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Abstract 
 
In this paper, a theoretical study of different p-p-n perovskite solar cells has been performed by means of 
computer simulation. Effects of the offset level upon the power conversion efficiency (PCE) of these 
devices have been researched using five different materials such as spiro-OMeTAD, Cu2O, CuSCN, NiO 
and CuI, as Hole Transporting Layer (HTL). The Solar Cells Capacitance Simulator (SCAPS)-1D has 
been the tool used for numerical simulation of these devices. A strong dependence of PCE has been found 
with the difference between the Maximum of the Valence Band of the HTL and perovskite materials, and 
with the doping level in p-type perovskite layer. A minimum value of hole mobility in the HTL has been 
also found, below which the PCE is reduced. Efficiencies in the order of 28% have been obtained for the 
Cu2O/Perovskite/TiO2 solar cell. Results obtained in this work show the potentiality of this promising 
technology. 
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1. Introduction 

In the last few years, the perovskite solar cells have had a significant increase in performance, 

which has strongly encouraged many experimental and theoretical studies in order to optimize 

the design of the structure and the selection of materials. These works are aimed at improving 

the performance of a technology that promises to achieve high power conversion efficiencies 

(PCE) at low cost. In particular, the development and progress of the perovskite solar cells, 

regarding efficiency, stability, cost and commercialization, have been discussed in detail in 

previous publications [1, 2]. Perovskite solar cells represent an emerging photovoltaic 

technology, for which efficiencies have been increased substantially from 3.8% in 2009 [3] to 

22.1% recently [4], confirming the upward trend of this promising technology.     
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Figure 1 shows the planar structure of perovskite solar cells, where it can be seen that the 

light is absorbed by the intermediate region called perovskite layer, whereas the hole-

transporting layer (HTL) and the electron-transporting layer (ETL) link the carrier generation 

region with the electrodes. For the purpose of an efficient carrier collection in the electrodes, 

the ETL must block the flow of holes but allow the free electrons flow towards the cathode. 

On the contrary, the HTL must block the flow of electron but allow the free flow of holes 

towards the anode, as shown in Figure 1. The effects of variations in the characteristics of the 

perovskite layer and of the interfaces with the other two layers have been investigated 

recently through modeling and simulation techniques [5-8]. In another works, a comparative 

study using two different transparent conducting oxides such as TiO2 and ZnO as electron 

transporting materials have been recently researched [9, 10]. The ETL, HTL and the 

perovskite layers are the path that photogenerated carriers must travel before being collected. 

A good understanding of the effects of each of the layers in the performance of the devices is 

critical for optimization. The most common material used for the HTL layer is spiro-

OMeTAD (2,2’,7,7’-tetrakis (N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene), which is 

relatively expensive. In this work, a comparative study of the effects of replacing this organic 

compound with four different inorganic materials such as Cu2O, CuSCN, NiO and CuI has 

been carried out by means of computer simulation. These semiconductor materials have 

different band gap energies (Eg) and electron affinities (Ӽe), which lead to different 

alignments between the valence bands of both the HTL and the perovskite layer. All 

inorganic compounds under consideration in this study are promising candidate for hole 

transporting material and electron blocking layer [11, 12]. The authors have previously used 

numerical simulations in order to study the behavior of solar cells and PIN photodiodes under 

different operating conditions [10, 13-15]. 

 

 

Figure 1. The planar structure of a perovskite solar cell. 

 

http://jcb.rupress.org/content/107/4/1279.abstract
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Figure 2 illustrates typical values of energy in electron volts (eV) of the Minimum of the 

Conduction Band (MCB) and of the Maximum of the Valence Band (MVB), with respect to 

the vacuum energy level, for the alternative HTL materials spiro-OMeTAD, CuI, NiO, 

CuSCN, and Cu2O, for the perovskite CH3NH3PbI3 and for TiO2 used as ETL region. The 

subtraction between these two values is Eg, whereas the subtraction between the MCB and the 

vacuum energy level gives Ӽe. Also, the offset level is referred as the difference between the 

MVB of the HTL and perovskite materials (Offset = MVBHTL - MVBPerovskite).    

