
Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

- ORIGINAL ARTICLE -

Cooperative Coevolutionary Particle Swarms using Fuzzy
Logic for Large Scale Optimization

Cúmulo de Partículas Coevolutivo Cooperativo usando Lógica Borrosa para la
Optimización a Gran Escala

Fabiola Paz1 , Guillermo Leguizamón1 , and Efrén Mezura Montes2

I.IDIC. University National of San Luis, Argentina
fabypaz @ fi ,unj u.edu.ar, legui @ unsl.edu.ar

-Artificial Intelligence Research Center, University of Veracruz, México
emezura@uv.mx

Abstract

A cooperative coevolutionary framework can improve
the performance of optimization algorithms on
large-scale problems. In this paper, we propose a new
Cooperative Coevolutionary algorithm to improve
our preliminary work, FuzzyPSO2. This new
proposal, called CCFPSO, uses the random grouping
technique that changes the size of the subcomponents
in each generation. Unlike FuzzyPSO2, CCFPSO’s
re-initialization of the variables, suggested by the
fuzzy system, were performed on the particles
with the worst fitness values. In addition, instead
of updating the particles based on the global best
particle, CCFPSO was updated considering the
personal best particle and the neighborhood best
particle. This proposal was tested on large-scale
problems that resemble real-world problems
(CEC2008, CEC2010), where the performance
of CCFPSO was favorable in comparison with other
state-of-the-art PSO versions, namely CCPSO2,
SLPSO, and CSO. The experimental results indicate
that using a Cooperative Coevolutionary PSO
approach with a fuzzy logic system can improve
results on high dimensionality problems (100 to 1000
variables).

Keywords: Adaptive inertia weight, Cooperative
coevolutionary, fuzzy logic, Particle Swann
Optimization.

Resumen

Un marco coevolutivo cooperativo puede mejorar el
rendimiento de los algoritmos de optimización en
problemas a gran escala. En este trabajo, proponemos
un nuevo algoritmo coevolutivo cooperativo para
mejorar nuestro trabajo preliminar, FuzzyPSO2. Esta
nueva propuesta, denominada CCFPSO, utiliza la
técnica de agrupación aleatoria que cambia el tamaño
de los subcomponentes en cada generación. A
diferencia de FuzzyPSO2, la reinicialización de las

variables de CCFPSO, sugerida por el sistema difuso,
se realizaron sobre las partículas con los peores
valores de fitness. Además, en lugar de actualizar
las partículas basándose en la mejor partícula global,
CCFPSO se actualizó considerando la mejor partícula
personal y la mejor partícula del vecindario. Esta
propuesta se probó en problemas a gran escala que se
asemejan a los del mundo real (CEC2008, CEC2010),
donde el rendimiento de CCFPSO fue favorable en
comparación con otras versiones de PSO del estado
del arte, a saber, CCPSO2, SLPSO y CSO. Los
resultados experimentales indican que el uso de un
enfoque PSO coevolutivo cooperativo con un sistema
de lógica difusa puede mejorar los resultados en
problemas de alta dimensionalidad (de 100 a 1000
variables).

Palabras claves: Coevolución Cooperativa, Lógica
Borrosa, Optimización por enjambre de partículas,
Peso de inercia adaptativo.

1 Introduction

The problems of large-scale global optimization
(LSGO) have long been a question of great interest in
the science and engineering field. Major aspects that
make them difficult to solve are: a) the exponential
growth of the search space size with respect to the
number of variables which becomes an extremely
complex problem; moreover, the number of local
optima increases; b) the high number of fitness
evaluations that are required to achieve satisfactory
performance; and c) the level of interaction of the
decision variables that contributes to the difficulty
of the problem [1] [2] [3]. Evolutionary algorithms
and swarm intelligence algorithms, such as Genetic
Algorithm (GA) [4], Differential Evolution (DE)
[5], Particle Swann Optimization (PSO) [6] [7],
Ant Colony Optimization (ACO) [8], and Artificial
Bee Colonies (ABC) [9] have been promising in
solving many large-scale optimization problems. For
this paper, which focuses on both CEC2008 [1]

-112-

mailto:emezura@uv.mx

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

and CEC2010 [2] large-scale optimization problems,
evolutionary and swarm intelligence algorithms have
scalability issues in problems from a hundred to a
thousand decision variables thus it remains an open
problem [10].

To address the dimensionality challenge, Jian et
al. [11] categorized evolutionary algorithms and
swarm intelligence algorithms into two approaches,
namely, decomposition and non-decomposition.
The decomposition algorithms divide the decision
variables into smaller scale groups to be solved
by an optimizer and this approach is known as the
cooperative coevolutionary (CC) approach [12]. CC
has achieved great success in solving many LSGO
problems [10], including DECC-G [13], MLCC
[14], CCPSO2 [15] DECC-D [16] DECC-DG [17].
Non-decomposition algorithms consider all decision
variables of a problem as a whole. Therefore,
to improve their performance, these algorithms
have included new initialization strategies [10, 11],
operator designs (e.g., SLPSO [18], CSO [19]),
and parameter self-adaptation [20]. Of the latter
group, algorithms have used several strategies to
dynamically adapt the parameters, such as the use of
fuzzy logic (FL) systems [21]. Fuzzy logic systems
have been successfully used to improve the quality of
the solutions of these algorithms [22] [23], especially
for low dimensionality problems (less than 500
variables) combining mostly with PSO and DE [24]
[25].

PSO is a powerful algorithm and has been widely
used [26]. However, it suffers from premature
convergence getting stuck at local optima [27] [28]
[15]. Appropriate adjustment of its parameters
improves its performance, but it is a tedious task
and usually requires a great deal of effort and time
[25]. To overcome these drawbacks, we developed
a previous work recently published in CACIC
2020 [24], named FuzzyPSO2, a particle swarm
optimization algorithm that dynamically adapted the
inertia weight parameter using fuzzy logic to address
large-scale problems (up to 1000 variables). The
variables defined for the fuzzy system were: iteration
number and swarm diversity as input variables; inertia
weight and sigma variable (to reinitialize a swarm
part) as output variables. FuzzyPSO2 outperformed
the standard version of PSO by far. However, there
were functions, especially separable ones, where the
results were not good enough [24]

In this paper, we present an improvement of
previous work FuzzyPSO2 using the cooperative
coevolutionary framework. The proposed
algorithm, named CCFPSO, is considerably
better than FuzzyPSO2 and presents the following
improvements:

• To escape local optima, the fuzzy system restarts
a proportion of particles with the worst fitness
value of the current generation, rather than

randomly chosen particles.

• To maintain high diversity in the population,
a new velocity update is employed, in which
particles follow their personal and neighborhood
best position.

• To improve speed, the constriction factor
approach is replaced by the inertia weight
parameter approach.

• To improve performance on highly separable
and non-separable problems, a decomposition
strategy similar to MLCC is used.

The experiments were performed on the CEC2008
and CEC2010 benchmark function set and compared
with the most prominent versions of PSO on
large-scale problems of the last generation published
in a recent paper [11] (CCPSO2, SLPSO, and CSO).

This work is organized as follows: Section 2
describes related work. Section 3 presents the
standard PSO algorithm with dynamic inertia weight.
Section 4 details the proposal. In Section 5 the
experiments are performed. Finally, Section 6
presents conclusions and future work.

