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Abstract

A cooperative coevolutionary framework can improve 
the performance of optimization algorithms on 
large-scale problems. In this paper, we propose a new 
Cooperative Coevolutionary algorithm to improve 
our preliminary work, FuzzyPSO2. This new 
proposal, called CCFPSO, uses the random grouping 
technique that changes the size of the subcomponents 
in each generation. Unlike FuzzyPSO2, CCFPSO’s 
re-initialization of the variables, suggested by the 
fuzzy system, were performed on the particles 
with the worst fitness values. In addition, instead 
of updating the particles based on the global best 
particle, CCFPSO was updated considering the 
personal best particle and the neighborhood best 
particle. This proposal was tested on large-scale 
problems that resemble real-world problems 
(CEC2008, CEC2010), where the performance 
of CCFPSO was favorable in comparison with other 
state-of-the-art PSO versions, namely CCPSO2, 
SLPSO, and CSO. The experimental results indicate 
that using a Cooperative Coevolutionary PSO 
approach with a fuzzy logic system can improve 
results on high dimensionality problems (100 to 1000 
variables).

Keywords: Adaptive inertia weight, Cooperative 
coevolutionary, fuzzy logic, Particle Swann 
Optimization.

Resumen

Un marco coevolutivo cooperativo puede mejorar el 
rendimiento de los algoritmos de optimización en 
problemas a gran escala. En este trabajo, proponemos 
un nuevo algoritmo coevolutivo cooperativo para 
mejorar nuestro trabajo preliminar, FuzzyPSO2. Esta 
nueva propuesta, denominada CCFPSO, utiliza la 
técnica de agrupación aleatoria que cambia el tamaño 
de los subcomponentes en cada generación. A 
diferencia de FuzzyPSO2, la reinicialización de las 

variables de CCFPSO, sugerida por el sistema difuso, 
se realizaron sobre las partículas con los peores 
valores de fitness. Además, en lugar de actualizar 
las partículas basándose en la mejor partícula global, 
CCFPSO se actualizó considerando la mejor partícula 
personal y la mejor partícula del vecindario. Esta 
propuesta se probó en problemas a gran escala que se 
asemejan a los del mundo real (CEC2008, CEC2010), 
donde el rendimiento de CCFPSO fue favorable en 
comparación con otras versiones de PSO del estado 
del arte, a saber, CCPSO2, SLPSO y CSO. Los 
resultados experimentales indican que el uso de un 
enfoque PSO coevolutivo cooperativo con un sistema 
de lógica difusa puede mejorar los resultados en 
problemas de alta dimensionalidad (de 100 a 1000 
variables).

Palabras claves: Coevolución Cooperativa, Lógica 
Borrosa, Optimización por enjambre de partículas, 
Peso de inercia adaptativo.

1 Introduction

The problems of large-scale global optimization 
(LSGO) have long been a question of great interest in 
the science and engineering field. Major aspects that 
make them difficult to solve are: a) the exponential 
growth of the search space size with respect to the 
number of variables which becomes an extremely 
complex problem; moreover, the number of local 
optima increases; b) the high number of fitness 
evaluations that are required to achieve satisfactory 
performance; and c) the level of interaction of the 
decision variables that contributes to the difficulty 
of the problem [1] [2] [3]. Evolutionary algorithms 
and swarm intelligence algorithms, such as Genetic 
Algorithm (GA) [4], Differential Evolution (DE) 
[5], Particle Swann Optimization (PSO) [6] [7], 
Ant Colony Optimization (ACO) [8], and Artificial 
Bee Colonies (ABC) [9] have been promising in 
solving many large-scale optimization problems. For 
this paper, which focuses on both CEC2008 [1] 
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and CEC2010 [2] large-scale optimization problems, 
evolutionary and swarm intelligence algorithms have 
scalability issues in problems from a hundred to a 
thousand decision variables thus it remains an open 
problem [10].

To address the dimensionality challenge, Jian et 
al. [11] categorized evolutionary algorithms and 
swarm intelligence algorithms into two approaches, 
namely, decomposition and non-decomposition. 
The decomposition algorithms divide the decision 
variables into smaller scale groups to be solved 
by an optimizer and this approach is known as the 
cooperative coevolutionary (CC) approach [12]. CC 
has achieved great success in solving many LSGO 
problems [10], including DECC-G [13], MLCC
[14],  CCPSO2 [15] DECC-D [16] DECC-DG [17]. 
Non-decomposition algorithms consider all decision 
variables of a problem as a whole. Therefore, 
to improve their performance, these algorithms 
have included new initialization strategies [10, 11], 
operator designs (e.g., SLPSO [18], CSO [19]), 
and parameter self-adaptation [20]. Of the latter 
group, algorithms have used several strategies to 
dynamically adapt the parameters, such as the use of 
fuzzy logic (FL) systems [21]. Fuzzy logic systems 
have been successfully used to improve the quality of 
the solutions of these algorithms [22] [23], especially 
for low dimensionality problems (less than 500 
variables) combining mostly with PSO and DE [24] 
[25].

PSO is a powerful algorithm and has been widely 
used [26]. However, it suffers from premature 
convergence getting stuck at local optima [27] [28]
[15].  Appropriate adjustment of its parameters 
improves its performance, but it is a tedious task 
and usually requires a great deal of effort and time 
[25]. To overcome these drawbacks, we developed 
a previous work recently published in CACIC 
2020 [24], named FuzzyPSO2, a particle swarm 
optimization algorithm that dynamically adapted the 
inertia weight parameter using fuzzy logic to address 
large-scale problems (up to 1000 variables). The 
variables defined for the fuzzy system were: iteration 
number and swarm diversity as input variables; inertia 
weight and sigma variable (to reinitialize a swarm 
part) as output variables. FuzzyPSO2 outperformed 
the standard version of PSO by far. However, there 
were functions, especially separable ones, where the 
results were not good enough [24]

In this paper, we present an improvement of 
previous work FuzzyPSO2 using the cooperative 
coevolutionary framework. The proposed 
algorithm, named CCFPSO, is considerably 
better than FuzzyPSO2 and presents the following 
improvements:

• To escape local optima, the fuzzy system restarts 
a proportion of particles with the worst fitness 
value of the current generation, rather than

randomly chosen particles.

