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Abstract

This publication presents an approach to a simulator to 
recreate a large number of scenarios and to make agile 
decisions in the planning of a real emergency room sys­
tem. A modeling and simulation focused on the point 
prevalence of intrahospital infections in an emergency 
room and how it is affected by different factors related 
to hospital management. To carry out the simulator 
modeling, the Agent-based Modeling and Simulation 
(ABMS) paradigm was used. Thus, different inter­
vening agents in the emergency room environment — 
patients and doctors, among others— were classified. 
The user belonging to the health system has different 
data to configure the simulation, such as the number 
of patients, the number of available beds, etc.

Based on the tests carried out and the measurements 
obtained, it is concluded that the disease propagation 
model relative to the time and contact area of the pa­
tients has greater precision than the purely statistical 
model of the intensive care unit.

Keywords: Simulation Health Systems ABMS.

Resumen

En esta publicación se presenta una versión preliminar 
de un simulador inicial para recrear una gran cantidad 
de escenarios y tomar decisiones ágiles en la planifica­
ción de un sistema real de sala de emergencias. Una 
modelización y simulación centrada en la prevalencia 
puntual de infecciones intrahospitalarias en una sala 
de emergencias y cómo se ve afectada por diferentes 
factores relacionados con la gestión hospitalaria. Para 
realizar el modelado del simulador se utilizó el para­
digma de Modelado y Simulación Basado en Agentes 
(ABMS). Así, se clasificaron diferentes agentes in- 
tervinientes en el entorno de urgencias —pacientes 
y médicos, entre otros—. El usuario perteneciente al 
sistema de salud dispone de diferentes parámetros para 
configurar la simulación, como el número de pacien­
tes, el número de camas disponibles, etc. En base a las 

pruebas realizadas y las mediciones obtenidas, se con­
cluye que el modelo de propagación de la enfermedad 
relativo al tiempo y área de contacto de los pacien­
tes tiene mayor precisión que el modelo puramente 
estadístico de la unidad de cuidados intensivos.

Palabras claves: Simulación Sistemas de Salud 
ABMS.

1 Introduction

This analysis stems from the present needs in health 
services with a focus on hospital emergency services, 
where great complexity is observed.

The growing demand for emergency medical care, 
mostly due to the progressive growth of aging, in­
creased life expectancy and greater number of chronic 
diseases, the management of emergency departments 
is increasingly important. Particularly, the increasing 
number of patients entering into the service is one of 
the most important problems worldwide, requiring a 
substantial amount of human and material resources, 
which are often limited. The management and coordi­
nation of these resources becomes a critical point [1] 
[2].

As a consequence of this increase of patients, the 
service saturation is produced [3]. Several previous 
simulation works were made in order to approach the 
management of emergency rooms [4] [5].

In addition to this, the loss of medical care effec­
tiveness in saturation scenarios, it also produces an 
increase in intrahospital diseases propagation. Ac­
cording to data published by the European Center for 
Disease Prevention and Control [6], about 7.1% of 
patients acquire at least one intrahospital infection dur­
ing their stay. In response to this, some simulations 
works oriented to analyze and predict the emergency 
rooms intrahospital propagation were developed [5]. 
Based on them, this work is focused on analyze and 
test a more complex propagation model, dependant 
of distance between patients, and the time of stay in 
the room, explained in next sections. According to 
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this problem, a simulator was developed as a tool to 
recreate a large number of scenarios and make agile 
decisions in the planning of a real emergency room 
system.

This simulator focused on the point prevalence of 
intrahospital infections in an emergency room and how 
it is affected by different factors related to hospital 
management.

To carry out the simulator modeling, the Agent­
based Modeling and Simulation (ABMS) [7] paradigm 
was used. There are similar works done with the Netl- 
ogo framework [5][8]. In this publication, the frame­
work used is Repast Simphony [9], a specialized tool 
in ABMS, which is more powerful than Netlogo, re­
garding the modeling and implementation of agents. 
Furthermore, in the present work, a spatiality and time­
dependent disease propagation model —more complex 
than the models of previous purely statistical works— 
is implemented and studied. Thus, different interven­
ing agents in the emergency room environment — pa­
tients and doctors, among others— were classified.

The behavior adopted by the agents is fundamen­
tal in this process, since the spread of the intrahospi­
tal infection will be modeled by interactions between 
these agents. For example, one of the most impor­
tant sources of infection are waiting rooms, which are 
likely to be overcrowded. The most effective way to 
calibrate the simulator is through the greater or lesser 
interaction of agents, and thereby adjusting the rate of 
transmission of the disease.

The user belonging to the health system has different 
data to configure the simulation, such as the number 
of patients, the number of available beds, etc. When 
per-forming different runs or executions, you can ob­
tain results by analyzing different possible bottlenecks, 
configuring the number of available clinicians, the 
number of receptionists in charge of admission, triage, 
among others. In this way, decisions can be made 
regarding the allocation of resources and personnel 
to speed up the hospital stay of patients and avoid 
contagions as a result of their interactions.

The developed simulator can be included in future 
projects, given its possible scalability for more com­
plex emergency rooms where a large number of statis­
tics can be produced and thus reliable and fast results 
can be obtained.

