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Abstract

The dissemination of multi-core architectures and the 
later irruption of massively parallel devices, led to 
a revolution in High-Performance Computing (HPC) 
platforms in the last decades. As a result, Field- 
Programmable Gate Arrays (FPGAs) are re-emerging 
as a versatile and more energy-efficient alternative to 
other platforms. Traditional FPGA design implies us­
ing low-level Hardware Description Languages (HDL) 
such as VHDL or Verilog, which follow an entirely 
different programming model than standard software 
languages, and their use requires specialized knowl­
edge of the underlying hardware. In the last years, 
manufacturers started to make big efforts to provide 
High-Level Synthesis (HLS) tools, in order to allow a 
grater adoption of FPGAs in the HPC coimnunity.

Our work studies the use of multi-core hardware and 
different FPGAs to address Numerical Linear Algebra 
(NLA) kernels such as the general matrix multiplica­
tion (GEMM) and the sparse matrix-vector multiplica­
tion (SpMV). Specifically, we compare the behavior 
of fine-tuned kernels in a multi-core CPU processor 
and HLS implementations on FPGAs. We perform the 
experimental evaluation of our implementations on a 
low-end and a cutting-edge FPGA platform, in terms 
of runtime and energy consumption, and compare the 
results against the Intel MKL library in CPU.

Keywords: dense and sparse NLA, FPGA, HLS, en­
ergy consumption

Resumen

La masificación de arquitecturas de multinúcleo y la 
posterior irrupción de dispositivos masivamente par­
alelos produjeron una revolución en las plataformas de 
computación de altas prestaciones. Como resultado, 
las FPGAs (del inglés, Field-Programmable Gate Ar­
rays) están resurgiendo como una alternativa versátil 
y más eficiente desde el punto de vista energético. 
El flujo de diseño tradicional en FPGAs implica el 

uso de lenguajes de descripción de hardware de bajo 
nivel, como VHDL o Verilog, que siguen un modelo 
de programación completamente diferente al de los 
lenguajes de software estándar, y su uso requiere un 
conocimiento especializado del hardware subyacente. 
En los últimos años, los fabricantes comenzaron a 
hacer grandes esfuerzos para proporcionar herramien­
tas de síntesis de alto nivel, con el fin de permitir una 
mayor adopción de las FPGAs en la comunidad de 
computación de altas prestaciones.

Nuestro trabajo estudia el uso de plataformas 
multinúcleo y diferentes FPGAs para abordar prob­
lemas de álgebra lineal numérica (NLA) como la mul­
tiplicación de matrices (GEMM) y la multiplicación de 
matriz dispersa por vector (SpMV). Específicamente, 
comparamos el comportamiento de implementaciónes 
optimizadas para un procesador multinúcleo y las im- 
plementaciones con síntesis de alto nivel en FPGAs. 
Realizamos la evaluación experimental de nuestras im- 
plementaciones en una plataforma FPGA de gama baja 
y otra de gama alta, analizando tiempo de ejecución y 
consumo de energía, y comparamos los resultados con 
la biblioteca Intel MKL para CPU.

Palabras claves: algebra densa y dispersa, FPGA, 
HLS, consumo de energía

1 Introduction

There is an increasing concern for energy consump­
tion in HPC [1], as it has become one of the main 
constraints of hardware platform design. This concern 
is due to both the economic cost of electricity and the 
environmental impact. Also, the massive dissemina­
tion of the multi-core processor, less than two decades 
ago, and the later adoption of GPUs as general-purpose 
computing devices, started an important revolution for 
HPC hardware. More recently, this revolution has 
reached Field-Programmable Gate Arrays (FPGAs). 
This scenario makes the FPGAs an attractive, more 
energy-efficient alternative to other many-core HPC 
devices.
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The classic approach for FPGA design implies us­
ing low-level Hardware Description Languages (HDL) 
such as VHDL or Verilog. These impose a differ­
ent programming models than standard software lan­
guages, with more extended development periods and 
complex debugging. Furthermore, their use requires 
specialized knowledge of the underlying hardware, 
explaining why the HPC community does not mas­
sively adopt FPGAs. To overcome this disadvantage, 
manufacturers are making efforts to adopt HLS lan­
guages like C/C++ and OpenCL. The most relevant 
evidence of this is the introduction of OpenCL frame­
works by the largest FPGAs manufacturers, Intel [2] 
and Xilinx [3]. This enables more significant adoption 
of FPGAs as hardware accelerators by the software 
community.

The rapid growth of information technology in the 
recent decades gave society the ability to generate, 
collect and store huge volumes of data. This data is 
growing exponentially, and it is expected to continue 
to do so in the following decades. A large amount of 
data comes from internet applications, including social 
networks or web searches. Due to its nature, graphs 
often represent this data, which has led to significant 
efforts in efficiently handling these structures. An 
example in this direction is GraphBLAS1, a sincere 
effort to define standard building blocks for graph 
algorithms in the language of linear algebra. In general, 
graphs can be represented as sparse matrices to process 
them more efficiently. In the big data field, this means 
matrices of enormous proportions.

1https://graphblas.github.io/ 

Numerical Linear Algebra (NLA) is a research field 
characterized by the use of kernel-libraries that are de 
facto standards. Some key examples are the BLAS 
specification for elementary dense matrix operations 
and the sparse matrix-vector multiplication (SPMV) 
for the sparse case. These kernels are the central part 
of several scientific programs and, in general, the most 
costly stage from the execution time and energy con­
sumption perspectives [4]. This has motivated several 
efforts to improve the performance and energy con­
sumption of these building blocks [5].