• To maintain high diversity in the population, 
a new velocity update is employed, in which 
particles follow their personal and neighborhood 
best position.

• To improve speed, the constriction factor 
approach is replaced by the inertia weight 
parameter approach.

• To improve performance on highly separable 
and non-separable problems, a decomposition 
strategy similar to MLCC is used.

The experiments were performed on the CEC2008 
and CEC2010 benchmark function set and compared 
with the most prominent versions of PSO on 
large-scale problems of the last generation published 
in a recent paper [11] (CCPSO2, SLPSO, and CSO).

This work is organized as follows: Section 2 
describes related work. Section 3 presents the 
standard PSO algorithm with dynamic inertia weight. 
Section 4 details the proposal. In Section 5 the 
experiments are performed. Finally, Section 6 
presents conclusions and future work.

2 Related Work

A fuzzy logic system can control several variables 
based on information about the behavior of the 
algorithm. Using input information and linguistic 
rules, appropriate values of certain variables that can 
significantly influence the behavior of the algorithm 
can be obtained as the system output [29] [30] [25].

In recent years, several works have been presented 
to adapt the parameters using fuzzy logic (LF): 
such as Olivas et al. [23] [22] implemented LF 
in the PSO and the Ant Colony Optimizer (ACO); 
Perez et al. [31] used Bat Algorithm; Sombra 
et al. [32] implemented LF in the Gravitational 
Search Algorithm; Valdez et al. [30] [21] used 
LF with a set of algorithms including PSO, Genetic 
Algorithm (GA), and Ant Colony Optimization 
(ACO); Norouzzadeh et al. [33] employed LF in 
PSO; Ochoa et al. [34] used LF in the Differential 
Evolution (DE); and Kumar et al. [35] used LF 
in the PSO. Despite their success in improving 
algorithm performance, there are not enough studies 
on large-scale global optimization problems (more 
than 100 variables).

A large-scale global optimization problem (LSGO) 
can involve hundreds and thousands of decision 
variables. The Cooperative Coevolutionary (CC) 
approach can help to improve the results. CC 
algorithms before the optimization process use a 
variable decomposition strategy to form smaller 
scale sub-populations where they can be optimized 
separately [13] [10]. Hence, a decomposition strategy 
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that improves the results of the problem must be 
selected.

Van den Bergh and Engelbrecht [36] presented 
two PSO models, called CPSO-Sk and CPSO-Hk 

using CC [12]. Yang et al. [13] [14] proposed a 
decomposition strategy based on Random Grouping 
of Variables (RG) in a Differential Evolution 
algorithm (DE), named DECC-G [13] and later 
Multilevel Cooperative Coevolution (MLCC) [14]. 
MLCC not only significantly outperforms many other 
existing decomposition methods, but also ensures 
that the CC approach. Later, Omidvar et al. [16] 
presented Differential Grouping (DG), Sun et al. [37] 
proposed the Extended Differential Grouping method 
(XDG), Mei et al. [38] presented Global Differential 
Grouping (GDG), Omidvar et al. [10] developed 
Differential Grouping version 2 (DG2) with the 
Differential Evolution (DE) algorithm. However, 
most of the current decomposition methods (includes 
DG, XDG, GDG, DG2) group interacting variables 
into a single group, thus it is not always possible 
to reduce the problem size [3] [39]. A recent 
paper used fuzzy logic in a CC approach to solving 
large-scale problems [40]. In that study was shown 
a new algorithm using multiple optimizers in a CC 
approach to evolving its subcomponents based on 
fuzzy heuristic rules. This heuristic focused on the 
most effective subcomponent and its optimizer based 
on two criteria, namely, fitness improvement and 
population diversity.

Inspired by these works and to improve our 
preliminary work FuzzyPSO2, we present CCFPSO, 
combining fuzzy logic to adapt the inertia weight 
parameter and the CC approach to improve the 
performance on a wide range of large-scale 
optimization problems.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm 
based on Swarm Intelligence theory, which is inspired 
by the social behavior of certain animals when they 
interact with another of their same species to achieve 
a common goal. PSO was proposed by Kennedy and 
Eberhart in 1995 and was developed to simulate the 
movements of birds [7] [6]. PSO has attracted the 
interest of many researchers due to its simple model, 
easy implementation and good results. Particle flies 
through the search space in search of an optimal 
solution. The particle's movement is the result of 
adding to the current position (xi(t)) a velocity (vi(t )) 
that is modified according to its personal best position 
and the global best position. Each particle has a 
personal-best particle (pbesti (t)) which represents its 
best fitness value reached so far, a global-best particle 
((gbest (t ))) that has the best fitness value of the 
swarm, a velocity vi (t ), and a current position xi(t ). 
Consequently, each particle is updated according to

Eqs. 1 and 2 in the following way:

Vi(t + 1) = w* Vi(t) + C1 * ri * (Pbesti(t) -Xi(t))
+C2 * r2 * (gbest (t) - Xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

where vi(t) is the velocity of particle i, xi(t) is 
the current position of particle i; r1 and r2 are 
random numbers between [0,1]; pbesti is the best 
position found by particle i; and gbest is the best 
swarm particle. The variables c1 and c2 represent the 
cognitive and social learning coefficients, respectively. 
These values are generally constant, but can also be 
dynamic. The variable w is called inertial weight 
which can also be static or dynamic [6] [7]. To 
improve the control of particle velocities several 
authors, such as [27] [29] [41] incorporated w into 
the original PSO algorithm and demonstrated that this 
weight can influence the exploration and exploitation 
abilities. Algorithm 1 shows the standard PSO.

