
Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- ORIGINAL ARTICLE -

Specifying and Analyzing a Software Testing Ontology at
the Top-Domain Ontological Level

Especificando y Analizando una Ontología de Pruebas de Software en el Nivel
Ontológico de Dominio Superior

Guido Tebes , Luis Olsina , Denis Peppino and Pablo Becker
GIDISWeb, School of Engineering, UNLPam, General Pico, La Pampa, Argentina

{guidotebes, olsinal, beckerp}@ing.unlpam.edu.ar; denispeppino92@gmail.com

Abstract

One of the Software Engineering areas that supports
quality assurance is testing. Given that specific
processes, artefacts, methods and ultimately
strategies for software testing involve a large number
of domain concepts, it is valuable to have a robust
conceptual base, that is. a software testing ontology
that defines the terms, properties, relationships and
axioms explicitly and unambiguously. Ontologies for
instance foster a clearer terminological understanding
of process and method specifications for strategies,
among many other benefits. After analyzing both the
results of a conducted Systematic Literature Review
of primary studies on conceptualized software testing
ontologies and the state-of-the-art of testing-related
standards, we decided to develop a software testing
top-domain ontology named TestTDO that fits our
goals. Therefore, this article specifies development,
verification and validation aspects of the TestTDO.
which was built following the Design Science
Research approach.

Keywords: ontologies. software testing,
terminologies, top-domain ontological level,
vocabularies.

Resumen

Un área de la Ingeniería del Software que da soporte
al aseguramiento de la calidad es testing. Dado que
los procesos, artefactos, métodos y. en última
instancia, estrategias específicas para pruebas de
software involucran una gran cantidad de conceptos
de dominio, es valioso tener una base conceptual
robusta, es decir, una ontología de pruebas de
software que defina los términos, propiedades,
relaciones y axiomas explícitamente y sin
ambigüedades. Las ortologías, por ejemplo,
fomentan una comprensión terminológica clara de las
especificaciones de procesos y métodos para las

estrategias, entre muchos otros beneficios. Después
de analizar los resultados de una Revisión Sistemática
de Literatura de estudios primarios sobre ortologías
de pruebas de software conceptualizadas y el estado
del arte de los estándares relacionados al área,
decidimos desarrollar una ontología de dominio
superior de pruebas de software llamada TestTDO
que se ajuste a nuestros objetivos. Por lo tanto, este
artículo especifica aspectos de desarrollo,
verificación y validación de TestTDO. que fue
construida siguiendo el enfoque de Design Science
Research.

Palabras claves: Nivel Ontológico de Dominio
Superior, Ortologías. Terminologías. Pruebas de
Software. Vocabularios.

1. Introduction

Software testing is a critical process for software
quality assurance, ft is also a complex domain since
testing lias a large number of specific methods,
processes and strategies. All of them involve many
specific domain concepts. Hence, it is valuable to
have a robust conceptual base. i.e., a conceptualized
software testing ontology that explicitly and
unambiguously defines the terms, properties,
relationships and axioms or constraints.

A benefit of having a suitable testing ontology is
to improve the software testing-related information
exchange between agents avoiding ambiguity
problems. Furthermore, one desirable feature of a
software testing ontology is that it covers concepts
related to static and dynamic testing since software
testing standards as ISO 29119-1 [1] and International
Software Testing Qualifications Board (ISTQB) [2]
consider these kinds of testing. Additionally, the
software testing ontology should be linked to Non
Functional Requirements (NFRs) and Functional
Requirements (FRs) ontologies because software
testing strategies are useful to verify and validate both

-126-

gmail.com

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

types of requirements. In particular, we aim to have a
suitable software testing ontology that
terminologically nourishing specifications of
methods and processes for a family of testing
strategies to be developed.

To adopt or adapt an existing testing ontology, or
to develop a new one, we have followed the Design
Science Research (DSR) approach [3], [4]. This is a
rigorous and high-level research approach, which
proposes the construction of artefacts to provide
useful and effective solutions to a relevant problem in
a given domain. Artefacts must be innovative and
useful solutions to a non-trivial problem. The artefact
development implies a cycle of design-construction-
verification and validation activities, which should
iterate as many times as necessary before the artefact
(already verified and validated) is communicated for
its use.

Firstly, to find out existing solutions (i.e.,
conceptualized software testing ontologies) to our
problem, we conducted a Systematic Literature
Review (SLR) [5]. We selected 12 primary studies
documenting conceptualized testing ontologies,
which were evaluated from the ontological quality
standpoint. This includes characteristics such as
structural quality, terminological coverage quality,
among others [5], [6].

In general, we have observed that most of them
have a lack of non-functional testing and static testing
terminological coverage. Moreover, the 12 retrieved
ontologies present opportunities to improve their
structural quality for different reasons such as: i) they
do not have all their terms, non-taxonomic
relationships and properties defined as well as axioms
specified; ii) they do not have non-taxonomic
relationships or, if they do, they do not have well-
balanced taxonomic and non-taxonomic
relationships. Furthermore, all of them are not
directly linked with NFRs and FRs concepts.

Since current test ontologies are not fully suitable
for our aim, that is, to terminologically nourish
specifications of methods and processes of a family
of testing strategies to be developed, we have decided
to build a new software testing ontology named
TestTDO (i.e., a Software Testing Top-Domain
Ontology). Note that we have used the DSR approach
as a generic framework to carry out this research work
as a whole, i.e., from the conducted SLR to the
verification, validation and communication of the
ontology. We have also used METHONTOLOGY [7]
but only in one DSR activity to build TestTDO.

It is worth mentioning that TestTDO is placed into
an ontological architecture called FCD-OntoArch
(Foundational, Core, and Domain Ontological
Architecture for Sciences) [8]. It is a four-layered
ontological architecture that considers foundational,
core, domain and instance levels. In FCD-OntoArch,
ontologies at the same level can be related to each

other. Also, ontologies at lower levels can be
semantically enriched by ontologies at higher levels.
For example, TestTDO at the domain level is
enriched by concepts of the ProcessCO ontology
placed at the core level. In turn, the latter is enriched
by concepts of ThingFO at the foundational level, as
addressed later on.

In summary, the contribution of this work is to
specify and discuss aspects of the TestTDO
conceptualization (i.e., its terms, properties,
relationships and axioms), and its ontological quality
evaluation. Also, by using different black-box and
white-box testing methods, we analyze aspects of its
static and dynamic verification. Moreover, to validate
TestTDO, we use a human assessment approach.

It is important to remark that this article
thoroughly documents TestTDO in its version 1.2. In
[9], we showed summarized results of the TestTDO
conceptualization in version 1.0, without being
implemented. Conversely, this manuscript contains
new aspects of the TestTDO development and
implementation, as well as its dynamic verification by
using test cases.

The remaining sections of this paper are arranged
as follows. Section 2 gives a summary of related work
on conceptualized testing ontologies, which were
identified by conducting the abovementioned SLR.
Section 3 provides an overview of FCD-OntoArch,
which contains some ontologies that are part of the
TestTDO context, such as ProcessCO and
SituationCO. Section 4 documents and analyzes the
main concepts, properties, relationships and axioms
included in TestTDO. Section 5 illustrates how
TestTDO was verified and validated using different
approaches. Finally, Section 6 summarizes
conclusions and future work.

2. Why one more Software Testing
Ontology?

We previously mentioned that to achieve our goal,
that is, to adopt or adapt an existing testing ontology,
or develop a new one, we follow the DSR approach
[3], [4]. According to the DSR process [4], the first
activity to perform is to define the problem/solution
in which the solution requirements artefact is
produced. We preliminary define 9 Solution
Requirements (SRs), which are documented at
http://bit.ly/SWTestingOnto-SolReqs. As an
example, SR#2 states that “the ontology must contain
testing concepts that can be related to functional and
non-functional requirements concepts”. Therefore,
the testing component must be related to the FRsTDO
and NFRsTDO components, as shown on the right
side of Fig. 1.

Using as input the SRs artefact, the next DSR
activity to be carried out is investigating current

- 127 -

http://bit.ly/SWTestingOnto-SolReqs

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

solutions through literature research and/or getting
expert feedback. To do this, that is, to find existing
solutions (conceptualized software testing
ontologies) to our problem and that fit the established
SRs, we conducted a SLR [5]. As a result, we have
selected, analyzed and evaluated 12 ontologies that
document a conceptualization of the software testing
domain.

Recall that the main goal of TestTDO is to
terminologically nourish specifications of methods
and processes of a family of testing strategies to be
developed. In other words, TestTDO has to serve as
the common vocabulary for this family. Many testing
strategies (also named frameworks, approaches,
methodologies) contain a set of processes and/or
methods (or techniques) that give support testers to
achieve some testing-related objectives. In general,
these approaches provide a glossary as a vocabulary.
Thus, the ISO 29119 standard contains a set of testing
processes [10], testing techniques [11] and a glossary
of testing terms [1]. On the other hand, ISTQB also
provides a glossary for the testing domain [2].
However, a glossary does not have the semantic and
structural richness that an ontology has. A glossary
only contains a set of terms and their definitions, and
therefore does not explicitly describe what are the
relationships between terms and what are the
properties of these terms. Also, a graphic conceptual
model is missing in these glossaries, which are plain
text only. These issues could lead to ambiguities and
make it difficult to understand the test domain.
Therefore, we chose to use an ontology instead of a
glossary.

None of the 12-selected ontologies analyzed in [5]
was built with the same aim that TestTDO pursues.
Most of them had been built to achieve a very specific
aim. So most selected ontologies do not have similar
scope as TestTDO, which is broader and top domain.
For instance, in [12] the authors present PTOntology,
which models the performance testing domain; or the
ontology presented in [13], which focuses on
scenario-based testing.

