
Network Congestion Control at the Application Layer

Paul Adamczyk, Federico Balaguer, Munawar Hafiz, and Craig L. Robinson

August 12, 2007

Abstract

Application-layer protocols play a special role in network programming. Typical programmers are

more familiar with them and more likely to implement them. Well-designed application-layer proto-

cols follow many patterns that improve the performance of applications using these protocols. We

present a subset of these patterns that focuses on the congestion control at the application layer.

Introduction

Congestion is one of the main problems of networks. Congestion can lead to bottlenecks, which result
in packet drops. Under the current paradigm of reliable network communication, dropped packets force
applications to retransmit messages. Typically, congestion is battled at the network layer by adding more
hardware or implementing better algorithms for handling individual packets.

However, low-level communication protocols have limited knowledge of the applications they serve.
They can only be optimized for all types of traffic and cannot take advantage of characteristics specific
to certain types of applications. Some tasks can be accomplished only at the application layer. The
end-to-end argument [22] states that only the end-points of a communication can perform all functions
related to the communication. This argument applies to network congestion as well. While much of
the improvement comes from low-level infrastructure, only the applications can determine when to make
some high-level adjustments to the communication protocol they are using. Because they understand
the details of the application, application developers can design messages that use fewer resources thus
limiting network congestion.

This paper presents a collection of patterns for reducing network congestion of point-to-point messages
at the application layer. All the patterns share the same problem:

Network bandwidth is a scarce resource. It needs to be preserved also by application
developers. What can be done at the application layer to limit network congestion?

1



Recently, there has been a revived interest in designing application-level protocols, e.g. for Web
services. Unfortunately, many of the new protocol designers are unaware of existing solutions and tend
to rediscover their inferior substitutes. This paper presents the best practices distilled from existing
application-layer protocols and other systems for the benefit of the designers and implementers of new
application-level protocols.

Network congestion affects client-server and peer-to-peer systems alike. We use the terms sender

and receiver to describe the two parties involved in a message exchange, because they are more general.
Moreover, since every message requires a confirmation/response, both the client and the server act as a
sender and a receiver at some point, so thinking about them in terms of senders and receivers is simpler.

Sending messages over the network involves both channel coding and source coding. Since this paper
is concerned with application-level protocols, only source coding solutions are relevant.

Network programming requires effective use of the underlying infrastructure, including other protocols
used by the application-level protocols. Network communication results in overhead, both in data (addi-
tional message headers) and in messages (connection setup and teardown). Some data and messages are
considered overhead by one protocol, but not by the underlying protocols. Limiting network congestion
requires understanding how the underlying protocols work. For example, sending a message over TCP
(without timestamp) over IPv4 and Ethernet without 802.1q produces 78 bytes of overhead per packet
[8] as shown in Table 1.

Protocol Header Size Max. Payload
(in bytes) (in bytes)

Ethernet 38 1500
IPv4 20 1480
TCP 20 1460

Table 1: Network Overhead Example

Selecting the most appropriate solution requires taking into account many conflicting forces and
finding a balance between them. The key forces to consider while selecting the most efficient manner of
congestion control are the run-time changes (understanding how the protocol changes, changes in message
sequencing, timing, latency, and throughput as well as the resulting change in the system’s performance),
and design/re-implementation effort required to introduce the pattern.

Protocol Efficiency The solution cannot needlessly complicate the communication protocol. Replacing
the existing protocol with too few large messages or too many small messages is likely to make the
new protocol less efficient and less reusable.

Sequencing Any optimization must guarantee that the data is processed in the same order as before.
This must hold true regardless of whether the data is sent or received in the same order as before–the
sender and the receiver must cooperate to ensure the proper processing order.

Timing/Latency The optimizations cannot affect the timing of message exchanges. For example, it is
not acceptable to delay sending a message until there is enough data to fill up the message payload
to its limit. As multiple message exchanges are collapsed into fewer or one, the latency of a single
exchange may increase.

Performance Congestion control is a valid concern to the application only if it improves the application’s
performance. An altruistic application would need to cease sending any messages, because this
would result in lowest congestion, but this is not reasonable. The primary goal of every application
is to perform its tasks as best as it can. A congestion-battling mechanism that diminished the
application’s overall performance is not acceptable.

Code Simplicity Optimizations typically produce more complex solutions than the simplest possible
implementation. Any solution must consider the complexity of the code required to implement

2



it. If the code for producing and consuming messages is overly complex, which results in slow or
erroneous execution, the network elements, rather than the network, will become the bottleneck.

The solution is to simply send less stuff–fewer messages and less data. Sending fewer and/or
shorter messages that accomplish the same tasks is likely to decrease network congestion. To send fewer
messages, it is necessary to define less verbose communication protocols that cut down the number of
overhead messages. To send less data, the duplicate and unnecessary data needs to be eliminated.

Table 2 lists some of the possible techniques. The remainder of this paper presents patterns that
explain these techniques in more details.

To mitigate network congestion: How? (pattern number)
Send fewer messages combine multiple messages (1)(2)

short-circuit protocols (1)(3)
piggybacking (5)
use message throttling (6)

Send fewer overhead messages long-lived sessions (4)
Send less data eliminate duplicate data (2)

compress the data (7) (8)
send only changes from the previous value of the data (8)
send data only if needed (3)

Send less overhead per messages combine message payloads (1)
send only changes from previous headers (8)

Table 2: Summary of network congestion solutions. Patterns describing them are listed in parentheses.