 

 

Figure 2. Values of (eV) of the Minimum of the Conduction Band (on the top) and of the Maximum of the 
Valence Band (on the bottom), with respect to the vacuum energy level, for all materials considered in this work.  

 

2. Simulation Details 

Numerical simulations of p-p-n perovskite solar cells exploiting the planar structure shown in 

Figure 1 were performed with the one-dimensional code SCAPS-1D (Solar Cells Capacitance 

Simulator) [16]. This simulation program solves numerically the three basic semiconductor 

equations: the Poisson and the continuity equations for holes and for electrons. It has been 

applied to the numerical simulation of perovskite solar cells recently [7, 10].   

In this work, the heterojunction solar cells are simulated with three input layers, where p-type 

spiro-OMeTAD, Cu2O, CuSCN, NiO and CuI are used separately in order to compare their 

performance as HTL, low p-type doped perovskite (CH3NH3PbI3) is used as active layer, and 

n-type transparent conducting oxide TiO2 is used as ETL. It is considered that solar energy is 

entered through the ETL layer. The standard AM1.5G spectrum (1000 W/m2; T =300°K) has 

been used. 

Table 1 summarizes the physical parameters used for each layer in the numerical analysis, 

where NC and NV are the effective density of states (DOS) in the conduction and the valence 

bands, respectively; μn and μp are the electron and hole mobilities, respectively; ε is the 

relative permittivity; and NA and ND are the acceptor and donor impurity concentrations, 
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respectively. These values were extracted either from literature [6, 7, 10, 17-23] or estimated 

as in the case of NC, NV, NA and ND for the inorganic HTL materials. Specifically, NC, NV, NA 

and ND for spiro-OMeTAD were extracted from literature [6, 10]. These values are a good 

first-approximation for each inorganic material considered in this work. Anyway, to verify the 

validity of these parameters, theoretical values of NC and NV for the Cu2O calculated by ab 

initio techniques [24] have been used in the simulations and no differences were found. 

Additionally, no changes were found in the results when simulations for Cu2O, CuSCN, NiO 

and CuI, with NC, NV in the range from 2.50 × 1018 to 2.50 × 1021 and NA in the range from  

3.0 × 1016 to 3.0 × 1019 have been performed.  

Typical thicknesses of each layer were fixed. In particular, 400 nm thick perovskite film 

ensures a radiation absorption close to the maximum, without major recombination losses [6, 

10]. Values extracted from literature were used for the absorption coefficients of TiO2 [25], 

perovskite and spiro-OMeTAD [26], Cu2O [27], CuSCN [28] and NiO [29]. The absorption 

coefficient of CuI is considered constant and equal to 1.00 × 105 cm-1 up to the wavelength 

corresponding to the band gap of this material. 

 
Table 1. Physical parameters used in the numerical analysis for each layer. 

  Cu2O CuSCN NiO CuI spiro-OMeTAD 

HTL           
(400 nm) 

Eg (eV) 2.17 3.6 3.8 3.1 3.06 
Ӽe (eV) 3.2 1.7 1.46 2.1 2.05 
NC (cm-3) 2.50 × 1020 2.50 × 1020 2.50 × 1020 2.50 × 1020 2.50 × 1020  
NV (cm-3) 2.50 × 1020 2.50 × 1020 2.50 × 1020 2.50 × 1020 2.50 × 1020 
μn (cm2V-1s-1) 80 25 2.8 44 2.00 × 10-4 
μp (cm2V-1s-1) 80 25 2.8 44 2.00 × 10-4 
ε 6.6 5.1 11.7 6.5 3.0 
NA (cm-3) 3.00 × 1018  3.00 × 1018 3.00 × 1018 3.00 × 1018 3.00 × 1018 
ND (cm-3) 0 0 0 0 0 
Offset (eV) 0.06 0.13 0.17 0.23 0.32 

Perovskite 
(400 nm) 