2 Related Work

A fuzzy logic system can control several variables
based on information about the behavior of the
algorithm. Using input information and linguistic
rules, appropriate values of certain variables that can
significantly influence the behavior of the algorithm
can be obtained as the system output [29] [30] [25].

In recent years, several works have been presented
to adapt the parameters using fuzzy logic (LF):
such as Olivas et al. [23] [22] implemented LF
in the PSO and the Ant Colony Optimizer (ACO);
Perez et al. [31] used Bat Algorithm; Sombra
et al. [32] implemented LF in the Gravitational
Search Algorithm; Valdez et al. [30] [21] used
LF with a set of algorithms including PSO, Genetic
Algorithm (GA), and Ant Colony Optimization
(ACO); Norouzzadeh et al. [33] employed LF in
PSO; Ochoa et al. [34] used LF in the Differential
Evolution (DE); and Kumar et al. [35] used LF
in the PSO. Despite their success in improving
algorithm performance, there are not enough studies
on large-scale global optimization problems (more
than 100 variables).

A large-scale global optimization problem (LSGO)
can involve hundreds and thousands of decision
variables. The Cooperative Coevolutionary (CC)
approach can help to improve the results. CC
algorithms before the optimization process use a
variable decomposition strategy to form smaller
scale sub-populations where they can be optimized
separately [13] [10]. Hence, a decomposition strategy

- 113 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

that improves the results of the problem must be
selected.

Van den Bergh and Engelbrecht [36] presented
two PSO models, called CPSO-Sk and CPSO-Hk

using CC [12]. Yang et al. [13] [14] proposed a
decomposition strategy based on Random Grouping
of Variables (RG) in a Differential Evolution
algorithm (DE), named DECC-G [13] and later
Multilevel Cooperative Coevolution (MLCC) [14].
MLCC not only significantly outperforms many other
existing decomposition methods, but also ensures
that the CC approach. Later, Omidvar et al. [16]
presented Differential Grouping (DG), Sun et al. [37]
proposed the Extended Differential Grouping method
(XDG), Mei et al. [38] presented Global Differential
Grouping (GDG), Omidvar et al. [10] developed
Differential Grouping version 2 (DG2) with the
Differential Evolution (DE) algorithm. However,
most of the current decomposition methods (includes
DG, XDG, GDG, DG2) group interacting variables
into a single group, thus it is not always possible
to reduce the problem size [3] [39]. A recent
paper used fuzzy logic in a CC approach to solving
large-scale problems [40]. In that study was shown
a new algorithm using multiple optimizers in a CC
approach to evolving its subcomponents based on
fuzzy heuristic rules. This heuristic focused on the
most effective subcomponent and its optimizer based
on two criteria, namely, fitness improvement and
population diversity.

Inspired by these works and to improve our
preliminary work FuzzyPSO2, we present CCFPSO,
combining fuzzy logic to adapt the inertia weight
parameter and the CC approach to improve the
performance on a wide range of large-scale
optimization problems.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm
based on Swarm Intelligence theory, which is inspired
by the social behavior of certain animals when they
interact with another of their same species to achieve
a common goal. PSO was proposed by Kennedy and
Eberhart in 1995 and was developed to simulate the
movements of birds [7] [6]. PSO has attracted the
interest of many researchers due to its simple model,
easy implementation and good results. Particle flies
through the search space in search of an optimal
solution. The particle's movement is the result of
adding to the current position (xi(t)) a velocity (vi(t))
that is modified according to its personal best position
and the global best position. Each particle has a
personal-best particle (pbesti (t)) which represents its
best fitness value reached so far, a global-best particle
((gbest (t))) that has the best fitness value of the
swarm, a velocity vi (t), and a current position xi(t).
Consequently, each particle is updated according to

Eqs. 1 and 2 in the following way:

Vi(t + 1) = w* Vi(t) + C1 * ri * (Pbesti(t) -Xi(t))
+C2 * r2 * (gbest (t) - Xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

where vi(t) is the velocity of particle i, xi(t) is
the current position of particle i; r1 and r2 are
random numbers between [0,1]; pbesti is the best
position found by particle i; and gbest is the best
swarm particle. The variables c1 and c2 represent the
cognitive and social learning coefficients, respectively.
These values are generally constant, but can also be
dynamic. The variable w is called inertial weight
which can also be static or dynamic [6] [7]. To
improve the control of particle velocities several
authors, such as [27] [29] [41] incorporated w into
the original PSO algorithm and demonstrated that this
weight can influence the exploration and exploitation
abilities. Algorithm 1 shows the standard PSO.

Algorithm 1 standard PSO
1: swarm initialization
2: evaluate swarm
3: while Gen < MaxGen do
4: for i = 1 : N do
5: select gbest

6: update velocity Eq. (1)
7: update position Eq. (2)
8: evaluate xiGen+1

9: if f(xiGen+1) < f(pbGeesnti) then
10: pbGeesnti+1 = xiGen+1

11: end if
12: end for
13: end while

4 Algorithm CCFPSO

4.1 Control of parameters through fuzzy
logic

PSO is known to be prone to premature convergence
[23] [41] [35] [33]. One of the major reasons for
this behavior is due the fast movement of particles
when exchanging information, leading to low swarm
diversity in initial iterations [15]. Therefore, the fuzzy
system must know what the state of the swarm is to
detect swarm stagnation. For this purpose, a fuzzy
system that dynamically adapts the inertia weight
parameter was developed. Shi et al. [27] [41] used an
inertia weight (w) that decreases linearly during the
iterations and achieved to improve the performance
in several applications. These studies provide the
necessary knowledge to build linguistic rules. The
variables and linguistic rules of the fuzzy system are
described below.

- 114 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

4.1.1 Input variable

The first input variable is it erat ion. This input
variable takes a value between 0 and 1 and is defined
in Eq. 3. It can therefore be understood as the degree
of progress of the optimization process.

iterationcurrent
iteration = (3)

Maximum-iterations
The second input variable is DiverN which

represents the diversity of the swarm. Diversity can
be understood as the distance between the particles
(xid) and the best particle (xid) of the swarm in each
generation. Therefore, the Euclidean distance defined
in Eq. 4 was calculated, where ns represents the
number of particles and nx represents the dimension
of particle i. Subsequently, this result (Diver) was
normalized using the variables minDiv and maxDiv
representing the minimum and maximum diversity,
respectively, as indicated in Eq. 5. In this way, the
variable DiverN will take a value close to 0 when the
swarm diversity is low, otherwise close to 1 when the
swarm diversity is high [23] [22].

1 ns nx
Diver = — y y (xid - Xd)2 (4)

ns i=1 d=1

DiverN =
0,

Diver-minDiv
maxDiv-minDiv ,

when minDiv = maxDiv
otherwise

(5)
For input variables, we selected triangular

membership functions in the interval [0,1]. These
values were granulated into three triangular
membership functions (low, medium, high) based on
our previous work and also considering the successful
results obtained by other works, such as [29] [23]
[22] [25]. The membership functions of each of these
fuzzy variables are shown in Figs. 1 and 2.

Figure 2: Input variable: DiverN

facilitates exploration, while a lower inertia weight
facilitates exploitation. Thus, an appropriate value
of inertiaWeight provides a balance in the search for
the best solutions and requires fewer iterations [27].
Therefore, it is a key parameter to be controlled by
the fuzzy system. Consequently, the particle velocity
was defined as shown in Eq. 1. The value of variable
inert iaWeight was defined in the interval [0,1] and
granulated into five triangular membership functions
(veryLow, low, medium, high, veryHigh), as shown in
Fig. 3.