Algorithm 1 standard PSO
1: swarm initialization
2: evaluate swarm
3: while Gen < MaxGen do
4: for i = 1 : N do
5: select gbest

6: update velocity Eq. (1)
7: update position Eq. (2)
8: evaluate xiGen+1

9: if f(xiGen+1) < f(pbGeesnti) then
10: pbGeesnti+1 = xiGen+1

11: end if
12: end for
13: end while

4 Algorithm CCFPSO

4.1 Control of parameters through fuzzy 
logic

PSO is known to be prone to premature convergence 
[23] [41] [35] [33]. One of the major reasons for 
this behavior is due the fast movement of particles 
when exchanging information, leading to low swarm 
diversity in initial iterations [15]. Therefore, the fuzzy 
system must know what the state of the swarm is to 
detect swarm stagnation. For this purpose, a fuzzy 
system that dynamically adapts the inertia weight 
parameter was developed. Shi et al. [27] [41] used an 
inertia weight (w) that decreases linearly during the 
iterations and achieved to improve the performance 
in several applications. These studies provide the 
necessary knowledge to build linguistic rules. The 
variables and linguistic rules of the fuzzy system are 
described below.
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4.1.1 Input variable

The first input variable is it erat ion. This input 
variable takes a value between 0 and 1 and is defined 
in Eq. 3. It can therefore be understood as the degree 
of progress of the optimization process.

iterationcurrent
iteration = (3)

Maximum-iterations
The second input variable is DiverN which 

represents the diversity of the swarm. Diversity can 
be understood as the distance between the particles 
(xid) and the best particle (xid) of the swarm in each 
generation. Therefore, the Euclidean distance defined 
in Eq. 4 was calculated, where ns represents the 
number of particles and nx represents the dimension 
of particle i. Subsequently, this result (Diver) was 
normalized using the variables minDiv and maxDiv 
representing the minimum and maximum diversity, 
respectively, as indicated in Eq. 5. In this way, the 
variable DiverN will take a value close to 0 when the 
swarm diversity is low, otherwise close to 1 when the 
swarm diversity is high [23] [22].

1 ns nx
Diver = — y y (xid - Xd)2 (4)

ns i=1 d=1

DiverN =
0,

Diver-minDiv 
maxDiv-minDiv ,

when minDiv = maxDiv 
otherwise

(5)
For input variables, we selected triangular 

membership functions in the interval [0,1]. These 
values were granulated into three triangular 
membership functions (low, medium, high) based on 
our previous work and also considering the successful 
results obtained by other works, such as [29] [23] 
[22] [25]. The membership functions of each of these 
fuzzy variables are shown in Figs. 1 and 2.

Figure 2: Input variable: DiverN

facilitates exploration, while a lower inertia weight 
facilitates exploitation. Thus, an appropriate value 
of inertiaWeight provides a balance in the search for 
the best solutions and requires fewer iterations [27]. 
Therefore, it is a key parameter to be controlled by 
the fuzzy system. Consequently, the particle velocity 
was defined as shown in Eq. 1. The value of variable 
inert iaWeight was defined in the interval [0,1] and 
granulated into five triangular membership functions 
(veryLow, low, medium, high, veryHigh), as shown in 
Fig. 3.

The second output variable for the fuzzy system 
is called sigma. This variable, unlike FuzzyPSO2, 
represents the swarm ratio for particle restarting 
over the particles with worse fitness values at time 
t. Moreover, it aims to maintain diversity and 
escape from local optima. Therefore, both DiverN 
and iteration influence the value it can take. The 
maximum value of sigma must be chosen carefully, 
otherwise, the algorithm may not converge to the 
optimum. The sigma variable was empirically defined 
in the range [0,0.2] and granulated into five triangular 
membership functions (veryLow, low, medium, high, 
veryHigh) (see Fig. 4). Their implementation is 
shown in Algorithm 2. In Figs. 3 and 4 the 
membership functions for each ofthe output variables 
are shown.

Figure 1: Input variable: iteration

Algorithm 2 Sigma

1: particl=sort(fitness,'descend') 
values in decreasing order

2: Numpartic=sigma*numSwarm
3: for i=1:Numpartic do
4: reset xpart icl(i)
5: end for

> sort fitness

4.1.2 Output Variable

The first output variable of the fuzzy system is the 
inertia weight parameter (w) named inert iaWeight. 
As mentioned above, the inertia weight parameter 
can influence the ability to explore and exploit 
within the search space. A higher inertia weight

4.1.3 Linguistic rules

To design the rules of the fuzzy system, the idea 
of improving the balance in the abilities to explore 
and exploit the search space of the PSO algorithm 
is addressed. It is known that some problems need 
more exploration than exploitation, while others, 
more exploitation than exploration [33]. Therefore, 
we decided that when the diversity is low in the
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Figure 3: Output variable: inertiaWeight
Figure 5: Fuzzy System (FS)

Figure 4: Output variable: sigma

early iterations, the value of inertiaWeight and 
sigma should take a high value to help explore more 
promising regions, but when the diversity is low in 
the final iterations, both values of inertiaWeight and 
sigma should take a low value to exploit the zone and 
not abandon the promising zones. The rules of the 
fuzzy system are listed below.

1. If (iteration is low) and (DiverN is low) then (inertiaWeight 
is veryHigh) (sigma is veryHigh).

2. If (iteration is medium) and (DiverN is low) then 
(inertiaWeight is medium) (sigma is low).

3. If (iteration is high) and (DiverN is low) then (inertiaWeight 
is veryLow) (sigma is veryLow).

4. If (iteration is low) and (DiverN is medium) then 
(inertiaWeight is high) (sigma is high).

5. If (iteration is medium) and (DiverN is medium) then 
(inertiaWeight is medium) (sigma is medium).

6. If (iteration is high) and (DiverN is medium) then 
(inertiaWeight is veryLow) (sigma is veryLow).

7. If (iteration is low) and (DiverN is high) then (inertiaWeight 
is veryHigh) (sigma is high).

8. If (iteration is medium) and (DiverN is high) then 
(inertiaWeight is medium) (sigma is low).

9. If (iteration is high) and (DiverN is high) then (inertiaWeight 
is veryLow) (sigma is veryLow).

4.1.4 Fuzzy System

The designed fuzzy systems are of the Mamdani type 
and are ideal for this type of control [31] [23] [22] 
[30] [21] [42]. To obtain the values of inertiaWeight 
and sigma, the fuzzy system (FS) is called in each 
iteration before updating the particles. The assigned 
value for these variables is obtained using the centroid 
method. The complete fuzzy system is shown in Fig. 
5.

