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Abstract

The recently introduced approach for Encrypted Image Folding is generalized to make
it self-contained. The goal is achieved by enlarging the folded image so as to embed all
the necessary information for the image recovery. The need for extra size is somewhat
compensated by considering a transformation with higher folding capacity. Numerical
examples show that the size of the resulting cipher image may be significantly smaller
than the plain text one. The implementation of the approach is further extended to deal
also with color images.

1 Introduction

As cameras and digital scanners of very high resolution are becoming widely available, use
of high resolution digital images is becoming part of everyday life. From a mathematical
standpoint a digital image is a 2D data array, say I ∈ RNx×Ny . Each data point is referred to as
a pixel. For a gray level image, each pixel is represented with an intensity value I. For an RGB
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representation of a color image, each pixel consists of a color triple (IR, IG, IB) representing the
intensity of the red, green and blue components, respectively.

The array of pixels used to represent a high resolution digital image is expected to be huge.
Obviously storage and transmission of this raw data is impractical. Consequently, a reduction
in data dimensionality is essential. The process that creates a compact data representation is
called compression. Because of the nature of its informational content compressing an image
usually involves special techniques. As opposed to binary files where a single bit error may
destroy the whole piece of data, some distortion is usually tolerable even when compressing
high quality images. This is because the visual perception of the image is more important than
the exact pixel values.

The most frequently applied image compression techniques involve transform coding which
has three main steps: i)Application of an invertible transform to the intensity image. ii)Quantization
of the transformed data. iii)Bit-stream coding.

The familiar compression standard JPEG, for instance, implements step i) using the Discrete
Cosine Transform (DCT), while the more recent, JPEG2000, uses Discrete Wavelet Transform
(DWT).

Another problem associated with the transmission of digital images is security. It comprises
several aspects, including confidentiality and access control which are addressed by encryption.
This implies that only parties holding decryption keys can access content of an image. Conven-
tional image encryption is based on techniques developed for general data [1, 2]. In principle
generic encryption can be applied to a digital image before or after compression. However,
encryption before compression would change the statistical properties of the image preventing
compression from being applied successfully.

On the other hand, as well as effecting the compression performance, direct encryption of
the compressed data results in a bit stream that is incompatible with the original image file
format. Less stringent schemes involve partial (or selective) encryption [1, 2]. However the
security of these encryption systems is lower when compared to full encryption.

Enhancing security of conventional compression/encryption techniques, using a chaotic map
at the bit-stream coding step, is proposed in [3, 4]. However, for the most part, the line
of research for image encryption based on Chaotic Cryptography [5–15] has been developed
to operate directly on the pixel/intensity representation of an image. An interesting critical
analysis of the research in this area can be found in [16]. The connection between chaotic and
conventional cryptography is considered in [17].

Chaos based image encryption takes advantage of the extreme sensitivity to initial conditions
of some dynamical systems, to control the ‘confusion’ of pixels in an intensity image.

Thus, a chaotic method breaks the structure of the plain text image, producing a cipher
image which is no longer compressible by conventional transform coding techniques. Hence,
within the traditional chaos based framework for image encryption the problem of storage and
transmission of large images is currently unsolved.

An alternative framework, involving only mathematical operations on an intensity image,
but addressing simultaneously the problems of data reduction and encryption, has been recently
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introduced in [18]. The scheme is termed Encrypted Image Folding (EIF). The first step of
this new scheme differs from step i) in the above mentioned conventional compression scheme
in that, instead of using orthogonal transformations (e.g. DCT or DWT) the transformation is
realized by means of highly nonlinear approximation techniques. This increases the difficulty of
the approximation process but at the same time renders significant improvement in the sparsity
of the image representation.

Quantization and data reduction are achieved simultaneously by embedding some of the
transformed data into a section of the image. Privacy is protected by granting access to the
embedded data only to key holders.

The underlying principle of the proposed framework is very simple: Suppose that an image
is given as an intensity array I ∈ RNx×Ny and suppose also that, through a transformation
B̂ : RNx×Ny → RK , one can approximate equivalent information from an array c ∈ RK obtained
as c = B̂I. If K < NxNy by a considerable amount, c is said to be a sparse representation of
the image I. It follows then that a suitable transformation to achieve sparsity should be rank
deficient, with an associated null space, null(B̂), of large dimensionality. Such a transformation
creates room for storing covert information. Indeed, if one considers an element F ∈ null(B̂)
and adds it to the image, so as to create a new array G = I + F , one obtains the identical
representation B̂G = B̂I = c. The sparser the representation of an image, the larger the null
space of the associated transformation. Consequently, the first part of this effort focuses on
the design of an effective transformation for this purpose. The transformation is adaptively
constructed by the greedy selection strategy called Orthogonal Matching Pursuit (OMP).