To some extent, the ontologies with the closest
objective to TestTDO are ROoST [14] and the
ontology presented in [15]. ROoST was developed
for establishing a common conceptualization about
the software testing domain, focusing on the testing
process, but its scope only reaches the dynamic and
functional testing, without considering static and non
functional testing. On the other hand, the ontology
documented in [15] was built to represent general
software testing knowledge. Regarding its scope, this
ontology only has terms for the formal review
process, and not consider generic terms for the testing
process. Also, it does not contain top-domain terms
as test basis, test result, actual result, in addition to
terms related to testing project, goals, requirements
and environment. Besides, some terms do not share

the core-level ontological vision of FCD-OntoArch.
For example, testing methods are types of test goals,
while in FCD-OntoArch, a method has different
semantics than a goal.

In addition, the selected ontologies in the SLR
were evaluated from the ontological quality
standpoint. To do this, we developed a NFRs tree (1st

column of Table 4 in sub-section 5.2) that specifies
characteristics and attributes related to the
Ontological Quality, which is the root of the NFRs
tree (with code 1). The sub-characteristics are
Ontological Structural Quality (1.1), Domain-specific
Terminological Coverage Quality (1.2) and
Compliance to other Vocabularies (1.3). This tree was
built taking into account some quality practices
described by [6] for ontology design, for which they
identify dimensions and features for “beautiful
ontologies”. Two (out of three) dimensions are formal
structure and conceptual coverage, which are
characterized by if the ontology is designed in a
principled way; it is formally rigorous; it implements
also non-taxonomic relations; it has a good domain
coverage; it implements an international standard;
and it reuses foundational ontologies, among others.

Besides, we have developed a set of metrics and
indicators, some of them documented in [5], to
evaluate the selected ontologies. The evaluation
results for the 12-selected ontologies are shown in
Table 11 of [5]. In that study, we have used the
metaphor of the three-coloured semaphore to identify
the satisfaction acceptability level achieved. The red
square (■) with values within the [0;60) range, in the
percentage scale, indicates an “unsatisfactory”
acceptability level; the orange rhombus (♦) [60;85)
indicates a “marginal” level; and the green circle (•)
[85;100] indicates a “satisfactory” level.

In summary, the best-ranked ontology regarding
the Ontological Quality (1) was [14], although it did
not achieve a satisfactory level. This ontology, called
ROoST, reached 79.54% (♦). It lacks NFRs (1.2.4)
and static (1.2.1) testing terminological coverage and
there is no direct link with FR and NFR terms -recall
the SR#2 mentioned above. We needed a top-domain
ontology with higher coverage since we plan to
develop more specific testing domain ontologies and
strategies, e.g., for performance testing, inspections,
among others.

Furthermore, ROoST is the only selected
ontology that is based on a foundational ontology.
Although ROoST is embedded in a network of
ontologies whose root is the UFO foundational
ontology [16], we consider the ontologies used to
enrich ROoST (i.e., UFO and mainly its derived
process core ontology) are somewhat difficult to
adapt and harmonize with the ontological
components that we present in Section 3. We argue
that UFO is a bit complex since it is made up of a set
of ontologies, namely: UFO-A (endurants), UFO-B

- 128 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

(perdurants or events) and UFO-C (social entities,
built on top of UFO-A and B). Instead, FCD-
OntoArch includes just one foundational ontology,
i.e., ThingFO, which has a small set of terms that
makes it easy to reuse and specialize in lower-level
ontologies.

According to the DSR process, the above
summarized SLR analysis is part of the information
synthesis artefact produced in the “investigate current
solutions” activity. Using as input this synthesis and
the SRs, the next activity to carry out is to analyze the
problem/solution relevance. As a result, the relevance
report is produced, which describes the relevance of
the problem/solution to decide whether it will be
addressed by the DSR approach.

Therefore, we have stated in the relevance report
artefact the main reasons why to address the
construction of TestTDO through the DSR approach,
namely: i) there is no SLR-selected ontology that
satisfactorily fulfils all the stated SRs and also meets
a high level of acceptability of ontological quality, ii)
to build/adapt an ontology is not a routine task,
conversely, it is a complex task due to: 1) it is
necessary to consider different sources of definitions
of terms for the testing domain (such as international
standards, other ontologies, etc.) to obtain higher
coverage than the current solutions; 2) the new
ontological design must allow the linkage with
FRsTDO and NFRsTDO components in the context
of the FCD-OntoArch architecture; and 3) the
ontology should be based on (enriched with) terms of
higher-level ontologies at the core and/or
foundational level.

Finally, considering the abovementioned
relevance report, we have decided to build a software
testing ontology that fits our goal. To develop
TestTDO, we have considered the best-ranked
features of the 12-selected ontologies. TestTDO is a
top-domain ontology for software testing, which is
semantically enriched with higher-level ontologies,
both core and foundational. It also serves as the basis
for the development of new lower-level domain
ontologies. Ultimately, this will permit us to build
specific software testing strategies. In other words,
TestTDO will provide us with the semantics to
develop specifications of software testing processes
and methods, and their grouping into a family of
testing strategies for achieving testing purposes.

3. Overview of the Four-layered
Ontological Architecture and some of
its Ontologies

This Section aims to briefly illustrate some of the
ontologies that belong to FCD-OntoArch as TestTDO
is related to them. Also, we apply a static verification
method to TestTDO in order to verify its integration
in the context of FCD-OntoArch. This testing method
is described in Section 5. Note that the interested
reader can access more descriptions of some FCD-
OntoArch's ontologies in the following references:
ThingFO [8]; ProcessCO1 (or its predecessor [17]);
SituationCO2; NFRsTDO3 and FRsTDO4.

As commented in the Introduction Section,
TestTDO is placed at the top-domain level into FCD-
OntoArch. This is a four-layered ontological
architecture, which considers foundational, core,
domain and instance levels. In turn, the domain level
is split down into two sub-levels, namely: top-domain
and low-domain. As depicted in Fig. 1, ontologies at
the same level can be related to each other, except for
the foundational level where there is only the
ThingFO ontology. Ontologies at lower levels can be
semantically enriched by ontologies at upper levels.
For example, TestTDO placed at the top-domain level
is mainly enriched by terms, properties and
relationships of the SituationCO and ProcessCO
ontologies placed at the core level. In turn, both are
enriched by the concepts of ThingFO.

ThingFO terms such as Thing, Thing Category
and Assertion semantically enrich terms of
components at lower levels. Thing represents a
particular or concrete, tangible or intangible object of
a given particular world, but not a universal category
or class -which is modelled by the term Thing
Category.

Additionally, the term Assertion is defined as
“positive and explicit statement that somebody makes
about something concerning Things, or their
categories, based on thoughts, perceptions, facts,
intuitions, intentions, and/or beliefs that is conceived
with an attempt at furnishing current or subsequent
evidence”. To be valuable, actionable and ultimately
useful for any science, an Assertion should to a great
extent be verified and/or validated by theoretical
and/or empirical evidence. Assertions can be
represented and modelled using informal, semiformal
or formal specification languages.

Concerning a Thing and using assertions, we can
specify aspects of its substance, relations, structure,
behaviour, constraints, intention, situation, quantity
and quality, among other aspects. For example, the

1 http://dx.doi.org/10.13140/RG.2.2.27140.55688
2 http://dx.doi.org/10.13140/RG.2.2.21065.36968
3 http://dx.doi.org/10.13140/RG.2.2.34457.65129
4 http://dx.doi.org/10.13140/RG.2.2.31659.26400

- 129 -

http://dx.doi.org/10.13140/RG.2.2.27140.55688
http://dx.doi.org/10.13140/RG.2.2.21065.36968
http://dx.doi.org/10.13140/RG.2.2.34457.65129
http://dx.doi.org/10.13140/RG.2.2.31659.26400

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Fig. 1 Four-layered ontological architecture, which considers Foundational, Core, Domain and Instance levels. Also, some
conceptual components or modules are shown at the corresponding level. Note that NFRs stands for Non-Functional

Requirements, FRs for Functional Requirements, MEval for Measurement and Evaluation, and PEvent for Particular Event.

conceptualization of an ontology as an artefact (e.g.,
TestTDO in Fig. 2) represents primarily a
combination of substance-, relation-, structure-,
intention-, and situation-related assertions. The
axioms of an ontology can be considered constraint-
related assertions.

SituationCO includes terms -some borrowed
from other core components- such as Human Agent,
Organization, Project, Target Entity, Context Entity
with semantic of Thing, and the term Goal with
semantic of Assertion. In turn, a Goal can be Specific
or Generic. Briefly, a Human Agent/Organization
conceives/establishes Goals that are operationalized
by Projects. A Goal implies a Situation, which can be
specified by a Situation Model. Therefore, a Situation
Model represents an Artefact that specifies and
models Situations of a given particular o generic
world.

Furthermore, a Situation can be Particular or
Generic. A Particular Situation is a Situation-related
Assertion on Particulars that explicitly states and
specifies the combination of particular circumstances,
episodes and relationships/events embracing Target
Entities and their surrounding Context Entities, which
is of interest and relevant to be represented by a
Human Agent/Organization with an established
Specific Goal. Depending on the Specific Goal's
purpose, Target Entities can be for instance
Developable Entity (e.g., a document, a source code,
etc.), Evaluable Entity (e.g., a work product, a system,
etc.), or Testable Entity, which has the semantic of
Developable or Evaluable in a given Particular
Situation.