The second output variable for the fuzzy system
is called sigma. This variable, unlike FuzzyPSO2,
represents the swarm ratio for particle restarting
over the particles with worse fitness values at time
t. Moreover, it aims to maintain diversity and
escape from local optima. Therefore, both DiverN
and iteration influence the value it can take. The
maximum value of sigma must be chosen carefully,
otherwise, the algorithm may not converge to the
optimum. The sigma variable was empirically defined
in the range [0,0.2] and granulated into five triangular
membership functions (veryLow, low, medium, high,
veryHigh) (see Fig. 4). Their implementation is
shown in Algorithm 2. In Figs. 3 and 4 the
membership functions for each ofthe output variables
are shown.

Figure 1: Input variable: iteration

Algorithm 2 Sigma

1: particl=sort(fitness,'descend')
values in decreasing order

2: Numpartic=sigma*numSwarm
3: for i=1:Numpartic do
4: reset xpart icl(i)
5: end for

> sort fitness

4.1.2 Output Variable

The first output variable of the fuzzy system is the
inertia weight parameter (w) named inert iaWeight.
As mentioned above, the inertia weight parameter
can influence the ability to explore and exploit
within the search space. A higher inertia weight

4.1.3 Linguistic rules

To design the rules of the fuzzy system, the idea
of improving the balance in the abilities to explore
and exploit the search space of the PSO algorithm
is addressed. It is known that some problems need
more exploration than exploitation, while others,
more exploitation than exploration [33]. Therefore,
we decided that when the diversity is low in the

- 115 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Figure 3: Output variable: inertiaWeight
Figure 5: Fuzzy System (FS)

Figure 4: Output variable: sigma

early iterations, the value of inertiaWeight and
sigma should take a high value to help explore more
promising regions, but when the diversity is low in
the final iterations, both values of inertiaWeight and
sigma should take a low value to exploit the zone and
not abandon the promising zones. The rules of the
fuzzy system are listed below.

1. If (iteration is low) and (DiverN is low) then (inertiaWeight
is veryHigh) (sigma is veryHigh).

2. If (iteration is medium) and (DiverN is low) then
(inertiaWeight is medium) (sigma is low).

3. If (iteration is high) and (DiverN is low) then (inertiaWeight
is veryLow) (sigma is veryLow).

4. If (iteration is low) and (DiverN is medium) then
(inertiaWeight is high) (sigma is high).

5. If (iteration is medium) and (DiverN is medium) then
(inertiaWeight is medium) (sigma is medium).

6. If (iteration is high) and (DiverN is medium) then
(inertiaWeight is veryLow) (sigma is veryLow).

7. If (iteration is low) and (DiverN is high) then (inertiaWeight
is veryHigh) (sigma is high).

8. If (iteration is medium) and (DiverN is high) then
(inertiaWeight is medium) (sigma is low).

9. If (iteration is high) and (DiverN is high) then (inertiaWeight
is veryLow) (sigma is veryLow).

4.1.4 Fuzzy System

The designed fuzzy systems are of the Mamdani type
and are ideal for this type of control [31] [23] [22]
[30] [21] [42]. To obtain the values of inertiaWeight
and sigma, the fuzzy system (FS) is called in each
iteration before updating the particles. The assigned
value for these variables is obtained using the centroid
method. The complete fuzzy system is shown in Fig.
5.

4.2 FPSO Cooperative Coevolutionary

To improve the performance of the previously
proposed FuzzyPSO2, we conducted changes as
described below:

• We incorporate a CC approach to the
FuzzyPSO2 algorithm and adopt the
decomposition strategy of [16] [15]. This
strategy is similar to MLCC [14] since the
variables are randomly grouped, but the
subcomponent size is chosen randomly from
the decomposer set at each generation. This
strategy was chosen not only because it does
not consume FEs (number of evaluations) in
the decomposition, but also because it ensures
the CC approach. Hence, it can provide
better performance on highly separable and
non-separable problems [15].

• We choose to update the particle velocities
with the inertia weight parameter approach as
shown in Eq. 6, since better exploration
and exploitation efficiency is achieved when a
reasonable search area is limited [27].

• We use a neighborhood structure with a ring
topology of size 3 for each particle. This
neighborhood structure and size improves the
standard PSO search ability, achieves good
performance on multimodal problems [43] [15],
and helps to maintain higher diversity in the
population [7] [26]. Therefore, the velocity
update was defined as shown in Eq. 6.

Vi(t + 1) = (inertiaWeight) * v¡(t) + c1 * r1 *
(Pbesti (t) - Xi(t)) + C2 * r2 * (lbest (t) - Xi(t)) (6)

The CCFPSO algorithm can be summarized in
Algorithm 3. First, the subcomponent size is
randomly chosen to generate the subswarms at each
generation. Second, the sub-swarms are constructed
by permuting and grouping the indices of the n
dimensions into K groups of s dimensions where
K * s = n. Third, the values of inertiaWeight and
sigma parameters are obtained through a fuzzy logic
system. Fourth, the particles are updated using

- 116 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Eqs. 6 and 2. Fifth, information exchange is
performed to update the context vector with the best
particles and continue with the optimization of the
next sub-swarm. Finally, a generation is completed
when all the sub-swarms are optimized. In this case,
the algorithm continues with the next generation and
chooses other subcomponent sizes (K).

Algorithm 3 CCFPSO

1: swarm initialization
2: evaluate swarm
3: Define the decomposer group S
4: while FEs < MaxFEs do
5: randomly choose s from S > obtain the

k- subswarm ofn/s, where n is the dimension of
the problem

6: randomly permute all indices of dimension n
7: construct K - subswarms, each with s

dimensions
8: for k=1:K - subswarm do
9: calculate iteration Eq. 3

10: calculate DiverN Eqs. 4 and 5
11: [inertiaWeight, sigma]=FS(iteration, DiverN)
12: reinitialize particles using Alg. 2
13: for i = 1 : N P do
14: update lbest

15: update velocity Eq. (6)
16: update position Eq. (2)
17: evaluate xiGen+1

18: if f(xiGen+1) < f (pbGeesnti) then
pGen+1 = xGen+119: pbesti = xi

20: end if
21: end for
22: information exchange
23: end for
24: end while

5 Experiments

In this section, we evaluate the performance and
scalability of CCPSO as well as other state-of-the-art
algorithms. Therefore, we use four experimental
sets of dimensions 100, 500, and 1000 and develop
two well-known metrics in the literature, namely
the Wilcoxon-Rank-Sum statistical test and Friedman
ranks for a thorough evaluation of all compared
algorithms [44].

5.1 Benchmark Functions

Benchmark functions are fundamental to validate and
compare the performance of optimization algorithms
[16] [1] [2]. The CEC2008 functions are the classical
large-scale benchmark functions, such as Schewefel,
Rosenbrock, Rastrigrin, Griewank, Ackley, and
Sphere. Table 1 details the properties of modality,
separability (variable boundary), and domain of the

search space of these functions, which can scale
to any dimension. In this case, we use the
scales to 100, 500, and 1000 dimensions as the
first three sets of experiments. For all CEC2008
functions, the minimum is 0 except for f7 which is
unknown. Finally, the fourth set of experiments are
the CEC2010 functions that consist of 20 benchmark
functions, all of them 1000-dimensional. Unlike
CEC2008, CEC2010 incorporates partially separable
functions. The modality, separability, and domain
properties of these functions are detailed in [2].
It is important to mention that separability is a
property that can affect the convergence of algorithms.
This challenge depends on the level of interrelated
variables (non-separable variables) that the problems
can have [3] [28].