The viability of EIF, as proposed in [18], stems from the possibility of processing a large
image by dividing it into small blocks. This allows the representation of some of the blocks to
be embedded into other blocks, realizing in that manner the folding of the image. However,
the technique in [18] is not self-contained, because, in addition to the folded image, extra in-
formation is required at the unfolding step, and that information depends on the image. In
this Communication we propose to extend EIF so as to make it self-contained. We term such
an extension Self-Contained Encrypted Image Folding (SCEIF), because all that is needed to
successfully unfold the image is the private key. This goal is accomplished by enlarging the
folded image to create further space for the required information. The need for extra size is
compensated by considering a transformation with the capability of yielding sparser represen-
tations than that in [18], therefore improving folding capacity. Access control to the folded
image is realized using a simple symmetric key encryption algorithm. The whole procedure is
characterized by its potential for real time implementation using parallel processing, but also
for its competitiveness using sequential processing.

The paper is organized as follows. In Sec. 2 we discuss the strategy for achieving a high level
of sparsity in image representation using the greedy selection strategy OMP, implemented here
in 2D with separable dictionaries. The framework for extending EIF to SCEIF is discussed
in Sec. 3 and illustrated in Sec. 4 by its application on i) an astronomical image created at
the European Southern Observatory and ii) a photograph of the natural world provided by
National Geographic. Remarks on the quality and security of the recovered images are given
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in Sec. 5. Conclusions and final remarks and are summarized in Sec. 6.

2 Sparse Image Representation

The approach to be introduced in the next section relies on the ability to design a specific
transformation which gives rise to a sparse representation of an image. This section is dedicated
to the construction of such a transformation.

Suppose that an image, given as an array I ∈ RNx×Ny of intensity pixels, is to be approxi-
mated by the linear decomposition

IK =
KX

k=1

ckd‘k
, (1)

where each ck is a scalar and each d‘k
is an element of RNx×Ny to be selected from a set,

D = {dn}M
n=1, called a ‘dictionary’.

A sparse approximation of I ∈ RNx×Ny is an approximation of the form (1) such that the
number K of elements in the decomposition is significantly smaller than N = NxNy. Clearly
one of the crucial issues to achieve high levels of sparsity is the selection of the right elements to
decompose the image. This goal has motivated the introduction of highly nonlinear techniques
for image approximation, which operate outside the traditional basis framework. Instead,
the terms in the decomposition are taken from a large redundant dictionary, from where the
elements d‘k

in (1), called ‘atoms’, are chosen according to some optimality criterion.
Within the redundant dictionary framework for approximation, the problem of finding the

sparsest decomposition of a given image can be formulated as follows:
Approximate the image by the ‘atomic decomposition’ (1) such that the number K of atoms

is minimum.
Equivalently, for a dictionary of M > N elements the statement is reworded as:
Find the atomic decomposition:

IK =
MX

n=1

cndn, (2)

such that the counting measure kckα=0 :=
PM

n=1(cn)0 is minimized.
Unfortunately the numerical minimization of kckα=0 restricted to (2) involves a combina-

torial problem for exhaustive search and is therefore intractable with classical means. Hence,
one is forced to abandon the sparsest solution and look for a ‘satisfactory solution’, i.e, a solu-
tion such that the number of nonzero coefficients in (2) (equivalently, the number of K-terms
in (1)) is considerably smaller than the image dimension. One possibility for constructing a
solution of this nature could be to fix a value of α ∈ (0, 1] and minimize the diversity measure,PM

k=1 |ck|α [21], closely related to the α-entropy giving rise to the non-extensive statistical me-
chanics [22,23]. However, the numerical implementation of this possibility is too demanding to
apply in the present context. In contrast, the goal of finding a sparse solution can be achieved

4



at speeds comparable to fast transforms by the greedy technique called OMP that we dedicate
to be applied in 2D. This approach selects the atoms in the decomposition (1) in a stepwise
manner, as will be described in the next section.

2.1 Orthogonal Matching Pursuit in 2D

OMP was introduced in [24]. We describe here our implementation in 2D, henceforth referred to
as OMP2D. Our version of the algorithm is specific to separable dictionaries, i.e, a 2D dictionary
which corresponds in effect to the tensor product of two 1D dictionaries. The implementation
is based on adaptive biorthogonalization and Gram-Schmidt orthogonalization procedures, as
proposed in [25, 26]. However, the optimized selection proposed in [25] is not considered here,
due to the computational demands of such a selection process.

The images we are concerned with are assumed to be either gray level intensity images or
color images stored in a standard RGB format. This format stores three color values, R(Red),
G(Green) and B(Blue), for each pixel. Hence, the color image is given as three independent 2D
arrays, each called a ‘channel’. We represent the RGB channels as the arrays Iz ∈ RNx×Ny , z =
1, 2, 3 (a gray level intensity image can be considered a particular case of this representation
corresponding to a unique index z = 1).