4.2 FPSO Cooperative Coevolutionary

To improve the performance of the previously 
proposed FuzzyPSO2, we conducted changes as 
described below:

• We incorporate a CC approach to the 
FuzzyPSO2 algorithm and adopt the 
decomposition strategy of [16] [15]. This 
strategy is similar to MLCC [14] since the 
variables are randomly grouped, but the 
subcomponent size is chosen randomly from 
the decomposer set at each generation. This 
strategy was chosen not only because it does 
not consume FEs (number of evaluations) in 
the decomposition, but also because it ensures 
the CC approach. Hence, it can provide 
better performance on highly separable and 
non-separable problems [15].

• We choose to update the particle velocities 
with the inertia weight parameter approach as 
shown in Eq. 6, since better exploration 
and exploitation efficiency is achieved when a 
reasonable search area is limited [27].

• We use a neighborhood structure with a ring 
topology of size 3 for each particle. This 
neighborhood structure and size improves the 
standard PSO search ability, achieves good 
performance on multimodal problems [43] [15], 
and helps to maintain higher diversity in the 
population [7] [26]. Therefore, the velocity 
update was defined as shown in Eq. 6.

Vi(t + 1) = (inertiaWeight) * v¡(t) + c1 * r1 *
(Pbesti (t) - Xi(t)) + C2 * r2 * (lbest (t) - Xi(t)) (6)

The CCFPSO algorithm can be summarized in 
Algorithm 3. First, the subcomponent size is 
randomly chosen to generate the subswarms at each 
generation. Second, the sub-swarms are constructed 
by permuting and grouping the indices of the n 
dimensions into K groups of s dimensions where 
K * s = n. Third, the values of inertiaWeight and 
sigma parameters are obtained through a fuzzy logic 
system. Fourth, the particles are updated using 
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Eqs. 6 and 2. Fifth, information exchange is 
performed to update the context vector with the best 
particles and continue with the optimization of the 
next sub-swarm. Finally, a generation is completed 
when all the sub-swarms are optimized. In this case, 
the algorithm continues with the next generation and 
chooses other subcomponent sizes (K).

Algorithm 3 CCFPSO

1: swarm initialization
2: evaluate swarm
3: Define the decomposer group S
4: while FEs < MaxFEs do
5: randomly choose s from S > obtain the

k- subswarm ofn/s, where n is the dimension of 
the problem

6: randomly permute all indices of dimension n
7: construct K - subswarms, each with s

dimensions
8: for k=1:K - subswarm do
9: calculate iteration Eq. 3

10: calculate DiverN Eqs. 4 and 5
11: [inertiaWeight, sigma]=FS(iteration, DiverN)
12: reinitialize particles using Alg. 2
13: for i = 1 : N P do
14: update lbest

15: update velocity Eq. (6)
16: update position Eq. (2)
17: evaluate xiGen+1

18: if f(xiGen+1) < f ( pbGeesnti ) then
pGen+1 = xGen+119: pbesti = xi

20: end if
21: end for
22: information exchange
23: end for
24: end while

5 Experiments

In this section, we evaluate the performance and 
scalability of CCPSO as well as other state-of-the-art 
algorithms. Therefore, we use four experimental 
sets of dimensions 100, 500, and 1000 and develop 
two well-known metrics in the literature, namely 
the Wilcoxon-Rank-Sum statistical test and Friedman 
ranks for a thorough evaluation of all compared 
algorithms [44].

5.1 Benchmark Functions

Benchmark functions are fundamental to validate and 
compare the performance of optimization algorithms
[16] [1] [2]. The CEC2008 functions are the classical 
large-scale benchmark functions, such as Schewefel, 
Rosenbrock, Rastrigrin, Griewank, Ackley, and 
Sphere. Table 1 details the properties of modality, 
separability (variable boundary), and domain of the 

search space of these functions, which can scale 
to any dimension. In this case, we use the 
scales to 100, 500, and 1000 dimensions as the 
first three sets of experiments. For all CEC2008 
functions, the minimum is 0 except for f7 which is 
unknown. Finally, the fourth set of experiments are 
the CEC2010 functions that consist of 20 benchmark 
functions, all of them 1000-dimensional. Unlike 
CEC2008, CEC2010 incorporates partially separable 
functions. The modality, separability, and domain 
properties of these functions are detailed in [2]. 
It is important to mention that separability is a 
property that can affect the convergence of algorithms. 
This challenge depends on the level of interrelated 
variables (non-separable variables) that the problems 
can have [3] [28].

Table 1: CEC2008 Benchmark Functions

Modality Functions Separability Domain

unimodal f1:Shifted Sphere Separable [-100,100]
f2:Shifted Schwefel 2.21 Non-separable [-100,100]
f3:Shifted Rosenbrock Non-separable [-100,100]
f4:Shifted Rastrigin Separable [-5,5]

multimodal f5:Shifted Griewank Non-separable [-600,600]
f6:Shifted Ackley Separable [-32,32]
f7:FastFractal “DoubleDip” Non-separable [-1,1]

5.2 Experimental Settings

The CCFPSO parameters were calibrated using the 
IRACE algorithm [45]. To do this, we used a 
subset of the CEC2008 functions with different 
dimensions (100, 500, and 1000) and the CEC2010 
functions in the ”instances.txt” file (of IRACE) to 
find a parameter configuration that works well in 
most of the functions. The parameters to be 
calibrated by IRACE were: population size (NP), 
the social and cognitive learning coefficients (c1, 
c2). A maxExpermients=300 and a default setting 
of NP=50 and c1=c2=1 .49445 in the ”default.txt” 
file was used. Since IRACE could not find other 
better configurations, we chose to delete the ”c1 and 
c2 calibration parameters. Therefore, IRACE only 
calibrated the population size of CCFPSO (see Table 
2). An important aspect to remember is that in 
the CC approach, the number of particles is usually 
smaller due to the internal logic structure, therefore, 
it is crucial to calibrate this parameter. A set of 
possible subcomponent sizes for all dimensions was 
defined empirically in S={D/2, D/4, D/5, D/10, 
D/20, D/50}, where D is the problem dimension, in 
the two test function sets (CEC2008 and CEC2010). 
The size of the subcomponents is dynamic and is 
selected randomly for each generation.