Table 1: CEC2008 Benchmark Functions

Modality Functions Separability Domain

unimodal f1:Shifted Sphere Separable [-100,100]
f2:Shifted Schwefel 2.21 Non-separable [-100,100]
f3:Shifted Rosenbrock Non-separable [-100,100]
f4:Shifted Rastrigin Separable [-5,5]

multimodal f5:Shifted Griewank Non-separable [-600,600]
f6:Shifted Ackley Separable [-32,32]
f7:FastFractal “DoubleDip” Non-separable [-1,1]

5.2 Experimental Settings

The CCFPSO parameters were calibrated using the
IRACE algorithm [45]. To do this, we used a
subset of the CEC2008 functions with different
dimensions (100, 500, and 1000) and the CEC2010
functions in the ”instances.txt” file (of IRACE) to
find a parameter configuration that works well in
most of the functions. The parameters to be
calibrated by IRACE were: population size (NP),
the social and cognitive learning coefficients (c1,
c2). A maxExpermients=300 and a default setting
of NP=50 and c1=c2=1 .49445 in the ”default.txt”
file was used. Since IRACE could not find other
better configurations, we chose to delete the ”c1 and
c2 calibration parameters. Therefore, IRACE only
calibrated the population size of CCFPSO (see Table
2). An important aspect to remember is that in
the CC approach, the number of particles is usually
smaller due to the internal logic structure, therefore,
it is crucial to calibrate this parameter. A set of
possible subcomponent sizes for all dimensions was
defined empirically in S={D/2, D/4, D/5, D/10,
D/20, D/50}, where D is the problem dimension, in
the two test function sets (CEC2008 and CEC2010).
The size of the subcomponents is dynamic and is
selected randomly for each generation.

To compare CCFPSO with state-of-the-art
algorithms, we selected three outstanding algorithms
from recently published comparative studies for
large-scale optimization problems, namely, SLPSO
and CSO by the work of Jian et al. [11], and CCPSO2

- 117 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 2: Configuration of the parameters of the
involved PSO algorithms

Parameter Setting

CCFPSO
NP=34 (with IRACE), c1=c2=1.494, w
adaptive (with FS)

CCPSO2 NP=30, p=0.5 (probability value)
FuzzyPSO2 NP=100, c1=2, c2=3, w adaptive (FS)
CSO NP=100/250/500, 0=0-0.15 (soc. fact.)
SLPSO NP=110/150/500/200, a=0.5

On the other hand, to analyze the experimental
results in Tables 3 and 4, the tolerance error (f (x) -
f(x*)) at 1.0E - 8 was considered, where f(x) is the
function value and f (x*) is the global optimum [28]
[2] [1]. Finally, to plot the convergence curves of all
compared algorithms, six representative functions,
namely f1-f6 for the first benchmark set CEC2008,
and eight, such functions f1, f3, f10, f12, f15, f17,
f18 and f20 for the second benchmark set CEC2010
were selected. These plots are shown in Figs. 6-9.

by the work of Ullmann et al. [28]. Both CSO [19]
and SLPSO [18] are non-decomposition algorithms,
whereas CCPSO2 [15] is a decomposition algorithm.
In addition, our preliminary version of FuzzyPSO2
[24] was considered to validate the CCFPSO
improvements. Each algorithm had its own parameter
setting. The parameter values used in this paper for
CSO, SLPSO, and CCPSO2 were extracted from
the authors' original papers. Table 2 presents the
configurations of all the compared algorithms.

To be fair, we have chosen to follow the guidelines
of the CEC2008 and CEC2010 benchmark functions
for all these algorithms. Thus, for both CEC2008 and
CEC2010, 25 runs were performed for each function.
Furthermore, for CEC2008, MaxF E s = 5E + 03 *
D fitness evaluations (FEs) were used, where D
is the problem dimension; whereas, for CEC2010,
MaxFEs = 3E + 06 fitness evaluations (FEs) were
used. In this study, the number of fitness evaluations
is a fundamental measure to achieve satisfactory
performances in the algorithms.

5.3 Analysis of Results

In this section, CCFPSO, FuzzyPSO2, CSO, SLPSO,
and CCPSO2 experiments were performed on 7
CEC2008 benchmark functions in 100, 500, and
1000 dimensions as shown in Table 3, and on 20
CEC2010 benchmark functions in 1000 dimensions
as illustrated in Table 4.

The first statistical metric required to evaluate
the performance of these algorithms is the
Wilcoxon-Rank-Sum statistical test. Since
the population of these experiments does not
have a normal distribution, the nonparametric
Wilcoxon-Rank-Sum statistical test with 95%
confidence is used. This test was performed on the
best mean fitness values for each algorithm obtained
from the 25 runs for each function. The symbols
”(+)”, ”(-)” and ”(=)” mean that the CCFPSO results
are significantly better, significantly worse, and
equivalent to the compared algorithms. When
the results are statistically different, the better is
highlighted in bold (the best average of the best
fitness values). In addition, w/l/t in the last row of
Tables 3 and 4 indicate that CCFPSO wins on ”w”
functions, loses on l functions, and ties on t functions.

5.3.1 Comparison of CCFPSO with FuzzyPSO2

The mean best fitness value of 25 independent runs of
CCFPSO and FuzzyPSO2 are summarized in Table
3. The comparison of results shows that CCFPSO
outperforms FuzzyPSO2 on 19 out of 21 functions
(f1, f2, f4, f5, f6, and f7 in all dimensions). On
f3 (unimodal and non-separable) FuzzyPSO2 was
better than CCFPSO in 500D, but not statistically
different in 100D. Furthermore, Figs. 6 and 7 show
that CCFPSO achieved better convergence on f1, f2
(unimodal), and f4-f6 (multimodal), while similar
convergence to FuzzyPSO2 on f3. Note that f3 is
non-separable and presents a greater challenge for any
algorithm. CCFPSO was able to find the optimal
values in 7 functions, since most of them are within
the established tolerance error, while FuzzyPSO2
could not find any optimal value. An important
difference between CCFPSO and FuzzyPSO2 is that
the diversity of CCFPSO is likely to be much greater
than that of FuzzyPSO2. In CCFPSO each particle
has its own lbest in each update, whereas, FuzzyPSO2
all particles are updated using the (same) gbest.
Therefore, FuzzyPSO2 may converge prematurely
and very quickly over several functions.