The patterns discussed in this paper include:

• Command Bundle

• Message Dispatcher

• Conditional Message

• Persistent Connection

• Piggybacking

• Self Throttling

• Data Compression

• Delta Encoding

A note on the synthesis of form:

The patterns described in this paper share many elements. To avoid repetition, the context, the problem,

and the forces are described once. The description of each pattern begins with the solution, followed by

the resulting context, known uses, and related patterns.

3



1 Command Bundle

When many small messages are exchanged, combine a sequence of messages to the same recipient
into a single message. This increases the payload-overhead ratio, thus decreasing the use of network
bandwidth.

Make each client encode multiple commands into the same network package. Figure 1 shows the
Command Bundle architecture. The sender sends a collection of commands to the receiver using one
network packet. Commands inside a network packet are separated by a terminating character. The
receiver processes each command individually and responds accordingly.

Implementing the Command Bundle requires modifying the receiver, the sender, and the message
structure.

• Sender. The sender packs multiple commands together into a single packet. It must ensure that
they are placed in order and fit within the allowable packet size. Tight packaging of commands
poses a problem when command producers stop generating new ones. If commands are not promptly
available, less-than-full package should be sent. A “send it now” command should be available to
command producers so that they can indicate that no more commands will be generated until the
last ones are sent.

• Receiver. The receiver implementation has to consider that one network packet can hold multiple
application messages and that some messages may span multiple packets. This requires implement-
ing a command parser which has the capacity to split and join commands as appropriate. The
parser must ensure that commands are delivered one at a time and in the order intended by the
sender. One way to view this new design is to decouple the processing of commands from the
mechanism that consumes messages.

• Message Structure. Multiple commands are combined into one larger packet and separated by
a delimiter token.

This solution is applicable when the following conditions apply:

• You have the authority to modify the protocol (i.e. ordering and structure of exchanged messages).

• The time restrictions for delivering and processing messages are not strict.

• The size of a network packet is at least twice the expected size of a command.

∗ ∗ ∗

4



Figure 1: Architecture Supporting Command Bundle

Resulting Context

Protocol Efficiency Payload-overhead ratio of network packets is reduced, and fewer packets are sent.

Sequencing Commands are executed by the receiver in the same order they were encoded by the sender.

Timing/Latency Delays are incurred while composing and parsing a packet with commands. Message
transmission latency is reduced due to channel loading. Once the packet has arrived, processing of
messages contained in a packet is faster than if they were received one command per packet.

Performance The performance will improve if the overhead time (to construct packets of messages and
produce results) is smaller than the time to build and reconstruct the same messages individually.
If the network is not the bottleneck, this solution is likely to increase the time to execute the
commands.

Code Simplicity Packaging ability must be added to the sender and parsing ability to the receiver.
Additional buffer space may be required to store commands waiting to be processed.

∗ ∗ ∗

Known Uses

Extended SMTP

One of the extensions to the Simple Mail Transport Protocol [9] is “command pipelining” defined by
RFC 2920 [12]. Some SMTP commands such as: RSET, MAIL FROM, SEND FROM, SOML FROM, SAML FROM,
and RCPT TO can appear anywhere in a pipelined command group. In this manner, multiple commands
can be contained in a single packet.

Other commands: EHLO, DATA, VRFY, EXPN, TURN, QUIT, and NOOP can only appear as the last com-
mand in a group since their success or failure produces a change of state which the client SMTP must
accommodate. These commands represent the “send it now” functionality of the sender.

Relational Databases

Two database managers provide solutions based on the Command Bundle: Informix [2] and Sybase.
The documentation usually refers to this solution as ”Multiple Statements” or ”Statement Batches”.

One of the problems found in the area of databases is that not all vendors support this feature and not
all drivers support the handling of multiple SQL statements in one string.

5



TCP connection termination [17]

The connection termination phase uses a four-way handshake, with each side of the connection terminating
independently. When an endpoint wishes to stop its half of the connection, it transmits a FIN packet,
which the other end acknowledges with an ACK. Therefore, a typical teardown requires a pair of FIN
and ACK segments from each TCP endpoint.

Figure 2: TCP connection termination

It is possible to terminate the connection by a three-way handshake, when host A sends a FIN and
host B replies with a FIN & ACK (combines two steps into one message) and host A replies with an
ACK.

Related patterns

Message Dispatcher (2) also combines multiple messages into one. Moreover, it eliminates duplicate
data within the combined message.

6



2 Message Dispatcher

If multiple communicating systems transmit the same/similar data and domain-specific features allow for
efficiencies to be achieved in a transmitted message, define a separate entity that sends/receives
messages on behalf of these systems, the message dispatcher.

Provide a single interface which handles message delivery and sending for systems. Have systems
subscribe to the Message Dispatcher and specify their communication requirements. Dynamically com-
pose messages with a minimal information set so as to meet the requirements of all registered systems.
Minimize the communication overhead by sending only one instance of the same data and packaging data
more efficiently. At the receiving Message Dispatcher, interpret and demultiplex messages for distribution
to subscribed systems.

The design is naturally decomposed into an ontology of data fields that are to be transmitted, and
stipulating how the fields are to be composed into a message. Undefined data fields can be incorporated
into the message by using a XML type scheme. Information can also be requested by one Message
Dispatcher from another so as to meet the requirements of its subscribed systems.

Consider for example two pieces of data that are often sent at the same time. Rather than defining
each one of them as a separate data field, define a single combined complex field, thus eliminating the
overhead of multiple data headers. The dispatcher may also modify the data it sends. Rather than send
all the data, send only small updates regarding the amount of change in the data from the previous
message. This is more compact, thus reducing congestion.

Figure 3: Like in Noah’s ark, Message Dispatcher has only one instance of each data type.