This work's main objective is to understand the con­
texts in which each hardware platform is competitive, 
in particular, contrasting traditional multi-core CPUs 
and FPGAs with different characteristics. For this 
purpose, we select the two most representative kernels 
from the dense and sparse NLA fields, respectively, the 
general matrix multiplication (GEMM) and the sparse 
matrix-vector product (SPMV). We develop and evalu­
ate both NLA kernels for FPGAs using HLS languages. 
The experimental evaluation carried out in a low-end 
FPGA platform from Intel (Cyclone V SoC) and a 
cutting-edge FPGA from Xilinx (Alveo U50), com­
pares both implementations with those included in the 
Intel MKL library for traditional CPUs, in terms of 
runtime and energy consumption. This paper is an 

extension of our previous work [6] in several lines. We 
highlight the inclusion of a cutting-edge FPGA, the 
fine-tuned development for the Xilinx FPGA and the 
addition of several new test cases and experiments.

The paper is structured as follows. In Section 2 we 
describe the two addressed NLA kernels (GEMM and 
SPMV), and we include a brief introduction to FPGAs 
and a review of literature related to the use of FPGAs 
to compute NLA kernels. In Section 4, we present 
our designs for both operations using HLS Languages. 
This is followed by the experimental evaluation and the 
comparison with the Intel MKL variants in Section 5. 
Finally, Section 6 contains the concluding remarks and 
an outline of future research.

2 NLA kernels and FPGAs

In this section we first describe the selected NLA ker­
nels. Later, we present the FPGA technology and the 
use of HLS (such as OpenCL) to perform computa­
tions on these devices. Finally, the section closes with 
a summary of related work on leveraging FPGAs to 
accelerate NLA operations.

2.1 NLA kernels

Firstly, we describe the two NLA kernels employed in 
our work as a proof of concept.

2.1.1 General matrix-matrix multiplication

This operation (GEMM) is defined as follows:

C = aA * B + PC (1)

where A, B and C are matrices and a and P are scalars. 
This kernel is considered the main building block in 
dense linear algebra because many other operations 
can be expressed in terms of several GEMM invoca­
tions [7]. GEMM belongs to Level 3 of the BLAS 
specification [8].

2.1.2 Sparse matrix-vector multiplication

This operation is the base of iterative linear-system 
and eigenvalue solvers. The Algorithm 1 summarizes 
the serial version of the sparse matrix-vector multipli­
cation (SPMV), where the sparse matrix A is stored in 
Compressed Sparse Row (CSR) format [9].

2.2 FPGA technology

Unlike other heterogeneous platforms (for example, 
GPUs), FPGAs have no pre-defined high-level archi­
tecture. They are composed of a matrix of configurable 
logic blocks (known as logic elements) and hardcoded 
blocks such as memories, hardware multipliers and 
clock managers. The interconnection of the different 
blocks is achieved through a programmable routing 
structure. To interface with the outside world, they 
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Algorithm 1 Serially computed sparse matrix-vector 
multiplication (SPMV). The matrix A is stored us­
ing the CSR format; val stores the nonzero elements; 
row-ptr stores the index of the first element for each 
row in vector val, and colJdx stores the column index 
of each element in the matrix A. The nonzero elements 
within each row are ordered by column index.
Input: row-ptr, colJdx, val, x
Output: y

1: y = 0
2: for i = 0 to n - 1 do
3: for j = row-ptr[i] to row-ptr[i + 1] — 1 do
4: y[i] = y[i]+ val[j] • x[colj.dx[j]]
5: end for
6: end for

they reach high speeds at excellent energy efficiency. 
However, their poor performance in floating-point 
arithmetic, in addition to the complex design flow and 
difficult integration with other processors kept them 
apart from the mainstream HPC world. This started to 
change recently, as modern high-end FPGA devices 
offer up to millions of logic elements, thousands of 
DSP blocks (that allow TFLOP performance) and high 
memory bandwidth. These characteristics, in combi­
nation with the HLS tools available, are making these 
devices increasingly attractive in the HPC domain.

2.3 HLS development for FPGAs

High-Level Synthesis tools create HDL code from a 
highly abstract source code like C, C++, or SystemC. 
The generated hardware description can then be syn­
thesized to a real digital circuit in an FPGA, allowing 
for a much faster design than with traditional HDL 
languages.

FPGA design using HDL languages allows creat­
ing a highly-optimized solution for a given problem. 
However, the design takes a long time and requires sig­
nificant expertise regarding the underlying hardware. 
The use of HLS languages brings FPGA design to 
software development times, and it is approachable 
by non-hardware experts. However, to create a truly 
optimized HLS code for a specific platform, certain 
knowledge of the underlying hardware is still required. 
The verification of the design is also faster as it is 
performed in HLS.

In the following subsections, we briefly describe the 
HLS languages and tools used in this work.

2.3.1 OpenCL

This open-source, cross-platform, parallel program­
ming standard is based on a platform-independent 
API that abstracts the underlying hardware. It con­
sists of a host code running on a CPU that offloads 
computing-intensive tasks to an heterogeneous device, 
hiding from the programmer the complexity of con­
trolling and communicating with the accelerator. The 
device code is written in a C-like language, and it is 
called kernel code.

The OpenCL model defines a single thread as a 
work-item, and gathers them into workgroups. Par­
allelism can be achieved at the thread level and also 
between workgroups. Every work-item has its private 
memory and shares local memory with all threads 
within a workgroup. However, the only memory 
shared between workgroups is the global memory, 
which is usually off-chip, slow, and abundant (in the 
order of GBytes) compared to the on-chip, fast, and 
scarce local memory (of up to a few MBytes). OpenCL 
refers to the number of threads per workgroup as local 
work size, and calls global work size the total num­
ber of work-items required to solve a task (execute 
a kernel to completion). The standard organizes the 
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have several programmable input/output pins that al­
low the implementation of multiple communication 
protocols.