Given an RGB image Iz ∈ RNx×Ny , z = 1, 2, 3 and two 1D dictionaries Dx = {Dx
n ∈ RNx}Mx

n=1

and Dy = {Dy
m ∈ RNy}My

m=1 our purpose is to approximate the arrays Iz ∈ RNx×Ny , z = 1, 2, 3
using common atoms for the three images. More precisely, for i = 1, . . . , Nx and j = i, . . . , Ny

we look for approximations of the form

IK
z (i, j) =

KX
n=1

cz
nD

x
‘x
n
(i)Dy

‘y
n
(j), z = 1, 2, 3. (3)

Notice that, while the coefficients cz
n in the above decomposition depend on the image Iz, the

atoms participating in the decompositions are common to all the channels. For selecting those
atoms we adopt the OMP selection criterion extended to simultaneous decomposition of signals.
A discussion of this criterion can be found in [27], an in our context is implemented as follows:

On setting R0
z = Iz, z = 1, 2, 3 at iteration k +1 the algorithm selects the atoms Dx

‘x
k+1

∈ Dx

and Dy
‘y
k+1

∈ Dy that maximize the sum over z of the Frobenius inner products absolute value

|hDx
n, R

k
zD

y
miF|, n = 1, . . . ,Mx, m = 1, . . . ,My, i.e.,

‘x
k+1, ‘

y
k+1 = arg max

n=1,...,Mx
m=1,...,My

3X
z=1

|
Nx,NyX

i=1
j=1

Dx
n(i)Rk

z(i, j)Dy
m(j)|,

with

Rk
z(i, j) = Iz(i, j)−

kX
n=1

cz
nD

x
‘x
n
(i)Dy

‘y
n
(j), z = 1, 2, 3.

(4)
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The three sets of coefficients cz
n, n = 1, . . . , k involved in (4) are such that kRk

zkF is minimum
for each z. (k · kF being the Frobenius norm). This is guaranteed by calculating the coefficients
cz
n, z = 1, 2, 3 as

cz
n = hBk

n, IziF, n = 1, . . . , k, (5)

where matrices Bk
n, n = 1, . . . , k, are recursively constructed at each iteration step as indicated

in Appendix A.
The algorithm iterates up to step, say K, for which, for a given ρ, the stopping criterionP3

z=1 ||Iz − IK
z ||2F < ρ is met. The MATLAB function for the implementation of the OMP2D

approach on multiple 2D signals, which we have called OMP2DMl, is available from [28]. The
corresponding MEX file in C++, for faster implementation of the identical function, is also
available from [28].

2.2 Constructing the dictionary

The other crucial design for success in finding a ‘good enough’ sparse representation of the form
(3) is the dictionary which provides the possible choices of atoms at the selection step.

The mixed dictionary used in [18] for this purpose consists of two components for each 1D
dictionary:

• A Redundant Discrete Cosine dictionary (RDC) Dx
1 as given by:

Dx
1 = {wc

i cos(
π(2j − 1)(i− 1)

2Mx

), j = 1, . . . , Nx}Mx
i=1,

with wc
i , i = 1, . . . ,Mx normalization factors. For Mx = Nx this set is a Discrete Cosine

orthonormal basis for the Euclidean space RNx . For Mx = 2lNx, with l ∈ N, the set is an
RDC dictionary with redundancy 2l, that will be fixed equal to 2.

• The standard Euclidean basis, also called the Dirac basis, i.e.

Dx
2 = {ei(j) = δi,j, j = 1, . . . , Nx}Nx

i=1.

Now we include an additional component:

• A family of cubic B-spline dictionaries of different support, as proposed in [29], but
discretizing the domain by taking the value of a prototype B-spline only at the knots
and translating that prototype one point at each translation step. Each B-spline based
dictionary is given as

Dx
s = {ws

i B
s
m(j − i)|Nx; j = 1, . . . , Nx}Ms

x
i=1,

where the notation Bs
m(j − i)|Nx indicates the restriction of the B-spline of order m,

centered at the point i, to be an array of size Nx. Cubic splines are obtained setting
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m = 4. The factors ws
i , i = 1, . . . ,Mx

s are normalization constants, with M s
x the number

of atoms in the dictionary s. The values of s to be considered are s = 3 and s = 4, which
label the dictionaries arising as translation of a prototype B-spline having, respectively,
3 and 7 points of nonzero value (see Fig. 1).
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Figure 1: The discrete prototype cubic B-splines of supports 3, and 7, generating (by translation at
every point) the dictionaries Dx

3 and Dx
4 , respectively.

The complete 1D dictionary is constructed as Dx = ∪4
s=1Dx

s . The dictionary Dy is built in
equivalent fashion, but changing Nx to Ny and Mx to My when applicable.

The required 2D dictionary is formed as D = Dx⊗Dy. However, it is not necessary to store
the 2D dictionary D, since the algorithm takes advantage of the separability inherent in its
construction. This advantage significantly reduces storage demands and extends the possibility
of using the OMP approach in 2D.

It is time now to examine closely the term ‘good enough’ for a sparse decomposition. Within
the present context by the term good enough we mean a decomposition that a)increases sparsity
well beyond the levels attained by such techniques as DCT or DWT, and b)requires comparable
computational time.

Remark 1. The suitability of the mixed dictionary for block processing is essential in fulfilling
requirements a) and b) above, i.e., for processing an image by dividing it into small blocks
and approximate the blocks independently. This feature renders the complexity of the highly
nonlinear, and otherwise costly selection technique, linear in terms of the number of blocks
employed in decomposing the image.