This work is organized as follows: in section 2 the 
data collection. Then, in section 3 the model of the 
emergency room and the spread of diseases is pre­
sented. Next to it, section 4 contains the validation, 
calibration and verification of the system. In section 5, 
the simulator results are shown. Finally, in section 6, 
the conclusions and future works are developed.

2 Data collection

The data in the health area has restrictions because of 
being sensitive or private. Therefore, the amount of

Figure 1: Income of patients provided by the DEIS in 
the year 2016.

Days - Year 2016

Figure 2: Income of patients with pneumonia provided 
by the DEIS in the year 2016.

data and all the desired metrics are not obtained. Due 
to this problem, a data pool from various sources was 
built, to fill in the missing information.

The data pool is divided in two groups. The first 
one is related to the emergency room and the health 
care, containing the necessary data for the modeling 
and design of the emergency room. The second one, 
linked to an intrahospital disease, has the data of an 
specific illness.

In this work, the second group contains data for the 
pneumonia, due to its great presence in the emergency 
rooms. If the study of another disease is required, the 
system will be re-calibrated with the data related with 
this hypothetical illness, as long as, it fits with the 
contagion model proposed below.

As an example, some of the most important distribu­
tions used are shown below. The income of patients by 
year to the emergency room is observed in the Fig. 1, 
this data is provided by the Department of statistics 
and information of health of Chile (DEIS) [10].

Also, another important data given by the DEIS is 
the income of patients with pneumonia, in the year 
2016. It can be observed in the Fig. 2.

The distribution used for internal assignments of 
medical care is shown in the Table 1. This data was 
constructed based on the ”Estudio de las prevalencias 
de infecciones nosocomiales en España” (EPINE)[11].
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the EPINE for the year 2016.
Table 1: Distribution of patients by area, provided by

Area Patients Percentage(%)

Surgery 12691 29,2939085
Consulting rooms 19260 44,4567551

Pediatrics 2224 5,1335318
Intensive care 3064 7,0724557

Obstetrics/gynecology 3288 7,5895021
Geriatrics 820 1,892759
Psychiatry 1976 4,5610876

Total 43323 100,00 1 Consulting rooms
3 Prediatrics
5 Geriatrics

Waiting room Entry O'

• 1
Admission

1 Triage 1 « <

* 1

* 1 I TTT5
♦ 6

i—i
Intensive care unit

______________________________________________
2 Surgery
4 Gynecology
6 Psychiatry

3 System Modeling

3.1 Emergency room

In order to develop the simulation, a theoretical emer­
gency room model was built. In first place, a functional 
analysis was made with the data available [12] [13]. 
The result was an admission area next to a Triage and 
a waiting room. Behind them, the clinical consulting 
rooms can be found.

Along the waiting room, different specialties con­
sulting rooms are available. The decision of which 
specialties would be included in the system was taken 
with regard to the data collection [14].

At this point, a restriction to the system is necessary. 
In this work, the model will be bound only to single 
services, in other words, a patient will make use of one 
specialty service in the same visit.

The consulting rooms will include the services re­
lated to medical specialties and the intensive care room 
will attend its own admissions.

After studying the data, five specialties were chosen 
for the emergency model, apart from the consulting 
rooms and the intensive care room. The criterion con­
sidered the five most important specialties in terms of 
quantity of patient admissions. Therefore, the result­
ing specialties were: surgery, pediatrics, obstetrics / 
gynecology, geriatrics and psychiatry. Based on the 
collected data [11], and the previously imposed restric­
tions, the distribution of patients is obtained consider­
ing both specialty and the hospital attention model.

The intensive care unit needs to be attached to the 
emergency room model in order to observe the evolu­
tion of this critical area for the contagion of intrahospi­
tal diseases, and to study the behavior of the punctual 
prevalence and mortality in this room.

Based on the data, inpatient rooms are usually the 
rooms that are farther from the consulting rooms and 
the waiting room. Thus, a decision was made to add 
the intensive care room at the far end of the admission 
area.

Based on what has been analyzed in the structures 
of the observed health centers [12] [13], together with 
the criterion explained above, the functional distribu­
tion is to be constructed as follows. First of all, next 

Figure 3: Structural model of the emergency room of 
the developed simulator.

to the entrance of the emergency room, the ad-mission 
area with the corresponding receptionists is found. Ad­
jacent to the admission area, the triage and waiting 
room are found.

Then, next to the waiting room the consulting rooms 
are found. These will be the closest to the waiting 
room while the other specialties will be distributed in 
the remaining space, with the intensive care unit as the 
farthest specialty from the admission area With all the 
observations considered, the emergency room model 
in Fig. 3 is proposed.

3.1.1 Triage

A triage room was modeled with the following charac­
teristics. In the first place, there are different cases in 
the admission process. There are patients who can go 
through triage, and others who are directly distributed 
to their corresponding care unit. By the worst-case 
criterion, the model imposed as a restriction that all pa­
tients will pass through this room, without exception.

In triage patients queue as they check in on a first- 
come-first-serve basis. Once in the queue, they wait 
until they are attended.

Regarding the triage stages, based on the data col­
lected [15], four functional stages are observed: recep­
tion, assessment, classification and distribution. Of 
these four stages, only the first three present personnel 
in charge. That is, once the classification is finished, 
the distribution stage is carried out by the same person­
nel of the classification stage. The patient is informed 
of the steps to be taken and the distribution runs its 
course in the emergency room with no staff in charge. 
Therefore, only the personnel corresponding to the 
first three stages of triage will be taken into account, 
and the fourth will be included within the system's 
flow of patients.