FPGAs are not programmed in a software sense. 
This means there is no code running (in general) 
inside the FPGA. Instead, an actual electrical cir­
cuit is synthesized inside the device through the pro­
grammable logic's interconnection-elements and hard­
coded blocks. This allows processing with low latency 
(as there is little control overhead), excellent flexibil­
ity, and fine-grained parallelism. FPGAs stand in the 
middle between Application-Specific Integrated Cir­
cuits (ASICs) and general-purpose processors from a 
technological perspective. One of the main differences 
with ASICs is that FPGAs can be reprogrammed after 
the manufacturing process.

The clock's operating frequency of a given design 
depends on the synthesized circuit, but it is usually 
lower than other heterogeneous devices. This is a 
consequence of supporting reconfigurability. FPGAs 
also offer lower peak floating-point performance than 
GPUs and less memory bandwidth, but this may 
change shortly, as FPGA manufacturers are making 
efforts to compete with GPU performance in these 
contexts.

The logic blocks (or logic elements) are the small­
est programmable blocks of the FPGA. In their sim­
plest form, these blocks are composed of a pro­
grammable Look-Up Table (LUT), a Flip-Flop and 
a programmable selector that takes either the LUT 
output or the register output. LUTs can implement 
small logic functions, and their value is set during the 
FPGA programming stage. Combining multiple (up 
to thousands or millions) LUTs and registers allow 
the generation of complex logic functions or state ma­
chines. When a design is synthesized in the FPGA, 
the different functions or tasks are mapped to its dif­
ferent resources, and then the circuit is completed by 
interconnecting these resources.

Traditionally, FPGAs have been a good alternative 
in fixed-point, dataflow streaming applications, where
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work-items in a workgroup in up to three dimensions. 
A multidimensional index then identifies each work­
item according to the number of dimensions used. This 
is called NDRange model.

The Intel FPGA SDK for OpenCL allows the user to 
interface with the FPGA accelerator using the device­
agnostic OpenCL programming model. This hides 
the complexity of interfacing and exchanging data be­
tween FPGA and host CPU, which is not an easy task 
to do in traditional HDL-based design. It considerably 
accelerates the development time at the cost of some 
performance degradation.

The NDRange programming model for FPGAs does 
not provide thread-level parallelism by default. In­
stead, it creates a deep pipeline that processes all work­
items one after the other. Thread-level parallelism 
can be achieved through kernel vectorization, which 
increases the data pipeline's width processed by work­
items in a SIMD fashion. Also, the pipeline can be 
replicated using Compute Unit Replication, which has 
the same effect of adding thread-level parallelism, but 
it is usually more resource-demanding.

2.3.2 Xilinx HLS C/C++

Despite all the benefits mentioned about OpenCL, for 
Xilinx development we used HLS C/C++, which is 
recommended to achieve better performance in Xilinx 
devices. If OpenCLwere to be used regardless, it is 
not advisable to use multiple workgroup dimensions 
(NDRange paradigm).

High-Level Synthesis C/C++ is fundamentally 
C/C++ language, where the compiler —aided by the 
designer by the use of pragmas and a specific cod­
ing style— takes advantage of the available FGPA 
resources to parallelize the code.

Parallelism can be explicit by mapping the same 
function to different FPGA resources that work si­
multaneously. For example, this can be achieved by 
loop unrolling. Another way of accelerating an ap­
plication is by pipelining, which can be achieved by 
implementing the application as a deep pipeline and 
launch several independent tasks with short intervals. 
Even if the latency of the whole pipeline is high, when 
fully utilized, it will produce high throughput. When 
applying pipelining to a loop, the best-case scenario is 
when the pipeline can process new data at every clock 
cycle. This means that the loop is pipelined with an 
Initiation Interval (II) equal to 1.

For the Xilinx FPGA design, we used the software 
Vitis, a relatively new tool from Xilinx to develop 
embedded software and accelerated applications on 
heterogeneous platforms. It integrates all previous 
software development platforms into one unified envi­
ronment.

3 Related work

There are numerous efforts to use FPGA to accelerate 
NLA operations in both sparse and dense contexts. In 
this section, we describe those that are most relevant 
to this work.

Early works from [10] propose an efficient imple­
mentation of BLAS level 2 routines on FPGA and 
compare the execution time and energy consumption 
with CPU and GPU platforms. For the G AXP Y im­
plementation on the BEE3 FPGA, the authors claim 
a 293 x improvement in energy efficiency against a 
Tesla C1060 GPU. However, their design requires stor­
ing the matrix in internal memory, limiting the size of 
the problem. In a later work [11] the authors present a 
universal matrix-vector multiplication (MVM) library 
to accelerate matrix computations using FPGAs. They 
propose a flexible and scalable design and support a 
variety of matrix formats for the sparse case.

In [12] the authors analyze the energy efficiency 
of a dense matrix multiplication kernel in a hybrid 
CPU/FPGA system. Based on their measurements, 
they conclude that for double-precision arithmetic the 
FPGA does not speed up the computations. Regarding 
energy consumption, the FPGA is more efficient if 
only the dynamic power is considered. However, due 
to the high static power consumption, it is less energy 
efficient if the total system power is considered.

The authors in [13] evaluate the performance of a 
matrix multiplication OpenCL kernel in a Stratix V 
FPGA and compare the results against the CPU im­
plementations using Intel MKL and OpenBLAS. The 
OpenCL kernel is based on blocked matrix multipli­
cation according to the NDRange OpenCL paradigm. 
They study the impact on throughput and power con­
sumption of modifying the block size and applying 
vectorization. The resulting kernel is slower than the 
CPU implementation but more energy efficient.