The ProcessCO ontology is a core ontology that
specifies the terms, relationships and properties for

Work Processes. ProcessCO includes terms with
semantic of Thing such as Work Entity (which can be,
in turn, a Work Process, Activity or Task), Product
Entity (Work/Natural Product, Artefact, Outcome,
Service) and Resource Entity (Agent, Method,
Strategy, Tool, among others). Any well-specified
process for a given domain should document aspects
such as specific tasks and activities, artefacts, agents,
methods, among other resources. Moreover, any well-
specified method should document its procedure and
rules. Therefore, having an ontology that explicitly
defines these terms and their relationships and
properties, is very useful to avoid ambiguities,
inconsistencies and incompleteness in a process
specifications of a certain application domain as for
example, in the testing domain. Since TestTDO aims
to terminologically nourish the specifications of
methods and processes for a family of testing
strategies to be developed, it is very important to
consider ProcessCO terms for enriching TestTDO
domain terms.

The terms Work Process, Activity and Task are
kinds of Work Entities. Work process is composed of
sub-processes or activities. In turn, an Activity is
formed by sub-activities or tasks. A Task is an atomic,
fine-grained Work Entity that cannot be decomposed.
Also, they involve common Roles, consume Product
Entities, produce Work Products and have Conditions
-both preconditions and postconditions. Furthermore,
a Work Entity has assigned Work Resources, such as
Methods, Tools, Strategies, among others.

Another important concept of ProcessCO is Work
Product, which is a Product Entity. In turn, Outcome,
Artefact and Service are kinds of work products. For
example, Outcome is defined as “Work Product that

- 130 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

is intangible, storable and processable”, while
Artefact “is a tangible or intangible, versionable
Work Product, which can be delivered”.

A Work Entity has a description (or work
description), which specifies the steps for achieving
its objective. It represents “what” should be done
instead of “how” should be performed. The “how” is
represented by the Method term, i.e., the specific and
particular way to perform the specified steps for
instance in a task. Note that the Method concept has
the procedure and rules properties. A procedure is an
arranged set of method instructions or operations,
which specifies how the steps of a description of a
work entity must be performed. Whereas a rule is a
set of principles, conditions, heuristics, axioms, etc.,
associated with the procedure.

4. TestTDO: A Top-Domain Ontology
for Software Testing

As previously commented, we use DSR [4] as a
baseline research approach to build our software
testing ontology. In a nutshell, this approach is a
rigorous research strategy, proposing the construction
of artefacts to provide useful and effective solutions
to a relevant problem in a given domain. Artefacts
must be innovative and useful solutions to a non
trivial problem. The artefact development implies a
cycle of design-construction-verification and
validation (V&V) activities, which should iterate as
many times as necessary before the artefact (already
verified and validated) is communicated for its use. In
the following sub-sections, we describe the
conceptualization of TestTDO while using some DSR
activities.

4.1. Artefact Requirements, Competency
Questions and TestTDO in the
framework of DSR

Following the DSR process, we specify research
questions (RQs) and Artefact Requirements (ARs).
To produce them, we use as input the
abovementioned SRs (http ://bit. ly/SWTestingOnto-
SolReqs), and the information synthesis produced in
the cited SLR. The right formulation of the RQs is
paramount in any research study as they conduct the
design-development-V&V research cycle, and
transmit its essence. In our case, to build the software
testing ontology, we have formulated three main RQs,
which in turn were divided into sub-RQs.

Once the RQs were established, we also used
them to produce the ARs, which were taken into
account in the development and V&V cycle of
TestTDO. Note that all RQs and ARs are documented
in http://bit.ly/TestTDO-RQs_ARs.

Just to mention a few examples, RQ#1.1 states

“Should the ontology to be developed be of low-
domain or top-domain level?”. Since we plan to
develop a set of testing strategies for some specific
kinds of testing as performance testing, security
testing, static testing by reviews, among others, we
have established the AR#1: “Design and build a top
domain ontology”. Besides, we have considered the
SR#8 (“The software testing ontology should be at
the top-domain ontological level”) to specify this
requirement.

RQ#1.2 is “What are the most robust and rich
documented terminologies (structured as glossaries,
taxonomies or ontologies) for the software testing
domain?”. We have formulated this RQ since an
ontology is a shared conceptualization and therefore
it is very important to consider and reuse others
terminologies, in particular standard glossaries.
When we conducted the SLR, we found and analyzed
a set of robust software testing ontologies in addition
to software testing international standard glossaries.
Taking into account this information, we stated
AR#2: “Consider mainly: i) international standard
glossaries documented in ISO 29119-1 [1] and
ISTQB [2]; and ii) the ROoST [14] domain ontology
and the [15] top-domain ontology, which were the
two-best ranked among the 12-selected and evaluated
ontologies in the before cited SLR”.

As a final example, RQ#1.5 establishes “What is
the suitable methodology for ontology development
to be used?”. We have formulated this RQ since it is
important to consider some engineering methodology
to build an ontology in the A2 activity (Design and
Develop the Solution) of the DSR process. Related to
RQ#1.5 we stated AR#6 “Use METHONTOLOGY
[7] for the development of the ontology until its
conceptualization stage. Also consider its evaluation
and documentation activities”. We selected
METHONTOLOGY since it is a well-structured
methodology used for developing ontologies from
scratch and provides good guidelines for organizing
the activities during ontology development [15].

In this situation, we have specified 25
Competency Questions (CQs), which are
requirements related to the specific scope of the
ontology to be developed. All of them are
documented in http://bit.ly/TestTDO-CQuestions .
For example, CQ1 states “What are the work products
produced by a testing design activity?”. These CQs
cover the necessary and sufficient aspects of the
ontology in order to be extended by lower-domain
ontologies. For this, it must consider terms related to
static and dynamic testing, as well as functional and
non-functional testing. Besides, it must consider
concepts of testing work entity, test work product,
testing method, testing agent, project, goal,
requirement and entity, which should be semantically
enriched with concepts from other ontologies at the
core and foundational levels.

- 131 -

http://bit.ly/SWTestingOnto-SolReqs
http://bit.ly/SWTestingOnto-SolReqs
http://bit.ly/TestTDO-RQs_ARs
http://bit.ly/TestTDO-CQuestions

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Once the ARs were produced, we have designed
and built the ontology in the A2 activity of the DSR
process. Recall that we selected METHONTOLOGY
as a development methodology for this activity.
Regarding its process, it contains a set of activities to
be completed without implying an order of execution
of such activities. In short, the main activities are
specification, knowledge acquisition,
conceptualization, integration, implementation,
evaluation and documentation. The reader can find
the details of each activity in [7].

At this point, it is important to highlight that we
only performed the conceptualization, integration and
implementation activities through
METHONTOLOGY when we carry out activity A2
(Design and Develop the Solution) of the DSR
process. We have not considered the other activities
of the METHONTOLOGY process as, to a large
extent, they were covered by other activities of the

DSR process. For example, the METHONTOLOGY
evaluation activity is covered by DSR activity A3
(Execute V&V). Note that we do not describe a
comparison between the activities of DSR and
METHONTOLOGY because it is outside the scope
of this work.

Moreover, we decided to use DSR as the main
approach for developing our ontology, since DSR is
a broad approach that is useful for developing any
artefacts and METHONTOLOGY is devoted solely
to ontology development. Our goal is to develop a set
of artefacts, including TestTDO, by using DSR, such
as testing strategies and other lower-level domain
testing ontologies. Finally, please note that it is
possible to partially or fully use other methodologies
as DSR activities are conducted, as in this case we
partially use METHONTOLOGY. Next, we describe
the activities of METHONTOLOGY applied to build
TestTDO.

Fig. 2 Main terms, properties and relationships of the TestTDO ontology and its relation with Non-Functional
Requirement and Functional Requirement terms.

- 132 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

In the conceptualization activity, we have
obtained the conceptual model of TestTDO. As a
result, TestTDO has defined 44 terms, 50 properties,
42 non-taxonomic relationships as well as 17 axioms
specified in first-order logic. Fig. 2 shows all the
concepts of TestTDO (that is, the whole picture), as
well as its relation with the Non-Functional
Requirement and Functional Requirement terms.

To get the TestTDO conceptualization,
METHONTOLOGY proposes first to build a
glossary, i.e., concepts with their definitions. This
glossary should include terms, properties and non-
taxonomic relationships. To develop this glossary, as
a starting point we have used the ISO 29119 and
ISTQB standard glossaries to gather the set of
primary concepts to be included in TestTDO. Note
that we have selected the concepts for this glossary
keeping in mind the conceptual patterns of the FCD-
OntoArch core ontologies and the scope of TestTDO
represented in the 25 CQs.

After the construction of this glossary, we have
analyzed the semantics provided by the standard
glossaries and the existing ontologies against the
concepts included in the glossary, and we have
established a semantic correspondence with the terms
of the FCD-OntoArch ontologies at the core level. For
example, we identified that Testing Design is an
Activity of ProcessCO.

Next, we have identified and established
generalizations (a taxonomy) between the concepts.
We did this by analyzing the semantics of the
concepts. In this step, we have identified ‘kind of' and
‘whole-part' relationships. Moreover, the conceptual
patterns of the FCD-OntoArch ontologies at the core
level were very useful to perform this task. For
example, the Work Entity pattern of ProcessCO
involves a whole-part relationship in which a Work
Process has one or more Activities.