The capacity of the dictionary based approach to achieve a satisfactory sparse approximation
of an image will become clear when illustrating the SCEIF technique in Sec. 4. In addition, we
present some comparisons on the results on standard test images which are listed in the first
column of Table 1. All the images are 8-bit gray level intensity images of 512× 512 pixels. For
the actual processing we divide each image into blocks of 8 × 8 pixels and process the blocks
independently. The approximated blocks are then assembled to give the approximated image.
Sparsity is measured by the Sparsity Ratio (SR) defined as
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Image Dictionary DCT DWT

Barbara 5.02 3.10 2.94
Boat 4.61 2.61 2.60
Bridge 3.24 1.79 1.86
Film Clip 5.86 3.29 3.34
Lena 6.51 3.81 4.04
Mandrill 2.85 1.64 1.64
Peppers 5.23 2.88 2.96

Table 1: Comparison of the Sparsity Ratio (for PSNR 43dB ) achieved by the mixed dictionary
(second column) and that yielded by DCT and DWT (3rd and 4th columns respectively). The first
column lists the names of the popular test images where the approaches are compared.

SR =
total number of pixels

total number of coefficients
.

In all the cases the number of coefficients is determined as the one required to produce a high
quality approximation with no visual deterioration with respect to the original image, in this
case corresponding to a PSNR of 43dB (c.f. (16)). The sparsity results achieved by selecting
atoms with OMP2D, from the proposed mixed dictionary, are displayed in the second column
of Table 1. The third column shows results produced by the DCT implemented using the
same blocking scheme. For further comparison the results produced by the Cohen-Daubechies-
Feauveau 9/7 DWT (applied on the whole image at once) are displayed in the last column of
Table 1. Notice that while for the fixed PSNR of 43dB the DCT and DWT approaches yield
comparable SR, the corresponding SR obtained by the mixed dictionary, for all the images,
is significantly higher. What is of paramount importance to our current interest is that the
processing time is very competitive. The actual speed of the approximation depends, of course,
on the sparsity of each image. For the set of images in Table 1 the mean SR is 4.76 and the
mean processing time is 1.72 seconds per image (average of ten independent runs in MATLAB
environment implemented in a 14” laptop with a 2.8 GHz processor and 3GB RAM).

3 Self Contained Encrypted Image Folding

The idea of using the null space of a transformation for storing information in encrypted form
was first outlined in [19] and further discussed in [20]. However, it has been only recently
materialized as the EIF application [18]. The denomination is meant to reflect a particular
feature; the space created by a sparse representation of an image is used to store part of the
image itself, thereby reducing the original image size.

As already stated, we process each image Iz, z = 1, 2, 3 by dividing it into, say Q, blocks
Iz,q, q = 1, . . . , Q, which without loss of generality are assumed to be square of Nq × Nq
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intensity pixels. For a fixed q-value the three blocks of intensity arrays Iz,q, z = 1, 2, 3 (each
of which corresponds to a color channel) are simultaneously approximated using the dictionary
D = Dx ⊗Dy, as given in Sec 2.2, by the atomic decomposition

IKq
z,q =

KqX
n=1

cz,q
n Dx

‘x
n

qDy

‘y
n

q , q = 1, . . . , Q, z = 1, 2, 3 (6)

where Dx
‘x
n

q and Dy

‘y
n

q , n = 1, . . . , Kq are the atoms that have been selected through the approach

of Sec 2.1 and span a subspace VKq = span{Dx
‘x
n

q ⊗Dy

‘y
n

q}Kq

n=1 ⊂ RNq×Nq .

For (6) to be a sparse approximation of Iz,q the number of Kq terms should be considerably
smaller than N2

q . In other words, the dimension N2
q − Kq of the orthogonal complement of

VKq in RNq×Nq , which is indicated as V⊥Kq
, should be significant in relation to N2

q . In line

with [18] the subspace V⊥Kq
is used to embed a part of the image in another part of the image,

as described below. The approximated image IK
z = ∪Q

q=1I
Kq
z,q z = 1, 2, 3 is the plain text and the

cipher is the folded image.

3.1 Folding Procedure

A number of, say 3H, blocks are kept as ‘hosts’ for embedding the coefficients of the remaining
3(Q−H) equations (6). For this, first the coefficients cz,q

n , n = 1, . . . , Kq, q = (H+1), . . . , Q, z =
1, 2, 3 are relabeled to became the components of vectors (hz,q

1 , . . . , hz,q
Lq

), q = 1, . . . , H, z =

1, 2, 3, each of length Lq = N2
q − Kq. These vectors are embedded in the 3H host blocks,

according to the procedure given in [18], as follows.