For the model of each triage stage, the Box agent 
was modeled. It used the client-server paradigm and is 
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responsible for unqueuing the patients from the afore­
mentioned queue.

In a real triage system, the stages work as a pipeline, 
moving patients from one stage to another until the 
process is complete. In this case, the model was sim­
plified, and each Box has the task of carrying out the 
complete care service of the triage and not just one 
stage. That is, the patients will not move between 
Boxes, including all the time corresponding to the 
three stages. As a consequence, it is necessary to run 
three boxes in parallel, thus allowing three parallel 
care services with the necessary duration, thus obtain­
ing similar results in terms of care services as with 
the serial pipeline model. Although the number of 
boxes will be set at three, this number will be left as 
an input parameter allowing user configuration. In this 
way it will allow to re-create scenarios of increase or 
decrease of personnel.

According to the data obtained [16], the maximum 
duration of attention service in triage is fifteen minutes. 
By the worst-case criterion, this care service time will 
be the same for all patients undergoing triage. Once the 
attention is finished, it should be possible to determine 
both the next room of the patient and its priority. To 
determine the next attention service, the distribution 
according to specialty explained above is used. When 
the patient is assigned to a certain area, he queues, with 
the exception of the intensive care unit, where care 
service is immediately executed. When the process 
is completed, a triage level is assigned for the patient, 
depending on the severity of their situation.

Based on the obtained data [16], the values with 
the percentages that are used as a decision criterion in 
terms of probabilities for each level are constructed. 
The patient queue in their corresponding care unit, 
depending on the level of urgency assigned. Those of 
level 1 will be the highest priority and those of level 
5 the lowest priority, together with their maximum 
waiting time. When two or more patients are found 
with the same priority, the queue is arranged according 
to in the order of arrival.

3.1.2 Intensive care unit

An intensive care unit was modeled, which behaves 
differently from the other rooms. The highest interest 
in this work lies in the waiting room, as the internal 
traffic of people in intensive care was considered in­
significant.

As regards hospital care, the behavior of patients is 
connected with the selection of a bed and their hos­
pitalization time from beginning to end. If beds are 
not available, the patient must be withdrawn and is 
counted as a rejected patient due to lack of resources.

Based on the collected data [10], the percentages of 
patients are calculated according to the hospitalization 
days used for the model implementation.

3.2 Disease spread

A correct model of disease spread requires the consid­
eration of multiple factors. It consists of two types of 
contagion: the direct and the indirect [17].

In the first place, direct contagion depends on the 
number of interactions that people have, as well as 
their duration. In addition, the distance factor is de­
rived from the previous, to consider if an interaction 
occurred or not.

To represent flexibility regarding the number of in­
teractions and their duration, the interactions were 
limited to having a duration of one tick of the system 
clock. There-fore, to recreate interactions whose du­
ration must be several ticks, it is necessary to execute 
multiple interactions, one per tick.

Assuming the hypothetical case in which a clock 
tick is one minute, it is required to recreate an inter­
action of 15-minute duration, so the result will be the 
execution of an interaction 15 times, with intervals of 
one minute between them. Given this example, in the 
case of an interaction of 14 minutes 59 seconds, the 
inter-action referred to one minute will be executed 
14 times, and it will represent an inter-action of 14 
minutes. As a consequence, 59 seconds of interaction 
would be lost.

Therefore, it is concluded that for this model, it is es­
sential to take into account that the choice of the tick of 
the system will affect the precision of the model. It can 
also be concluded that the higher the precision of the 
model, the more computing re-sources are required.

Because of the previous conclusion, the tick was 
set in ten seconds. This choice was made following 
a practical criteria, the smaller tick possible for the 
hardware available. In this case, 50 runs of simulation 
has a duration of five to six hours, depending the pa­
rameters entered. Up to this point, it was decided that 
more time to get results would be unpractical in the 
day to day work.

When analyzing the area factor, if direct contact 
transmission is taken into account, the distance is prac­
tically a few centimeters. If the droplet transmission 
mechanism is included, it will involve a higher area.

This mechanism has a greater scope than direct con­
tact. According to the collected data [18], the recom­
mended minimum distance with an infected person is 
one meter to avoid contagion by droplets. It is also 
clarified that with this distance there is a probability 
of contagion, depending on the disease and the given 
situation. That said, the following restriction will ap­
ply. A distance of two meters will be applied as the 
upper bound, that is, twice the recommended one. For 
a two-meter distance, it will be assumed that the possi­
ble contagion is negligible and will not be taken into 
account.

In addition, depending on the distance to the in­
fected person, the probability of being infected varies. 
The closer a healthy patient is to an infected one, the 
more likely the healthy patient is to become infected.
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Figure 4: Moore's state machine ‘State of health'.

Another restriction will be added: within two meters, 
the probability of infection will be uniform.

Transmission by air and vectors is not included in 
the model, since they are considered negligible with 
respect to the other types of contagion. Up to this 
point, interpersonal interaction was taken into account, 
but the model regarding indirect infections has not yet 
been explained. Objects will be included in the model, 
as they will have the capacity to become contaminated 
and infect patients.