The next step we took was to consider the reuse of
some properties and non-taxonomic relationships that
belong to the FCD-OntoArch ontologies at the core
level. For example, we reused the relationship
“Project operationalizes Goals” in TestTDO between
Test Project and Test Goal. Finally, we have obtained
a conceptual model by using a UML class diagram
that represents the glossary of terms.

Regarding the integration activity, we have
reused, either partially or fully, definitions of the ISO
29119 and ISTQB standard glossaries as well as the
definitions of the FCD-OntoArch ontologies at the
core level that semantically enrich TestTDO
concepts. On the other hand, in the implementation
activity, we have obtained the OWL version of
TestTDO. More details of the TestTDO
implementation will be covered in sub-section 5.4.

In the following sub-sections, we describe the
conceptualization of TestTDO in parts using the
following text convention: ontology terms begin with

capital letters, properties are in italics, and
relationships are underlined. Note that this article
doesn't cover all concepts of TestTDO for space
reason, although the reader can access all definitions
of terms, properties and relationships, as well as the
axioms' specifications at
http://arxiv.org/abs/2104.09232 .

Note that sub-sections 4.2, 4.3 and 4.4 represent a
significant extension of Section 4 in [9]. Thus, we
have included TestTDO in parts to better illustrate the
ontology conceptual blocks due to the number of
terms; we show TestTDO in its lasted version 1.2,
which includes new concepts and axioms with respect
to its initial version documented in [9]; and we
explicitly clarify some details that involve
understanding a set of related concepts, for example,
when a Testable Entity has the semantics of
Developable or Evaluable Entity. Lastly, we
intertwine some discussions accordingly to enrich the
ontology documentation.

4.2. TestTDO concepts related to
Project/Goal/Requirement/Entity

To cover the test requirement- and entity-related
scope, TestTDO has terms such as Test Requirement,
Test Basis, Testable Entity, Test Item, Test Context
Entity and Test Particular Situation as shown in Fig.
3. These terms are semantically enriched with
ThingFO, ProcessCO, and SituationCO terms as
mentioned in Section 3. A Test Requirement states,
taking into account the Test Goal's purpose, what
must be verified/validated of a Testable Entity (and/or
Test Item) based on the Test Basis, if any. Therefore,
a Test Requirement has a statement that refers to a
Testable Entity. Additionally, a Test Requirement can
include details of test environment requirements,
which always refers to Test Context Entities. Also, a
Test Requirement must include the test level, which
represents a kind of test that delimits the scope of the
Testable Entity and its context. Examples of kinds of
test levels commonly cited in the literature for
Dynamic Testing are “unit”, “integration”, “system”
and “acceptance”. We can also include the
“document” test level for Static Testing.

Test Basis is an Artefact used by Testing Design
Methods for designing Test Cases and Checklists. So,
the Test Basis represents a thing that may come from
development and/or maintenance such as
requirements specification, architectural design,
documented source code, etc., which in turn could be
linked to NFR and/or FR (terms with semantic of)
Assertions.

Furthermore, a Testable Entity is a concrete object
able to be tested. A Testable Entity always is
surrounded by Test Context Entities, which influence
it. Test Context Entity represents the concrete
Context Object in which the Testable Entity is

- 133 -

http://arxiv.org/abs/2104.09232

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Fig. 3 Fragment of TestTDO terms, relationships and properties related to Project/Goal/Requirement/Entity and its relation
with Non-Functional Requirement and Functional Requirement terms.

situated. Although there are always Test Context
Entities that surround the Testable Entity -since a
Thing is never isolated-, depending on the Test
Particular Situation defined by the Test Project,
Testing Activities may consider the test environment
or not. Therefore, a Test Particular Situation (with
semantic of Particular Situation from SituacionCO)
represents an association between one or more
Testable Entities in the role of test target and none or
many Test Context Entities in the role of test
environment.

Additionally, depending on the Test Particular
Situation implied by the Test Goal, Testable Entity
has semantic of Developable Entity or Evaluable
Entity. A Test Particular Situation in which the
Testable Entity has semantic of Evaluable Entity is
when the Test Requirement that refers to the Testable
Entity is linked to a NFR through the associated Test
Basis. On the other hand, when the Test Requirement
that refers to the Testable Entity is linked to a FR
through the associated Test Basis, the Testable Entity
has semantic of Developable Entity. To formally
establish the above statements intended to rule out
unwanted interpretations, we specify the following
axioms:

A_I description: Any Testable Entity is an
Evaluable Entity iff the Test Requirement that refers
to this Thing is linked to a Non-Functional
Requirement.

A_I specification: V te, 3 tr, 3 tb, 3 nfr:
[TestableEntity(te) A EvaluableEntity(te)
TestRequirement(tr) A TestBasis(tb) A

NonFunctionalRequirement(nfr A) refersTo(tr,te A)
isBasedOn(tr,tb A) isLinkedTo(tb,nfr)]

A_II description: Any Testable Entity is a
Developable Entity iff the Test Requirement that
refers to this Thing is linked to a Functional
Requirement.

A_II specification: V te, 3 tr, 3 tb, 3 tr:
[TestableEntity(te) A DevelopableEntity(te)
TestRequirement(tr) A TestBasis(tb)
FunctionalRequirement(fr) A refersTo(tr,te) A
isBasedOn(tr,tb A) isLinkedTo(tb,fr)]

Lastly, it is worth highlighting for this sub-section
that TestTDO has a conceptual block or pattern,
which is inherited from the core ontologies. This
involves the relationship between Test Projects, Test
Goals, Testing Strategies and Test Particular
Situations. As shown in Fig. 3, a Test Project
operationalizes a Test Goal. To do this, a Test Project
associates (or uses) a Testing Strategy that helps to
achieve the Test Goal. Additionally, this Test Goal
implies a Test Particular Situation which is defined
by the Test Project.

We have observed that none of the 12-selected
ontologies in the SLR has this particular conceptual
pattern. This pattern recently allowed us to specify a
scenario-based and Specification-based Method [18]
in which different Test Particular Situations are
defined in order to verify and validate Testable
Entities surrounded by Test Context Entities.

- 134 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

4.3. TestTDO concepts related to Work
Product/Activity

To cover the work product- and activity-related
scope, TestTDO has terms such as Test Basis, Test
Specification, Test Result, Test Conclusion Report
and Testing Activity as shown in Fig. 4. The first 4
terms are Work Products or more specifically
Artefacts (recalling that an Artefact is a Work Product
in ProcessCO) that are consumed/produced by
Testing Activities. A Testing Activity can be Testing
Design, Testing Realization or Testing Analysis.
Note that the Testing process is composed of at least
the three abovementioned Testing Activities. These 3
Activities are the minimum and necessary set for all
Testing process. Other activities and sub-activities
can be considered, but we only made the generic
activities explicit since the ontology is at the top
domain level.

A Testing Design is a Testing Activity aimed at
designing (i.e., produces) a set of Test Specifications
as well as Realization Procedures. Test Specification
has semantic of Artefact and there are three types of
it, namely: Test Checklist, Test Case and Test Suite.
Test Cases contain the necessary information (e.g.
preconditions, inputs, expected results and
postconditions) to perform mainly Dynamic Testing.

Note that Test Cases with common constraints on
their realization can be grouped into Test Suites. On
the other hand, Test Checklists contain a list of item
descriptions to be checked for performing mainly
Static Testing.

Considering the Realization Procedure, it is an
arranged set of Testing Realization Method's
instructions or operations, which specifies how the
Testing Realization activity must be performed using
or based on the Test Specifications. Mainly when
Dynamic Testing that involves Test Cases execution
is carried out, this term (Realization Procedure) can
be synonymous with Test Procedure. A Test
Procedure as per ISO/IEC/IEEE 29119-1 [1] is a
“sequence of test cases in execution order, and any
associated actions that may be required to set up the
initial preconditions and any wrap up activities post
execution. Test procedures include detailed
instructions for how to run a set of one or more test
cases selected to be run consecutively, including set
up of common preconditions, and providing input and
evaluating the actual result for each included test
case”.

Another Testing Activity is Testing Realization,
which consumes one or more Test Specifications to
produce one or more Test Results. Test Result has
semantic of Work Product and there are two types of

Fig. 4 Fragment of TestTDO terms, relationships and properties related to Work Product/Activity.

- 135 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

it, namely: Actual Result and Incident. The former is
an Outcome that represents a numerical or categorical
value -expected or unexpected. Instead, an Incident
is an Artefact or document, which reports deviations
(e.g., between the Test Case's expected result and the
Actual Result), anomalies (e.g., an error or a failure)
or other arisen issues during the Testing Realization.
When the Incident occurs since there is a mismatch
between the Test Case's expected result and the
Actual Result, then this Incident relies on the
corresponding Actual Result.

On the other hand, Testing Analysis is a Testing
Activity that takes into account the specific Test
Information Need to produce a Test Conclusion
Report by consuming one or more Test Results and
Test Specifications. The Test Conclusion Report is an
Artefact that documents the analysis of all Test
Results. For example, this Artefact could contain
details about the degree to which the Test Goals were
achieved by analyzing Test Information Need goals,
the coverage level achieved by the executed Test
Cases, among other analysis. Note that the reader can
check related axioms (A1-2 and A10-17) in
http://arxiv.org/abs/2104.09232 .

4.4. TestTDO concepts related to
Activity/Method/Agent

To cover the activity- and method- related scope,
TestTDO has terms such as Static/Dynamic Testing,

Testing Realization Method and Testing Design
Method as depicted in Fig. 5. A Testing Realization
is a Testing Activity aimed at enacting a Static or
Dynamic Testing. The former has the objective of
checking a Testable Entity against one or more Test
Specifications without the execution of its software
code, if any. Instead, Dynamic Testing aims at
verifying/validating a Testable Entity against one or
more Test Specifications with the execution of its
software code.