Eg (eV) 1.5     

Ӽe (eV) 3.93     

NC (cm-3) 2.50 × 1020     

NV (cm-3) 2.50 × 1020     

μn (cm2V-1s-1) 50     

μp (cm2V-1s-1) 50     

ε 30     

NA (cm-3) 2.10 × 1017     

ND (cm-3) 0     

TiO2            Eg (eV) 3.26     
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(90 nm) Ӽe (eV) 4.2     

NC (cm-3) 1.00 × 1021     

NV (cm-3) 2.00 × 1020     

μn (cm2V-1s-1) 1.00 × 10-3     

μp (cm2V-1s-1) 1.00 × 10-3     

ε 100     

NA (cm-3) 5.00 × 1018     

ND (cm-3) 5.00 × 1019     

 

3. Results and Discussion 

The results of PCE calculated by varying the HTL material and keeping fixed the ETL and 

perovskite layers are summarized in Table 2. Recombination in the HTL layer has not been 

considered, since the simulations show that recombination in this layer does not affect the PCE 

values. In the case of spiro-OMeTAD, these results agree very well with experimental values 

extracted from [30]. The last column of Table 2 corresponds to the simulated PCE values 

assuming that the offset level is zero. This condition is obtained by adjusting the electron 

affinity for each material.  

 
Table 2. Performance of the solar cell obtained from simulations for each HTL material described in Table 1.  

HTL Offset (eV) PCE (%) PCE (%) to Offset = 0 

Cu2O 0.06 25.06 25.10 

CuSCN 0.13 24.86 25.11 

NiO 0.17 24.57 25.11 

CuI 0.23 23.78 25.11 

spiro-OMeTAD 0.32 21.79 24.37 

 

Data taken from Table 2 are shown in Figure 3, where it can be seen that the PCE decreases 

when the offset level is increased. 
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Figure 3. Power conversion efficiency as a function of the offset level between the MVB of the 

HTL and perovskite layers for the five HTL material considered in this work. 
 

As it can also be observed in Table 2, the minimum value of PCE for the condition offset equal 

to zero, was found for the spiro-OMeTAD (24.37%), whereas no differences were found for 

the rest of the materials evaluated. The reduced performance of the spiro-OMeTAD is due to 

the low hole mobility in this material (2.00 × 10-4 cm2V-1s-1). Since the mobility of other 

materials varies from 2.8 (for NiO) to 80 cm2V-1s-1 (for Cu2O), by almost a factor of 30, 

without affecting the PCE value (25.11%), therefore it is possible to assume that there is a 

minimum value of mobility above which the change in the PCE is negligible. On the contrary, 

the PCE is reduced when the mobility values are lower than this minimum value.  

In order to fully understand the degradation in the PCE as a function of the hole mobility, new 

simulations were made for the solar cell with spiro-OMeTAD as hole conductor for the 

condition offset equal to zero. Specifically, with regard to parameters presented in Table 1, the 

μp was varied from 2.00 × 10-4 to 2.00 × 10-1 cm2V-1s-1. The other values of Table 1 have 

remained unchanged. Results obtained are shown in Figure 4(a). Also, the variation of the fill 

factor (FF) with μp has been studied for the solar cell with spiro-OMeTAD, as can be seen in 

Figure 4(b). In both cases, in Figure 4(a) and (b), an increase in PCE and FF is observed when 

the hole mobility is increased. In particular, a value of PCE of 25.11% has been obtained by    

μp = 2.00 × 10-1 cm2V-1s-1.     
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(a) 
 

 
 

(b) 

Figure 4. Power conversion efficiency (a) and fill factor (b) versus hole mobility in the spiro-OMeTAD as Hole 

Transporting Layer for the condition offset equal to zero. 

 

The FF and PCE can be calculated as [31]: 

 

   /MP MP OC SCFF V I V I  

 
                                        (1) 

 

and 

 
 (%) 100 /OC SC INPCE V I FF P                           (2) 

 

where VMP, IMP, VOC and ISC represent the voltage at maximum power, the current at maximum 

power, the open circuit voltage and the short-circuit current, respectively, whereas PIN is the 

input power from the sun. Since VOC and ISC remain unchanged, it can be concluded that FF is 

the cause of the increase in PCE when μp is increased.   