To compare CCFPSO with state-of-the-art 
algorithms, we selected three outstanding algorithms 
from recently published comparative studies for 
large-scale optimization problems, namely, SLPSO 
and CSO by the work of Jian et al. [11], and CCPSO2
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Table 2: Configuration of the parameters of the 
involved PSO algorithms

Parameter Setting

CCFPSO
NP=34 (with IRACE), c1=c2=1.494, w 
adaptive (with FS)

CCPSO2 NP=30, p=0.5 (probability value)
FuzzyPSO2 NP=100, c1=2, c2=3, w adaptive (FS)
CSO NP=100/250/500, 0=0-0.15 (soc. fact.)
SLPSO NP=110/150/500/200, a=0.5

On the other hand, to analyze the experimental 
results in Tables 3 and 4, the tolerance error ( f (x) - 
f(x*)) at 1.0E - 8 was considered, where f(x) is the 
function value and f (x*) is the global optimum [28] 
[2] [1]. Finally, to plot the convergence curves of all 
compared algorithms, six representative functions, 
namely f1-f6 for the first benchmark set CEC2008, 
and eight, such functions f1, f3, f10, f12, f15, f17, 
f18 and f20 for the second benchmark set CEC2010 
were selected. These plots are shown in Figs. 6-9.

by the work of Ullmann et al. [28]. Both CSO [19] 
and SLPSO [18] are non-decomposition algorithms, 
whereas CCPSO2 [15] is a decomposition algorithm. 
In addition, our preliminary version of FuzzyPSO2 
[24] was considered to validate the CCFPSO 
improvements. Each algorithm had its own parameter 
setting. The parameter values used in this paper for 
CSO, SLPSO, and CCPSO2 were extracted from 
the authors' original papers. Table 2 presents the 
configurations of all the compared algorithms.

To be fair, we have chosen to follow the guidelines 
of the CEC2008 and CEC2010 benchmark functions 
for all these algorithms. Thus, for both CEC2008 and 
CEC2010, 25 runs were performed for each function. 
Furthermore, for CEC2008, MaxF E s = 5E + 03 * 
D fitness evaluations (FEs) were used, where D 
is the problem dimension; whereas, for CEC2010, 
MaxFEs = 3E + 06 fitness evaluations (FEs) were 
used. In this study, the number of fitness evaluations 
is a fundamental measure to achieve satisfactory 
performances in the algorithms.

5.3 Analysis of Results

In this section, CCFPSO, FuzzyPSO2, CSO, SLPSO, 
and CCPSO2 experiments were performed on 7 
CEC2008 benchmark functions in 100, 500, and 
1000 dimensions as shown in Table 3, and on 20 
CEC2010 benchmark functions in 1000 dimensions 
as illustrated in Table 4.

The first statistical metric required to evaluate 
the performance of these algorithms is the 
Wilcoxon-Rank-Sum statistical test. Since 
the population of these experiments does not 
have a normal distribution, the nonparametric 
Wilcoxon-Rank-Sum statistical test with 95% 
confidence is used. This test was performed on the 
best mean fitness values for each algorithm obtained 
from the 25 runs for each function. The symbols 
”(+)”, ”(-)” and ”(=)” mean that the CCFPSO results 
are significantly better, significantly worse, and 
equivalent to the compared algorithms. When 
the results are statistically different, the better is 
highlighted in bold (the best average of the best 
fitness values). In addition, w/l/t in the last row of 
Tables 3 and 4 indicate that CCFPSO wins on ”w” 
functions, loses on l functions, and ties on t functions.

5.3.1 Comparison of CCFPSO with FuzzyPSO2

The mean best fitness value of 25 independent runs of 
CCFPSO and FuzzyPSO2 are summarized in Table 
3. The comparison of results shows that CCFPSO 
outperforms FuzzyPSO2 on 19 out of 21 functions 
(f1, f2, f4, f5, f6, and f7 in all dimensions). On 
f3 (unimodal and non-separable) FuzzyPSO2 was 
better than CCFPSO in 500D, but not statistically 
different in 100D. Furthermore, Figs. 6 and 7 show 
that CCFPSO achieved better convergence on f1, f2 
(unimodal), and f4-f6 (multimodal), while similar 
convergence to FuzzyPSO2 on f3. Note that f3 is 
non-separable and presents a greater challenge for any 
algorithm. CCFPSO was able to find the optimal 
values in 7 functions, since most of them are within 
the established tolerance error, while FuzzyPSO2 
could not find any optimal value. An important 
difference between CCFPSO and FuzzyPSO2 is that 
the diversity of CCFPSO is likely to be much greater 
than that of FuzzyPSO2. In CCFPSO each particle 
has its own lbest in each update, whereas, FuzzyPSO2 
all particles are updated using the (same) gbest. 
Therefore, FuzzyPSO2 may converge prematurely 
and very quickly over several functions.

5.3.2 Comparison of CCFPSO with CCPSO2

CCPSO2 also adopts a CC approach (like CCFPSO) 
with different subcomponents sizes. In CEC2008 
(see Table3), CCFPSO was superior to CCPSO2 
on 7 out of 21 functions (f1 of 100D and 500D; 
f2-f3 and f5 of 1000D; and f6 of 500D and 1000D), 
while CCFPSO loses to CCPSO2 in 6 out of 21 
functions (f2, f4 of 100D and 500D; and f7 of 
500D and 1000D). Finally, there is not statistical 
different in 8 out of 21 functions (f1, f3, f5, f6, 
f7 in 100D, f3, f5 in 500D, and f4 in 1000D). 
Although these algorithms used a CC approach, the 
improvement of CCFPSO over CCPSO2 on certain 
functions (specifically from 500 to 1000 dimensions) 
may be due to that the fuzzy system was less affected 
by scalability. In addition, CCFPSO had better 
convergence on unimodal functions. The CCPSO2 
only found optimal values in 6 functions (f1 (100D, 
500D and 1000D), f4 (100D), and f6 (100D and 
500D). The plots in Figs. 6 and 7 show the
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Table 3: Experimental results of 5 algorithms on 7 test suits (CEC2008) of 100, 500 and 1000 dimensions.