As shown in Fig. 5, a Static/Dynamic Testing
Method is assigned to one or more Static/Dynamic
Testing activities. Examples quoted in the literature
of Static Testing Methods are Walkthrough,
Technical Review, Inspection, among others. These
static and dynamic methods are kinds of Testing
Realization Method. Note that a Testing Realization
Method is a Testing Method for a task included in a
Testing Realization activity, which includes a
Realization Procedure.

Additionally, we define the Testing Method (or
Testing Technique) as a specific and particular way
to perform the specified steps for a task included in a
Testing Activity. The specific and particular way of a
Testing Method -i.e., how the specified steps in a
testing task should be made- is represented by a
procedure (e.g., design procedure or Realization
Procedure) and rules.

At this point it is important to remark that
TestTDO adopts an important conceptual pattern by
ProcessCO which most of the 12-selected ontologies

Fig. 5 Fragment of TestTDO terms, relationships and properties related to Activity/Method/Agent.

- 136 -

http://arxiv.org/abs/2104.09232

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

do not have except ROoST. This pattern attempts to
make a clear separation of concerns between ‘the
what' (activities and tasks) and ‘the how' (methods
and procedures). Note that in TestTDO, each Testing
Activity has assigned a Testing Method (except for
the Testing Analysis which we did not include it in
the fragment so as not to overload the model).

Like the Testing Realization Method, the Testing
Design Method is another kind of Testing Method,
but it is assigned to Testing Design activities. Also,
this one has a design procedure that specifies how
must be performed the Testing Design activity using
the Test Basis, if any. There are three kinds of Testing
Design Methods, namely: Specification-based
Method (also known as black-box), Structure-based
Method (also known as white-box), and Experience
based Method.

A Specification-based Method always uses a Test
Basis when enacting the Testing Design activity to
derive Test Specifications without referring to the
internal structure of the Testable Entity. More
specific types of Specification-based Methods are:
Classification Tree Method, Scenario Testing,
Random Testing, State Transition Testing, among
others [11], which are not shown in Fig. 5 since
TestTDO terms are at the top-domain level.

Also, a Structure-based Method is a Testing
Design Method that uses the internal structure of the
Testable Entity, and sometimes also uses a Test Basis,
while enacting the Testing Design activity for
deriving Test Specifications. Examples of it are:
Statement Testing, Decision Testing, Modified
Condition Decision Coverage Testing, among others
[11].

Finally, an Experience-based Method is also a
Testing Method but uses the Testing Human Agent's
knowledge, expertise and intuition when enacting the
Testing Design activity to derive Test Specifications.
Some kinds of Experience-based Methods quoted in
the literature are Error Guessing [11] and
Exploratory Testing [2]. The reader can check related
axioms (A3-4) in http://arxiv.org/abs/2104.09232 .

5. Verifying and Validating TestTDO

V&V activities are similar, but they tackle different
issues. Validation aims at demonstrating that the
artefact or system fulfils its intended use, while
verification aims at checking whether the artefact
properly mirrors the specified requirements. In other
words, validation ensures that “you built the right
thing”, while verification ensures that “you built it
right”.

In Fig. 6 we depict a hierarchy for V&V activities,
which we have slightly adapted from Fig. A.1 of [1].
This figure shows three activities at the first level,
namely: Testing, Formal Verification and V&V
Analysis. In turn, Testing has two sub-activities:
Static and Dynamic Testing. For the latter, we have
added Functional and Non-Functional Dynamic
Testing sub-activities. On the other side, V&V
Analysis has sub-activities such as Demonstration,
Assessment, Simulation, and Measurement &
Evaluation. Note that we have performed the V&V
activities highlighted with dashed lines in the figure
to verify and validate TestTDO.

In the following sub-sections, we describe the
V&V performed activities on TestTDO. In short,
once we have obtained the conceptualization of
TestTDO, we have executed the following activities:
i) two static verifications (Static Testing in Fig. 6)
described in sub-section 5.1, one on the CQs, and the
other on the semantic consistency between the
relationships of TestTDO and the ontologies of the
FCD-OntoArch that enrich them; ii) an evaluation
(Measurement & Evaluation) using a strategy named
GOCAME [17], [19], which is illustrated in sub
section 5.2; and iii) a proof of concept (Assessment),
shown in sub-section 5.3, that instantiates the
TestTDO terms for an academic test project on a
geometrical figure application to validate whether
TestTDO was able to represent concrete world
situations, plus a validation by 3 experts in the test
domain. Besides, in sub-section 5.4 we describe
aspects of the TestTDO implementation and the
dynamic verification (Functional Dynamic Testing)
of the CQs using test cases. Finally, in sub-section 5.5

Fig. 6 Hierarchy of V&V activities, which we have adapted slightly from Fig. A.1 of [1].

- 137 -

http://arxiv.org/abs/2104.09232

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

we discuss some V&V approaches used in ontologies.

5.1. Static Testing on TestTDO

The first V&V activity that we carried out was the
static verification of the TestTDO conceptualization
against the CQs, which represent the scope-related
requirements as presented in sub-section 4.1. The
purpose was to verify that all CQs were addressed by
some of the terms, properties, relationships and/or
axioms. In this direction, we produced a verification
matrix (see Table 1) using a Specification-based
(black-box) Method. To design the matrix, we used
as a Test Basis the CQs and the elements that any
heavyweight ontology has such as terms, properties,
relationships, and axioms. This matrix is a Test
Checklist that contains one row per each CQ, in
which we record what term, property, relationship or
axiom correspond to the CQ.

to achieve a Test Goal, then exists a Test Project,
associated with the Testing Strategy, which
operationalizes the Test Goal.

On the other hand, we have used another Testing
Design Method to statically verify the semantic
consistency of the TestTDO relationships against the
corresponding relationships from higher-level
ontologies that belong to the FCD-OntoArch
architecture. In this case, we have performed an
integration testing in which we have the following
Test Particular Situation: i) the Testable Entities are
the dependencies between TestTDO and the
SituationCO and ProcessCO ontologies of FCD-
OntoArch; and ii) both SituationCO and ProcessCO
are Test Context Entities in this situation. Note that a
dependency between TestTDO and other core
ontology represents a relationship of TestTDO which
is inherited by other relationship of the high-level
ontology.

Table 1 Excerpt from the TestTDO Verification Matrix. The entire verification matrix with all checked CQs can be
accessed at http://bit.ly/TestTDO-VerifMatrix.

CQ Terms, relationships and properties Axioms

CQ3. What are the work products produced by a
testing realization activity?

Testing Realization is-a Testing Activity
Testing Realization produces Test Result

Actual Result is-a Test Result
Incident is-a Test Result

A1, A7,
A11

CQ8. What is the minimum set of testing activities
included in a testing process?

Testing Activity is-part-of Testing process
Testing Design is-a Testing Activity

Testing Realization is-a Testing Activity
Testing Analysis is-a Testing Activity

A2

CQ25. For a test project that operationalizes a test
goal, has the test project an associated testing

strategy that helps to achieve the test goal
purpose?

Test Project operationalizes Test Goal
Test Project associates Testing Strategy

Testing Strategy helps to achieve Test Goal
Test Goal has the property named purpose

A8

For example, the CQ3 states “What are the work
products produced by a testing realization activity?”.
If we see Fig. 4, we can note that a Testing
Realization is a Testing Activity that produces Test
Results (with the semantics of Work Product). Also,
Actual Result and Incident are specific kinds of Test
Result, therefore a Testing Realization produces
Actual Results or Incidents. Furthermore, if we
analyze the TestTDO axioms, we can observe that
A1, A7 and A11 are related to CQ3. For instance, A1
establish that any Test Result produced by a Testing
Realization activity is an Actual Result or an Incident,
but not both at the same time.

Additionally, the CQ25 specifies “For a test
project that operationalizes a test goal, has the test
project an associated testing strategy that helps to
achieve the test goal purpose?”. To cover the CQ25
scope, TestTDO has a conceptual pattern that is
inherited from the ontologies at the core level. This
pattern relates the Testing Strategy, Test Project and
Test Goal terms. Besides, TestTDO has the A8 axiom
which states the following: if a Testing Strategy helps

For the Testing Design activity, we have used a
customized white-box Testing Design Method in
order to produce the Test Checklist shown in Table 2.
For designing the Checklist, this white-box method
uses as a Test Basis the internal structure of the
Testable Entities (recall that the Testable Entities are
the dependencies between TestTDO and SituationCO
and ProcessCO). We have identified these
dependencies by analyzing the conceptualizations of
TestTDO, SituationCO and ProcessCO. In the first
three columns of the table shown in
http ://bit. ly/T estTDO-VerCheckRel we have
documented all identified relationships (i.e., the
dependencies) and the related concepts with their
stereotypes. Note that these relationships belong to
the TestTDO v1.0 initially documented in [9] and in
this paper we present TestTDO in its version 1.2.

After identifying all dependencies, in the Static
Testing (Realization) activity we have inspected each
of them to verify its semantic matching with some
relationship of higher-level ontologies. Table 2 shows
an example in which an Incident was generated and

- 138 -

http://bit.ly/TestTDO-VerifMatrix
http://bit.ly/TestTDO-VerCheckRel

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 2 Excerpt from the Test Checklist for inspecting the semantic consistency of TestTDO v1.0 relationships against
the relationships that enrich them from higher-level ontologies, e.g. the SituationCO ontology.

