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SUMMARY

We localize dynamic electrical conductivity changes and reconstruct their time evolution introducing the
spatial filtering technique to electrical impedance tomography (EIT). More precisely, we use the unit-noise-
gain constrained variation of the distortionless-response linearly constrained minimum variance spatial filter.
We address the effects of interference and the use of zero gain constraints. The approach is successfully
tested in simulated and real tank phantoms. We compute the position error and resolution to compare the
localization performance of the proposed method with the one-step Gauss–Newton reconstruction with
Laplacian prior. We also study the effects of sensor position errors. Our results show that EIT spatial filtering
is useful for localizing conductivity changes of relatively small size and for estimating their time-courses.
Some potential dynamic EIT applications such as acute ischemic stroke detection and neuronal activity local-
ization may benefit from the higher resolution of spatial filters as compared to conventional tomographic
reconstruction algorithms. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We propose a spatial filtering (SF) technique to localize electrical conductivity changes and to
reconstruct their time evolution using electrical impedance tomography (EIT) measurements. EIT
is a technique that can be used to reconstruct the internal conductivity map of living tissues. A low
electric current is applied to a tissular object originating an electric potential distribution that is sam-
pled with an array of electrodes on the object’s surface. The internal conductivity map is obtained
from these measurements by means of appropriate reconstruction algorithms. EIT is considered to
have a great potential for clinical use because it is relatively safe, minimally invasive, comparatively
inexpensive, and portable [1]. When compared with functional magnetic resonance imaging, EIT
has a good temporal resolution but a poor spatial resolution. Presently, applications include breast
cancer detection [2], lung function monitoring [1], acute stroke detection [3], and brain imaging
[4–8]. Although our main motivations are biomedical applications of EIT-SF in the human brain,
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we present here the details of the method as a more general tool for detecting and characterizing
localized conductivity changes inside tissular objects.

Spatial filtering is being widely used in communications, and in the 1990s, it was successfully
introduced to the source localization problem in electroencephalography (EEG) and magnetoen-
cephalography (MEG) [9]. A spatial filter is often designed so that the maximum gain of the array
is oriented to a desired point in space. The pointing direction is controlled by an appropriate combi-
nation of the individual signals measured with each sensor. The output of the filter is used to build
an estimate of the signal generated at a specific spatial location. When applied to EEG/MEG data, a
virtual scan of the head is usually performed resulting in an activation map of the whole brain or the
region of interest. The linearly constrained minimum variance (LCMV) beamformer is a particu-
lar spatial filter based on the minimization of the output signal variance under particular constraints
[10]. Variations arise from including the information of the source orientation, whether it is assumed
to be known or estimated [9, 11, 12].

However, the application of SF to EIT has not been fully exploited yet. Commonly used EIT algo-
rithms are based either on tomographic-imaging methods with a linear approximation and using a
reference or baseline image [13–16] or in nonlinear absolute imaging [17, 18]. In EIT, each snap-
shot is usually solved independently, resulting in one image per snapshot or time frame. Other
approaches considering temporal correlation have been proposed such as the Kalman filter and the
temporal reconstruction method [19, 20]. In the former, the actual conductivity estimate is based
on the measurements and on the previous estimate, whereas the latter considers data from adjacent
time frames. The LCMV filter studied here generates a single activation map with the information
of all the snapshots within a time segment. In a preliminary study, we introduced a technique that
allowed to accurately estimate the position of a conductivity change in the brain with a spatial filter
[21]. Some potential applications of EIT such as tumor, neuronal activity, epileptic foci, and stroke
localization may benefit from the low bias and increased resolution of SF, when compared with
other conventional reconstruction algorithms. Moreover, the time-course of localized conductivity
changes is also available from SF providing a potential new tool for diagnostic.