5.3.2 Comparison of CCFPSO with CCPSO2

CCPSO2 also adopts a CC approach (like CCFPSO)
with different subcomponents sizes. In CEC2008
(see Table3), CCFPSO was superior to CCPSO2
on 7 out of 21 functions (f1 of 100D and 500D;
f2-f3 and f5 of 1000D; and f6 of 500D and 1000D),
while CCFPSO loses to CCPSO2 in 6 out of 21
functions (f2, f4 of 100D and 500D; and f7 of
500D and 1000D). Finally, there is not statistical
different in 8 out of 21 functions (f1, f3, f5, f6,
f7 in 100D, f3, f5 in 500D, and f4 in 1000D).
Although these algorithms used a CC approach, the
improvement of CCFPSO over CCPSO2 on certain
functions (specifically from 500 to 1000 dimensions)
may be due to that the fuzzy system was less affected
by scalability. In addition, CCFPSO had better
convergence on unimodal functions. The CCPSO2
only found optimal values in 6 functions (f1 (100D,
500D and 1000D), f4 (100D), and f6 (100D and
500D). The plots in Figs. 6 and 7 show the

- 118 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 3: Experimental results of 5 algorithms on 7 test suits (CEC2008) of 100, 500 and 1000 dimensions.

Fun D CCFPSO CCPSO2 CSO SLPSO FuzzyPSO2
100 1.702E-23 4.426E-23 (=) 0.000E+00 (-) 1.047E-27 (-) 1.605E+03 (+)

f1 500 0.000E+00 1.832E-15 (+) 6.565E-23 (+) 7.517E-24 (+) 2.901E+04 (+)
1000 7.863E-29 6.697E-11 (+) 1.077E-21 (+) 7.480E-23 (+) 9.227E+04 (+)
100 9.829E+00 3.984E+00 (-) 3.332E+01 (+) 6.040E-06 (-) 9.465E+01 (+)

f2 500 1.777E+01 1.088E+01 (-) 1.466E+01 (-) 3.525E+01 (+) 9.491E+01 (+)
1000 | 1.745E+01 2.704E+01 (+) 3.222E+01 (+) 9.018E+01 (+) 9.535E+01 (+)
100 2.812E+02 3.133E+02 (=) 1.790E+02 (-) 2.110E+02(-) 2.040E+02 (=)

f3 500 1.205E+03 9.939E+02 (=) 5.368E+02 (-) 5.211E+02 (-) 1.198E+03 (-)
1000 1.992E+03 2.149E+03 (+) 1.002E+03 (-) 1.029E+03 (-) 3.379E+03 (+)
100 8.376E-12 3.695E-15 (-) 5.469E+01 (+) 7.589E+01 (+) 2.906E+02 (+)

f4 500 2.546E+02 4.851E+00 (-) 3.213E+02 (+) 2.940E+03 (+) 3.467E+03 (+)
1000 9.759E+02 3.574E+02 (=) 7.057E+02 (=) 5.740E+02 (=) 9.231E+03 (+)
100 4.325E-03 7.186E-03 (=) 4.926E-04 (=) 4.947E-02 (=) 1.137E+01 (+)

f5 500 9.855E-04 1.774E-03 (=) 2.220E-16 (-) 3.375E-16 (-) 1.989E+02 (+)
1000 1.656E-15 9.860E-04 (+) 2.220E-16 (-) 5.507E-16 (-) 7.828E+02 (+)
100 4.623E-13 5.546E-13 (=) 1.066E-14 (-) 1.833E-14 (-) 1.484E+01 (+)

f6 500 1.128E-13 1.706E-09 (+) 4.106E-13 (+) 1.494E-13 (+) 1.775E+01 (+)
1000 1.640E-13 2.879E-07 (+) 1.210E-12 (+) 3.524E-13 (+) 1.958E+01 (+)
100 -1.488E+03 -1.486E+03 (=) -1.471E+03 (+) -1.438E+03 (+) -1.203E+03 (+)

f7 500 -6.737E+03 -7.095E+03 (-) -7.060E+03 (-) -7.040E+03 (-) -4.943E+03 (+)
1000 -1.209E+04 -1.334E+04 (-) -1.402E+04 (-) -1.396E+04 (-) -9.316E+03 (+)

w/l/t 7/6/8 9/10/2 9/10/2 19/1/1

convergence of CCPSO2 concerning CCFPSO, where
good convergence is observed on f3 and f4, similar
convergence on f6, and poor convergence on f1 and
f2.

In CEC2010, experimental results shown that
CCFPSO wins against CCPSO2 in 13 of the 20
functions, such as, 3 are separable functions (f1-f3);
8 are partially separable functions (f9, f10, f12-15,
f17 and f18); and 2 corresponding to non-separable
functions (f19 and f20). CCFPSO loses in 4 out
of 20 functions (f4, f5, f7 and f11) and ties in 3
out of 20, which are partially separable functions
(f6, f8 and f16) (see Table 4). CCPSO2 used small
subcomponent sizes compared with CCFPSO, which
could cause poor performance on non-separable or
partially separable functions where large groups of
strongly related variables exist. CCFPSO was able
to find the optimal values in two separable functions
(f3 and f6), while CCPSO2 was not able to find the
optimum in any function. Figs. 8 and 9 illustrate
that, in the first third of the generations, CCPSO2
has better convergence than CCFPSO, but then it is
outperformedby CCFPSO because it converges faster
and better.

5.3.3 Comparison of CCFPSO with CSO

In CEC2008 (see Table 3), CCPSO2 outperformed
CSO on 9 out of 21 functions, which 4 are unimodal
functions (f1 of 500D and 1000D and f2 of 100D and
1000D) and 5 are multimodal functions (f4 in 100D;
f4, f6 in 500D; and f6, f7 in 1000D). However, CSO
outperforming CCFPSO on 10 out of 21 functions
(f1-100D, f2-500D, f3 in all dimensions, f5 in 500D
and 1000D, f6-100D, and f7in 500D and 1000D),
but its performance is not statistically different from
CCFPSO on f4 in 1000D and f5 in 100D. On the

other hand, CSO was able to find the optimum of
8 functions, namely f1 and f6 in all dimensions, f5
of 500D and 1000D. It is important to mention that
CSO used a solid configuration for each dimension
[19], i.e., for 100, 500, and 1000 dimensions, it used
100, 250, and 500 particles, respectively. CCFPSO
was calibrated to use the same population size for
100, 500, and 1000 dimensions. Despite this,
the CCFPSO achieved outstanding performance in
functions f6-D500, f1-D1000 and f2-D1000, see Figs.
6 and 7.

In CEC2010, Table 4 shows that CSO aoutperforms
CCFPSO in most of the functions, namely on 13
out of 20 functions, in some partially separable
(f4-f9, f11, f13, f14, f16 and f18) and non-separable
(f19 and f20) functions. However, CCFPSO is
significantly better on separable functions (f1-f3)
and partially separable functions f10, f12, f15 and
f17. The fact that CCFPSO has been outperformed
in partially separable and non-separable functions
may be due to the decomposition approach used,
where the variables are randomly grouped without
considering the interactions between them, thus
reducing the overall performance of these functions.
Both algorithms were able to reach the optimum on
functions f1 and f3. Figs. 8 and 9 show that CSO
has good convergence on most functions, except for
f10-1000D and f15-1000D, which stagnate in the first
few iterations. However, it converges faster and better
than CCPSO2 at f19-1000D and f20-1000D.

5.3.4 Comparison of CCFPSO with SLPSO

In CEC2008, Table 3 shows that CCFPSO performed
significantly better than SLPSO on 5 functions (f4 of
100D and 500D, f6 of 500D and 1000D, and f7 of
100D), while losing to SLPSO on 10 functions (f1

- 119 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 4: Experimental results of 4 algorithms on 20 test suits (CEC2010) of 1000 dimensions.