TestTDO
v1.0

Relationship

TestTDO Term 1
<<Stereotype>>

TestTDO Term
2

«Stereotype»
Inspect

Is there a semantic
match between the

relationship named "is

Actual
Result

(pass/fail)

Incident
description
(if its fails)

is in a
particular
situation

with

Testeable Entity
<<Evaluable/Developable

Entity from
SituationCO>>

Test Context
Entity

<<Context
Entity from

in a particular situation
with" of TestTDO with
some relationship of

the
fail

The
TestTDO

relationship
named ...SituationCO>> Evaluable/Developable

Entity and Context
Entity concepts of

SituationCO?

name

SituationCO I

is derived in
▼

j | Developable Entity jEvaluable Entity Observable Entity name
work description

name
description

requires as n
▲

refers to

«Work Process»
Testing

<< Context Entity» I
Test Context Entity I

◄ operationalizes subTestProject

Test Item

defines
V

label
statement
purpose
success criteria

«Project»
Test Projectworks at ►

◄ establishes

◄ operationalizes subProjeci

1..‘ ◄influences i”'

JLZ
«From ProcessCO»

Human Agent «Thing»
«From ProjectCO»

Project

«Thing»
«From ContextCO»

Context Entity

1./ 1..'
is surrounded by^

implies ► «Assertion on Particulars»

Particular Situation

targel|i

«Thing»
Target Entity

——r

!1 is related

0./ ------------------

1..* subject
conceivesi.d ▼
«Assertion on Particulars»

«Intention-related Assertion»
«From GoalCO»

Goal

Fig. 7 Semantic mismatch of the TestTDO v1.0 red-highlighted relation against SituationCO one.

«Assertion»
Test Requirement

«Developable Entity»
«Evaluable Entity»

Testable Entity

d---------

1

name is in a particular situation with l>

description 1

label
statement
testable entity phase
test level
completion criteria

therefore the Actual Result was labelled with the
‘fail' value. In Fig. 7 we have highlighted in red the
TestTDO v1.0 relation named is in a particular
situation with, that has the semantic mismatch with
the SituationCO green-highlighted one named is
surrounded by. Additionally, we detected that the
influences relation was missing in TestTDO v1.0.

Analyzing the definitions of both relationships,
we observed a semantic nonconformity, which in fact
led us to be aware of a deeper issue. Let us look at the
conceptual pattern of the Particular Situation term in
SituationCO. Particular Situation represents an
association between Target Entity and Context Entity
in the role of the environment. In turn, the Target
Entity is surrounded by Context Entities and the latter
influences the former. However, this conceptual
(ontological) pattern is not mirrored in TestTDO v1.0.

In summary, we have detected 7 additional
Incidents in the TestTDO v1.0 relationships by using
this Testing Design Method. It is important to remark
that this verification activity allowed us to partially
verify AR#7, which states: "...some terms should
also be related to SituationCO and ProcessCO sub
ontologies at the core level.”. Besides, we have

conducted this Static Testing activity to verify
enriched concepts (i.e., with stereotypes). This
activity involved verifying each TestTDO concept
stereotyped with terms of higher-level ontologies of
FCD-OntoArch. We have verified that the semantics
between the enriching term and the enriched term
correspond appropriately. However, we have
conducted this activity informally and therefore we
do not document it.

5.2. TestTDO Measurement & Evaluation

We show in Table 3 the evaluation results for
TestTDO, including the 2 best-ranked ontologies
during the cited SLR we performed. Recall that we
use the metaphor of the three-coloured semaphore to
identify the satisfaction acceptability level achieved,
as we mentioned in Section 2.

To evaluate TestTDO we used as NFRs tree the
same one that was used in the SLR for the 12-selected
software testing ontologies [5], whose root is the
Ontological Quality characteristic. Therefore, we
included the quality characteristics and attributes
shown in Table 4. Besides, we used the same metrics

- 139 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 3 Evaluation results of TestTDO and its comparison with the 2 best-ranked ontologies in the conducting SLR. The
green circle indicates “satisfactory” acceptability level (®); orange rhombus “marginal” (♦) and red square “unsatisfactory”

(■). Indicators' values are in [%].
Characteristics / Attributes ROoST [14] Asman and Srikanth [15] TestTDO
1. Ontological Quality 79.54 66.71 • 98.11®
1.1 Ontological Structural Quality 79.08 61.92 • 96.22®

1.1.1 Defined Terms Availability 82.20 100® 100®
1.1.2 Defined Properties Availability 0^ 0^ 100®
1.1.3 Specified Axioms Availability 100® 0^ 100®

87.32® 73.07 • 87.42®
1.1.4.1 BalancedNon-Taxonomic Relationships

Availability
95.65* 66.34^ 84.27 ♦

1.1.4.2 Defined Non-Taxonomic Relationships Availability 54 ■ 100® 100®
1.2 Domain-specific Terminological Coverage Quality 50 ■ 100® 100®

1.2.1 Static Testing Terms Availability 0^ 100® 100®
1.2.2 Dynamic Testing Terms Availability 100® 100® 100®
1.2.3 Functional Testing Terms Availability 100® 100® 100®
1.2.4 Non-Functional Testing Terms Availability 0^ 100® 100®

1.3 Compliance to other Vocabularies 100® 52.50 ■ 100®
1.3.1 Terminological use of Int'l Standard Glossaries 100® 85® 100®
1.3.2 Terminological Compliance to other Domain/Core

Ontologies 100® 100® 100®

1.3.3 Terminological Compliance to Foundational
Ontologies 100® 0^ 100®

and indicators to perform the measurement and
evaluation activities as well as the same aggregation
scoring model using the GOCAME strategy's process
and methods [17], [19]. Note that we have used the
same NFRs tree as well as the same metrics and
indicators since our objective was, in addition to
evaluating TestTDO, to compare the Ontological
Quality of TestTDO with the 12-selected ontologies.

Regarding the used metrics and indicators, we
have designed some more elaborated and others
simpler. For example, the procedure of the metric
used to quantify the “Balanced Non-Taxonomic
Relationships Availability (1.1.4.1)” attribute
contains a formula that is used to obtain the
percentage of taxonomic relationships (i.e., “kind-
of/is-a” and “whole-part/part-of” relationships) with
regard to the total relationships (see Fig. 4 of [5]). In
addition, we have designed an elementary indicator
(shown in Fig. 6 of [5]) to interpret and evaluate this
attribute. These metric and indicator were the more
elaborated we used.

On the other hand, to evaluate other attributes as
“Terminological Compliance to other Domain/Core
Ontologies (1.3.2)” or “Terminological Compliance
to Foundational Ontologies (1.3.3)”, we have used
simpler metrics and indicators. For example, to
evaluate 1.3.2, we have read the documentation
associated with an ontology in order to find some
evidence if the authors had considered using some
other core or domain ontologies to build their
ontology, as we did with TestTDO which is integrated
with the core ontologies of the FCD-OntoArch. So,
the metric we use counts the number of domain/core
ontologies considered and the indicator simply
interpretes this value as follows: if no ontology is

considered then the indicator value is 0 (■); if 1 is
considered then the value is 85 (®); and if 2 or more
are considered, the value is 100 (•). Note that we
don't perform any further analysis regarding this
metric.

Likewise, the metric and indicator used to the
1.3.3 attribute are also simple. The metric only
captures the number of foundational ontologies on
which the ontology to be measured is based, without
going beyond the analysis, i.e., without analyzing the
quality of the foundational ontology used. The
indicator interprets the measure as follows: if no
foundational ontology is considered then the indicator
value is 0 (■); and if 1 or more are considered, the
value is 100 (•). More details about the metrics and
indicators used to measure and evaluate TestTDO and
the other 12-selected ontologies can be checked in
[5].

5.3. TestTDO Assessment

In the Assessment activity (Fig. 6), in order to
validate if TestTDO was able to represent concrete
situations of the world, we instantiated its terms,
properties and relationships using a geometrical
figure application for an academic project. It is based
on the running testing example introduced by Myers
et al. [20]. In this example, we have a program that
receives 3 integers, where each value represents the
side of a triangle and taking into account these input
values the program returns as result the triangle type,
i.e., isosceles, scalene or equilateral.

Also, we have instantiated terms related to
Testable Entity, Test Project, Testing Strategy, Test
Goal, among others, in addition to 2 kinds of Testing

- 140 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 4 NFRs tree (1st column) to evaluate the Ontological Quality. In the 2nd column are all definitions of
characteristics and attributes.

Characteristics / Attributes Definition: Degree to which.
1. Ontological Quality (root) .. .an ontology is well structured, has good terminological

coverage and adheres to other vocabularies.
1.1 Ontological Structural Quality .an ontology is well structured, i.e., has defined terms

availability, defined properties availability, specified axioms
availability and it is properly balanced with regard to types
of relationships.

1.1.1 Defined Terms Availability .an ontology has defined terms.
1.1.2 Defined Properties Availability .an ontology has defined properties.
1.1.3 Specified Axioms Availability .an ontology has specified axioms.
1.1.4 Balanced Relationships

Availability
.an ontology has a balance between the amount of non-
taxonomic and taxonomic relationships in addition to the
former are defined.

1.1.4.1 Balanced Non-Taxonomic
Relationships Availability

.an ontology has a balance between the amount of non-
taxonomic and taxonomic relationships.

1.1.4.2 Defined Non-Taxonomic
Relationships Availability

.an ontology has defined non-taxonomic relationships.

1.2 Domain-specific Terminological
Coverage Quality

.an ontology has good terminological coverage of the
domain.