• For each value of q and z build a block of pixels Fz,q ∈ RNq×Nq as

Fz,q =

LqX
i=1

hz,q
i U z,q

i , q = 1, . . . , H, z = 1, 2, 3 (7)

where U z,q
i ∈ RNq×Nq , i = 1, . . . , Lq is an orthonormal basis for V⊥Kq

obtained as follows:

a) Using matrices Y z,q
i ∈ RNq×Nq , i = 1, . . . , Lq randomly generated, with a public

initialization seed, and the already constructed projector P̂VKq
(c.f.(A.2)), for q =

1, . . . , H and z = 1, 2, 3 compute the matrices Oz,q
i as

Oz,q
i = Y z,q

i − P̂VKq
Y z,q

i ∈ V⊥K , i = 1, . . . , Lq. (8)

b) Transform these matrices, using a random transformation Π̂key initialized with a
private key, to obtain a private set of matrices

Π̂key : (Oz,q
i , i = 1, . . . , Lq) → {Xz,q

i }Lq

i=1. (9)
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b) For each z and q use an orthonormalization procedure, that we indicate by the

operator [Orth(·), to orthonormalize matrices Xz,q
i , i = 1, . . . , Lq, and have the or-

thonormal basis

{U z,q
i }Lq

i=1 = [Orth(Xz,q
i , i = 1, . . . , Lq), q = 1, . . . , H, z = 1, 2, 3 (10)

to be used in (7) for embedding the coefficients of the remaining blocks I
Kq
z,q , q =

(H + 1), . . . , Q, z = 1, 2, 3.

• Fold the image by the superpositions Gz,q = I
Kq
z,q + Fz,q, q = 1, . . . , H, z = 1, 2, 3 and

subsequent composition Gz = ∪H
q=1Gz,q, z = 1, 2, 3.

3.1.1 Making the approach self contained

Knowledge of the coefficients in (6) is not enough to reconstruct the blocks I
Kq
z,q , q = 1, . . . , Q, z =

1, 2, 3. For each q-value it is also necessary to know the indices of the atoms in the decomposi-
tion. This matter is not considered in [18]. A contribution of this effort is the generalization of
the previous approach to deal with the storage of indices as well. The present proposal consists
of creating some ‘ad hoc’ blocks to embed the required indices. Without loss of generality the
blocks are assumed to be square containing Ñq×Ñq intensity pixels. Using any atom normalized

to unity, say Aq ∈ RÑq×Ñq , the ad hoc intensity arrays Ĩq ∈ RÑq×Ñq , q = 1, . . . H̃ are created as

Ĩq = KqAq, q = 1, . . . , H̃, (11)

and L̃q = Ñ2
q −1 indices are embedded in the orthogonal complement (with respect to RÑq×Ñq)

of the subspace spanned by the single atom Aq. The embedding procedure is equivalent to that
for embedding the coefficients, i.e.,

• For q = 1, . . . , H̃ using a public initialization seed generate the random matrices Ỹi, i =
1, . . . , L̃q to calculate the matrices Õq

i as

Õq
i = Ỹ q

i − AqhAq, Ỹ
q
i iF, i = 1, . . . , L̃q. (12)

• Transform these matrices, using a random transformation initialized with the private key,
to obtain a private set of matrices

Π̂key : (Õq
i , i = 1, . . . , L̃q) → {X̃q

i }
L̃q

i=1. (13)

• For each q-value use the orthonormalization procedure [Orth(·) to orthonormalize matrices
X̃q

i , i = 1, . . . , L̃q, to have the orthonormal basis

{Ũ q
i }

L̃q

i=1 = [Orth(X̃q
i , i = 1, . . . , L̃q), q = 1, . . . , H̃, (14)

10



needed to embed the indices. For this, first map each ordered pair of indices (n, m), n =
1, . . . ,M q

x , m = 1, . . . ,M q
y (which label the 2D dictionary atoms) to the single label

ñ = 1, . . . ,M q
xM q

y . Now the steps for embedding the indices of the atoms in I
Kq
z,q , q =

1, . . . , Q (c.f. (6)) parallel those for embedding the coefficients. Arrange the indices to be
components of vectors (h̃q

1, . . . , h̃
q

L̃q
), q = 1, . . . , H̃. For each q-value, use the corresponding

vector to generate the block of pixels F̃q ∈ RÑq×Ñq as

F̃q =

L̃qX
i=1

h̃q
i Ũ

q
i , q = 1, . . . , H̃. (15)

• Now ‘fold’ the ad hoc blocks by the superpositions G̃q = Ĩq + F̃q, q = 1, . . . , H̃ and

subsequently produce the composition G̃ = ∪H̃
q=1G̃q to be split into three channels G̃z, z =

1, 2, 3.

The folding process finishes by joining the folded channels Gz, z = 1, 2, 3 and the ad hoc ones
G̃z, z = 1, 2, 3 to create the single folded RGB image Ifoldedz , z = 1, 2, 3 as

Ifoldedz = Gz ∪ G̃z, z = 1, 2, 3.

This image is now endowed with all the information that is needed to recover the approximation
of the original image.

Note: Parameters, such as the public seed and the original image dimensions which would
normally be placed in the header, are added as pixel values in the last row of the folded image.

3.2 Recovering Procedure

At this stage the approximation IK
z = ∪Q

q=1I
Kq
z,q , z = 1, 2, 3 of the RGB image Iz, z = 1, 2, 3 is

recovered from the folded RGB image Ifoldedz , z = 1, 2, 3 by following the steps below.

