
detail in Refs. [25,56].

6. Conclusions

We have derived a framework of singular interactions that includes the whole family of solutions
for all non-contact singular potentials. A novel ingredient of this approach is the use of amultichannel
formalism centered on the S-matrix. Our analysis has been mainly restricted to the two-channel case
(with a conveniently chosen transfer matrix), conforming to the case of only one singular point—but
extensions to multiple singular points can be easily accommodated.

The proposed scheme singles out two distinct behaviors: (i) the singular behavior (close to the
coordinate singularity, i.e., r ∼ 0): this yields singularity waves; (ii) the long-range tail: responsible
for the coefficients of the multichannel S-matrix (or the associated transfer matrix). The behavior
near the singularity is an extension of Wannier’s original proposal of ingoing/outgoing waves, which
we implemented for arbitrary non-contact singular potentials and combined with the multichannel
concept. The robustness of this approach is verified with the models tackled in this paper, which
include the pure conformal potential, extensionswith various long-range tails, and the inverse quartic
potential.

Interestingly, once this procedure is established, it subsumes in a unifiedmanner the various other
approaches known to date, including renormalization and self-adjoint extensions. In its two-channel
form, our framework can accommodate a wide range of phenomenological applications—the details
of which will be discussed elsewhere. Open problems that could extend the scope of this work would
involve specific applications to black hole thermodynamics and the Hawking effect, D-branes, and to
nanowires.
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Appendix A. Exponential substitution and Liouville transform

The exponential substitution

r =
1
µ

eζ (A.1)

in Eq. (1) (with µ being an inverse length parameter), for the power-law potential V (r)
(r→0)
∼

−λ/rp, maps the singular point from a finite position r = 0 to ζ = −∞. In this representation,
the corresponding multichannel framework becomes a typical one-dimensional scattering problem
relating ζ = −∞ with ζ = ∞. To convert the equation into its normal or canonical form without
first-order derivatives, a simultaneous Liouville transform is applied, i.e., the function u is replaced by
w = u/χ , yielding

r−3/2

ẅ −

w

4


+ r1/2


k2 − V −


(l + ν)2 − 1/4


/r2


w = 0, (A.2)

where the first-order derivative is eliminated for χ ∝
√
r , viz.,

u(r) =
√
r w(ζ ). (A.3)

Thus,

ẅ +


k2µ−2 e2ζ + λµp−2e−(p−2)ζ

− (l + ν)2


w = 0, (A.4)

where the dots stand for derivatives with respect to ζ , i.e., df /dζ = ḟ . The particular cases p = 2 and
p = 4 of Section 5 can be conveniently analyzed in this representation.

Generalizations of the technique of this Appendix can be developed to accommodate a larger
class of potentials using functions of the hypergeometric type and Schwarzian derivatives [58–61],
including Natanzon-class potentials [62]. These techniques were used in deriving the solutions of Ap-
pendix B.

Appendix B. S-matrix for conformally-driven singular systems

Two illustrative examples of singular interactions with interesting long-range behavior are the
inverse squared hyperbolic sine potential and the conformally-modified Coulomb interaction. These
examples have a scale behavior involving infrared scales, but with an ultraviolet behavior described
by pure CQM—the robustness of which is explicitly verified below. As a generic procedure, a
dimensionless equation gives solutions in terms of a dimensionless variable ξ via hypergeometric and
confluent hypergeometric functions; and the relation between the bases Bsing and Basympt is found
from the connection formulas of these functions.

The main features of the multichannel framework for these potentials are derived and discussed
below.

B.1. Inverse-squared hyperbolic-sine potential (modified Pöschl–Teller family of potentials)

The inverse squared sinh interaction potential

V (r) =
g

sinh2 γ r
(B.1)

belongs to the family of modified (hyperbolic) Pöschl–Teller potentials [63–65], which typically
include also an inverse squared cosh term (see final paragraph of this Appendix subsection). This
problem can be solved in closed form in terms of hypergeometric functions for the nonrelativistic
one-particle dynamics with zero angular momentum (l = 0) in dimensionalities d = 1 and d = 3;
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and for any othermathematically equivalent problem. This can be seen fromEq. (1)where the singular
inverse square potential of Eq. (2) (with p = 2) should be replaced by themore general potential (B.1),
and the last term is zero when l = 0, |ν| = 1/2 (i.e., ν = ±1/2 for d = 1 or d = 3).