Implementing the Message Dispatcher requires adding the receiver and sender Message Dispatchers,
and defining new message structure.

• Sender. Systems register with the Message Dispatcher and submit their data requirements. The
requirements may include latency and frequency of transmission. The sender Message Dispatcher
may obtain data in a variety of ways such as polling applications, maintaining a cache or generating
the data by itself. The sender Message Dispatcher composes a message that meets all the require-
ments of the subscribed systems. Efficiencies such as removing duplicate data fields and combining
related data into a single data field are performed. The message is dispatched.

• Receiver. Systems expecting to receive data register with the receiver Message Dispatcher. On
reception of message, the receiver Message Dispatcher creates multiple messages, one for each
subscribed system. The messages are then delivered to each system.

• Message Structure. Messages in transmit contain a union of the multiple sender system require-
ments. Consequently, the receiver does not know which application on the sender side generated

7



the data.

This solution is applicable when the following conditions apply:

• Multiple systems send and receive messages.

• Distributed coordination between multiple systems on the sender and receiver is prohibitively com-
plex.

• Data is not unique to a particular system, but rather to the collection of systems on the sender or
receiver.

• There is duplication of transmission data requirements between systems.

The Message Dispatcher is best applicable when messages are exchanged frequently in a broadcast
fashion and when it is necessary to support adding new types of data and new systems. Moreover, it is
best when the Message Dispatcher obtains the data independently of the subscribed systems.

∗ ∗ ∗

Resulting Context

Protocol Efficiency Communication overhead is reduced, because information can be encoded in a
single message in which duplicate fields are sent only once. Consequently, fewer messages are
exchanged making the protocol simpler.

Sequencing The order of messages exchanged by Message Dispatchers does not change. But each
Message Dispatcher can create local messages for its subscribers in arbitrary order thus making
sequencing non-deterministic from the perspective of any single subscribed system.

Timing/Latency The overall time for a complete exchange can fluctuate, depending on the size of
exchanged messages. The latency of each message increases, because each message needs to pass
through two Message Dispatchers.

Performance If the time to (de)multiplex messages is low, the performance increases significantly,
because less data needs to be transferred. The throughput of each message increases, because all
the duplicate data is eliminated from the transmission. The performance gain increases as more
communicating systems with overlapping data requirements register with the Message Dispatcher.

Code Simplicity The code required to implement the Message Dispatcher is not complex and amounts
to finding a minimal set of information to be composed into a message. Construction and inter-
pretation of messages according to the Message Composition rules requires simple passing of the
message. The Message Dispatcher sits above the communication stack and thus the channel is
managed by lower levels. Hence, implementing the Message Dispatcher only affects the systems
which are registered with it. The potential complexity is to modify existing systems so as to register
and stipulate information requirements with the Message Dispatcher.

An additional result:

Extensibility Disparate systems on a different peers can communicate through a standard communica-
tion interface. In this way the Message Dispatcher acts as Facade [14] for multiple communicating
systems. This enables new systems to be developed without dependence on existing systems and
without requiring additional messages be created. In other words, the mechanics of the applications
are separated from the communication and information sharing concerns.

∗ ∗ ∗

8



Known Uses

Collaborative Inter-vehicle Wireless Safety Applications [20]

In this example, vehicles communicate with each other using the wireless channel and share information
on road, vehicle and driver conditions. Several applications have been developed including emergency
brake warnings, traffic light violation warnings or detecting collisions. Although the applications are
different, many of the data fields required are common, e.g. vehicle position and speed.

With the potential for many vehicles to be transmitting simultaneously, and the difficulty associated
with coordinating transmissions), reducing channel load so as to reduce interference is important.

The Message Dispatcher has been deployed on several test vehicles at the Toyota Technical Center
in Ann Arbor, Mi. The concept has also been adopted in the Society of Automotive Engineers (SAE)
standard for inter-vehicle wireless communication. It has been found to be particularly useful in adapting
to the changing specifications and requirements of the deployed applications by essentially decoupling
the mechanics of the communication policies.

Dispatcher
Message

Position, Speed
Brake Status

Brake Status
Speed, Position

Application 1

Application 4

Application 5

Position, Speed,
Brake Status,
Acceleration.

Position,
Acceleration.

Standardized Vehicle / OEM Specific

Figure 4: The Message Dispatcher assimilates data requirements from all the on-board applications
and compiles a single message using a dictionary of defined data elements and standardized message con-
struction guidelines. A receiving Message Dispatcher is responsible for separating and disseminating data
elements from the received message to all on-board applications as well as managing data requirements
for surrounding vehicles.

Facebook

This social networking website keeps subscribers informed of their associates’ activities. When two
colleagues perform a similar action, (e.g. both join a group or become friends with someone) a single
notification is provided to their associates. For example, instead of two separate notifications–“Craig
wrote a patterns paper” and then “Paul wrote a patterns paper”–a single notification “Paul and Craig
wrote a patterns paper” would be shown to all subscribed parties.

Related patterns

Command Bundle (1) combines multiple messages, but it does not eliminate duplicate data from
multiple messages.
Message Dispatcher described in the Enterprise Integration Patterns book [16] differs from this pattern.
It provides only message dispatching based on the recipient. It does not consider the contents of the
message and cannot recreate multiple messages for different recipients from a single message.
Publisher-Subscriber [6] is an alternative way of disseminating changing information for the benefit of
a large number of recipients. The Publisher sends out the information that changed and the Subscribers-
recipients are notified of that fact. The Message Dispatcher plays the role of the Publisher when it is
sending out a new message to other Message Dispatchers. It also plays the role of the Subscriber when
it receives a message, updates its own state, and passes the newly acquired information to the local
communicating systems that are registered with it.
The main benefit of Message Dispatcher over Publisher-Subscriber is that it minimizes the number (and
size) of messages sent between communicating systems.