In order to analyze the behavior of FF, in Figure 5 it is plotted the simulated current density–

voltage (J–V) characteristics of the solar cell with spiro-OMeTAD as HTL material for the 

minimum and maximum values of the hole mobility considered. It is possible to observe in this 

figure that, for the values of voltage close to VOC, the current is lower when μp is decreased. 

The reason for this drop in the carrier collection at the electrodes can be explained by an 
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increase of the recombination rate at voltages close to VOC. Therefore, the lower values of FF 

(and of PCE) are a consequence of the decrease in the current for the values of voltage close to 

VOC. 

                                  

 

Figure 5. Current density-Voltage curves of the perovskite solar cell for two different hole 
mobilities in the spiro-OMeTAD layer.   

 

It has been previously mentioned in this work that with four different inorganic materials such 

as Cu2O, CuSCN, NiO and CuI, if the electron affinity value is modified in order to remain 

aligned the MVB of the perovskite and HTL materials (i.e. offset equal to zero), then the 

performance is the same in all cases. This indicates that for the doping conditions shown in 

Table 1, the band gap energies and the hole mobilities have no impact on the PCE for these 

materials.   

Since the Cu2O is the material with the lowest real offset (0.06 eV), the results obtained on the 

Cu2O/Perovskite/TiO2 solar cell are analyzed in the rest of the work.  

Figure 6 shows data obtained from simulation runs of the electrical parameters degradation 

(VOC, ISC, FF and PCE) as a function of the offset level for the Cu2O/Perovskite/TiO2 solar cell. 

The offset level was artificially modified by changing the electron affinity of Cu2O. The values 

presented are normalized to those corresponding to the offset level equal to zero, which are 1.22 

V, 23.64 mA, 86.79 % and 25.10 %, for VOC, ISC, FF and PCE, respectively. The lines through 

the data points are only intended to guide the eye. Positive offset values indicate that the MVB 

of the HTL layer is over the MVB of the perovskite layer, such as is the case for the materials 

considered in this work (Figure 2). Under this condition, according to equation (2), the 
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decreasing of VOC is the main reason for the PCE degradation, whereas the fill factor FF is 

slightly affected by the offset and ISC is remained approximately unchanged. 

This behavior seems to be contradictory, since the positive offset (MVBHTL - MVBPerovskite > 0) 

should involve an electric field that contributes to the flow of holes from perovskite to HTL. In 

Figure 7 it has been plotted the MVB in the HTL/perovskite interface as a function of the 

distance x from the front face of the Cu2O/Perovskite/TiO2 solar cell, for two different offsets (0 

and 0.5 eV). It is assumed that x = 0 is the location of the electrode closest to the HTL, and 

therefore x = 400 nm is the location of the HTL/perovskite interface. In the case corresponding 

to an offset level equal to 0.5 eV, it can be observed in x = 400 nm a potential barrier which 

hinders the motion of holes from perovskite to HTL. Based on the results obtained from 

simulations, the height of the potential barrier depends not only on the offset, but also on the 

doping level in both regions and on the voltage (0.9 V in Figure 7). Furthermore, the carrier 

recombination in the vicinity of HTL/perovskite interface increases when the height of the 

potential barrier is greater, which causes lower VOC, FF and PCE. The increase of the carrier 

recombination for an offset level equal to 0.5 eV and the comparison with an offset equal to 

zero is shown in Figure 8.  

 

 
Figure 6. Normalized electrical parameters as a function of the offset level between the MVB of 

the HTL and perovskite layers for the Cu2O/Perovskite/TiO2 solar cell. 
 
 

On the other hand, in the case of a negative offset (MVBHTL - MVBPerovskite < 0), the potential 

barrier makes difficult the extraction of holes generated in the perovskite layer and the PCE 

decreases rapidly due to the reduction of the FF, as can be observed in Figure 6. 
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Figure 7. Maximum of the Valence Band as a function of the distance from front in the 
HTL/perovskite interface for the Cu2O/Perovskite/TiO2 solar cell. Two different levels of offset 

have been considered.  