Specifically, writing E = k2 and defining

ρ = γ r; q =
k
γ

; λ = −
g
γ 2

; s =

1/4 − λ, (B.2)

the differential equation

d2u
dρ2

+


q2 −


s2 − 1/4


sinh2 ρ


u = 0, (B.3)

after the substitutions

ξ = − sinh2 ρ; u(ρ) = χ(ξ) F(ξ), (B.4)

turns into a hypergeometric differential equation

d2F
dξ 2

+
[c − (a+ + a− + 1)ξ ]

ξ(1 − ξ)

dF
dξ

−
a+a−

ξ(1 − ξ)
F = 0 (B.5)

when χ(ξ) = (−ξ)(s+1/2)/2. Thus, the general solution takes the form

u ∝ (−ξ)(s+1/2)/2


ΩN+F+ + N−F−


, (B.6)

where (from the hypergeometric connection formulas and the Legendre duplication formula for the
gamma function [38])

F+ =


2F1(a+, a−; s + 1; ξ), for |ξ | < 1

22sΓ (s + 1)Γ (iq)
√

πΓ (1/2 + s + iq)


2


−ξ
−2a−

2F1(a−, 1/2 − a+; −iq + 1; 1/ξ)

+ (iq → −iq) , for |ξ | > 1

(B.7)

F− =


(−ξ)−s

2F1(1/2 − a+, 1/2 − a−; −s + 1; ξ), for |ξ | < 1
Γ (−s + 1)Γ (−iq)
√

πΓ (1/2 − s − iq)


2


−ξ
−2a+

2F1(a+, 1/2 − a−; iq + 1; 1/ξ)

+ (iq → −iq) , for |ξ | > 1

(B.8)

with

a± =
1
2

(1/2 + s ± iq) , s = iΘ (B.9)

(in the singular ‘‘strong’’ regime λ ≥ 1/4). It should be noticed that F+ ≡ Freg is the ‘‘regular’’ piece
that survives as Ω → ∞, i.e., the one that is relevant as regular solution in the analytically continued
weak-coupling regime; while F− ≡ Firreg is the ‘‘irregular’’ piece that exhibits ‘‘singular’’ behavior in
the weak regime. In addition, replacing swith −s effectively transforms the regular into the irregular
solution.

The singularity waves are normalized in the form

u± = N±û±, (B.10)

from the solutions

û± = (−ξ)(1/2+s)/2 F±(ξ)
(ξ→0)
∼ (γ r)1/2±iΘ , (B.11)
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so that, by comparison with Eq. (9),

N± =
1

√
µΘ


µ

γ

1/2±iΘ

. (B.12)

Thus, the first lines of Eqs. (B.7) and (B.8), with the additional prefactors displayed in Eqs.
(B.10)–(B.12), represent the behavior of the singularity waves u± near the singular point. When
analytically continued as in the second and third lines of Eqs. (B.7) and (B.8), the two building
blocks appropriate for the asymptotic waves near infinity arise; specifically, the second line
of Eq. (B.7) displays the functional form of u1 while the second line of Eq. (B.8) displays
the functional form of u2 (and the third lines would generate u2 and u1 respectively). The
two bases can be compared by using the asymptotics of the hypergeometric function 2F1(a+,

a−; ξ), with
√

−ξ = sinh ρ ∼ eρ/2, so that

2
√

−ξ
±iq

∼ e±ikr (with ρ = γ r and q = k/γ ).
Thus, from Eq. (61) and u− = u∗

+
, the transfer matrix coefficients are

α =
e−iπ/4

√
2πΘ


k
2µ

iΘ q1/2−iΘ Γ (1 − iΘ)Γ (−iq)
Γ (1/2 − iΘ − iq)

(B.13)

β = −
e−iπ/4

√
2πΘ


k
2µ

−iΘ q1/2+iΘ Γ (1 + iΘ)Γ (−iq)
Γ (1/2 + iΘ − iq)

; (B.14)

in addition, T = 1/α and

R =
β

α
= −


k
2µ

−2iΘ

q2iΘ
Γ (1 + iΘ)Γ (1/2 − iΘ − iq)
Γ (1 − iΘ)Γ (1/2 + iΘ − iq)

. (B.15)

With these coefficients, the S-matrix Ŝasymp is given by Eqs. (50) and (51).
The robustness of the singular CQMbehavior can be verified by taking the limit γ → 0,which, from

Eqs. (B.1) and (B.2), gives the conformal potential V (r) = −λ/r2. This amounts to the limit q = k/γ
→ ∞, which can be obtained by the asymptotic ratio of gamma functions Γ (z + a)/Γ (z + b) ∼ za−b

for |z| → ∞ (and | arg(z)| < π ); here z = −iq, thus (with arg(−i) = −π/2),

e−iπ/4Γ (−iq) q1/2∓iΘ/Γ (1/2 ∓ iΘ − iq)
(q→∞)

∼ e±πΘ/2,

reproducing the required coefficients (68)–(69).
It should be noticed that we have generalized the solution of the modified Pöschl–Teller potential

V (r) =
g1

sinh2 γ r
+

g2
cosh2 γ r

(B.16)

to the strong regime of the singular cosech2(γ r) piece. In fact, this generalized potential, including the
sech2(γ r) piece, can be solved by the same techniques discussed above, and its celebrated solution
has been studiedmultiple times, including the recent use of SUSY quantummechanics techniques [64,
65]. In our context, the nontrivial generalization to the strong regime simply involves the same steps
as above, with the following replacements (cf. the parameters (B.2)): gj = −λjγ

2, −λj = s2j − 1/4
(j = 1, 2), leading to 1 + s → 1 + s1 − s2 = σ − τ , where s1 = σ − 1/2 and s2 = τ + 1/2; the wave
function has the prefactor functions χ(ξ) = (sinh γ r)σ (cosh γ r)−τ ; and the conformal parameter in
the strong sector arises from s1 = iΘ .