Fun D CCFPSO CCPSO2 CSO SLPSO FuzzyPSO2
100 1.702E-23 4.426E-23 (=) 0.000E+00 (-) 1.047E-27 (-) 1.605E+03 (+)

f1 500 0.000E+00 1.832E-15 (+) 6.565E-23 (+) 7.517E-24 (+) 2.901E+04 (+)
1000 7.863E-29 6.697E-11 (+) 1.077E-21 (+) 7.480E-23 (+) 9.227E+04 (+)
100 9.829E+00 3.984E+00 (-) 3.332E+01 (+) 6.040E-06 (-) 9.465E+01 (+)

f2 500 1.777E+01 1.088E+01 (-) 1.466E+01 (-) 3.525E+01 (+) 9.491E+01 (+)
1000 | 1.745E+01 2.704E+01 (+) 3.222E+01 (+) 9.018E+01 (+) 9.535E+01 (+)
100 2.812E+02 3.133E+02 (=) 1.790E+02 (-) 2.110E+02(-) 2.040E+02 (=)

f3 500 1.205E+03 9.939E+02 (=) 5.368E+02 (-) 5.211E+02 (-) 1.198E+03 (-)
1000 1.992E+03 2.149E+03 (+) 1.002E+03 (-) 1.029E+03 (-) 3.379E+03 (+)
100 8.376E-12 3.695E-15 (-) 5.469E+01 (+) 7.589E+01 (+) 2.906E+02 (+)

f4 500 2.546E+02 4.851E+00 (-) 3.213E+02 (+) 2.940E+03 (+) 3.467E+03 (+)
1000 9.759E+02 3.574E+02 (=) 7.057E+02 (=) 5.740E+02 (=) 9.231E+03 (+)
100 4.325E-03 7.186E-03 (=) 4.926E-04 (=) 4.947E-02 (=) 1.137E+01 (+)

f5 500 9.855E-04 1.774E-03 (=) 2.220E-16 (-) 3.375E-16 (-) 1.989E+02 (+)
1000 1.656E-15 9.860E-04 (+) 2.220E-16 (-) 5.507E-16 (-) 7.828E+02 (+)
100 4.623E-13 5.546E-13 (=) 1.066E-14 (-) 1.833E-14 (-) 1.484E+01 (+)

f6 500 1.128E-13 1.706E-09 (+) 4.106E-13 (+) 1.494E-13 (+) 1.775E+01 (+)
1000 1.640E-13 2.879E-07 (+) 1.210E-12 (+) 3.524E-13 (+) 1.958E+01 (+)
100 -1.488E+03 -1.486E+03 (=) -1.471E+03 (+) -1.438E+03 (+) -1.203E+03 (+)

f7 500 -6.737E+03 -7.095E+03 (-) -7.060E+03 (-) -7.040E+03 (-) -4.943E+03 (+)
1000 -1.209E+04 -1.334E+04 (-) -1.402E+04 (-) -1.396E+04 (-) -9.316E+03 (+)

w/l/t 7/6/8 9/10/2 9/10/2 19/1/1

convergence of CCPSO2 concerning CCFPSO, where 
good convergence is observed on f3 and f4, similar 
convergence on f6, and poor convergence on f1 and 
f2.

In CEC2010, experimental results shown that 
CCFPSO wins against CCPSO2 in 13 of the 20 
functions, such as, 3 are separable functions (f1-f3); 
8 are partially separable functions (f9, f10, f12-15, 
f17 and f18); and 2 corresponding to non-separable 
functions (f19 and f20). CCFPSO loses in 4 out 
of 20 functions (f4, f5, f7 and f11) and ties in 3 
out of 20, which are partially separable functions 
(f6, f8 and f16) (see Table 4). CCPSO2 used small 
subcomponent sizes compared with CCFPSO, which 
could cause poor performance on non-separable or 
partially separable functions where large groups of 
strongly related variables exist. CCFPSO was able 
to find the optimal values in two separable functions 
(f3 and f6), while CCPSO2 was not able to find the 
optimum in any function. Figs. 8 and 9 illustrate 
that, in the first third of the generations, CCPSO2 
has better convergence than CCFPSO, but then it is 
outperformedby CCFPSO because it converges faster 
and better.

5.3.3 Comparison of CCFPSO with CSO

In CEC2008 (see Table 3), CCPSO2 outperformed 
CSO on 9 out of 21 functions, which 4 are unimodal 
functions (f1 of 500D and 1000D and f2 of 100D and 
1000D) and 5 are multimodal functions (f4 in 100D; 
f4, f6 in 500D; and f6, f7 in 1000D). However, CSO 
outperforming CCFPSO on 10 out of 21 functions 
(f1-100D, f2-500D, f3 in all dimensions, f5 in 500D 
and 1000D, f6-100D, and f7in 500D and 1000D), 
but its performance is not statistically different from 
CCFPSO on f4 in 1000D and f5 in 100D. On the 

other hand, CSO was able to find the optimum of 
8 functions, namely f1 and f6 in all dimensions, f5 
of 500D and 1000D. It is important to mention that 
CSO used a solid configuration for each dimension 
[19], i.e., for 100, 500, and 1000 dimensions, it used 
100, 250, and 500 particles, respectively. CCFPSO 
was calibrated to use the same population size for 
100, 500, and 1000 dimensions. Despite this, 
the CCFPSO achieved outstanding performance in 
functions f6-D500, f1-D1000 and f2-D1000, see Figs. 
6 and 7.