Although it is an indirect contagion, the develop­
ment of this contagion is by contact. Therefore, it 
was decided that contagion by indirect contact will 
have the same prob-ability as contagion by direct con­
tact. In indirect contact, an interaction will only be 
considered when a person directly touches the object. 
The chance of infection will be a calibration parameter 
of the system. In this way, depending on the disease 
studied, this probability can be adapted to achieve the 
necessary behavior and thus obtain results.

The desired behavior for contagions was explained. 
However, there is still the problem of representing 
this behavior in multiple patients, objects and other 
people that can be included. The strategy to be used to 
solve this problem is to use state machines to recreate 
said behavior. Thus, when designing a state machine, 
the same model of contagion replicated in multiple 
people can be obtained. Two Moore state machines 
were designed to represent contagions. The first is the 
Moore state machine ‘State of health' shown in Fig. 4.

• Healthy: a state in which the person is capable of 
contracting a disease but cannot spread it.

• Incubating: a state in which the person contracted 
an in-hospital disease but shows no symptoms yet, 
being in an early stage of said disease. The patient can 
infect other people and contaminate objects.

• Sick: a state in which the person contracted an 
in-hospital disease and shows symptoms and can there­
fore start treatment. The patient can infect other people 
and contaminate other objects.

Another state machine that intervenes in this pro­
cess is the 'Object' machine, which will be the main 
responsible for indirect contagions and contamination 
of objects.

The Object machine consists of two states:

• Clean State: the object is not infected; it can be 
infected by a person but does not have the ability to 
infect anyone.

• Infected State: the object was contaminated by 
a person, therefore, it has the ability to infect people 
who come in contact with it.

Any person who has the ”State of health” state ma­
chine may be a participant in the disease spread pro­
cess, as well as any element that has the ”Object” ma­
chine. Both machines have the ability to communicate 
with others 'Health status' or 'Object' states machines.

Communication skills represent the interactions that 
influence contagion. The machines will be aligned to 
the tick of the system, representing the duration of the 
interactions through an interaction per tick. In addition, 
the machines allow multiple interactions at the same 
tick of the clock, that is, a person can be interacting 
with more than one infected patient or object at the 
same time, depending on the situation.

3.2.1 Disease spread in the intensive care unit

In the case of the intensive care unit, the developed 
model does not cover its internal movement. There­
fore, the model presented is not the best in terms of 
interactions, duration and specific areas.

Indirect contact contagion does not undergo model 
modifications in this room. Despite the absence of 
movement, there are interactions between patients and 
objects, more specifically with the beds.

Direct contact and by droplets will be reduced to a 
purely statistical model, as the necessary data is not 
available to use the previous model within the intensive 
care room. It was decided that the infection criterion 
will be that each healthy patient in the intensive care 
room has a chance of infection proportional to the 
number of infected patients in the room. From this 
previous analysis, equation 1 was proposed.

P = n * ICU Infect ionChance (1)

A new calibration parameter can be observed, ‘ICU 
Infection Chance'. As it is a new model with a differ­
ent behavior, it should be calibrated in parallel with 
the general model of the emergency room, to obtain 
results with the minimum possible error.

The state machine presented in Fig. 5 will continue 
to be valid including this model in its execution. That 
is, the machine will use the model explained in the 
previous section as long as it is outside the intensive 
care unit. Once the machine detects that it has entered 
the intensive care unit, it will start using the model 
explained in this section.

Analysis of the spread of disease is very important 
in this room for two factors. First, the punctual preva­
lence in intensive care units is usually much higher 
than other are-as, due to long hospitalization times.

Secondly, the number of deaths resulting from the 
intrahospital spread of diseases can be studied. In other 
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words, the seriously ill in this room, upon contracting 
an intrahospital disease, significantly increase their 
mortality rate.

To carry out this analysis, the simulator will have 
a user-configurable input, which will be the mortal­
ity for a given disease. In this way, it is possible to 
study the evolution of the number of deaths derived 
from hospital diseases with respect to other factors, for 
example, hospital administration factors such as the 
number of available doctors.

3.3 Agent modeling

For the complete modeling of the system, multiple 
agents were designed with different objectives, among 
them are doctors, specialists, receptionists, patients, 
cleaning personnel, beds and chairs. These agents 
are the ones who carry out the main tasks involving 
disease spread and take part in the hospital attention 
process.

The patient agent is the only mobile agent in the 
system, a vital factor for the disease spread model.

This agent has the 'State of health' state machine 
incorporated into its model. In other words, it will have 
the necessary behavior to interact with other agents 
that have this machine or the 'Object' machine.

It will proceed to focus on the model of hospital 
care of the patient, basically, it is what will determine 
their movement throughout the emergency room and 
their waiting time. To model this behavior, the 'Patient' 
state machine in Fig. 5 was designed.

In this model, the machine states are synchronized 
with the system tick. For each tick, each patient has a 
task to do. Besides, through his health care, this agent 
can decide between different possibilities, in a non 
deterministic way. To achieve this, the patients, and all 
the agents involved in the system, have probabilistic 
distributions to follow, provided by the data collection.

Therefore, the patient can be assigned to different 
health cares, to be rejected for lack resources, to die 
in the intensive care unit, to get ill by an intrahospital 
disease, among other possibilities.