In [14] the authors propose a model to optimize ma­
trix multiplication for FPGA platforms by maximizing 
performance (computations) and minimizing off-chip 
I/O accesses. They apply their model to a particular 
implementation in FPGA using HLS obtaining com­
petitive performance while maintaining high levels of 
abstraction in the code that allows portability between 
platforms.

In [15] the authors present a double-precision par­
allel implementation of the sparse direct KLU matrix 
solver on a Virtex-5 FPGA. They compare the results 
against the implementation on an Intel Core i7 for 
various matrices generated from spice3f5 circuit simu­
lations. They obtain speedups in the computations that 
range from 1.2 to 64x . The authors in [16] present the 
implementation of a sparse matrix solver in an FPGA 
applied to matrices from SPICE circuit simulations. 
They compare their hardware prototype's performance 
against state-of-the-art software packages running on 
a CPU, obtaining average speedups of 9.65 x , 11.83 x , 
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and 17.21 x against UMFPACK, KLU, and Kundert. 
Another effort in this field is the study about the im­
plementation of sparse triangular solver (SPTRSV) in 
FPGA from energy and runtime perspective [17].

In [18] the authors propose a streaming dataflow 
architecture to perform SPMV operation in an embed­
ded platform containing a Xilinx ZynqMP FPGA. The 
proposed solution consists of a deep pipeline that is 
constantly consuming input data with no stalls. To 
speed up the operation, they process several rows in 
parallel and propose a solution to the limited number 
of ports in the device by interleaving input data in a 
single port. Their solution achieves speedups 3.25 for 
small and medium-size matrices against an embedded 
GPU but is slower by a factor of 1.58. for large ma­
trices. Their FPGA implementation is more energy 
efficient in all cases.

Several reviewed works about FPGAs for NLA 
applications develop kernels especially designed to 
tackle the target test cases. In other words, the synthe­
sized hardware is optimized to achieve the best results 
possible for the matrices underlying each problem. 
Our approach is slightly different. We are working 
on general implementations that, after being tested 
on several different matrices, allow us to determine 
which hardware platform (CPU or FPGA) is the best 
alternative according to the problem's characteristics.

4 NLA kernels design

In this section, we offer some details on the design 
of the routines that tackle the selected NLA kernels. 
Firstly, we describe the low-end (embedded) FPGA 
designs, continuing with the high-end (data center ac­
celeration) variant later.

4.1 Embedded FPGA

GEMM and SPMV kernels are designed following the 
NDRange OpenCL paradigm.

4.1.1 GEMM implementation

The kernel is based on the tiled matrix multiplication 
algorithm, where the input matrices (A and B) are sub­
divided into blocks, and these blocks are multiplied by 
generating partial results, which are accumulated until 
completing the corresponding block of the solution 
matrix (C). This computational method enhances data 
locality and thus optimizes memory accesses.

The implementation follows the OpenCL 2­
dimensional NDRange model. Each work-item within 
a workgroup loads an element of matrices A and B into 
local memory. When the blocks of size Nb x Nb are 
complete (the load is synchronized using barriers), the 
block-wise product is carried out, and the partial re­
sults are accumulated. After the blocks are completely 
consumed, the subsequent blocks are loaded and con­
sumed until the calculation of a block of the matrix C 

is completed. Each work-item within the workgroup 
is responsible for computing an element of the matrix 
C. This means the global work size is the same as the 
elements in C. See pseudocode in Listing 1.

For a given block, each work-item performs Nb prod­
ucts, which are done in parallel using loop unrolling. 
Another degree of parallelism is added by using ker­
nel vectorization, which adds work-item parallelism. 
Increasing the size of the blocks and adding vectoriza­
tion improves the computing performance (as long as 
the memory bandwidth limit is not reached) but has a 
substantial impact on the number of resources used.

Listing 1: Pseudocode of GEMM OpenCL 
implementation

1 sum = 0.0f;
2 for...//Iterate over all blocks of size

NbxNb
3 {
4 //Load block elements to local memory
5 A_mem [] = A[];
6 B_mem [] = B[];
7 //Wait for the entire block to be

loaded
8 barrier();
9 //Dot product accumulation within

this block
10 #pragma unroll
11 for (int k = 0; k < Nb; ++k)
12 sum += A_mem[] [k] * B_mem [] [k];
13 //Wait for the block to be fully

c onsumed
14 barrier();
15 }
16 //Store result in matrix C
17 C[] = sum;

We perform a design space exploration by varying 
both parameters (block size and vectorization) to deter­
mine the best combination. Unfortunately, our FPGA 
has relatively low resources and only allows for a mod­
erate increase of both parameters. The combination 
of parameters that we could synthesize in the FPGA 
and achieved the best execution time were Nb = 8 and 
SIMD = 4. More parallelism could be added by repli­
cating the pipeline (Compute Unit replication), but it 
has a similar effect to that of kernel vectorization and 
consumes even more resources.

4.1.2 SPMV implementation

The S P MV kernel is based on the Spector OpenCL 
benchmark suite [19], which provides a mechanism 
to perform a design space exploration of the differ­
ent optimization parameters. The kernel uses the 1­
dimensional NDRange model. It processes one row 
per work-item, following the row-based strategy used 
in the massively parallel context (as the scalar version 
in [20]), allowing the computation of multiple rows 
in parallel (controlled by the workgroup size parame­
ter). More parallelism is added by unrolling the loops 
that read the data from global into local memory and 
adding vectorization. Finally, it is possible to replicate 
the pipeline using Compute Unit replication.
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We compiled kernels with different parameters and 
tested their performance on all the matrices, selecting 
the kernel that yielded the best execution time.