In CEC2010, Table 4 shows that CSO aoutperforms 
CCFPSO in most of the functions, namely on 13 
out of 20 functions, in some partially separable 
(f4-f9, f11, f13, f14, f16 and f18) and non-separable 
(f19 and f20) functions. However, CCFPSO is 
significantly better on separable functions (f1-f3) 
and partially separable functions f10, f12, f15 and 
f17. The fact that CCFPSO has been outperformed 
in partially separable and non-separable functions 
may be due to the decomposition approach used, 
where the variables are randomly grouped without 
considering the interactions between them, thus 
reducing the overall performance of these functions. 
Both algorithms were able to reach the optimum on 
functions f1 and f3. Figs. 8 and 9 show that CSO 
has good convergence on most functions, except for 
f10-1000D and f15-1000D, which stagnate in the first 
few iterations. However, it converges faster and better 
than CCPSO2 at f19-1000D and f20-1000D.

5.3.4 Comparison of CCFPSO with SLPSO

In CEC2008, Table 3 shows that CCFPSO performed 
significantly better than SLPSO on 5 functions (f4 of 
100D and 500D, f6 of 500D and 1000D, and f7 of 
100D), while losing to SLPSO on 10 functions ( f1
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Table 4: Experimental results of 4 algorithms on 20 test suits (CEC2010) of 1000 dimensions.

Fun CCFPSO CCPSO2 CSO SLPSO
f1 1.6678E-16 1.3295E+04 (+) 4.6384E-12 (+) 1.6678E-14 (+)
f2 4.5657E+02 7.1253E+02 (+) 7.4868E+03 (+) 2.8994E+03 (+)
f3 9.4755E-12 8.5013E-02 (+) 2.5548E-09 (+) 1.8808E-10 (+)
f4 8.3437E+12 4.7278E+12 (-) 1.2089E+12 (-) 1.3005E+12 (+)
f5 6.6259E+08 5.0671E+08 (-) 4.3055E+06 (-) 1.0749E+07 (-)
f6 1.9782E+07 1.8685E+07 (=) 7.9519E-07 (-) 2.3397E-07 (-)
f7 1.2125E+09 2.7969E+08 (-) 1.0767E+04 (-) 8.2008E+04 (-)
f8 2.6038E+08 1.5114E+08 (=) 4.3211E+07 (-) 4.3677E+07 (-)
f9 3.0808E+08 4.2367E+08 (+) 6.3573E+07 (-) 5.6100E+07 (-)
f10 2.9501E+03 | 3.4783E+03 (+) 9.5923E+03 (+) 8.9146E+03 (+)
f11 2.3241E+02 2.2307E+02 (-) 4.1343E-08 (-) 3.0612E-09 (-)
f12 2.3174E+05 4.6024E+05 (+) 5.2595E+05 (+) 5.5336E+05 (+)
f13 1.1041E+04 1.2900E+04 (+) 9.3061E+02 (-) 1.1393E+03 (-)
f14 1.0681E+09 1.6073E+09 (+) 2.8014E+08 (-) 2.7267E+08 (-)
f15 5.7851E+03 | 1.6053E+04 (+) 1.0066E+04 (+) 1.0205E+04 (+)
f16 4.1903E+02 4.0881E+02 (=) 5.9757E-08 (-) 3.7584E-09 (-)
f17 1.4000E+06 2.1142E+06 (+) 2.1935E+06 (+) 2.5888E+06 (+)
f18 5.3487E+04 1.5252E+05 (+) 3.4612E+03 (-) 5.2207E+03 (-)
f19 2.0337E+07 2.6769E+07 (+) 9.5672E+06 (-) 1.0482E+07 (-)
f20 1.9168E+03 7.0587E+04 (+) 1.0029E+03 (-) 1.0347E+03 (-)

w/l/t 13/4/3 7/13/0 7/13/0

and f2 of 100-D; f6 of 100D; f3 of 100D and 500D; 
f5 and f7 of 500D and 1000D). For the remaining 
two test functions, there is no statistical difference 
between the two compared algorithms ( f4 of 1000D, 
f5 of 100D). SLPSO found the optimal values for f1 
and f6 in all dimensions and f5 in 500D and 1000D 
since the average of their best fitness values fell 
within the acceptable error (8 functions in total). As 
can be seen, the statistical results of the comparison 
with SLPSO are similar to those compared with 
CSO. For most of the functions observed in Fig. 6, 
SLPSO converges faster than CCFPSO and has better 
convergence at f3-1000D and f4-1000D. However, 
CCFPSO converges better on most of the unimodal 
functions.

In CEC2010, SLPSO also performs similarly to 
CSO, outperforming CCFPSO on 13 out of 20 
functions,(f4-f9, f11, f13, f14, f16 and f18-f20), but 
it lost to CCFPSO on 7 out of 20 functions (f1-f3, 
f10, f12, f15 and f17) as shown in Table 4. Figs. 
8 and 9 show that the convergence of SLPSO is 
still faster than that of CCFPSO in most functions, 
except for f2-D1000, which falls prematurely into a 
local optimum. Note that for functions f10 and f15, 
CCFPSO was able to escape local optima, possibly 
due to the sigma variable used by the fuzzy system.

A second metric was used to rank the algorithms. 
This metric is the Friedman rank [44] and is shown 
in Tables 5 and 6 for the benchmark test functions 
CEC2008 and CEC2010. The last rows of the tables 
show that the CSO algorithm is the best algorithm 
with a score of 2.14 and 2, respectively.