Fun CCFPSO CCPSO2 CSO SLPSO
f1 1.6678E-16 1.3295E+04 (+) 4.6384E-12 (+) 1.6678E-14 (+)
f2 4.5657E+02 7.1253E+02 (+) 7.4868E+03 (+) 2.8994E+03 (+)
f3 9.4755E-12 8.5013E-02 (+) 2.5548E-09 (+) 1.8808E-10 (+)
f4 8.3437E+12 4.7278E+12 (-) 1.2089E+12 (-) 1.3005E+12 (+)
f5 6.6259E+08 5.0671E+08 (-) 4.3055E+06 (-) 1.0749E+07 (-)
f6 1.9782E+07 1.8685E+07 (=) 7.9519E-07 (-) 2.3397E-07 (-)
f7 1.2125E+09 2.7969E+08 (-) 1.0767E+04 (-) 8.2008E+04 (-)
f8 2.6038E+08 1.5114E+08 (=) 4.3211E+07 (-) 4.3677E+07 (-)
f9 3.0808E+08 4.2367E+08 (+) 6.3573E+07 (-) 5.6100E+07 (-)
f10 2.9501E+03 | 3.4783E+03 (+) 9.5923E+03 (+) 8.9146E+03 (+)
f11 2.3241E+02 2.2307E+02 (-) 4.1343E-08 (-) 3.0612E-09 (-)
f12 2.3174E+05 4.6024E+05 (+) 5.2595E+05 (+) 5.5336E+05 (+)
f13 1.1041E+04 1.2900E+04 (+) 9.3061E+02 (-) 1.1393E+03 (-)
f14 1.0681E+09 1.6073E+09 (+) 2.8014E+08 (-) 2.7267E+08 (-)
f15 5.7851E+03 | 1.6053E+04 (+) 1.0066E+04 (+) 1.0205E+04 (+)
f16 4.1903E+02 4.0881E+02 (=) 5.9757E-08 (-) 3.7584E-09 (-)
f17 1.4000E+06 2.1142E+06 (+) 2.1935E+06 (+) 2.5888E+06 (+)
f18 5.3487E+04 1.5252E+05 (+) 3.4612E+03 (-) 5.2207E+03 (-)
f19 2.0337E+07 2.6769E+07 (+) 9.5672E+06 (-) 1.0482E+07 (-)
f20 1.9168E+03 7.0587E+04 (+) 1.0029E+03 (-) 1.0347E+03 (-)

w/l/t 13/4/3 7/13/0 7/13/0

and f2 of 100-D; f6 of 100D; f3 of 100D and 500D;
f5 and f7 of 500D and 1000D). For the remaining
two test functions, there is no statistical difference
between the two compared algorithms (f4 of 1000D,
f5 of 100D). SLPSO found the optimal values for f1
and f6 in all dimensions and f5 in 500D and 1000D
since the average of their best fitness values fell
within the acceptable error (8 functions in total). As
can be seen, the statistical results of the comparison
with SLPSO are similar to those compared with
CSO. For most of the functions observed in Fig. 6,
SLPSO converges faster than CCFPSO and has better
convergence at f3-1000D and f4-1000D. However,
CCFPSO converges better on most of the unimodal
functions.

In CEC2010, SLPSO also performs similarly to
CSO, outperforming CCFPSO on 13 out of 20
functions,(f4-f9, f11, f13, f14, f16 and f18-f20), but
it lost to CCFPSO on 7 out of 20 functions (f1-f3,
f10, f12, f15 and f17) as shown in Table 4. Figs.
8 and 9 show that the convergence of SLPSO is
still faster than that of CCFPSO in most functions,
except for f2-D1000, which falls prematurely into a
local optimum. Note that for functions f10 and f15,
CCFPSO was able to escape local optima, possibly
due to the sigma variable used by the fuzzy system.

A second metric was used to rank the algorithms.
This metric is the Friedman rank [44] and is shown
in Tables 5 and 6 for the benchmark test functions
CEC2008 and CEC2010. The last rows of the tables
show that the CSO algorithm is the best algorithm
with a score of 2.14 and 2, respectively.

In CEC2008, Table 5 shows that CSO obtained
the best results for most functions. Therefore, it
ranked first among the compared algorithms with
a score of 2.14. This can be attributed not only
to the robust configuration for this test set but also

to the social factor adjusting to the dimensions and
separability properties of the functions. In second
place were the SLPSO and CCFPSO algorithms
which tied with a point score of 2.57. Although
CCFPSO lost to SLPSO in 10 functions, it won
to SLPSO in 9 functions with a significantly better
solution quality than SLPSO. CCFPSO obtains better
values in most separable functions, so this advantage
is attributed to the CC method. Third place in
the ranking was for CCPSO2 with a score of 2.81.
Although it found the best value for four functions,
its convergence rate was slower for most functions.
Finally, the last place went to FuzzyPSO2 for
obtaining the worst performance concerning the other
algorithms. The poor performance of FuzzyPSO2
indicates that a fuzzy system is not sufficient to
improve PSO performance. However, it shows that
combined with a CC approach (as CCFPSO) it can
improve the performance of PSO on separable and
non-separable problems. Due to its poor performance
was not chosen in the comparison with the CEC2010
benchmark functions.

In CEC2010, CSO also achieved the best
performance in 7 out of 20 functions. Thus, the
first place was for CSO, which could converge to
better solutions in most of the partially separable
and non-separable functions. Second place went
to SLPSO with a score of 2.1 (see Table 6).
Both CSO and SLPSO performed better on most
functions compared to the CCFPSO and CCPSO2
decomposition algorithms. The reason for this may be
due to the designed operators they use, which improve
the exploration and exploitation ability. These
versions are very different from the standard PSO, as
they do not use pbest and gbest in the particle updates,
which are the heart of the PSO algorithm. In third
place was CCFPSO with a 2.65 score. Like CSO,

- 120 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

FEs xio6

(a)

(a)

(b)

Figure 6: Convergence curves of CCFPSO, CSPSO2,
CSO, SLPSO and FuzzyPSO2 (FPSO2) on f1, f4 in
1000 dimensions - CEC2008

(b)

CCFPSO achieved the best performance in 7 out of
20 functions. It was outstanding in the separable
functions and several partially separable functions,
both unimodal and multimodal. Finally, fourth place
was for the CCPSO2 algorithm with 3.25 points. Its
performance was more reduced in the non-separable
functions, which may be due to the decomposition
method used.