The states corresponding to the 'Patient' state ma­
chine in Fig. 5 are explained below:

• Initial: the initial state in which the patient enters 
the hospital.

• Reception: upon entering this state, the patient 
goes to the Reception room. There, the admission 
is made, which lasts one minute. This was decided 
by imposing a restriction to obtain an upper bound. 
When the admission ends, the patient is released by 
the receptionist and the Waiting Triage state is set.

• Triage: upon entering this state, the patient goes to 
the Triage room. Once there, the first diagnosis is made 
and his next destination is chosen. This diagnosis is 
carried out in fifteen minutes. In addition, it receives a 
priority level. The next state will be Waiting (one of 
its variants), or it goes directly to the Hospitalization 
state, as appropriate.

receptionDonel
= false I

T

s------------ ' Reception

room Full = true,

triageDone = true 
goToDoctor = true 
room Ful I = falseroom Full = 

false

triageDone = true 
goToHospitalizatoin = true 
hospitalization Full = false

specialistDone 
= true

reception Done 
= true 

roomFull = 
r false

roomFull = "­
true 

receptionDone 
= true

goToReception 
= false

Waiting
Reception 

-[goToReception 
= true

hospitalization Done
= 1rue

flag Death = false 
f------ X*________J

Exit __________J

^doctorDone 
~ = false

_ „ i n Doctor • goToDoctor = true
- doctorDone = 

true
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= false 
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Doctor

Waiting ________ '' Tj \__________________ bi
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'•rl goToTriage=mie _ (hospital cation =jl = tme 
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= false triageDone = false

v___________________________________________________________

Figure 5: Moore's state machine ‘Patient'.

• Doctor: in this state, the patient was selected by 
the Doctor agent to be treated, said patient will go to 
the office that was assigned. The attention lasts for 15 
minutes. When the attention ends, it goes to the Exit 
state.

• Specialist: once this state has started, it means that 
the patient was summoned by the specialist who was 
assigned in the Triage. He goes to the corresponding 
room and remains there performing the attention for 
15 minutes. At the end of it, the Exit state is set by the 
patient.

• Hospitalization: in this state, the patient goes di­
rectly to the hospitalization room. In the event that 
the room is full, that is, there are no beds available, 
the patient is rejected due to lack of resources and the 
Exit state is set. The length of stay of the patient is 
decided in terms of probability using the data collected 
[10]. During that time the patient will be occupying 
a bed, once that time is over, the hospitalization is 
over. There are two possible outcomes, the first is to 
continue towards the Exit state, in which the patient 
withdraws upon discharge. The second possible out­
come is the death of the patient. The particular case in 
which the patient was hospitalized and later contracted 
an in-hospital disease is analyzed. In this case, the 
patient has a chance of dying. If indeed the patient 
dies, the Dead state is set.

• Dead: in this state, the patient will count the met­
rics that correspond to his death and the agent will be 
eliminated.

• Exit: in this state the agent leaves the room in 
which he was attended, and goes directly to the exit. 
Once it gets there, the count of the metrics for this 
agent is made and then the agent is removed.

• Waiting: it is a state where the patient goes to 
the waiting room, chooses a seat randomly, where he 
remains until he is selected by a member of the staff to 
continue his attention. It was decided to separate this 
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state into several states, one for each part of the care 
service. In this way, it seeks to know more precisely 
in which part of the attention the patient is and what 
is the resource for which he is waiting, as well as the 
waiting times.

The patient selects the corresponding Waiting state 
and queues in the queue associated with the required 
care, waiting to be summoned.

As an example, the state transition diagram of the 
state Triage is shown in Table 2, being the state with 
more transitions available in the model.

4 Validation, calibration and verifica­
tion

In order to validate the system, the spiral develop­
ment model was used. Therefore, for each iteration 
the model design, implementation, results and data 
collection are refined.

To calibrate the system, the input parameters ”Infec- 
tion chance” and ”Infection chance in intensive care” 
are used. These two are modified to achieve the desired 
annual punctual prevalence outputs and, consequently, 
the rest of the results derived from it. In this process, 
data from the year 2016 is used, within the data set 
collected [11] [10].

The other input parameters remain static within the 
calibration process. To decide their values, the data 
collection is consulted. They can be observed in the 
Table 3 and Table 4. In the Table 5, the description of 
these parameters is shown.

In the Table 6, the averages of the outputs obtained 
during the calibration process are shown. These values 
are averages of 50 runs of simulation, being the annual 
punctual prevalence the most important in the process.

Finally, the verification process was similar to the 
calibration process, using the data corresponding to 
the year 2017, belonging to the data set collected [11] 
[10].

5 Results

To obtain the results, similarly to the calibration pro­
cess, 50 simulation runs were executed for each data 
input configuration to minimize statistical error.

Before obtaining results, the system was calibrated 
and verified with the collected data , obtaining a re­
liable system. As a case of study, the simulator was 
calibrated focused on the pneumonia, a classic intra­
hospital illness. Calibration is used as a base case, in 
terms of configured inputs and obtained results, which 
was also performed by means of 50 runs. Then one or 
more parameters are varied in order to study the evo­
lution of the system. For reasons of space and ease of 
reading, this paper will include different graphs made 
from the tables generated by the outputs.