• Separate Ifoldedz into Gz, z = 1, 2, 3 and G̃, and these into the blocks Gz,q, q = 1, . . . , H, z =
1, 2, 3 and G̃q, q = 1, . . . , H̃.

• Obtain Kq, q = 1, . . . , H̃ from the inner products hAq, G̃qiF = Kq, q = 1, . . . , H̃ (the
remaining ones, Kq, q = H̃ + 1, . . . , Q, can be hidden in some additional ad hoc blocks
or just given as plain text intensity pixels).

• Obtain F̃q as F̃q = G̃q −KqAq, q = 1, . . . , H̃.

• Recover the indices (h̃q
1, . . . , h̃

q

L̃q
), q = 1, . . . , H̃ as

h̃q
i = hŨ q

i , F̃qiF, i = 1, . . . , L̃q,

and map them back to the arrays of ordered pairs {(‘x
n

q, ‘y
n

q)}Kq

n=1, q = 1, . . . , Q.
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• Obtain I
Kq
z,q , q = 1, . . . , H, z = 1, 2, 3 from Gz,q as I

Kq
z,q = P̂VKq

Gz,q and Fz,q as Fz,q =

Gz,q − I
Kq
z,q , q = 1, . . . , H, z = 1, 2, 3.

• Recover vectors (hz,q
1 , . . . , hz,q

Lq
), q = 1, . . . , H, z = 1, 2, 3 as

hz,q
i = hU z,q

i , Fz,qiF, i = 1, . . . , Lq,

and regroup them back to get the original arrays of coefficients {cz,q
n }

Kq

n=1, q = (H +
1), . . . , Q, z = 1, 2, 3.

• Use the recovered indexes and the recovered coefficients to compute I
Kq
z,q , q = (H +

1), . . . , Q, z = 1, 2, 3 as in (6) and reconstruct the approximated RGB image IK
z as

IK
z = ∪Q

q=1I
Kq
z,q , z = 1, 2, 3.

4 Numerical Examples

In this section the SCEIF approach is illustrated with two examples both involving an RGB
color image.

The picture at the bottom of Fig. 2 is an image of the nebula NGC 2264 created at the
European Southern Observatory (ESO) [30]. The resolution of this image is 1464× 1280 pixels
per channel. The 2D intensity arrays, one for each channel, are the three pictures right above
the color one. In order to apply SCEIF firstly each channel is divided into small blocks of 8× 8
pixels. The blocks are approximated using the mixed dictionary of Sec.2.2 and the approach
of Sec. 2.1. The approximation is of high quality. This is ensured by using two measures on
the whole color image: a high PSNR (42.5 dB) and a high Mean Structural Similarity Index
(0.997) [32] (further comments are given in Sec. 5.1). Each channel in Fig. 2 is folded and
reshaped to produce a single RGB image. The latter is the small picture at the top of Fig. 2.
Notice that the size of such an image is ‘extra small’ (120× 1280× 3 pixels) in comparison to
the original (1464 × 1280 × 3 pixels). This is because the representation of the full image by
the proposed mixed dictionary is very sparse. The SR for the image is 17.42.

Assuming now that the folded image is given to a partner stored in the original 16-bit RGB
format, in order to recover the image the receiver should proceed as follows: first the header
information is read. This is not encrypted and is required by the receiver to separate the image
components G̃ and G, and to reconstruct the three independent folded images, displayed in the
third row (from the top) of Fig. 2.

Now the process continues, as prescribed in Sec. 3.2, to recover the channels. The images
in the fourth row of Fig. 2 depict the recovered channels using the correct private key, shown
together as an RGB image in the last row. Because the authorized key is used, the recovery was
successful. Fig. 3 illustrates the identical process using the incorrect private key. As a second
example we proceed as before, but on a close up of the spider web photo, kindly rendered by
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Figure 2: The color image represents a high quality approximation (PSNR 42.5 dB) of an image of
the nebula NGC 2264. Credit ESO [30]. The small picture at the top is the RGB folded image. The
one right below is the part containing the indices. The three small pictures in the next row are the
folded channels (each of which contains coefficients of plain text representation of that channel). The
three larger pictures are the channels recovered from the previous ones. The bottom picture is the
recovered RGB image. The recovery is successful because it was realized with the authorized key.
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Figure 3: Unsuccessful attempt to expand the image NGC 2264 of Fig. 2 using an incorrect key.
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Figure 4: Same description as in Fig. 2 but the image is a close up of a spider web in Australia.
Courtesy of National Geographic. Photograph by Darlyne Murawski [31].
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Figure 5: Unsuccessful attempt to expand the spider web image of Fig. 4 using an incorrect key.

National Geographic [31]. There is a difference from the previous case in that, instead of giving
free access to the correct number of atoms per block Kq, q = H̃ + 1, . . . , Q, in this example
those numbers are also hidden, together with the indices. The reason being that because of
the contrast between the blocks containing the web and the rest of the blocks, those numbers
give some information about the image. Certainly, by knowing only those numbers one can
tell that the image has a very smooth background with some details only where the spider web
is located. This gives some visual information that one may want to avoid by hiding those
numbers.