6 Conclusions

In this paper, a cooperative coevolutionary
framework with dynamic adjustment w using a
fuzzy system was proposed to address large-scale
optimization problems. In addition, we incorporate
a decomposition strategy based on random grouping
of variables, which change size dynamically at each
generation. This decomposition strategy is suitable
for optimizing separable functions. To maintain
the diversity of the population, we define a local
neighborhood of size 3 for each particle using
the ring topology. Therefore, to demonstrate the
improvements of this proposal, it was compared
with three state-of-the-art algorithms and with
our preliminary work FuzzyPSO2. Moreover, we
adopted two commonly used large-scale benchmark
function sets: the CEC2008 and CEC2010 test
sets to compare the performance of these five

FEs x106

(c)

(d)

Figure 7: Convergence curves of CCFPSO, CSPSO2,
CSO, SLPSO and FuzzyPSO2 (FPSO2) on f3- f6 -
CEC2008

- 121 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

F1
2-

D
10

00
 F10-D1000 F3-D1

00
0 F1-D1000 FEs xio6

(a)

FEs x 106

(b)

(c)

(d)

Figure 8: Convergence curves of CCFPSO, CCPSO2,
CSO and SLPSO on f1, f3, f10, f12 - CEC2010

(a)

FEs x106

(b)

(c)

(d)

Figure 9: Convergence curves of CCFPSO, CCPSO2,
CSO and SLPSO on f15, f17, f18, f20 - CEC2010

- 122 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

Table 5: Ranking results of 5 algorithms on CEC2008
test set

FunD CCFPSO CCPSO2 CSO SLPSO FuzzyPSO2
100 3 4 1 2 5

f1 500 1 2 3 2 5
1000 1 4 3 2 5
100 3 2 4 1 5

f2 500 3 1 2 4 5
1000 1 2 3 4 5
100 4 5 1 3 2

f3 500 5 3 2 1 4
1000 3 4 1 2 5
100 2 1 3 4 5

f4 500 2 1 3 4 5
1000 4 1 3 2 5
100 2 3 1 4 5

f5 500 3 4 1 2 5
1000 3 4 1 2 5
100 3 4 1 2 5

f6 500 1 4 3 2 5
1000 1 4 3 2 5
100 1 2 3 4 5

f7 500 4 1 2 3 5
1000 4 3 1 2 5

2.57 2.81 2.14 2.57 4.81
final rank 2 3 1 2 4

Table 6: Ranking results of 4 algorithms on CEC2010
test set

Fun CCFPSO CCPSO2 CSO SLPSO
fl 1 4 3 2
f2 1 2 4 3
f3 1 4 3 2
f4 4 3 1 2
f5 4 3 1 2
f6 4 3 2 1
f7 4 3 1 2
f8 4 3 1 2
f9 3 4 2 1
f10 1 2 4 3
f11 4 3 2 1
f12 1 2 3 4
f13 3 4 1 2
f14 3 4 2 1
f15 1 4 2 3
f16 4 3 2 1
f17 1 2 3 4
f18 3 4 1 2
f19 3 4 1 2
f20 3 4 1 2

2.65 3.25 2 2.1
final rank 3 4 1 2

algorithms. These studies reveal that CCFPSO
substantially improved on the previously proposed
FuzzyPSO2, significantly outperforming FuzzyPSO2
in 19 out of 21 functions in CEC2008. This
improvement demonstrated that combining fuzzy
logic for parameter adaptation with a cooperative
coevolutionary framework is advantageous for
addressing a wide range of large-scale problems,
including their scalability. In addition, for
the CEC2008 and CEC2010 test set, CCFPSO
achieved the best results on separable functions,
on relatively complex partially-separable functions,
and performed reasonably well on non-separable
functions. CCFPSO was the second-best algorithm
of the five algorithms compared for CEC2008 and
the third-best of the four algorithms compared
for CEC2010. Therefore, CCFPSO proved to be
competitive in tackling high-dimensional problems.
In the future, more intelligent strategies could be
used for the selection of the size of the decomposition
groups, especially for completely non-separable
functions. The incorporation of CC into other
evolutionary and swarm intelligence algorithms that
dynamically adapt their parameters using a fuzzy
system could also be studied.

Competing interests

The authors have declared that no competing interests
exist.

Authors' contribution

FP wrote the algorithm code, conducted the
experiments, analyzed the results and wrote the
manuscript; GL and EMM analyzed the results and

revised the manuscript. All authors read and approved
the final manuscript.

References

[1] K. Tang, X. Yao, P, N. Suganthan, C. MacNish,
Y.-P. Chen, C.-M. Chen, and Z. Yang, “Benchmark
functions for the cec'2008 special session and
competition on large scale global optimization,”
Nature inspired computation and applications
laboratory, USTC, China, vol. 24, pp. 1-18, 2007.

[2] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and
T. Weise, “Benchmark functions for the cec'2010
special session and competition on large-scale
global optimization,” tech. rep., Nature Inspired
Computation and Applications Laboratory, 2009.

[3] L. Li, W. Fang, Y. Mei, and Q. Wang, “Cooperative
coevolution for large-scale global optimization based
on fuzzy decomposition,” Soft Computing, vol. 25,
no. 5, pp. 3593-3608, 2021.

[4] J. H. Holland, “Genetic algorithms,” Scientific
american, vol. 267, no. 1, pp. 66-73, 1992.

[5] R. Storn and K. Price, “Differential evolution-a
simple and efficient heuristic for global optimization
over continuous spaces,” Journal of global
optimization, vol. 11, no. 4, pp. 341-359, 1997.

[6] R. Eberhart and J. Kennedy, “Particle swarm
optimization,” in Proceedings of the IEEE
international conference on neural networks, vol. 4,
pp. 1942-1948, Citeseer, 1995.

[7] J. Kennedy and R. Eberhart, “Particle
swarm optimization,” in Proceedings of
ICNN'95-international conference on neural
networks, vol. 4, pp. 1942-1948, IEEE, 1995.

[8] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system:
optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 26, no. 1, pp. 29-41, 1996.

- 123 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

[9] L. Cui, G. Li, Y. Luo, F. Chen, Z. Ming, N. Lu,
and J. Lu, “An enhanced artificial bee colony
algorithm with dual-population framework,” Swarm
and Evolutionary Computation, vol. 43, pp. 184-206,
2018.

[10] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and
X. Yao, “Dg2: A faster and more accurate differential
grouping for large-scale black-box optimization,”
IEEE Transactions on Evolutionary Computation,
vol. 21, no. 6, pp. 929-942, 2017.

[11] J.-R. Jian, Z.-H. Zhan, and J. Zhang, “Large-scale
evolutionary optimization: a survey and experimental
comparative study,” International Journal of Machine
Learning and Cybernetics, vol. 11, no. 3, pp. 729-745,
2020.

[12] M. A. Potter and K. A. De Jong, “A cooperative
coevolutionary approach to function optimization,” in
International Conference on Parallel Problem Solving
from Nature, pp. 249-257, Springer, 1994.

[13] Z. Yang, K. Tang, and X. Yao, “Large scale
evolutionary optimization using cooperative
coevolution,” Information sciences, vol. 178, no. 15,
pp. 2985-2999, 2008.

[14] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative
coevolution for large scale optimization,” in 2008
IEEE congress on evolutionary computation (IEEE
World Congress on Computational Intelligence),
pp. 1663-1670, IEEE, 2008.

[15] X. Li and X. Yao, “Cooperatively coevolving
particle swarms for large scale optimization,” IEEE
Transactions on Evolutionary Computation, vol. 16,
no. 2, pp. 210-224, 2011.

[16] M. N. Omidvar, X. Li, and X. Yao, “Cooperative
co-evolution with delta grouping for large scale
non-separable function optimization,” in IEEE
congress on evolutionary computation, pp. 1-8, IEEE,
2010.

[17] M. N. Omidvar, X. Li, Y. Mei, and X. Yao,
“Cooperative co-evolution with differential grouping
for large scale optimization,” IEEE Transactions on
evolutionary computation, vol. 18, no. 3, pp. 378-393,
2013.

[18] R. Cheng and Y. Jin, “A social learning particle swarm
optimization algorithm for scalable optimization,”
Information Sciences, vol. 291, pp. 43-60, 2015.