In order to study the saturation points, the exper­
imentation criteria is focused on varying the input

Figure 6: Averages of the results varying the patients 
admitted during one year.

parameters to excite the system, and analyze the sce­
narios where the saturation is maximum. When the 
saturation points are found, contingency plans for the 
saturation scenarios can be studied and tested if the 
current model let them. In future works, more satu­
ration scenarios and contingency plans can be added 
to the model to achieve more complexity and reduce 
error.

In the first place, the behavior of the system was 
studied before the variation of patient entry. The base 
case of 65,713 patients was taken, then this entry var­
ied at the rate of a thousand patients. The averages of 
the runs for each entry can be seen in Fig. 6.

In Fig. 6, an increase in prevalence can be observed 
as the number of patients admitted within a year in­
creases. Regarding the specific prevalence in the inten­
sive care unit, it is observed that it remains constant, 
this is due to the fact that the emergency room is al­
ready saturated and rejects the extra patients who may 
need it. Similarly, deaths remain constant as the num­
ber of patients evolves.

Regarding the origin of the infections, it can be 
observed that the percentage of patients infected by 
the staff decreases. Although in absolute terms the 
infections by the staff increase, the increase is slower 
than the infections by the patients and the objects. 
This shows that as patients increase, the waiting room 
begins to have more relevance in infections.

The rest of the indicators analyzed remain relatively 
constant with respect to the variation in the number of 
patients.

The behavior of the system is studied by varying the 
number of clinical doctors who are available to provide 
care. The averages of the corresponding results can be 
observed in Fig. 7.

In Fig. 7, an increase in point prevalence is observed 
as the number of clinical doctors available for atten­
tion decreases. In the range between 4 and 2 doctors, 
growth is slow, but an exponential jump is noted when 
going to 1 available doctor.

The prevalence for 2 doctors is 1.24% and with one 
doctor it jumps to 23.77%. As for the point prevalence 
in intensive care, it increases slightly from 3.39% to 
3.74%, also having an increase in deaths from 20.58 
to 29 deaths.

To study the origin of the exponential jump seen, it
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x/St at e = T riage
Table 2: State transition diagram of the state Triage.

triageDone F T T T T T T T
roomFull X X T T T F F F
hospitalizationFull X T X X X F X X
goToDoctor X X T F F X T F
goToSpecialist X X F T F X F T
goToHospitalization X T F F T T F F
Next State Triage Exit Exit Exit Exit Hospitalization Doctor Specialist

Table 3: Inputs for hospital care configuration
Hospitalcare

First day 1
Num beds 90

Cleaning staff period (hs) 24
Num boxes 3
Num days 365

Num doctors 2
Num patients 65713

Num receptionists 1

Table 4: Inputs for intrahospital pneumonia
Pneumonia

Immunity chance (%) 81
Intensive care mortality (%) 25.5

Max incubating time (hs) 144
Min incubating time (hs) 24

Figure 7: Averages of the results varying the number 
of general doctors available.

can be analyzed from the point of view of the origin of 
contagions. Although all types of infections increase 
in absolute terms considerably, the one that increased 
the most above the others is indirect contagion through 
objects, representing 65.79% of total infections.

The rest of the indicators remain relatively constant, 
with a slight increase in rejections in the waiting room 
due to its saturation.

Then, the attention capacity of the triage is studied 
by changing the number of boxes that are available. 
The results are reflected in Fig. 8.

Fig. 8 shows the evolution of the indicators regard­
ing the number of boxes available in the triage. In 
the range between 3 and 6 boxes, there is a constant 
point prevalence, similarly with the point prevalence 
in intensive care and with deaths in this room. The rest 
of the indicators are also constant in this range.

Going from 3 boxes to 2, there is a slight increase in 
the point prevalence from 1.24% to 1.37%. The preva­
lence in intensive care went from 3.39% to 3.44%, 
with an apparently constant behavior and deaths which 
similarly remain constant. No major changes are found 
in the rest of the indicators in this case.

When going from 2 boxes to 1 available box the

Boxes

Figure 8: Averages of the results varying the number 
of triage boxes available in parallel.
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Table 5: Descriptions of input parameters
Parameter Description

Cleaning Staff Period Defines the period of cleaning, the minimum is 1 clean/hour, and the 
maximum is 1 clean in 24 hours

First day Defines the first day of the simulation, the day 1 is equal to the January 
first. According to the period of time simulated, the distribution of 
patients varies

Num beds
Num boxes
Num days

Quantity of beds available in the intensive care unit
Quantity of boxes available in the triage room
Quantity of days in a simulation run, the minimum is 1 and the maximum 
is 365

Num doctors
Num patients

Quantity of clinical doctors available
Quantity of patients in the emergency room along the period of time set, 
related to the quantity of days simulated

Num receptionists
Immunity chance

Quantity of receptionist available for admission
Immunity chance of the vaccine used for the illness studied, in this case 
the pneumococcal vaccine

Intensive care mortality Intensive care mortality of the illness studied. In this case, the pneumonia 
mortality in ICU is not available in the data set, because of this, the 
mortality in ICU by intrahospital illness is used, being this data a media 
of all intrahospital diseases. In future works, this value needs to be 
replaced

Max incubating time
Min incubating time

The maximum incubating time of the illness studied
The minimum incubating time of the illness studied

Figure 9: Averages of the results varying the number 
of beds available.

change is drastic, the point prevalence jumps expo­
nentially from 1.37% to 35.77%. The prevalence of 
intensive care goes from 3.44% to 19.15% and abso­
lute deaths go from 20.28 to 380.40, increasing its 
value approximately 19 times.