4.2 High-End FPGA

For the Xilinx's Data Center platform we tested the 
GEMM implementation from [14] and developed our 
version of SPMV based on the work in [18].

4.2.1 GEMM implementation

The GEMM is an efficient version of the tiled matrix 
multiplication, with highly-optimized memory access. 
It follows a systolic array architecture, where Np pro­
cessing elements (PE) consume prefetched elements 
of the matrices A and B in a stream-like fashion. Each 
PE holds Nc compute units (CU), and each one of them 
is capable of producing one output product (a partial 
result of matrix C) every clock cycle. The design is 
parametrizable in the number of PEs, the size of PEs 
(number of CUs), and the tiles' size.

4.2.2 SP MV implementation

The SPMV kernel follows a streaming dataflow archi­
tecture, where input data is streamed through a deep 
pipeline at every clock cycle. The kernel was imple­
mented in such a way that different tasks are compart­
mentalized into different functions or blocks. These 
blocks then exchange data through FIFO memories 
(referred to as Streams in Xilinx HLS). All these func­
tions are then instantiated with the dataflow pragma to 
allow concurrent execution. One block for each input 
port gets the data from global memory and places it 
in its corresponding Stream. The computation block 
reads data from the Streams, performs the product 
and accumulation, and writes the results into another 
Stream. Finally, the output function is in charge of 
writing the results in global memory. Figure 1 shows 
a block diagram of the implemented kernel.

The computation block iterates over the nnz per­
forming the floating-point product and accumulation of 
the matrix elements and their corresponding vector el­
ements. When all the elements in a row are processed, 
the result is sent to the output Stream. This computa­
tion enforces a loop-carried dependency between the 
partial results in each iteration. As the floating-point 
operation has a latency of L clock cycles in our FPGA 
and there is a loop-carried dependency in the vari­
able that holds the accumulation, it is not possible to 
pipeline the loop with an II of 1. In order to overcome 
this and improve the performance, in each iteration L 
elements are processed in parallel using loop unrolling, 
and the II of the pipeline is set to L.

Parallelism is achieved by processing several rows 
at the same time, instantiating replications of the func­
tions in the dataflow region and adding the correspond­
ing memory buffers and I/O ports. The design takes 

advantage of the multiple ports to access the High 
Bandwidth Memory (HBM) available. The vector x 
is copied into the FPGA's internal RAM (very fast 
and has very low latency) to avoid stalls due to non­
contiguous global memory accesses. In order to run 
the parallel version of the kernel, the input data must 
be divided among the host before starting the kernel.

5 Experimental Evaluation

This section presents the experiments conducted to as­
sess the performance of our kernels. First, we describe 
our computing platforms and the equipment used to 
evaluate runtime and power consumption. Afterward, 
we introduce the test cases and the numerical results, 
accompanied by the corresponding analysis.

5.1 Experimental Setup
The experiments were carried out in two distinct 
FPGAs:

1. The DE10-nano board from Terasic. This plat­
form is based on a Cyclone V SoC FPGA and 
includes a dual-core Cortex-A9 processor and 
around 110K Logic Elements of programmable 
logic. The board is equipped with 1GB of DDR3 
memory, shared between the FPGA and the pro­
cessor. The FPGA has 6 MB of on-chip memory 
used as scratch-pad memory and 112 variable 
precision DSP blocks (22.4 GFLOPS). The ker­
nels were compiled using Intel FPGA SDK for 
OpenCL v18.1. In the following sections, we 
refer to this platform as EMB FPGA.

2. The Alveo U50 is an FPGA-based data center 
acceleration card based on Xilinx UltraScale+ ar­
chitecture. It includes 8GB of on-board HBM 
RAM and QSFP28 connections for 100 GbE ap­
plications. Its typical power consumption is 75 W, 
which adds to the high computing capacities and 
input/output bandwidth and achieves excellent 
energy efficiencies. It has 872K logical elements, 
1,743K registers, 28 MB of internal RAM, and 
5,952 DSPs blocks. The kernels for the Alveo 
platform were compiled using Xilinx Vitis 2019.2. 
In the following sections, we refer to this platform 
as HIGHFPGA.

The traditional processor consist of a quad-core In­
tel i7-4770 CPU @3.40GHz installed with 16 GB of 
RAM.

To measure runtime and power consumption we 
use:

• DE10-nano: Measured DC input current with 
FLUKE 45 (4.5 digits, accuracy: 0.2%+6).

• Alveo U50 : Measured input current and voltage 
of the board using Xilinx Runtime (XRT) profil­
ing capabilities.
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Figure 1: Block diagram of SPMV implementation for HIGHFP GA.

• Intel CPU. Two independent measurements, us­
ing PMLIB software [21].

- Processor and memory power consumption 
using RAPL.

- Full system power using Zes Zimmer LMG- 
640 meter (AC Power. High accuracy: 
0.015%+1% of range).

• Execution times: obtained using OS libraries in 
CPU and OpenCL profiling functions in FPGA.

Runtimes were computed as the average value of 
several measurements in consecutive kernel executions. 
The number of iterations was determined individually 
for each test case in order to produce a total runtime 
above 5 minutes. During the first two minutes no 
measurements were taken, as its considered the warm­
up time. Power consumption was measured once per 
second during the remaining time.

5.2 Evaluation of dense kernel

In this section, we first show the test cases employed 
for the experimental evaluation, and later we analyze 
the obtained results.