9



3 Conditional Message

When many messages are exchanged to negotiate the optimal type of the response, provide enough
data/context in the request so that the recipient can immediately determine what data to
send back.

To ensure that both the sender and the receiver agree on a specific course of action (e.g. selecting a
particular response from several alternatives), they often need to exchange multiple messages. Sometimes,
for example when setting up a connection (i.e. handshaking), such long exchanges are necessary. But
once a connection is established, message exchanges that follow should be simplified whenever possible,
because they are costly in time and processing. By providing enough relevant information (typically
metadata) in the initial request, the sender may be able to reduce the number of exchanges. Similarly,
the receiver can reduce the number of exchanges by guessing the expected result based on its knowledge
of the sender.

Implementing the Conditional Message requires modifying the receiver, the sender, and the message
structure.

• Sender. The sender constructs a message and considers any potential information expected in a
subsequent response from the receiver. This information is included in the request, provided the
additional data overhead is not prohibitively large. This, a conditional message is generate based
on the receiver’s expected response and a message construction policy of the sender (e.g. maximum
likelihood).

• Receiver. Considers contents of entire received message as well as its own capabilities before
constructing a response and dispatching it to the sender.

• Message Structure. The message contains a set of conditional statements (or equivalently an
ordered list of preferences) related to the receiver’s expected responses.

This solution is applicable when the following conditions apply:

• The next step in the protocol is determined based on the state of the sender and receiver.

• The replaced message exchange is not used for establishing the communication between the sender
and receiver, i.e. there is already an active connection between them.

∗ ∗ ∗

10



Resulting Context

Protocol Efficiency The number of message exchanges is reduced. The initial request message may be
significantly larger (to account for all potential outcomes). The response may be as short as “no
change.”

Sequencing By reducing the length of the negotiation sequence, the complexity due to sequencing is
reduced.

Timing/Latency The time of the complete exchange decreases, because fewer messages are exchanged.
However the latency of an individual response increases. This is because the conditional message
is longer, requiring greater generation and processing time. Alternatively, the recipient may need
to perform extra processing to determine how to respond.

Performance If there are many conditions to consider in a sequence, the performance may be greatly
enhanced, because this solution decreases the communication time, the processing time, and the
size of exchanged data. As a result, the message throughput may decrease.

Code Simplicity The resulting code is more complex at possibly both sender and receiver side, because
they must consider all combinations of possible outcomes.

∗ ∗ ∗

Known Uses

HTTP’s Conditional GET [11]

HTTP supports three ways to check if a representation of a resource stored by a client is still up to date.
The client could send a HEAD to request the metadata of the resource from the server. If the server
returns newer metadata than what the client has, the client sends a GET to get the new contents. This
means that two messages are exchanged. Alternatively, the client could request data by sending a GET
request. The server would respond with the current resource representation, which may be the same as
the data already held by the client. A better solution is to send a conditional GET message–the same as
regular GET, but with a conditional header (e.g. If-Modified-Since, which contains the timestamp of the
client’s current version of the resource). If the server has a newer version, it sends the data; otherwise, it
responds with the status code “304 Not Modified.” Only one message exchange is needed.

HTTP Content Negotiation [11]

Content negotiation enables clients and servers to determine the optimal format of a resource (e.g. GIF,
JPG or PNG for a picture). The server stores the resource internally in a specific format. Each client
(called agent in HTTP specifications) preferrs certain formats. HTTP defines two types of content
negotiation–server-driven and agent-driven.

The server-driven negotiation means that the algorithm for selecting the best representation of a
resource is located on the server. The client specifies the preferred format of a resource in HTTP headers
(e.g. Accept, Accept-Language, Accept-Encoding) of the original request. The server decides what is
the optimal format by taking into account the preferences of the client. Only one message exchange is
needed.

The agent-driven negotiation gives the agent more control over the representation. First the client
submits a request for a resource (with or without a list of preferences). The server responds with the
status code “300 Multiple Choices” that includes a list of available representations. The client selects,
either automatically or with user intervention, the most appropriate format and requests it again from
the server. This approach results in sending the best possible match to the client, but it requires two
message exchanges.

11



VNC

VNC (Virtual Network Computing) protocols support many formats of data transmitted between the
client and the server. For example, in the RFB (remote framebuffer)[19] protocol, the data passed between
the client and the server represents pixels on the client’s screen. RFB supports many formats, so each
client-server pair can negotiate their own preferred format. Rather than suggest one format per message,
the client includes the list of all encodings it supports, in the order of preference, in a SetEncodings

message. The server can use any of the requested formats, but it may also ignore client’s preferences and
select a raw format of the response, which is the default that all RFB clients must support.

Related patterns

Command Bundle (1) combines a sequence of messages into one, but it cannot collapse messages into
fewer commands. The receiver applies the commands sequentially. In the Conditional Message, the next
message in the protocol depends on the context (e.g. the results of the previous messages).

12



4 Persistent Connection

When the connection setup (and/or teardown) requires multiple message exchanges, establish the con-
nection only once and do not tear down the message channel[16]. Keep an open connection
and reuse it for sending subsequent messages. This produces a dedicated channel between the
sender and the receiver that is used for multiple message exchanges.

Persistent connections can also support pipelining, i.e. the ability to send multiple requests without
waiting for a response to the previous requests.

Implementing the Persistent Connection requires modifying the receiver, the sender, and (in some
cases) the message structure.