If the origin of the infections is analyzed, again 
in a similar way to the case of the doctors, indirect 
infections are the main responsible for the exponential 
increase, going from 15.85% of the cases with two 
boxes to 52.65% of the cases. cases with a box.

Regarding the rejections in the waiting room, a rad­
ical change is seen, going from 0 rejections to 4122 
rejections recorded, with a rejection rate for a single 
available box of 6.27%, the highest registered so far.

The behavior of the system is studied varying the 
number of beds available. They can be found in Fig. 9.

In Fig. 9, the simulation results are observed by 

varying the number of beds. Regarding the rate of 
refusal of patients in intensive care, it dropped from 
20.12% with 90, beds to 2.82% with 120 beds. It took 
a 33.3% increase in the number of beds to achieve an 
acceptable rejection rate.

Analyzing the Bridgman formula [19] (see equation 
2), an optimal bed occupancy rate of 85% was used 
for calibration, which was the recommended value.

Discharges * AverageStay
365 * OptimalOccupancyIndex

(2)

A new optimal index was calculated using the value 
of 120 beds as a parameter and the value of 63.66% 
was obtained.

It proceeded to study the results of the simulation by 
varying the cleaning intervals of the personnel. These 
can be seen in Fig. 10.

In Fig. 10, it can be seen that as the cleaning fre­
quency increases, the point prevalence falls slightly, 
the same happens with the point prevalence in the 
intensive care unit.

Likewise, in the best case, the prevalence drops to 
1.09%, starting from the base of 1.24% in the case 
of calibration. Considering the frequency was multi­
plied by 24, it is not a major gain. This is because 
the influence of indirect contagion in this scenario is 
13.51% in the base case of calibration. That is, it does 
not influence the total contagion too much. Likewise, 
the indirect contagion by objects fell from 13.51% to 
0.56%. In the best case, it was practically eliminated.

- 165 -



Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 6: Media and standard deviation of 50 outputs for annual runs of simulation, with the calibration inputs.
Out put parameter O

Infected patients 817.72 176.4707387
Punctual prevalence(%) 0.012443809 0.002685477
Intensive care total patients 3706.78 46.95073588
Intensive care infected patients 125.8 55.83618898
Intensive care punctual prevalence(%) 0.033981458 0.015187583
Infected patients deaths at intensive care 20.58 9.658343543
Intensive care mortality of infected patients(%) 0.249156973 0.055991907
Total infected patients by personal 157.46 154.90942
Percentage infected patients by personal(%) 0.168195537 0.154762204
Total infected objects 320.74 55.66643872
Total infected patients by objects 109.3 38.16870446
Percentage infected patients by objects(%) 0.135113751 0.044283977
Total infected patients by other patients 425.2 70.63625132
Percentage infected patients by other patients(%) 0.538341956 0.11806517
Intensive care rejected patients 935.2 85.2417738
Percentage of rejections at intensive care(%) 0.201270937 0.015790882
Waiting room rejected patients 0.28 1.132077736
Percentage of rejections at waiting room(%) 4.26095E-06 1.72276E-05
Out of time patients 1225.02 37.84996169
Percentage of out of time patients(%) 0.018641973 0.000575989

Figure 11: Averages of the results varying the effec­
tiveness of the pneumococcal vaccine.

Cleaning period in hours

Figure 10: Averages of the results varying the interval 
between consecutive cleanings.

The rest of the indicators remain constant, a logical 
consequence since they are not related to this input 
parameter.

The study proceeds with the results corresponding to 
the variation in the effectiveness of the pneumococcal 
vaccine, being 81% the calibration value, according the 
data collected [20]. In the present model, this vaccine 
is applied only to health personnel. The associated 
results are in Fig. 11.

Given the results of Fig. 11, a progressive increase 
in the point prevalence is found as the effectiveness of 
the given vaccine decreases.

In the same way, the participation of personnel in 
contagion increases, going from 16.82% for 81% ef-
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Figure 12: Average of the results in different scenarios. 
1. Calibration case. 2. Worst case: 1 box y 1 doctor 
available. 3. Worst case with cleaning period in one 
hour.

fectiveness to 47.38% with 31% effectiveness. Given 
the model where staff are the only vaccinated, it is a 
logical consequence.

The rest of the indicators remain constant since it 
has no relation to this input parameter.

Given the scenarios studied above, it can be con­
cluded that the greatest risks of infections are in the 
decrease in the number of doctors and the number of 
boxes, which by minimizing their number produce 
exponential jumps in infections. Consequently, it is 
necessary to recreate the worst possible case in terms 
of care services, setting both the doctors and boxes 
with the value 1. The rest of the parameters remain 
with the values acquired in the calibration. The results 
of this scenario can be seen in Fig. 12.

In Fig. 12, the data obtained for the scenario of 1 
box and 1 doctor available (case 2) are observed. In 
this scenario, it is obtained that the point prevalence 
scales to 47.06%, the highest value obtained. As for 
absolute deaths, it reaches 454.38 deaths.

In terms of the origin of the contagion, in a similar 
way to the cases previously studied, when there is sat­
uration, the indirect contagion scales to the first place, 
in this case with 60.31% of the infections. In addi­
tion, the rejection rate in the waiting room increased 
to 8.09%.