5.2.1 Test cases

For the dense kernel (C := A * B) evaluation, we em­
ploy eight different data sets, composed, in all cases, 
by random matrices of increasing dimensions, ranging 
from 64 32 to 8k 4k. The test cases are:

GEMM1 ■ A 64x32 x B32x32

GEMM2— Ai28x64 x B64x 64

GEMM3 — A256x128 x B128x128

GEMM4— A512x256 x B256x 256

GEMM5— A1kx512 x B512x 512

GEMM6— A2kx 1k x B1 kx 1 k

GEMM7— A4kx2k x B2kx 2k

GEMM8— A8kx4k x B4kx 4k

5.2.2 Experimental results

Table 1 summarizes the results obtained for runtime 
and energy consumption. Specifically, we include 
the runtime and the full-system power and energy 
consumption yielded by each hardware platform. For 
the CPU platform, we present both its internal and 
external power and energy consumption. In contrast, 
for EMBFPGA we include only the external values 
(as it is a standalone board), and for the HIGHFPGA 
we show only the internal ones. There are no results 
of the smaller matrices for HIGHFPGA because of 
implementation restrictions (the matrix size cannot be 
smaller than the tiles' size). For the comparison within 
CPU and the different FPGA platforms we used the 
following criteria:

• The EMBFPGA power and energy were com­
pared against CPU external measurements, be­
cause the FPGA is an embedded board ad mea­
surements consider not only the FPGA chip but 
also all the necessary peripherals required by the 
board.

• For the HIGHFPGA we compared against only 
internal CPU and memory consumption. This is 
because both devices require to be installed in a 
computing node in order to work, so we did not 
consider the power consumption of all remaining 
parts, such as motherboard, network cards, hard 
drive, etc. It may be arguable that the FPGA 
platform still requires a CPU in order to work, but 
in the scenario in which some task is offloaded 
to the FPGA, the CPU would be idle (consuming 
little power) or performing some other tasks.

On the one hand, the results show that in execution 
time, the CPU strongly outperforms the EMBFPGA 
with differences between 20x and 150x . The dif­
ferences with HIGHFPGA are also in favor of the 
CPU but only in ratios of approximately 2x . On 
the other hand, it can be stated that the power con­
sumed by the FPGAs is notoriously less (in the order 
of 20x for EMBFPGA -comparing external values­
and 2x for HIGHFPGA -comparing internal values-)
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Table 1: Runtime, power and energy consumption for the tested matrices sizes with the GEMM kernel.

Variant Exec T (ms) P(W) EnergyExt(mJ) P(W) EnergyInt(mJ)

GEMM1 CPU 3.40 x 10-3 115 3.91 x 10-1 — —
HIGHFPGA — — — — —
EMBFPGA 7.44 x 10-2 5.35 3.98 x 10-1 — —

GEMM2 CPU 8.69 x 10-3 123 1.07 x 100 — —
HIGHFPGA — — — — —
EMBFPGA 2.06 x 10-1 5.80 1.19 x 100 — —

GEMM3 CPU 2.81 x 10-2 113 3.18 x 100 — —
HIGHFPGA — — — — —
EMBFPGA 1.24 x 100 6.90 8.56 x 100 — —

GEMM4 CPU 1.88 x 10-1 113 2.12 x 101 — —
HIGHFPGA — — — — —
EMBFPGA 9.18 x 100 7.05 6.47 x 101 — —

GEMM5 CPU 1.48 x 100 114 1.69 x 102 74.3 1.10 x 105
HIGHFPGA 3.21 x 100 — — 39.5 1.27 x 105
EMBFPGA 7.24 x 101 7.20 5.21 x 102 — —

GEMM6 CPU 1.32 x 101 121 1.60 x 103 78.7 1.04 x 106
HIGHFPGA 2.09 x 101 — — 39.5 8.26 x 105
EMBFPGA 5.79 x 102 7.45 4.31 x 103 — —

GEMM7 CPU 9.83 x 101 123 1.21 x 104 79.7 7.83 x 106
HIGHFPGA 1.52 x 102 — — 39.5 6.00 x 106
EMBFPGA 9.09 x 103 6.75 6.14 x 104 — —

GEMM8 CPU 7.56 x 102 124 9.37 x 104 82.9 6.27 x 107
HIGHFPGA 1.17 x 103 — — 39.5 4.62 x 107
EMBFPGA 1.14 x 105 6.05 6.90 x 105 — —

than that consumed by the CPU. These results reveal 
two completely different scenarios. First, in the case 
of EMBFPGA, the lower runtimes presented by the 
CPU variant are enough to also position this variant 
as the most energy-efficient. Opposite to this, the 
HIGHFPGA is the most energy-efficient variant for 
the three larger test cases.

The results also show that the runtime differences 
between the CPU and the EMBF PGA decrease with 
the matrices' dimension. Thus, this kind of FPGA 
is more competitive for small matrices. More in de­
tail, from the standpoint of energy consumption, in 
the smallest test case (GEMM1) both platforms are 
comparable. This is a common scenario in the AI field, 
which usually implies several small matrix multiplica­
tions. However, when the target is a medium or large 
dense problem, the computational power offered by 
the traditional multi-core CPUs in conjunction with 
the efficient data access (smart use of their cache lev­
els), make the multi-core platform a better option than 
the small FPGA. On the other side, the experiments 
with the HIG HFPGA show that this device allows 
similar performances to traditional multi-core CPUs 
(e.g., better energy consumption and comparable run­
times). Additionally, the performance of HIGHFPGA 
improves for larger problems, i.e. better scalability.