1.2.1 Static Testing Terms
Availability

.a software testing ontology has terms related to Static
Testing.

1.2.2 Dynamic Testing Terms
Availability

.a software testing ontology has terms related to Dynamic
Testing.

1.2.3 Functional Testing Terms
Availability

.a software testing ontology has terms related to Functional
Testing.

1.2.4 Non-Functional Testing Terms
Availability

.a software testing ontology has terms related to Non
Functional Testing.

1.3 Compliance to other
Vocabularies

.an ontology adheres its terminology with other
vocabularies.

1.3.1 Terminological use of Int'l
Standard Glossaries

.an ontology uses or refers to international standard
glossaries.

1.3.2 Terminological Compliance to
other Domain/Core Ontologies

.an ontology adheres its terminology to other domain or
core ontologies.

1.3.3 Terminological Compliance to
Foundational Ontologies

.an ontology adheres its terminology to a foundational
ontology.

Design Methods, namely: statement testing method,
which is a Structure-based Method, and the
Specification-based Method named equivalence
partitioning method. All details are available at
http://bit.ly/TestTDO_Val. Note that this validation
activity was carried out in TestTDO v1.0. As a result
of this validation, we have concluded that TestTDO
can represent this rather simple situation. In this
direction, we are starting to use TestTDO in an
industrial project dealing with a more complex real-
world situation. This should contribute to more
extensive validation.

Additionally, we have conducted informal
interviews regarding TestTDO with 3 external testing
domain experts. They examined TestTDO and gave
us their feedback on it. In short, their comments gave
us evidence of the potential utility of TestTDO and

they considered, from their expert point of view, that
the terminology of the ontology is suitable.

5.4. Functional Dynamic Testing on
TestTDO

To be able to dynamically test our software testing
ontology, we fully implemented it in OWL using
Protégé. Also, we used some guidelines to transform
from UML to OWL [21], [22] that were very useful
to produce the OWL version of TestTDO. The reader
can access it at http://bit.ly/TestTDO_OWL . In
summary, we have used a Specification-based (black
box) Method to design Test Cases. To produce them,
the CQs and TestTDO conceptualization were used as
Test Basis. Additionally, as Test Cases' input data, we
use instances of the geometrical figure application

- 141 -

http://bit.ly/TestTDO_Val
http://bit.ly/TestTDO_OWL

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 5 Examples of Test Cases (TC) used in a Functional Dynamic Testing Activity for TestTDO.
TC# CQ Input Expected Result

TC#1 CQ03.01
Three instances of Actual Result (AR) with the following
data (name; value): {(“AR#1; “Equilateral”); (“AR#2;
“Scalene”); (“AR#3; “Isosceles”)}

TC#2 CQ03.02 Data from
http://bit.ly/TestTDO Val

One instance of Incident (name; description): {(“I#1”;
“The Actual Result doesn't match with the expected
result, which is “Invalid triangle””)}

TC#3 CQ25
One instance of Test Project (name), one of Testing
Strategy (name), one of Test Goal (label; purpose), which
are all of them related: {(“TP#1”); (“dynamic testing
strategy”); (“TG#1”, “verify”)}

documented in http://bit.ly/TestTDO Val. All
designed Test Cases can be accessed at
http://bit.ly/TestTDO TestCases although we
illustrate some of them in Table 5.

Note that, since CQ3 (see its specification in
Table 1) is a little generic to be verified, it was split
into 2 sub-CQs, namely: CQ03.01. What are the
Actual Results produced by a Testing Realization
activity?; and CQ03.02. What are the Incidents
produced by a Testing Realization activity? In
addition, it was not necessary to do this with the
CQ25 (also shown its specification in Table 1).

Besides, we considered the following
preconditions:

TC#1's precondition: That there must be
implemented individuals of Actual Results and
Testing Realization activities that produced them.

TC#2's precondition: That there must be
implemented individuals of Incidents and Testing
Realization activities that produced them.

TC#3's precondition: That there must be
implemented individuals of Test Project, Test Goal
and Testing Strategy, and they are related to each
other.

Once Test Cases were obtained, we also produced
the Realization Procedure. This procedure contains,
for each Test Case, a SPARQL query (as seen in Fig.
8) for coding the designed Test Cases. It is important
to remark that we executed the queries in the Protégé
environment and all Test Cases passed.

5.5. Discussion about V&V approaches for
ontologies

In summary, looking at the V&V approaches used in
each of the 12-selected ontologies in the conducted
SLR, only a couple of them are explicitly documented
such as in [14], [15], and [23].

We have performed a black-box Testing Design
Method for Static Testing (sub-section 5.1) using the
TestTDO terminology. A similar verification
approach was used by authors (Souza et al.) in [14],
but they called it “Assessment by human approach”
since they consider that testing is just for dynamic
V&V.

Considering V&V approaches for Functional
Dynamic Testing, we have performed a black-box
Testing Design Method for designing Test Cases

SELECT?ActualResult_Name?ActualResult_Value SPARQL qUety fOT TC#1
WHERE {?Testing_Realization TestTDO:Testing_Realization-produces-Test_Result?Actual_Result. ?Actual_ResultTestTDO:Work_Product-hasName ?ActualResult_Name.

?Actu al_Re s ult TestTDO:Outcome-hasValue ?Actu al Re s ult_Val u e}|

Actual Re sult N ame

”AR#2”
”AR#3ir
’AR#!”

________ I__________
"Scalene”
"Isosceles”

SPARQL query for TC#2

Actual Re sult Value

SELECT ?lncident_Name ?lncident_Description
WHERE{?Testing_Realization Te stTD O:Te sti ng_Re al ization-produces-Test_Re suit ^Incident. ?lncident TestTDO:Work_Product-hasName ?lncident_Name. Vlncident

TestTDD:Work_Product-h as Description ?lnci de nt_De scription }

lncident Name

"l#1
J.

"The Actual Result doesn't match with the expected result, which is "Invalid triangle”.
lncident Des criptio n

TC#3SPARQL query
SELECT ?TestProject_N ame ?TestingStrategy_Name ?TestGoal_Label ?TestGoal_Purpose

WH ERE {?Te st_Froj e ct Te stTD 0:Te st_Project-o perati o n al ize s-Te st_G oal ?Test_C o al. ?Test_Proj ect Te stTDO:Te st_Droj e ct-as so d ates-Te sting_Slrate gy ?Te sting_Strate gy.
?Testin g_Strate gy Te stTD 0:Te sti n g_Strategy-h e lps_to_ach iei/e-Te st_G o al ?Te st_G o al. ?Te st_Proje ct TestTD 0:Te st_Proj e ct-h asN am e ?Te stProject_N ame. ?Testi n g_Stra1egy
Te stTD O:Testing_STategy-has Name ?TestingStrategyjsame. ?Test_GoalTestTDO:Tes:_Goal-hasLa!>el ?TestGoal_Label. ?Test_Goal TestTDO:Test_Goal-has Purpose 7TestGoal_Puipose.
FILTER (?TestProje^_Name = TP#r)}

TestProject Nane

"TP#!"
J.

"dynamic testing strategy'
Testi ngStrategy N ame J___

"TG#T
TestGoal Label TestGoal Purpose

Fig. 8 Implemented SPARQL queries for the designed Test Cases of Table 5.

- 142 -

http://bit.ly/TestTDO_Val
http://bit.ly/TestTDO_Val
http://bit.ly/TestTDO_TestCases

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

(sub-section 5.4). We have produced one Test Case
for each CQ. Furthermore, we have commented on
the Realization Procedure used by the Testing
Realization activity. Souza et al. used this verification
approach as well. They called it “Competency
question-driven approach for ontology testing”. Note
that previously, [24] introduced the dynamic (unit)
testing approach for ontologies too.

To support the V&V Analysis activity (Fig. 6), we
have developed an Ontological Quality tree (Table 4)
to quantitatively evaluate the structural quality,
terminological coverage quality, and compliance to
other vocabularies including some quality features
described by [6]. The evaluation results, using metrics
and indicators, were also yielded for TestTDO
following the quoted GOCAME evaluation strategy.
Note that Souza et al. used just a descriptive and
qualitative evaluation approach for ROoST.

Regarding evaluation strategies, the authors in
[25] analyze different evaluation approaches for
ontologies such as the [26] multi-criteria evaluation
approach called Ontometric. However, [27]
considered Ontometric has limited usability due to its
complexity. Then, they propose an evaluation
strategy. In our humble opinion, the metrics and
indicators used in both strategies are weakly
specified. This makes the results less justifiable and
reproducible.

6. Concluding Remarks and Future
Work

As indicated in the Introduction Section, after
analyzing both the results of the conducted SLR of
primary studies on software testing ontologies and the
state-of-the-art of test-related standards, we decided
to develop a new top-domain software testing
ontology (i.e., TestTDO) that fits our aim and scope.
We have confirmed that there was heterogeneity,
ambiguity, and incompleteness for concepts dealing
with test goals and requirements as well as with
testing work products, activities and methods in the
12-selected ontologies. Furthermore, there was no
software testing ontology directly linked with NFRs
and FRs ontological concepts.