• Sender. The sender initiates connection setup. Once the connection is established, the sender
monitors its state to determine if the connection is still open when a new request is to be sent. The
sender can monitor the status of the connection and close it if it’s no longer required.

• Receiver. The receiver acknowledges when the persistent connection is established. If it determines
that no more communication will occur on this connection, the receiver may optionally include an
indication that the connection is closing in the response, and then close the connection once the
response is sent.

• Message Structure. In many cases, the message structure is exactly the same as if it were a
standalone message with its own connection. However, when the sender or the receiver decides to
close the persistent connection, the message will include an indicator of the connection state after

this message is consumed. A new message type may be needed for maintaining the connection
status.

This solution is applicable when the following conditions apply:

• Establishing a communication channel between the sender and the receiver requires some negotiation
or handshaking

• The communication between the sender and the receiver includes more than one message exchange

• Connection maintenance requires less overhead than establishing the connection every time

∗ ∗ ∗

Resulting Context

Protocol Efficiency After the connection is established, subsequent exchanges do not require overhead
messages, hence fewer overhead messages need to be sent. However status update messages do

13



require some overhead, but may be mitigated using piggybacking. The application protocol does
not change.

Sequencing Once the connection is established and pipelining is used, multiple requests will be sent
without waiting for the response.

Timing/Latency Once the connection is established, subsequent responses are received faster than
before, since there is no individual connection setup overhead. The latency of a single message is
unchanged.

Performance The benefits of persistent connection are proportional to the number of exchanged mes-
sages. If a typical message exchange consists of only one request-response pair, persistent connec-
tions unnecessarily waste resources.

Code Simplicity Code changes can be localized both on the sender and the receiver, potentially to a
single conditional check for whether an active connection for the sender-receiver pair exists.

∗ ∗ ∗

Known Uses

HTTP/1.1 [11]

HTTP messages are transmitted over TCP. To send an HTTP message, it is necessary to set up a TCP
connection (which requires 4 messages). In HTTP/1.0 [5] the connection is closed after each message
exchange (closing the connection requires sending 3 or 4 more TCP messages). This is very inefficient.
Many performance studies (e.g. [18]) have shown this. Downloading a Web page consisting of 10 resources
requires 90 TCP messages (setup: 4, payload: 2, teardown: 3, repeated 10 times). By keeping the
TCP connection open, downloading 10 resources requires 27 TCP messages (setup: 4, payload: 2 * 10,
teardown: 3). In HTTP/1.1 all connections remain open unless explicitly closed. The HTTP systems
indicate if the connection is closed by including the “Connection: close” header in the response.

HTTP/1.1 supports message pipelining–the client sends multiple requests without waiting for the
response.

ODBC

Open Database Connectivity (ODBC) support persistent connections, with or without pipelining. For
example, Microsoft SQL Server (starting with version 6.0 [3]) uses server-side cursors to support multiple
outstanding requests on a single connection handle. Each cursor operation in the ODBC driver generates
one individual cursor command which is sent to the SQL Server. When the resulting set for each cursor
command is received by the client, the SQL Server accepts another command from another statement
handle over that connection handle.

ATM

ATM networks use persistent connections. Resource reservation is done once and then no subsequent
control messages are sent.

Related patterns

Message Channel [16] describes the details of implementing a dedicated channel between two entities.
Piggybacking (5) can be used to include connection status data in existing messages.

14



5 Piggybacking

If two network elements are already engaged in message exchange, pass new data, unrelated to the
current exchange, in the current message exchange. Include the new data as an addendum to the
exchanged messages rather than sending a new message.

A long message exchange is often called a conversation. This solution suggests using payload capacity
in existing conversations to facilitate opportunistic communication of unrelated data. This is especially
effective if the exchanged messages have some spare space in the message payload where the new data
can be added.

Implementing the Piggybacking requires modifying the receiver, the sender, and the message structure.

• Sender. When required to send a new piece of data to a receiver, the sender examines existing
communication with that receiver. If there is one, the sender incorporates the data into the existing
conversation.

• Receiver. The receiver monitors incoming messages to determine if new data has been appended
to message associated with existing conversations.

• Message Structure. Messages intended for a single receiver may contain any number of unrelated
data elements in addition to the ongoing conversation data.

This solution is applicable when the following conditions apply:

• Sender and receiver frequently conduct unrelated conversations

• The additional data to be sent is small in relation to the volume of the existing communication

∗ ∗ ∗

Resulting Context

Protocol Efficiency The message recipient receives the data from multiple conversations in a single
message, hence fewer messages are exchanged.

Sequencing The relative sequencing of messages between conversations is indeterminate. Typically this
is not a serious concern, because piggybacking usually involves two unrelated conversations.

Timing/Latency Timing between receiving data which has been piggybacked is less predictable, since
this data is opportunistically included in existing communications. Latency does not change for
each individual message, unless there is a significant time delay due to (de)multiplexing data for
each conversation.

15



Performance Starting a new message exchange does not require the connection setup time. As a
result, the actual data is exchanged faster. Additional message overhead for the data that is
piggybacked is also avoided. The throughput of the data-carrying messages may increase because
of the piggybacked data or, if the additional data can be accommodated in the spare bits of the
original communication, it remains the same.

Code Simplicity The improved performance comes at the cost of more complex code for both sender
and receiver. The sender needs to account for many possible combinations of incorporating new data
into existing messages. The receiver needs to demultiplex the data before passing the appropriate
received data to different processing units.