Given the worst scenario, whose main problem is 
indirect contagion, we proceed to study how this sce­
nario evolves by scaling up the frequency of staff clean­
ing. In previous scenarios, with a frequency of one 
cleaning per hour, indirect contagion was practically 
eliminated. In Fig. 12, particularly in case 3, the re­
sults obtained for the case with 1 box, 1 doctor and 
the best available cleaning period are found, that is, 
1-hour interval between consecutive cleaning.

In case 3, a significant decrease in the indicators 
can be observed when compared with case 2. The 

point prevalence falls from 47.06% to 28.9%. As for 
the number of deaths, it fell from 454.38 to 304.92. 
This is due, as expected, to the control of indirect 
contagion, participation in the contagion falls from 
60.31% to 7.42%.

6 Conclusions and Future works

Based on the tests carried out and the measurements 
obtained, it is concluded that the disease propagation 
model relative to the time and contact area of the pa­
tients has greater precision than the purely statistical 
model of the intensive care unit. The results show a 
difference of two orders of magnitude.

From the measurements obtained, it can be con­
cluded that, focusing on the precision of the model, a 
variance for the point prevalence of 7.21 was obtained. 
10-6, while the variance of the point prevalence in 
intensive care is 0.00023066.

Another conclusion based on the results analyzed 
is that the greatest risk for the spread of contagion is 
the loss of active personnel in the emergency room. In 
particular, if the staff in consulting rooms is halved, 
the point prevalence can climb to 23.77%.

In triage, if the staff is reduced to a third there is an 
increase in the point prevalence to 35.77%. Analyz­
ing the combination of both cases, a point prevalence 
growth is obtained that reaches 47.06%.

Although, in terms of deaths, the mortality data in 
intensive care was used in this study for all intrahospi­
tal diseases and not only for pneumonia, the growth of 
deaths in relative terms can be analyzed.

The calibration scenario presents 20 deaths per year. 
The case of an available doctor presents 29, an increase 
of 45%. In the case of a single box in the triage, 380 
deaths resulted, an increase of 1900%. Analyzing the 
worst case, that is, the combination of both cases, 454 
deaths resulted, an increase of 2270%.

In addition, it is concluded from the analyzed re­
sults that the main cause of the exponential increase in 
point prevalence when there is a saturation is indirect 
contagion. This increased from 13.5% in the case of 
calibration to 60% in the case of higher saturation.

Although prevention is essential to avoid reaching 
this situation where the emergency room is totally sat­
urated, the increase in cleaning personnel can be used 
as a contingency plan, to keep the room continuously 
sanitized.

In the worst case of saturation, it went from one 
cleaning every 24 hours to one cleaning per hour, ob­
taining a reduction in the participation of indirect con­
tagion to 7.4%.

Consequently, a reduction of the point prevalence is 
obtained, which became 28.9%. Deaths fell from 354 
to 305, a decrease of 32.82%.

Although there is a notable reduction, it must be 
taken into account that there are still high values of 
point prevalence and deaths with respect to the cali­
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bration scenario. In addition, the best possible case 
was taken, where the cleaning frequency increased 24 
times, a number somewhat excessive for real scenar­
ios. Therefore, it is claimed that although it may be 
a good contingency plan, the best option remains the 
prevention of this situation.

During the calibration process, based on the col­
lected data [19], the Bridgman formula was used to 
calculate beds for the emergency room.

Within this formula, as seen above, is the optimal 
occupancy rate, which according to the literature, a 
margin of 15% is recommended, that is, a rate of 85%.

By performing multiple simulation runs with this 
value, an indicator of rejection of patients in the inten­
sive care room of 20% was obtained for the calibration 
scenario. Analyzing the behavior of rejections daily, 
it was possible to observe their concentration during 
winter, the season where there is a greater admission 
of patients, given by the distribution collected in the 
bibliography [10].

The margin of 15% as a theoretical value can be 
useful if it is assumed that the distribution of patient 
admission tends to be uniform. In practical cases, 
a notable in-crease in patients is obtained in winter, 
therefore, a higher margin is required to cover the 
admission of these patients.

The calibration scenario had 90 beds, a value ob­
tained by the Bridgman formula. When simulating 
different numbers of beds, the value of 120 beds was 
obtained, which gives the emergency room a rejection 
rate in intensive care of 2.82%. That is, 33.3% more 
beds than recommended.

Using Bridgman's formula, a new optimal occu­
pancy rate of 63.66% was calculated. It is recom­
mended to use this value for the calculation of beds to 
obtain a rejection of less than 3%.

The main future work is the model extension, im­
proving aspects such as cleaning staff, direct inter­
vention by nurses in contagion and care. Besides, 
modeling contagion caused by mechanical ventilation, 
adding movement and direct health care to the inten­
sive care room, among other possible extensions.

This includes the collection of homogeneous data 
sets, coming from hospital institutions, approximating 
and modeling real emergency rooms.

In addition, another important work to be carried 
out is related to the acceleration of the execution of 
the simulation with specialized tools in simulator par­
allelization. Based on the simulator implemented with 
Repast Simphony, tools such as Repast HPC [21] or 
Flame GPU [22] can be used to achieve an improve­
ment in execution times.
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