In this work, we propose to apply the LCMV filter to EIT, with emphasis on the combination
of different electrode pairs for the current injection. We consider localized conductivity changes as
‘sources’ and use the LCMV filter to estimate their central position and track their time-courses,
based on EIT measurements. We extend our preliminary results [21, 22] to include dynamic con-
ductivity changes, to analyze the use of zero gain constraints, to propose an alternative when the
conductivity change time-course of interest is previously known, and to evaluate the effects of sen-
sor position errors. We analyze the performance of the algorithm for one-source and two-source
scenarios, with focus on the bias, spatial resolution, and quality of the reconstructed time-course. We
compare the localization performance of the EIT-SF with the one-step Gauss–Newton reconstruction
with Laplacian prior (GN-Laplace) [14]. For two simultaneous and somewhat correlated conductiv-
ity changes at different positions, we also analyze how both varying conductivity regions affect each
other and how to possibly reduce the leakage in the time-course reconstruction. The LCMV filter
performance is evaluated by means of simulated EIT measurements and real EIT measurements on
a cylindrical tank phantom.

2. METHODS

In EIT, an electric current is applied to an object, and the resulting electric potential is measured
at its boundary. The electric potential distribution is a function of the internal conductivity of the
object. We describe the model and the formulation of EIT-SF, including the addition of null-gain
constraints and known time-courses.

2.1. Signal model

Two out of L electrodes are used for current injection, while L � 2 measure the electric potential.
Several reference potential schemes are possible; we adopted an average reference from the L � 2
measurements. The current injection pair can be chosen among the L.L � 1/=2 possible pairs of
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electrodes, according to a measurement protocol. We assume that the pairs are switched fast enough
so that the conductivity change between the samples obtained with different pairs is negligible.
Thus, for each snapshot t , the measurements of all used injection pairsM are arranged into a vector
mt of M.L � 2/ elements.

The measured signals mt can be modeled as a nonlinear function f of the internal conductivity
of the object � t plus a noise term nt :

mt D f .� t /C nt : (1)

The noise term is seen as a zero-mean white Gaussian noise (WGN) modeling the electronic
noise because of the contact sensors and the amplifiers and other contributions due to aspects not
included in the model. The frequency and phase of the current injection waveform are arbitrary but
known. Then, other sources of electromagnetic noise, for example, neuronal population electrical
activity if the object is the head, can be neglected if a sufficient number of time samples is available
[23, 24]. The computation of f .� t /, assuming that the conductivity distribution is known, is called
the EIT forward problem (FP). The electrical conductivity can be modeled as a continuous tensor
in the object, but in practice, the volume is tessellated into a discrete K element domain. Assuming
piecewise homogeneity and isotropy, the conductivity at each element is a scalar value. With these
assumptions, � t is a vector of length K. An approximation to (1) is to linearize the problem around
a conductivity baseline distribution � i :

mt D f .� i /C J .� t � � i /C nt ; (2)

where J D Œj 1j 2; : : : ; jK � is the M.L � 2/ �K Jacobian, also called the sensitivity matrix. The
column j k of J is the derivative of the potential with respect to the conductivity at the kth element,
known as the kth sensitivity vector. In EIT, there are different methods to compute this matrix
[16], either analytically for regular volumes [25–27] or numerically using the finite element method
(FEM) or the boundary element method [23, 28, 29]. In a previous research, we introduced a new
way to compute J based on the mathematical equivalence difference between EIT and the EEG FP
[16, 21]. It needs the computation of only 3K EEG FP solutions to build J for all possible injection
pairs. The EEG FP solution estimates the potential at theL electrodes when a dipolar current density
source is located at position k and is obtained with FEM. The main advantage of this approach is
that only the EEG Jacobian matrix of size L� 3K plus the gradient of the potential for each current
injection pair (M � 3K) must be computed and stored in memory instead of the much larger EIT
Jacobian matrix of size M.L � 2/ �K. The procedure is detailed in Appendix A.

Assuming a conductivity change ı�k;t at position k, the difference between the measurements
before (mt ) and after it (mi ) is

mt �mi D y t D J .� t � � i /C ınt ; (3)

where the kth element of .� t � � i / is the only nonzero value. Thus,

y t D j kı�k;t C ınt : (4)

The snapshots y t , t D 1; : : : ; T are arranged into a matrix Y D Œy1; : : : ;yT � and similarly with
ınt into the matrix ıN . The signal model becomes

Y D j kı�
T
k C ıN ; (5)

where ı� k contains the time samples of the conductivity change at position k. Note that the sum of
the elements of each column of Y is zero because we used an average reference. ıN also includes
other possible conductivity changes unrelated to the one under study, which we also model as WGN.