∗ ∗ ∗

Known Uses

SMS [13]

Cell phones use two dedicated channels for communication–a low-bandwidth control channel and a traffic
channel for sending voice packets. Typically, simple commands (e.g. start ringing, user pressed the *
button) are sent to/from the phone on the control channel, because it requires fewer resources. Text
messages (SMS) are exchanged as new messages sent on the control channel. However, if the user is
already in a phone call, there is a traffic channel for sending voice packets. These packets have enough
spare bits to pass the extra data (the text message). By using the extra bits in the existing messages, no
additional resources are used to send text messages.

Mobile phone voicemail notification [13]

In the ANSI-41 protocol for mobile phone communication, a notification message is sent from the system
(specifically, HLR) to the phone when the subscriber receives a voicemail. But if the HLR and the phone
are already exchanging another control message (e.g. updating phone’s location, periodic authentication),
the voicemail notification field is added to that control message. Thus, rather than sending another
message, an existing message is used with few extra bytes appended.

TCP [17]

To ensure reliable service in TCP (Transmission Control Protocol), every request is acknowledged by the
receiver with an acknowledgement number. In a communication between two peers, where both send
requests and responses, the acknowledgement number of a prior message is included in the following
request from the other peer.

Related patterns

Message Dispatcher (2) has more details on one way to implement demultiplexing of data in a message
exchange.
Command Bundle (1) can be thought about as a form of piggybacking. If the first command in the
bundle is the main conversation, all the subsequent commands are piggybacking on top if it.

16



6 Self Throttling

When sending messages is “expensive” for the sender, adapt the frequency of message sends based
on the significance of the transmitted message. Enable the system as well as the users to set
and modify guidelines as to when such messages must be sent out. The application chooses transmit
times based on the existing conditions and imposed guidelines. The user should be able to override the
application’s decision.

The key to the solution is striking a balance between expensive and interesting messages. For example,
if the sender does not receive a response in the expected time, resending the request becomes more
“expensive,” because it is more likely to time out again. Alternatively, if no new event occurs for a long
period of time, the message containing the unchanged data is less “interesting” to the receiver, because
it does not report any new information.

Implementing the Self Throttling requires only modifying the sender.

• Sender. The sender maintains some type of system state which it uses before sending a message, to
determine how “expensive” the message is to send, and how “interesting” it is to the receiver. The
sender decides to send the message, and then updates its history of adaptive predictions accordingly.

• Receiver. No change.

• Message Structure. No change.

This solution is applicable when the following conditions apply:

• Sending a message is “expensive.”

• How “interesting” and “expensive” a message is varies.

• The application needs to adapt to changing network conditions.

∗ ∗ ∗

Resulting Context

Protocol Efficiency Although there is no change in the protocol (the same messages are sent in the
same order), the resulting message exchange is more efficient, because messages are sent only when
required, based on the current system state. Hence, fewer messages are sent per unit of time.

Sequencing There is no change in the sequencing of the messages, only in their frequency.

17



Timing/Latency Messages are sent less often, so the relative time between messages increases. But
the messages are still sent often enough when they become “interesting.” Message latency remains
unchanged.

Performance Since there are fewer messages, and the processing required to check whether to send a
message is typically minimal, the overall performance of self-throttling systems increases. As less
data is exchanged, the throughput typically decreases.

Code Simplicity Defining adaptive algorithms for adjusting the throttling parameters is often the most
difficult part of implementing this solution. System state must also be maintained. Some effort
is needed to add checks of the throttling parameters when a relevant event occurs. Some work is
required to enable the user to change the throttling parameters.

∗ ∗ ∗

Known Uses

Cellular telephony

Messages that are sent out periodically are considered “expensive” in cellular networks. They are sent
only when an “interesting” event happens. For example, location updates are sent only if a cellular phone
has moved from one location area (a group of cells) to another, or has not sent a location update nor
made a call within a relatively long time (e.g. one hour). This helps to relieve congestion of the signaling
channels in both North American and European cellular systems.

Ethernet

In Ethernet, only one node can be sending frames at a time. If a sending node senses that the communica-
tion channel is idle, it starts to transmit the frame. While transmitting, it monitors the presence of signal
from other nodes. If the node transmits the entire frame without detecting signals from other nodes, the
sending is complete. But if it detects signal from other nodes while transmitting, it stops transmitting
the frame, and transmits a jam signal. After aborting, the node enters the exponential backoff phase–it
waits to retransmit progressively longer as it encounters more collisions with other nodes.

Collaborative Inter-vehicle Wireless Safety Applications [20]

Recall that the basic functionality of the Collaborative Inter-vehicle Wireless Safety Applications was
described in the Message Dispatcher pattern. Individual applications subscribed to the Message Dis-
patcher or the Message Dispatcher itself perform self-throttling by selectively excluding the data that is
not sufficiently interesting. For example, an application monitoring a vehicle’s location does not need to
send updates to surrounding vehicles if the vehicle is moving in the same direction at the same speed.
The location-monitoring applications of surrounding vehicles can calculate this information by them-
selves. If a vehicle’s location changes in an unpredictable way (e.g. if it exits from the interstate),
its location-monitoring application needs to send a message with the new location. The new location
becomes “interesting” to the surrounding vehicles, because they cannot calculate it from their own data.

Content Distribution

In Content Distribution systems, not all mirrors get updated with the most recent version of the content
simultaneously. Update algorithms vary, but the processing of the updates is throttled so that the mirror
spends most of its processing handling requests rather than updating its contents.

18



7 Data Compression

Rather than passing data in its original format, apply a compression algorithm to the message
content before sending it. Compression applies to the data as well as the message headers.