Following the DSR process, TestTDO, its
resulting artefact is a software testing ontology placed
at the top-domain level in the context of the four
layered architecture called FCD-OntoArch. It was
purposely designed at the top-domain level so that it
can be extended by other lower-level software testing
domain ontologies. Therefore, as future work, we
plan to develop other more specific testing domain
ontologies, whether for dynamic and/or static testing,
e.g., for performance testing, inspections, reviews,
among others. To this end, TestTDO can enrich
lower-level software testing ontologies, providing the
foundation to support their construction and the

development of new strategies.
To extensively verify and validate TestTDO, we

have performed several V&V activities. On the one
hand, to verify TestTDO we have carried out two
kinds of static verification activities, one to verify the
TestTDO scope (i.e., the CQs) and the other to inspect
the semantic consistency between the relationships of
TestTDO and the ontologies of the FCD-OntoArch
that enrich them. We have also dynamically verified
the TestTDO scope by running a set of test cases. On
the other hand, we have validated TestTDO by
instantiating its terms in an academic test project
related to a geometrical figure application in addition
to its validation by 3 experts in the test domain.
Finally, we have performed measurement and
evaluation activities following the GOCAME [17],
[19] strategy to evaluate the Ontological Quality of
TestTDO.

As a result, TestTDO has 44 terms in total, of
which 32 are enriched by ProcessCO using
stereotypes (see Fig. 2). This means that
approximately 70% of TestTDO's terms are enriched
by this core ontology. The reader may wonder why
this amount of process-related terms is so significant.
This is mainly due to TestTDO's aim is to
terminologically nourish specifications of methods
and processes of a family of testing strategies to be
developed. This is also ongoing research. A well-
documented process specification should show what
activities need to be carried out, what roles are
involved, what work products are
consumed/produced by activities and what resources
are used for the different tasks [17], [28]. Likewise, a
well-documented method should specify the
procedure to be followed and the associated rules
[17]. Therefore, process/method related terms are
very important to achieve our goal. However, they are
not the only important ones, but other terms related to
situations, projects, goals, entities are necessary,
since they are cross-cutting concerns for many
domains.

As a future work, we will perform a validation
between the semantics provided by the TestTDO
concepts and the concepts provided by the UML
Testing Profile (UTP) [29]. In other words, we will
analyze the degree to which the semantics of
TestTDO matches or adheres with the semantics
provided by UTP.

Competing interests

The authors have declared that no competing interests exist.

Authors' contribution

All authors have participated in the construction of
TestTDO conceptualization; GT has implemented
TestTDO and conducted the dynamic verification; LO and

- 143 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

PB have performed the static verification of TestTDO; GT
and DP have evaluated TestTDO by using metrics and
indicators and they analyzed the results; GT has written the
manuscript; LO, DP and PB have revised the manuscript.
All authors read and approved the final manuscript.

Acknowledgements

This work and line of research had the partial support of the
Science and Technology Agency of Argentina, in the PICT
2014-1224 project at UNLPam. Also, it is supported
partially by the Engineering School at UNLPam, in the
project named “Family of Strategies for Functional and
Non-Functional Software Testing considering Different
Test Goal Purposes”.

References

[1] ISO, “ISO/IEC/IEEE 29119-1, Software and
systems engineering - Software Testing - Part 1:
Concepts and definitions.” 2013.

[2] ISTQB, “International Software Testing
Qualifications Board, Standard Glossary of Terms
used in Software Testing, Version 3.2.” 2019,
[Online]. Available: https://www.istqb.org/.

[3] A. R. Hevner, S. T. March, J. Park, and S. Ram,
“Design science in information systems research,”
MIS Quarterly: Management Information
Systems, vol. 28, no. 1, pp. 75-105, 2004,
[Online]. Available:
https://doi.org/10.2307/25148625.

[4] G. Tebes, B. Rivera, P. Becker, M. F. Papa, D.
Peppino, and L. Olsina, “Specifying the design
science research process: an applied case of
building a software testing ontology,” in XXIII
CIbSE' 20, 2020, pp. 378-391.

[5] G. Tebes, D. Peppino, P. Becker, G. Matturro, M.
Solari, and L. Olsina, “Analyzing and
documenting the systematic review results of
software testing ontologies,” Information and
Software Technology, vol. 123, 2020, doi:
10.1016/j.infsof.2020.106298.

[6] M. D'Aquin and A. Gangemi, “Is There Beauty in
Ontologies?,” Applied Ontology, vol. 6, no. 3, pp.
165-175, 2011.

[7] M. Fernandez, A. Gómez-Pérez, and N. Juristo,
“Methontology: from ontological art towards
ontological engineering,” in Proceedings of the
AAAI97 Spring Symposium Series on Ontological
Engineering, 1997, pp. 33-40.

[8] L. Olsina, “Analyzing the Usefulness of ThingFO
as a Foundational Ontology for Sciences,” in
Proceedings of ASSE'20, Argentine Symposium on
Software Engineering, 49 JAIIO, 2020, pp. 172
191.

[9] G. Tebes, L. Olsina, D. Peppino, and P. Becker,
“TestTDO: A Top-Domain Software Testing
Ontology,” in XXIII CIbSE' 20, 2020, pp. 364
377.

[10] ISO, “ISO/IEC/IEEE 29119-2: Software and
systems engineering - Software Testing - Part 2:
Test processes.” 2013.

[11] ISO, “ISO/IEC/IEEE 29119-4: Software and
systems engineering - Software Testing - Part 4:
Test techniques.” 2015.

[12] A. Freitas and R. Vieira, “An ontology for guiding
performance testing,” in Proceedings - 2014
IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent
Technology - Workshops, WI-IAT 2014, 2014, vol.
1, pp. 25-36, doi: 10.1109/WI-IAT.2014.62.

[13] P. G. Sapna and H. Mohanty, “An Ontology Based
Approach for Test Scenario Management,” in
Information Intelligence, Systems, Technology
and Management, 2011, pp. 91-100, doi:
10.1007/978-3-642-19423-8_10.

[14] É. F. De Souza, R. De Almeida Falbo, and N. L.
Vijaykumar, “ROoST: Reference ontology on
software testing,” Applied Ontology, vol. 12, no. 1,
pp. 59-90, 2017.

[15] A. Asman and R. M. Srikanth, A Top Domain
Ontology For Software Testing. Master Thesis,
Jonkoping University, 2015.

[16] G. Guizzardi, Ontological foundations for
structural conceptual models. Ph.D. Thesis,
Netherlands, Universal Press, 2005.

[17] P. Becker, F. Papa, and L. Olsina, “Process
Ontology Specification for Enhancing the Process
Compliance of a Measurement and Evaluation
Strategy,” CLEI electronic journal, vol. 18, no. 1,
pp. 1-26, 2015, doi: 10.19153/cleiej.18.1.2.

[18] D. Peppino, G. Tebes, P. Becker, and L. Olsina,
“Designing Context-Aware Test Cases for
Particular Situations,” in Congreso Nacional de
Ingeniería Informática/Sistemas de Información
(CoNaIISI), 2020, pp. 49-62.

[19] L. Olsina and P. Becker, “Family of strategies for
different evaluation purposes,” in XX CIbSE' 17,
2017, pp. 221-234.

[20] G. J. Myers, T. Badgett, and C. Sandler, The Art of
Software Testing, 3rd ed. Wiley, 2012.

[21] M. H. L. Vo and Q. Hoang, “Transformation of
UML class diagram into OWL Ontology,” Journal
of Information and Telecommunication, vol. 4, no.
I, pp. 1-16, Jan. 2019, doi:
10.1080/24751839.2019.1686681.

[22] R. E. Y. Haasjes, “Metamodel transformations
between UML and OWL, Master Thesis,”
University of Twente, 2019.

[23] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, and
J. Xiang, “An Ontology-Based Knowledge
Sharing Portal for Software Testing,” in
Proceedings - 2017 IEEE International
Conference on Software Quality, Reliability and
Security Companion, QRS-C 2017, 2017, pp. 472
479, doi: 10.1109/QRS-C.2017.82.

[24] D. Vrandecic and A. Gangemi, “Unit tests for
ontologies,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
Oct. 2006, vol. 4278 LNCS, pp. 1012-1020, doi:
10.1007/11915072_2.

[25] J. Brank, M. Grobelnik, and D. Mladenic, “A
survey of ontology evaluation techniques,” in In
Proceedings of the Conference on Data Mining
and Data Warehouses (SiKDD 2005), 2005, pp.
166-169.

[26] A. Lozano-Tello and A. Gómez-Pérez,
“ONTOMETRIC: A Method to Choose the
Appropriate Ontology,” Journal of Database
Management, vol. 15, no. 2, pp. 1-18, 2004, doi:
10.4018/jdm.2004040101.

- 144 -

https://www.istqb.org/
https://doi.org/10.2307/25148625

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

[27] A. Duque-Ramos, J. T. Fernández-Breis, R.
Stevens, and N. Aussenac-Gilles, “OQuaRE: A
square-based approach for evaluating the quality
of ontologies,” Journal of Research and Practice
in Information Technology, vol. 43, no. 2, pp. 159
176, 2011.

[28] B. Curtis, M. Kellner, and J. Over, “Process
Modeling,” Communication of ACM, vol. 35, no.
9, pp. 75-90, 1992, [Online]. Available:
https://doi.org/10.1145/130994.130998.

[29] OMG, “UML Testing Profile 2 (UTP 2), Version
2.1.” 2020, [Online]. Available:
https://www.omg.org/spec/UTP2.

Citation: G. Tebes, L. Olsina, D. Peppino
and P. Becker. Specifying and Analyzing a
Software Testing Ontology at the Top
Domain Ontological Level. Journal of
Computer Science & Technology, vol. 21, no.
2, pp. 126-145, 2021.
DOI: 10.24215/16666038.21.e12
Received: January 7, 2021 Accepted: May
31, 2021.
Copyright: This article is distributed under
the terms of the Creative Commons License

- 145 -

https://doi.org/10.1145/130994.130998
https://www.omg.org/spec/UTP2