To verify the importance of the efficient use of cache 
levels in multi-core we include the following exper­
iment. We generate a parallel version of the GEMM 

kernel in CPU based on the DOT implementation of 
BLAS library, i.e., a GEMM based on BLAS-1 oper­
ations. Following the same principle, we implement 
a fundamental modification of our EMBFPGA ker­
nel by removing the use of tiles in the matrix product. 
Figure 2 offers the comparison of the execution times 
involved in the computation of each test case for both 
platforms.

At first sight, the most notorious result is the per­
formance reduction of the GEMM kernel in the multi­
core CPU, which decreases between 20x and 80x . 
These results are aligned with other efforts [22], which 
highlights the importance of properly exploiting the 
cache memory in the GEMM kernel. Regarding the 
EMBFPGA results, it can be observed that its perfor­
mance is reduced only between 3x and 10x . This 
allows us to conclude that our FPGA tiled variant of 
GEMM is not capable of exploiting the memory hierar­
chy as efficiently as the multi-core CPU, which is one 
reason for the much higher performance presented by 
the latter.
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Figure 2: EmbFPGA vs. CPU runtime (in ms) for basic versions of GEMM.

5.3 Evaluation of sparse kernel

In this section, we present the test cases employed in 
the experimental evaluation of the sparse scenarios, 
and later we analyze and discuss the experimental 
results.

5.3.1 Test cases

We employ several matrices from the SuiteSparse Ma­
trix Collection (formerly the UF Sparse Matrix Collec­
tion) for the sparse context. We select 12 matrices with 
similar dimensions that range from 17,000 to 40,000, 
with a highly different number of non-zero coefficients 
(nnz), i.e., nnz between 14,765 and 16,171,169, as well 
as different distribution of these coefficients. Table 2 
summarizes the information related to the employed 
matrices.

Table 2: Number of rows (n) and non-zero elements 
(nnz) of the sparse matrices.

Matrix n nnz

bcsstm37 25503 14765
bcsstm35 30237 18211
qpband 20000 30000
chipcool0 20082 281150
gyro k 17361 519260
Godwin 40 17922 561677
TSOPF162 20374 812749
thread 29736 2249892
TSOPF RS b300 28338 2943887
ndk 18000 3457658
TSOPF RS b2052 25626 6761100
TSOPF RS b2383 38120 16171169

5.3.2 Parametrization of FPGA versions

In this section, we study the optimization of parameters 
required by our FPGA implementation of the sparse 
kernel.
EmbFPGA configuration: The parameters included 
in the design space exploration were: the work-group 
size (BS), the number of Compute Units (CU), the 
Unroll Factor (UF) and the vectorization (VC). Differ­
ent combinations of the mentioned parameters were 
explored. These were: BS: 2, 16, 32 and 64; CU: 1 
and 2; UF: 2, 4 and 8; VC: 2, 4 and 8.

Some combinations could not be synthesized be­
cause of resource restrictions of the FPGA platform. 
After measuring the runtime of all the synthesized 
kernels for all matrices, the ones with the best perfor­
mance were selected for each matrix. The parameters 
used in the selected kernels and the resource utilization 
(as a percentage) and the clock operating frequency 
are shown in Table 3.
HighFPGA configuration: The only available pa­
rameters for this kernel are the Initiation Interval of 
the compute kernel and the number of rows to be pro­
cessed in parallel. The first parameter was set to 4, 
which allows running the kernel at around 200 Mhz 
of clock frequency. The last parameter is limited by 
the amount of available internal memory of the device, 
as a copy of the vector x is required to process each 
row. For this experiment, the number of rows to be 
processed in parallel is 4.

5.3.3 Experimental results

The obtained results for the sparse context on the best 
performing kernels are presented in Table 4. For the 
EmbFPGA, the first two results are aligned with the 
dense evaluation: i) the CPU version outperforms the 
FPGA implementation in runtime and ii) the power
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Table 3: Parameters, resource utilization and clock operating frequency of best performing kernels for each matrix 
in EMBFPGA.

Problem Parameters Resource Utilization (%) Fclk (MHz)
BS CU UF VC ALMs FFs RAMs DSPs

bcsstm37 
bcsstm35 
qpband

16 2 2 1 45.6 26.5 53.6 5.3 111

chipcool0 2 2 2 1 45.5 26.6 53.6 5.3 111
gyro_k
Goodwin 40 64 1 2 2 33.2 19.0 34.0 4.4 120

TSOPF RS b162 16 2 2 1 45.6 26.5 53.6 5.3 111
thread 16 1 2 4 45.9 27.1 42.1 8.0 115
TSOPF RS b300 32 1 4 1 33.8 19.4 34.3 4.4 120
nd6k 64 1 8 2 78.8 44.5 72.5 15.1 107
TSOPF RS b2052 2 1 4 4 78.6 44.4 71.5 15.1 95
TSOPF RS b2383 2 1 2 4 45.8 27.0 42.1 8.0 112

consumed by the FPGA is notoriously less than that 
of the CPU.

Another result that can be highlighted is the direct 
relation between the nnz of the matrix and the associ­
ated runtimes. Specifically, there is a linear relation 
(after a concrete threshold) between the nnz of each 
matrix and the runtime. This behavior is completely 
aligned with the theory and is expected for the SPMV 
because it is a memory-bound operation [23].