Popular data formats, such as XML and plain text can be compressed very effectively. For example,
one military study [23] has found that XMill hybrid compression can reduce the size of large XML
documents to 1% of the original size.

The entropy of a set of data measures the amount of randomness in the data [7]. For example, a bit
sting of ones has an entropy of zero since there is no randomness - all the bits are 1. However, a string of
random ones and zeros (e.g. outcomes of fair coin tosses) has entropy 1. In this way, entropy represents
a bound on the potential effectiveness of data compression. For example, in order to uniquely identify 8
types of widgets, at least 3 bits are needed. More may be used, but despite one’s best efforts to compress
widget description data (e.g. running a zip application twice), the number of bits needed cannot be
reduced below 3. Similarly, in the coin toss example, which has entropy 1, a single bit is required to
describe each outcome of the coin toss. Thus, data compression is best suited for data with high entropy.

Implementing the Data Compression requires modifying the receiver, the sender, and the message
structure.

• Sender. The sender compresses data before transmitting.

• Receiver. The receiver uncompresses the data upon receipt.

• Message Structure. The new message contains compressed data. Unless the compression algo-
rithm is specified, the original data is not generally recoverable from this representation.

This solution is applicable when the following conditions apply:

• The data type has a suitable compression algorithm

• The time to compress and decompress the data is smaller than the time to transfer the data over
the network in the original, non-compressed format

∗ ∗ ∗

Resulting Context

Protocol Efficiency There is no change to the protocol.

Sequencing No change.

19



Timing/Latency Timing does not change either. If the compression shrinks the message to fit into
fewer packets, then message latency decreases; otherwise it is unchanged.

Performance With compression, messages have smaller payloads. If the data spans multiple network
packets, there are fewer packets to send per message. Hence, throughput is increased. Only if the
(de)compression time is long, compared to the network speed does this solution degrade perfor-
mance.

Code Simplicity Adding the code to implement each new data format is a one-time effort. Once
implemented, it can be reused in other applications. Generic compression algorithms may also be
used, e.g. Ziv-Lempel.

∗ ∗ ∗

Known Uses

HTTP [11]

HTTP/1.1 supports end-to-end and hop-by-hop message compression. The end-to-end compression is
specified in the Content-Encodings header. It describes what additional encoding of the message was
performed by the sender (e.g. “Content-Encoding: gzip”). The hop-by-hop compression is specified in
the Transfer-Encoding header (e.g. “Transfer-Encoding: chunked”). It is applied by the network elements
transmitting the HTTP messages to speed up the transmission.

Data Aggregation in Sensor Networks [15]

In LEACH (Low-Energy Adaptive Clustering Hierarchy) wireless application-level protocol, nodes are
organized in clusters. Only the cluster-heads communicate with the base station by sending and receiving
messages. The data collected by individual nodes is passed to cluster-heads, which collects the data,
analyzes it, and sends a single message to the base station. Rather than sending individual data points,
the cluster-head sends a summary (e.g. a sufficient statistic, such an average value of all the nodes).

Web services: SOAP compression

Apache Axis/1.x supports compression of SOAP messages [4]. The metadata about the compression in
use is sent from the client to the server in HTTP headers. The client compresses the SOAP request and
indicates the compression algorithm in the “Content-Encoding” HTTP header. If the client is willing
to accept a compressed response, it adds an “Accept-Encoding” header field indicating the acceptable
encoding (typically gzip). If the response from the server includes the “Content-Encoding” header, the
SOAP response is decompressed before being processed by the Web service.

Related patterns

Delta Encoding is a special case of Data Compression where only the information that changed from
the previous message is included in the following message.
Message Dispatcher performs a simple type of data compression by eliminating duplicate instances of
the same data field.

20



8 Delta Encoding

When the exchanged messages contain updates of data, send the change from the previous value
rather than the entire contents. Delta encoding is applicable to the data as well as the message
headers.

Implementing the Delta Encoding requires modifying the receiver, the sender, and the message struc-
ture.

• Sender. The sender calculates the changes of the data to be transmitted from the most recently
sent update. It encodes the changes in the delta format and sends the message containing only the
changes. Periodically, the sender sends the complete representation to enable the receiver to verify
that its representation is still correct.

• Receiver. Upon receiving the delta message, the receiver applies the deltas to the data it contains.
Upon receiving a full representation, the receiver checks it against its copy. If the representations
are not identical, it replaces its current copy with the one received and (potentially) initiates some
consistency checks to determine the cause of the discrepancy.

• Message Structure. Most messages contain only the changes from previous message. The original
data is not recoverable from this representation; only the receiver that stores the previous values of
the data can interpret the encoding.

This solution is applicable when the following conditions apply:

• The data transmitted in subsequent messages changes slowly

• The changes can be described in a succinct format

• The time to recover the original data is shorter than the time to transfer the data over the network
in the original format

∗ ∗ ∗

Resulting Context

Protocol Efficiency There is no change to the protocol.

Sequencing Sequencing does not change. It cannot change. Because messages contain only updates,
processing them out of sequence may result in unpredictable behavior. Ensuring that messages are
processed in the same order they were generated is critical.

Timing/Latency Timing does not change. Since the delta encoding shrinks the message to fit into
fewer packets, message latency decreases.

21



Performance With delta encoding, messages have smaller payloads. If the data spans multiple network
packets, there are fewer packets to send per message. Hence, throughput is increased. Because
they only communicate with deltas, the sender and receiver need to maintain the actual state of all
exchanged data and ensure that it is correct. If the storage requirements are high, the performance
may decrease.

Code Simplicity As more advanced encoding algorithms are used, the efficiency of delta encoding
increases, but the code complexity increases. Message data storage management may also become
complex.