B.2. Conformally-modified Coulomb interaction

The interaction potential

V (r) = −
λ

r2
−

γ

r
(B.17)
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can be solved in closed form in terms of confluent hypergeometric functions for the nonrelativistic
one-particle dynamics in any number of dimensions [66]; and for any other mathematically equiv-
alent problem, e.g., it describes the near-horizon physics of spin one-half fields in black hole back-
grounds [67].

The solution can be derived from Eq. (1), where the singular inverse square potential of Eq. (2)
(with p = 2) should be replaced by the more general potential (B.17). Specifically, writing E = k2 and
defining

q =
k
γ

; s =


(l + ν)2 − λ; ξ = −2ikr, (B.18)

the differential equation

d2u
dξ 2

+


−

1
4

+
(i/2q)

ξ
+

1/4 − s2

ξ 2


u = 0 (B.19)

admits the general solution in terms of Whittaker functions

û± = Mi/2q,±s(ξ) ≡ ξ 1/2±se−ξ/2 M

1
2

± s −
i
2q

, 1 ± 2s; ξ


, (B.20)

whereM(a, c; ξ) ≡ 1F1(a, c; ξ) is Kummer’s confluent hypergeometric function. The relevant param-
eters of the functionsM(a±, c±; ξ) above are

c± = 1 ± 2s, a± =
1
2
c± −

i
2q

=
1
2

± s −
i
2q

. (B.21)

For bookkeeping purposes, notice the replacement rule s → −s from the ‘‘regular’’ to the
‘‘irregular’’ piece.With appropriate normalizations, û± = Mi/2q,±s(ξ) are analytic continuations of the
standard Coulomb functions (with l replaced by a complex angular momentum). For our purposes, we
instead choose our conventional multichannel normalization; thus,

u ∝ Ω u+ + u− = ΩN+û+ + N−û−, (B.22)

where

u± = N±û±. (B.23)

The generic behavior near the origin of the generalized hypergeometric functions, i.e., M
(ξ→0)
∼ 1

implies that

û±

(r→0)
∼ (−2ik)

1
2 ±iΘ r

1
2 ±iΘ . (B.24)

Thus, by comparison with Eq. (9), the normalization factors are

N± =
1

√
µΘ


µ

−2ik

±iΘ+1/2

. (B.25)

In addition, from the asymptotics (r ∝ |ξ | → ∞) of Kummer’s function,

M(a, c; ξ)
(|ξ |→∞)

∼ e−iπa Γ (c)
Γ (c − a)

ξ−a
+

Γ (c)
Γ (a)

eξ ξ a−c, (B.26)

one concludes that

u±

(r→∞)
∼ i

√
k N±e−π/4qeiπ/4


Γ (1 ± 2iΘ)

Γ (1/2 ± iΘ + i/2q)
e∓πΘ u1

−
Γ (1 ± 2iΘ)

Γ (1/2 ± iΘ − i/2q)
u2


, (B.27)
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where, in agreement with the modified asymptotics of Eqs. (21) and (22),

u1,2
(r→∞)

∼
1

√
k
e∓iπ/4 e±ikr e±i ln(2kr)/2q. (B.28)

Therefore, the transfer-matrix coefficients are

α = e−π/4q


1
2Θ


k
2µ

iΘ 22iΘ Γ (1 − 2iΘ)

Γ (1/2 − iΘ − i/2q)
eπΘ/2 (B.29)

β = −e−π/4q


1
2Θ


k
2µ

−iΘ 2−2iΘ Γ (1 + 2iΘ)

Γ (1/2 + iΘ − i/2q)
e−πΘ/2. (B.30)

As a result,

R = −

 µ

2k

2iΘ Γ (1 + 2iΘ)Γ (1/2 − iΘ − i/2q)
Γ (1 − 2iΘ)Γ (1/2 + iΘ − i/2q)

e−πΘ (B.31)

T = eπ/4q
√
2Θ

 µ

2k

iΘ Γ (1/2 − iΘ − i/2q)
Γ (1 − 2iΘ)

e−πΘ/2. (B.32)

Here, the conformal limit γ → 0 can be enforced via the Legendre duplication formula [38], as
seen by the ratios of the gamma functions in Eqs. (B.29)–(B.32), leading again to a confirmation of
Eqs. (68)–(69).

Several lessons are learned from these examples. While the inverse-squared hyperbolic-sine
potential is a short-ranged, Yukawa-like interaction asymptotically, the modified Coulomb potential
is a long-ranged interaction that exhibits the familiar infrared problems of the ordinary 1/r potential.
Yet, they both illustrate the common features of the same ultraviolet, conformally-driven physics.
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