In CEC2008, Table 5 shows that CSO obtained 
the best results for most functions. Therefore, it 
ranked first among the compared algorithms with 
a score of 2.14. This can be attributed not only 
to the robust configuration for this test set but also 

to the social factor adjusting to the dimensions and 
separability properties of the functions. In second 
place were the SLPSO and CCFPSO algorithms 
which tied with a point score of 2.57. Although 
CCFPSO lost to SLPSO in 10 functions, it won 
to SLPSO in 9 functions with a significantly better 
solution quality than SLPSO. CCFPSO obtains better 
values in most separable functions, so this advantage 
is attributed to the CC method. Third place in 
the ranking was for CCPSO2 with a score of 2.81. 
Although it found the best value for four functions, 
its convergence rate was slower for most functions. 
Finally, the last place went to FuzzyPSO2 for 
obtaining the worst performance concerning the other 
algorithms. The poor performance of FuzzyPSO2 
indicates that a fuzzy system is not sufficient to 
improve PSO performance. However, it shows that 
combined with a CC approach (as CCFPSO) it can 
improve the performance of PSO on separable and 
non-separable problems. Due to its poor performance 
was not chosen in the comparison with the CEC2010 
benchmark functions.

In CEC2010, CSO also achieved the best 
performance in 7 out of 20 functions. Thus, the 
first place was for CSO, which could converge to 
better solutions in most of the partially separable 
and non-separable functions. Second place went 
to SLPSO with a score of 2.1 (see Table 6). 
Both CSO and SLPSO performed better on most 
functions compared to the CCFPSO and CCPSO2 
decomposition algorithms. The reason for this may be 
due to the designed operators they use, which improve 
the exploration and exploitation ability. These 
versions are very different from the standard PSO, as 
they do not use pbest and gbest in the particle updates, 
which are the heart of the PSO algorithm. In third 
place was CCFPSO with a 2.65 score. Like CSO,

- 120 -



Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

FEs xio6

(a)
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Figure 6: Convergence curves of CCFPSO, CSPSO2,
CSO, SLPSO and FuzzyPSO2 (FPSO2) on f1, f4 in 
1000 dimensions - CEC2008

(b)

CCFPSO achieved the best performance in 7 out of 
20 functions. It was outstanding in the separable 
functions and several partially separable functions, 
both unimodal and multimodal. Finally, fourth place 
was for the CCPSO2 algorithm with 3.25 points. Its 
performance was more reduced in the non-separable 
functions, which may be due to the decomposition 
method used.

6 Conclusions

In this paper, a cooperative coevolutionary 
framework with dynamic adjustment w using a 
fuzzy system was proposed to address large-scale 
optimization problems. In addition, we incorporate 
a decomposition strategy based on random grouping 
of variables, which change size dynamically at each 
generation. This decomposition strategy is suitable 
for optimizing separable functions. To maintain 
the diversity of the population, we define a local 
neighborhood of size 3 for each particle using 
the ring topology. Therefore, to demonstrate the 
improvements of this proposal, it was compared 
with three state-of-the-art algorithms and with 
our preliminary work FuzzyPSO2. Moreover, we 
adopted two commonly used large-scale benchmark 
function sets: the CEC2008 and CEC2010 test 
sets to compare the performance of these five

FEs x106

(c)

(d)

Figure 7: Convergence curves of CCFPSO, CSPSO2, 
CSO, SLPSO and FuzzyPSO2 (FPSO2) on f3- f6 - 
CEC2008
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Figure 8: Convergence curves of CCFPSO, CCPSO2, 
CSO and SLPSO on f1, f3, f10, f12 - CEC2010
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Figure 9: Convergence curves of CCFPSO, CCPSO2,
CSO and SLPSO on f15, f17, f18, f20 - CEC2010
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Table 5: Ranking results of 5 algorithms on CEC2008 
test set

FunD CCFPSO CCPSO2 CSO SLPSO FuzzyPSO2
100 3 4 1 2 5

f1 500 1 2 3 2 5
1000 1 4 3 2 5
100 3 2 4 1 5

f2 500 3 1 2 4 5
1000 1 2 3 4 5
100 4 5 1 3 2

f3 500 5 3 2 1 4
1000 3 4 1 2 5
100 2 1 3 4 5

f4 500 2 1 3 4 5
1000 4 1 3 2 5
100 2 3 1 4 5

f5 500 3 4 1 2 5
1000 3 4 1 2 5
100 3 4 1 2 5

f6 500 1 4 3 2 5
1000 1 4 3 2 5
100 1 2 3 4 5

f7 500 4 1 2 3 5
1000 4 3 1 2 5

2.57 2.81 2.14 2.57 4.81
final rank 2 3 1 2 4

Table 6: Ranking results of 4 algorithms on CEC2010 
test set

Fun CCFPSO CCPSO2 CSO SLPSO
fl 1 4 3 2
f2 1 2 4 3
f3 1 4 3 2
f4 4 3 1 2
f5 4 3 1 2
f6 4 3 2 1
f7 4 3 1 2
f8 4 3 1 2
f9 3 4 2 1
f10 1 2 4 3
f11 4 3 2 1
f12 1 2 3 4
f13 3 4 1 2
f14 3 4 2 1
f15 1 4 2 3
f16 4 3 2 1
f17 1 2 3 4
f18 3 4 1 2
f19 3 4 1 2
f20 3 4 1 2

2.65 3.25 2 2.1
final rank 3 4 1 2

algorithms. These studies reveal that CCFPSO 
substantially improved on the previously proposed 
FuzzyPSO2, significantly outperforming FuzzyPSO2 
in 19 out of 21 functions in CEC2008. This 
improvement demonstrated that combining fuzzy 
logic for parameter adaptation with a cooperative 
coevolutionary framework is advantageous for 
addressing a wide range of large-scale problems, 
including their scalability. In addition, for 
the CEC2008 and CEC2010 test set, CCFPSO 
achieved the best results on separable functions, 
on relatively complex partially-separable functions, 
and performed reasonably well on non-separable 
functions. CCFPSO was the second-best algorithm 
of the five algorithms compared for CEC2008 and 
the third-best of the four algorithms compared 
for CEC2010. Therefore, CCFPSO proved to be 
competitive in tackling high-dimensional problems. 
In the future, more intelligent strategies could be 
used for the selection of the size of the decomposition 
groups, especially for completely non-separable 
functions. The incorporation of CC into other 
evolutionary and swarm intelligence algorithms that 
dynamically adapt their parameters using a fuzzy 
system could also be studied.
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