The folded image reduces the size of the original spider web photo (512 × 792 × 3 pixels)
less than in the previous case (89× 792× 3 pixels) because the SR is smaller: 7.95.

For comparative purposes we have implemented the SCEIF method using DCT, which is
also suitable for block processing. The implementation of the folding and encryption steps is
exactly the same, the only difference is that the approximation can be performed by DCT, which
is straightforward and faster than with the dictionary. However, since the sparsity achieved
by DCT is lower (SR= 10.06 for the nebula image and SR = 4.23 for the spider web) the
corresponding folded images are larger (see Fig. 6). In addition, because the processing time
is dominated by the actual folding and expanding procedures, SCEIF implemented with the
mixed dictionary is faster than with DCT (see Table 2).
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Figure 6: The first picture in the top line is the folded image (size 120×1280×3) of the nebula NGC
2264 (size 1464 × 1280 × 3) with the proposed dictionary. The second picture in the top line is the
folded image (size 202 × 1280 × 3) with DCT. The pictures in the bottom line, sizes (89 × 792 × 3)
and (165 × 792 × 3), are the folded images with the dictionary and DCT, respectively, of the spider
web image (size 512× 792× 3).

Running times (in secs)
Approximation Folding Expanding Total

Nebula
Dictionary 10.9 10.7 13.7 35.3
DCT Disregarded 17.3 20.3 37.6

Spider web
Dictionary 4.9 4.7 5.6 15.2
DCT Disregarded 7.8 8.9 16.7

Table 2: Comparison of the folding and expanding times (average of five independent runs) with the
mixed dictionary and DCT. The test was performed with MATLAB using a 14” laptop equipped with
2.8GHz processor and 3GB RAM. As the implementation of the approximation with DCT was not
optimized, the approximation times are not included in the calculation of the total execution time
with this approach. The approximation with the dictionary was realized using a MEX file in C++ for
implementing OMP2DMl to approximate the three channels simultaneously.
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5 Quality and security issues

Concerning the quality of the recovered image there are two independent aspects to be discussed.
One is the quality of the approximation, IK , of the original image I and the other is the quality
of the recovery of IK .

The security matters that will be discussed are restricted to key sensitivity and resistance
to plain text attack.

5.1 Quality

The quality of the approximation, IK , of the image I is to be decided beforehand. In the
examples we have considered high quality approximations. This is assessed by two standard
measures. One is the PSNR, which is defined as

PSNR = 10 log10

 
(2lb − 1)

2

MSE

!
, (16)

where lb is the number of bits used to represent the intensity of the pixels and

MSE =

PZ
z=1 kIz − IK

z k2
F

ZNxNy

,

with Z = 1 for a gray level image and Z = 3 for an RGB image.
In the two numerical examples of Sec. 4 the corresponding PSNR is high enough (42.5 dB) to

secure approximations of high quality (with no visual degradation with respect to the original
image). The other measure we have used to assess the quality of the approximate image is
the Mean Structure Similarity index (MSSIM) [32], which for two identical images is equal to
one. The MSSIM index between the original image and the approximation, in both examples
of Sec. 4, is larger than 0.99. This value complements and confirms the quality indicated by
the PSNR.

Once the desired quality of the approximated image has been fixed, that approximation
becomes the plain text image to be folded and encrypted. Thus, the next goal is to recover the
approximate image with high fidelity. The recovering would be ‘exact’ if not for the quantization
step which is introduced to store the folded image using integers. The present version of the
proposed scheme works with images stored using 16 bits per channel. At this precision, in both
examples, the MSSIM index between the image recovered with the right key and the plain text
image is equal to one. The PSNR between the authorized recovered image and the original
image is identical to that between the plain text image and the original one.

5.2 Security

The security of the encryption scheme we have adopted relies on the random number generator.
The more reliable the random generator is the safer the encryption procedure. Our implemen-
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tation uses a simple 32-bit pseudo random number generator but, apart from the convenience
of having it at hand, there is no reason for using that particular one.

While the key space for the present implementation is 232, simply by making access to the
order of orthogonalization private (c.f. (10) and (14)) the key space would be expanded.

Key sensitivity: The high sensitivity against small variations in the private key is illustrated
by Figures 3 and 5. The failed recovery shown in those figures were attempted using a key
differing only by one digit with the correct one. The private key is 1234567891 and the tested
key 1234567890. The PSNR between the plain text image and the recovered image with the
wrong key is 10.8dB for the image of Fig. 3 and 9.15 dB for the image of Fig. 5. This sensitivity
was verified statistically by repeating the experiment with 100 keys differing in only one digit
from the correct key. The mean value of the resultant PSNR for the nebula image is 10.68dB
with standard deviation 1.23. For the spider web image the mean value PSNR is 8.6dB with
standard deviation 1.41.