∗ ∗ ∗

Known Uses

MPEG-2 [1]

MPEG is an encoding and compression system for digital multimedia content defined by the Motion
Pictures Expert Group (MPEG). MPEG-2 video compression algorithm achieves very high rates of com-
pression by exploiting temporal and spatial redundancy in video information. Temporal redundancy

indicates that successive frames of video display the same scene. The content of the scene often remains
fixed or to change only slightly between successive frames. Spatial redundancy occurs because parts of
the picture are often replicated (with minor changes) within a single frame of video.

In addition to highly efficient compression, MPEG must enable random access to the video. To
accomplish these two tasks efficiently, MPEG-2 supports three main picture types: I-Pictures, P-Pictures,
and B-Pictures. Intra coded pictures (I-Pictures) are coded without reference to other pictures. They
provide access points to the coded sequence where decoding can begin, but are coded with only moderate
compression to take advantage of the spacial redundancy. Predictive coded pictures (P-Pictures) are coded
more efficiently using motion compensated prediction from a past intra or predictive coded picture. They
can be used as a reference for further prediction. Bidirectionally-predictive coded pictures (B-Pictures)
provide the highest degree of compression, because their contents are based on differences from both past
and future reference pictures. The organization of the three types in a sequence is left to the encoder
and depends on the requirements of the application.

ROHC [10]

Robust Header Compression (ROHC) is a standard for compressing RTP/UDP/IP (Real-Time Transport
Protocol, User Datagram Protocol, Internet Protocol), UDP/IP, and ESP/IP (Encapsulating Security
Payload) headers. The ROHC algorithm is similar to video compression. The first packet sent is the
base frame that contains complete headers. It is followed by several difference frames that include only
changes from prior packets, and an occasional base frame. This enables ROHC to survive many packet
losses in its highest compression state, as long as the base frames are not lost.

MIDI [21]

The Running Status option of the MIDI (musical instrument digital interface) standard illustrates another
way to compress message headers. In MIDI, every message consists of 3 bytes–one status byte which
contains the message type (e.g. Note On, Note Off) and two bytes of the data. If the subsequent messages
have the same status byte, the status byte is omitted and two-byte messages that contain only the data
are sent. The receiver understands implicitly that the status byte is the same as in the previous message.

Related patterns

Data Compression is a more general pattern that accounts for changing the encoding and other ways
of modifying the representation of data.

22



Other patterns referenced in the text

Facade - Design Patterns [14]
Message Channel - Enterprise Integration Patterns [16]
Message Dispatcher - Enterprise Integration Patterns [16]
Publisher-Subscriber - Pattern-Oriented Software Architecture [6]

Acknowledgements

The authors would like to thank their PLoP shepherd, Amir Raveh, for his watchful eye, patience, and
constructive feedback.

References

[1] Information Technology–Generic Coding of Moving Pictures and Associated Audio Information:
Video, ISO/IEC 13818-2. Technical report, ITU-T, 1995.

[2] Executing Multiple SQL Statements. http://publib.boulder.ibm.com/infocenter/idshelp/v10/index
.jsp.

[3] INF: Multiple Active Microsoft SQL Server Statements. http://support.microsoft.com/kb/140896.

[4] Thomas Bayer. SOAP Compression for Apache Axis 1.X. http://www.thomas-bayer.com/axis-soap-
compression.htm.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0. Technical
report, Network Working Group, 1996.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-

Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory, 2nd Edition. Wiley-
Interscience, 2006.

[8] Phillip Dykstra. Protocol Overhead. http://sd.wareonearth.com/ phil/net/overhead/.

[9] J. Klensin (Editor). Simple Mail Transfer Protocol. Technical report, The Internet Engineering Task
Force - IETF, 2001.

[10] C. Bormann et al. RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed. Technical report, The Internet Engineering Task Force - IETF, 2001.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol HTTP/1.1. Technical report, The Internet Engineering Task Force - IETF, 1999.

[12] Ned Freed. SMTP Service Extension for Command Pipelining. Technical report, The Internet
Engineering Task Force - IETF, 2000.

[13] Michael Gallagher and Randall Snyder. Mobile Communications Networking with ANSI-41. McGraw
Hill, 2002.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Programming. Addison Wesley, 1994.

[15] Wendi Heinzelman. Application-Specific Protocol Architectures for Wireless Networks. PhD Thesis,
MIT, 2000.

23



[16] Gregor Hohpe and Bobby Wolfe. Enterprise Integration Patterns: Designing, Building, and Deploy-

ing Messaging Solutions. Addison Wesley, 2003.

[17] University of Southern California Information Sciences Institute. Transmission Control Protocol.
Technical report, The Internet Engineering Task Force - IETF, 2.

[18] V. Padmanabhan and J. Mogul. Improving HTTP latency. Computer Networks and ISDN Systems,
1995.

[19] Tristan Richardson. The RFB Protocol. http://www.realvnc.com/docs/rfbproto.pdf.

[20] C.L. Robinson, L. Caminiti, D. Caveney, and K. Laberteaux. Efficient Coordination and Transmis-
sion of Data for Cooperative Vehicular Safety Applications. VANET’06, September 29, 2006, Los

Angeles, 2006.

[21] Joseph Rothstein. MIDI: A Comprehensive Introduction. A-R Editions, Inc., 1992.

[22] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-End Argument in System Design. ACM Transac-

tions in Computer Systems 2, 4, pages 277–288, November, 1984.

[23] Dan Winkowski and Mike Cokus. XML Sizing and Compression Study For Military Wireless Data.
XML, 2002.

24