 

 
Figure 8. Carrier recombination as a function of the distance from front in the                

HTL/perovskite interface for the Cu2O/Perovskite/TiO2 solar cell.                                                            
Two different levels of offset have been considered.  

 

As it has been mentioned above, based on the simulation results, the height of the potential 

barrier that causes the increase of the carrier recombination is dependent on the electron 

affinities and bandgap, which determine the offset level. For a given offset level, the PCE 

value increases when the acceptor concentration in the perovskite layer (NA) is larger. Thus, a 

maximum value of PCE in the order of 28% has been obtained at NA = 5.00 × 1020 cm-3, for the 
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offset equal to zero.   

Figure 9 shows the simulated electrical parameters (VOC, ISC, FF and PCE) as a function of NA 

in the perovskite layer, for the Cu2O/Perovskite/TiO2 solar cell. The values presented are 

normalized with respect to the maxima, which are 1.32 V, 23.69 mA, 89.74 % and 28.07 % for 

VOC, ISC, FF and PCE, respectively. The PCE and ISC values are the most and least increased 

with NA, respectively. 

 
Figure 9. Normalized electrical parameters as a function of the acceptor carrier concentration in 

the perovskite layer for the Cu2O/Perovskite/TiO2 solar cell. 

 
On the other hand, in the case of the Cu2O/Perovskite/TiO2 solar cell, the acceptor impurities 

concentration in the HTL layer does not significantly affect the value of PCE. However, low 

values of hole mobility in the HTL layer (below 3 cm2V-1s-1) reduce the PCE parameter up to 

10% when this region is considered intrinsic (NA = 0) or is slightly doped, as can be seen in 

Figure 10.  From the data presented in Table 1, the hole mobility for spiro-OMeTAD is clearly 

below 3 cm2V-1s-1. In opposition, the hole mobilities for Cu2O, CuSCN and CuI are well above 

this value, whereas for NiO is close to 3 cm2V-1s-1, for which the degradation of the PCE is 

still negligible.  
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Figure 10. Power conversion efficiency as a function of the hole mobility in the HTL layer for the 

Cu2O/Perovskite/TiO2 solar cell. The HTL layer is considered intrinsic. 
 

4. Conclusion 

The behavior of perovskite based solar cells with p-p-n planar structure has been studied 

through computer simulation using an organic compound (spiro OMeTAD) and four different 

inorganic materials (Cu2O, CuSCN, NiO and CuI) as Hole Transporting Layer (HTL). The 

results obtained in this work show that the performance of these devices can be still 

improved with respect to the prototypes reported in the literature, which have efficiencies in 

the order of 20% when the HTL layer is the organic spiro OMeTAD. However, so far, 

experimental results of efficiency of inorganic hole conductor-based perovskite solar cells is 

still much lower than that of the traditional organic hole conductor-based cells. This 

can be mainly due to the fact that both, the qualities of the manufacturing processes and HTL 

layer, and the amount of defects in the HTL/perovskite interface, have a big influence in the 

performance of perovskite devices. Data obtained from simulation runs also show that the most 

decisive effect on the PCE is the potential barrier in the HTL/perovskite interface. The 

alignment between the Maximum of the Valence Band (MVB) of the HTL and perovskite 

materials (which is directly related to the band gap energy and the electron affinity of each 

material), is a key factor to reduce the height of the potential barrier. The other major factor 

involved is the doping level in p-type perovskite layer. For the maximum value of NA in the 

perovskite region considered in this work (5.00 × 1020 cm-3), efficiency in the order of 28% has 

been obtained for the Cu2O/Perovskite/TiO2 solar cell for the condition offset equal to zero. 

The hole mobilities in the HTL play a fundamental role up to a certain minimum value (close 

to 3 cm2V-1s-1), below which the PCE is reduced. The hole mobilities for Cu2O, CuSCN and 
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CuI are well above the minimum value, for NiO coincides with this value, whereas for spiro-

OMeTAD is clearly below the minimum value. Since the most common material used 

nowadays for the HTL layer is spiro-OMeTAD, results obtained in this work show that this 

material can be replaced to improve the efficiency. 
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