[19] R. Cheng and Y. Jin, “A competitive swarm optimizer
for large scale optimization,” IEEE transactions on
cybernetics, vol. 45, no. 2, pp. 191-204, 2014.

[20] J.-i. Kushida, A. Hara, and T. Takahama, “Rank-based
differential evolution with multiple mutation
strategies for large scale global optimization,” in
2015 IEEE Congress on Evolutionary Computation
(CEC), pp. 353-360, IEEE, 2015.

[21] F. Valdez, P. Melin, and O. Castillo, “A survey
on nature-inspired optimization algorithms with
fuzzy logic for dynamic parameter adaptation,”
Expert systems with applications, vol. 41, no. 14,
pp. 6459-6466, 2014.

[22] F. Olivas and O. Castillo, “Particle swarm
optimization with dynamic parameter adaptation
using fuzzy logic for benchmark mathematical
functions,” in Recent Advances on Hybrid Intelligent
Systems, pp. 247-258, Springer, 2013.

[23] F. Olivas, F. Valdez, and O. Castillo, “Particle swarm
optimization with dynamic parameter adaptation
using interval type-2 fuzzy logic for benchmark
mathematical functions,” in 2013 World Congress
on Nature and Biologically Inspired Computing,
pp. 36-40, IEEE, 2013.

[24] F. Paz, G. LeguizamOn, and E. Mezura-Montes,
“Particle swarm optimization with adaptive inertia
weight using fuzzy logic for large-scale problems,”
in XXVI Congreso Argentino de Ciencias de la
Computación (CACIC)(Modalidad virtual, 5 al 9 de
octubre de 2020), 2020.

[25] F. Valdez, J. C. Vazquez, P. Melin, and O. Castillo,
“Comparative study of the use of fuzzy logic in
improving particle swarm optimization variants for
mathematical functions using co-evolution,” Applied
Soft Computing, vol. 52, pp. 1070-1083, 2017.

[26] J. Kennedy and R. Mendes, “Population structure
and particle swarm performance,” in Proceedings
of the 2002 Congress on Evolutionary Computation.
CEC'02 (Cat. No. 02TH8600), vol. 2, pp. 1671-1676,
IEEE, 2002.

[27] Y. Shi and R. C. Eberhart, “Parameter selection
in particle swarm optimization,” in International
conference on evolutionary programming,
pp. 591-600, Springer, 1998.

[28] M. R. Ullmann, K. F. Pimentel, L. A. de Melo,
G. da Cruz, and C. Vinhal, “Comparison of pso
variants applied to large scale optimization problems,”
in 2017 IEEE Latin American Conference on
Computational Intelligence (LA-CCI), pp. 1-6, IEEE,
2017.

[29] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm
intelligence. Elsevier, 2001.

[30] F. Valdez, P. Melin, and O. Castillo, “An
improved evolutionary method with fuzzy logic
for combining particle swarm optimization and
genetic algorithms,” Applied Soft Computing, vol. 11,
no. 2, pp. 2625-2632, 2011.

[31] J. Perez, F. Valdez, O. Castillo, P. Melin, C. Gonzalez,
and G. Martinez, “Interval type-2 fuzzy logic for
dynamic parameter adaptation in the bat algorithm,”
Soft Computing, vol. 21, no. 3, pp. 667-685, 2017.

[32] A. Sombra, F. Valdez, P. Melin, and O. Castillo,
“A new gravitational search algorithm using fuzzy
logic to parameter adaptation,” in 2013 IEEE congress
on evolutionary computation, pp. 1068-1074, IEEE,
2013.

[33] M. S. Norouzzadeh, M. R. Ahmadzadeh, and
M. Palhang, “Ladpso: using fuzzy logic to conduct
pso algorithm,” Applied Intelligence, vol. 37, no. 2,
pp. 290-304, 2012.

[34] P. Ochoa, O. Castillo, and J. Soria, “Differential
evolution using fuzzy logic and a comparative study
with other metaheuristics,” in Nature-inspired design

- 124 -

Journal of Computer Science & Technology, Volume 21, Number 2, October 2021

of hybrid intelligent systems, pp. 257-268, Springer,
2017.

[35] S. Kumar and D. Chaturvedi, “Tuning of particle
swarm optimization parameter using fuzzy logic,” in
2011 International Conference on Communication
Systems and Network Technologies, pp. 174-179,
IEEE, 2011.

[36] F. Van den Bergh and A. P. Engelbrecht, “A
cooperative approach to particle swarm optimization,”
IEEE transactions on evolutionary computation,
vol. 8, no. 3, pp. 225-239, 2004.

[37] Y. Sun, M. Kirley, and S. K. Halgamuge,
“Extended differential grouping for large scale
global optimization with direct and indirect
variable interactions,” in Proceedings of the 2015
Annual Conference on Genetic and Evolutionary
Computation, pp. 313-320, 2015.

[38] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A
competitive divide-and-conquer algorithm for
unconstrained large-scale black-box optimization,”
ACM Transactions on Mathematical Software
(TOMS), vol. 42, no. 2, pp. 1-24, 2016.

[39] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar,
“Decomposition for large-scale optimization
problems with overlapping components,” in 2019
IEEE congress on evolutionary computation (CEC),
pp. 326-333, IEEE, 2019.

[40] M. A. Meselhi, S. M. Elsayed, R. A. Sarker, and
D. L. Essam, “Contribution based co-evolutionary
algorithm for large-scale optimization problems,”
IEEE Access, vol. 8, pp. 203369-203381, 2020.

[41] M. Clerc, “The swarm and the queen: towards
a deterministic and adaptive particle swarm
optimization,” in Proceedings of the 1999 congress
on evolutionary computation-CEC99, pp. 1951-1957,
IEEE, 1999.

[42] F. Olivas, F. Valdez, O. Castillo, C. I. Gonzalez,
G. Martinez, and P. Melin, “Ant colony optimization
with dynamic parameter adaptation based on interval
type-2 fuzzy logic systems,” Applied Soft Computing,
vol. 53, pp. 74-87, 2017.

[43] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F.
Tasgetiren, “Dynamic multi-swarm particle swarm
optimizer with local search for large scale global
optimization,” in 2008 IEEE congress on evolutionary
computation (IEEE world congress on computational
intelligence), pp. 3845-3852, IEEE, 2008.

[44] J. Derrac, S. García, D. Molina, and F. Herrera,
“A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,”
Swarm and Evolutionary Computation, vol. 1, no. 1,
pp. 3-18, 2011.

[45] M. Loípez-Ibaínez, J. Dubois-Lacoste, L. P. Caíceres,
M. Birattari, and T. Stutzle, “The irace package:
Iterated racing for automatic algorithm configuration,”
Operations Research Perspectives, vol. 3, pp. 43-58,
2016.

Z '
Citation: F. Paz, G. Leguizamón and E.
Mezura Montes. Cooperative Coevolutionary
Particle Swarms using Fuzzy Logic for Large
Scale Optimization. Journal of Computer Science
& Technology, vol. 21, no. 2, pp. 112-125, 2021.
DOI: 10.24215/16666038.21.e11
Received: February 19, 2021 Accepted: June 23,
2021.
Copyright: This article is distributed under
the terms of the Creative Commons License

. CC-BY-NC.

- 125 -