From the energy consumption perspective, the 
SPMV kernel presents varied results. When nnz(A) is 
small, the CPU implementation notoriously consumes 
less energy than the FPGA counterparts. However, 
when nnz(A) increases, the FPGA variants become 
competitive, even offering important reductions in 
the energy consumption for the largest cases in the 
EMBFPGA. See Figure 3a. These values are based 
on two contrasting situations. On the one hand, the 
power required by the FPGA increases with the nnz 
of each matrix. However, in the CPU case, the be­
havior is the opposite (i.e., large matrices require less 
power). The under-utilization of the CPU resources 
could explain this situation. On the other hand, the 
runtime differences between platforms for small ma­
trices are considerable, with values higher than 100x , 
while for the larger matrices, these gaps decrease to 
approximately 10x .

Finally, in the HIGHFPGA case, the power con­
sumption reduction reached by the FPGA does not 
still compensate the runtime differences between both 
hardware platforms, see Figure 3b. However, we need 
to remark that we are comparing only internal energy 
in this case, which is not entirely fair with the FPGA 
device.

6 Concluding remarks and Future work

We have explored using traditional multi-core hard­
ware and FPGAs to address Numerical Linear Algebra 

(NLA) kernels. Specifically, we studied the behavior 
of highly tuned kernels in a multi-core CPU proces­
sor and HLS implementations over FPGAs, analyzing 
the execution time and the energy consumption. For 
this purpose, we employed the most critical kernels 
from dense and sparse NLA fields, i.e., the GEMM and 
SPMV operations. Our work includes a brief introduc­
tion to the use of FPGAs and HLS, such as OpenCL 
and a revision of related work in this field. Addition­
ally, we design and fit the implementation of the two 
NLA kernels in two contrasting platforms from the 
major FPGA vendors, Xilinx and Intel. The selected 
platforms are the embedded DE10-nano board from 
Terasic and the modern Alveo U50 from Xilinx.

The experimental evaluation shows that, for dense 
problems, the CPU strongly outperforms the FPGA 
variants in runtime, showing a higher energy efficiency 
than the small FPGA as well. However, in the sparse 
case, the differences in runtime are more modest, and 
the performance in terms of energy consumption de­
pends on the matrix characteristics. Specifically, for 
matrices with many nonzeros, the EM BFPGA offers 
substantial reductions in energy consumption.

As part of future work, we plan to advance in three 
distinct directions:

• Exploring other paradigms of parallelism to ad­
dress the SPMV operation.

• Employing HDL tools to improve the perfor­
mance of FPGA kernels.

• Advancing in the automatic prediction of which 
hardware platform will offer the best performance 
regarding both runtime and energy consumption.
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Table 4: Runtime, power and energy consumption for the tested matrices with the SPMV kernels.

Variant Exec T (ms) P(W) EnergyExt(mJ) P(W) EnergyInt(mJ)

bcsstm37 CPU 1.10x 10-2 125.9 1 . 38 x 100 73.1 8.04x 10-1
HIGHFPGA 1.59x 10-1 — — 19.9 3.16x 100
EMBFPGA 1 . 36 x 100 5.7 7.75 x 100 — —

bcsstm35 CPU 1.20x 10-2 128.7 1.54 x 100 73.7 8.84x 10-1
HIGHFPGA 2.26x 10-1 — — 20.0 4.52x 100
EMBFPGA 1.43x 100 5.7 8.15 x 100 — —

qpband CPU 1.50x 10-2 115.3 1.73x 100 62.9 9.44x 10-1
HIGHFPGA 1.57x 10-1 — — 19.8 3.11 x 100
EMBFPGA 1.33x 100 5.8 7.65 x 100 — —

chipcool0 CPU 6.00x 10-2 127.0 7.62x 100 72.9 4.37x 100
HIGHFPGA 5.00x 10-1 — — 20.5 1.03x 101
EMBFPGA 3.00x 100 6.2 1.85 x 101 — —

gyro_k CPU 7.10x 10-2 132.6 9.41 x 100 76.8 5.45x 100
HIGHFPGA 7.56x 10-1 — — 20.5 1.55x 101
EMBFPGA 4.15 x 100 6.0 2.49x 101 — —

Goodwin_40 CPU 6.90x 10-2 132.1 9.11 x 100 80.3 5.54x 100
HIGHFPGA 8.02x 10-1 — — 20.4 1.64x 101
EMBFPGA 4.39x 100 6.0 2.63x 101 — —

TSOPF_RS_b162 CPU 1.65 x 10-1 119.3 1.97x 101 30.3 1.04x 101
HIGHFPGA 1.09x 100 — — 20.5 2.23x 101
EMBFPGA 5.62x 100 6.3 3.51 x 101 — —

thread CPU 7.86x 10-1 112.4 8.83x 101 31.7 4.10x 101
HIGHFPGA 2.73x 100 — — 20.6 5.62x 101
EMBFPGA 1.60x 101 6.4 1 . 02 x 102 — —

TSOPF_RS_b300 CPU 1.62x 100 80.7 1 . 31 x 102 32.1 5.54x 101
HIGHFPGA 3.46x 100 — — 20.5 7.09x 101
EMBFPGA 1.56x 101 6.1 9.52x 101 — —

nd6k CPU 1.58 x 100 96.1 1.52x 102 31.2 6.35x 101
HIGHFPGA 3.96x 100 — — 20.6 8.16x 101
EMBFPGA 2.43x 101 6.8 1 . 65 x 102 — —

TSOPF_RS_b2052 CPU 3.78 x 100 80.2 3.03x 102 30.9 1.19x 102
HIGHFPGA 7.58 x 100 — — 20.7 1.57x 102
EMBFPGA 3.48 x 101 6.7 2.31 x 102 — —

TSOPF_RS_b2383 CPU 9.13x 100 79.0 7.21 x 102 30.7 2.83x 102
HIGHFPGA 1.79x 101 — — 21.3 3.81 x 102
EMBFPGA 9.30x 101 6.4 5.95 x 102 — —
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