Prevention of plain text attacks: In order to avoid repetitions of the encryption operators
(c.f. (10) and (14)) the random arrays (8) and (12) should be guaranteed to be different every
time the procedure is executed. That is the role the public initialization seed plays at the
folding step. The seed can be set automatically, for instance as the date and time right before

the vectors are generated. Thus, the nonlinearity of the operation [Orth(·) prevents an attacker
from inverting the system of equations (7) and (15) using correctly decrypted plain text images.

Notice that the public seed ensures that even the identical plain text image produces a dif-
ferent cipher one. In order to illustrate this feature we calculated the PSNR between two folded
images encrypted with the same private key but different public seeds. For the astronomical
image the resulting PSNR was 14.25 dB and for spider web 13.78 dB.

6 Conclusions

The recently introduced EIF approach has been extended to SCEIF by introducing the following
features:

• The folding capacity of the approach has been improved by considering a new dictionary
for the approximation.

• The approach is now self-contained. All that is required to recover the plain text im-
age is the folded (cipher) image and the private key. This is achieved by enlarging the
folded image creating ad hoc blocks to place the indexes of those dictionary’s elements
participating in the image approximation (plain text image).

• The implementation has also been extended from gray level to color images.

The success of the approach is based on two fundamental and related features: One is the
possibility of reducing the data dimensionality by a powerful highly non linear transformation.
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The other is the possibility of implementing the approach in an affordable period of time. The
proposed dictionary plays a central role in ensuring both features, by allowing for processing
obeying a scaling law. Certainly, the fact that the approximation of a large image can be
realized by dividing it into small blocks is the key of the current effective implementation.
It should be emphasized that the numerical examples have been realized on a small laptop in
MATLAB environment. Simply by implementing the method in a programming language, such
as C or Fortran, the folding and expanding times given in Table 2 could be reduced by up to
tenfold. In addition, there is room for straightforward implementation by parallel computing
if those resources are available.

Final Remarks

• The scope of SCEIF is to fold an image in encrypted form. The size of the astronomical
image is reduced 12.2-fold (pixel wise) and the spider web 5.75-fold. We are not consid-
ering here any further compression stage, which could imply to convert the folded image
into a bit stream. It should be stressed that, in order to do that, the encoding technique
should be especially conceived to deal with the type of data that SCEIF generates by
folding the image.

• The simple symmetric key encryption procedure considered here leaves room for straight-
forward improvement, e.g.,

a)The key space could be extended by the orthogonalization operation. In the present
version the orthogonalization step (c.f. (10) and (14)) is assumed to be completely known.
However, simply by making access to the order of orthogonalization private, the key space
would be expanded.

b)The other possibility that can be foreseen, to strengthen the security of the proposed
encryption scheme, is to further scramble the folded image using a chaos-based encryption
algorithm. Considering the security flaws affecting some of those algorithms [12–14, 16,
33], it becomes noticeable that our approach could benefit those techniques in a twofold
manner: i)providing a way of reducing the image size, and ii)enhancing the security of
the algorithms.

For the above reasons the proposed SCEIF approach appears in our mind a very exciting
possibility. We feel confident that it will stimulate further work in this direction.
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A. Construction of Matrices Bk
n, n = 1, . . . , k (c.f.(5))

For z = 1, 2, 3 the coefficients cz
n, n = 1, . . . , k in (4) should be determined in such a way that

kRk
zkF is minimum for each z. This is ensured by requesting that Rk

z = Iz − P̂Vk
Iz, z = 1, 2, 3,

where P̂Vk
is the orthogonal projection operator onto Vk = span{Dx

‘x
n
⊗Dy

‘y
n
}k

n=1. The required

representation of P̂Vk
is of the form P̂Vk

I =
Pk

n=1 AnhBk
n, IiF , where each An ∈ RNx×Ny is an

array with the selected atoms An = Dx
‘x
n
⊗Dy

‘y
n

and Bk
n, n = 1, . . . , k the concomitant reciprocal

matrices. These are the unique elements of RNx×Ny satisfying the conditions:

i) hAn, B
k
miF = δn,m =

(
1 if n = m

0 if n 6= m.

ii) Vk = span{Bk
n}k

n=1.

Such matrices can be adaptively constructed through the recursion formula [25]:

Bk+1
n = Bk

n −Bk+1
k+1hAk+1, B

k
niF, n = 1, . . . , k,

where

Bk+1
k+1 = Wk+1/kWk+1k2

F, with W1 = A1 and Wk+1 = Ak+1 −
kX

n=1

Wn

kWnk2
F

hWn, Ak+1iF.

(A.1)

For numerical accuracy in Wn, n = 1, . . . , k + 1 at least one re-orthogonalization step is usually
needed. It implies that one needs to recalculate these matrices as

Wk+1 = Wk+1 −
kX

n=1

Wn

kWnk2
F

hWn, Wk+1iF. (A.2)

With matrices Bk
n, n = 1, . . . , k constructed as above the required coefficients in (3) are ob-

tained, for z = 1, 2, 3, from the inner products

cz
n = hBk

n, IziF, n = 1, . . . , k.
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