2.2. The linearly constrained minimum variance filter

In this section, we obtain the LCMV filter for EIT measurements, following ideas for brain imaging
in EEG/MEG [9–12].
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The LCMV spatial filter proposes a weight vector wk such that wT
k
Y is an estimator of the

parameter of interest at position k, with minimum variance, and subject to particular constraints. In
EEG/MEG, the parameters of interest are related to the source of activity, but in EIT, they are related
to the conductivity change ı� k . This is why sometimes we refer to the localized conductivity change
as a source, although a conductivity change is not in itself an electromagnetic source of activity.
According to the distortionless response variation of the LCMV filter, the vectors wk must satisfy

argmin
wk

®
wTk CYwk

¯

subject to wTk j k D 1;
(6)

where CY D E
®
.Y � E ¹Y º/.Y � E ¹Y º/T

¯
is the covariance matrix of Y , and E denotes expecta-

tion [9]. Following the standard procedure to solve the minimization problem (6), the weight vector
for the distortionless response LCMV filter is

wTk D
�
j Tk CY

�1j k

��1
j Tk CY

�1: (7)

The output of the filter is an estimator of the conductivity change at position k,

b

ı� Tk D w
T
k Y D

�
j Tk CY

�1j k

��1
j Tk CY

�1Y : (8)

It can be demonstrated that the output of the filter is unbiased for one localized source [9]. More-
over, it is empirically shown that the filter automatically forces null sensitivity at the position of
other uncorrelated sources, based on the information contained in CY [9]. Note that the EIT-SF
method presented here is fully compatible with the complete electrode model, as it only modifies
the Jacobian matrix. This matrix is calculated only once, before proceeding with the SF.

2.3. Activation index and covariance matrices

The sensitivity of the LCMV filter decreases for increasing distance to the electrodes, so an absolute
measurement is not appropriate. Instead, we define an index that normalizes the conductivity change
contribution with respect to the noise only output. This is done based on the neural activity index
[10, 12], defining a conductivity change index (CCIk) for each position k as

CCIk D
wT
k
C awk

wT
k
C nwk

: (9)

C a is the covariance matrix of the signal when the conductivity change of interest is present, and
C n is the noise covariance matrix. The CCIk can be thought as the variance of the output of the
distortionless response filter of (8), normalized by the variance of the output when only noise is
present. Replacing (7) into (9), we obtain

CCIk D
j Tk CY

�1C aCY
�1j k

j Tk CY
�1C nCY

�1j k
; (10)

which is equivalent to the unit-noise-gain constraint variation of the LCMV filter, when C n is the
identity matrix [9]. The CCIk is computed for all K elements resulting in a conductivity change
map, which we called the CCI map.

There exist several methods to estimate the covariance matrices (C a;C n;CY), an important issue
in SF [10]. The most often used estimator for CY is the sample covariance matrix C

C D
1

T � 1
.Y � Ny/.Y � Ny/T ; (11)
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where Ny is the time average of Y , and T is the total number of snapshots. Note that in (7), we need
the inverse of CY; however, especially with low T , CY is ill-conditioned. Tikhonov regularization,
also known as diagonal loading, is frequently applied to avoid this using CY D C C ˛I , where
˛ is the regularization parameter, and I is the identity matrix. Other regularization approaches
particularly suited for T < M.L � 2/ could also be used [30].

For the signal covariance matrix, we adopt the high signal-to-noise ratio approximation C a D C ,
which is common practice. The noise covariance matrix C n is typically estimated in a no signal
condition or chosen as the identity matrix scaled by the noise variance if spatially stationary WGN
is assumed as in our case.

2.4. Linearly constrained minimum variance variants

We summarize two possible variations for the LCMV filter: adding fixed-zero gain constraints and
using a priori knowledge of the conductivity change time-course.

A known drawback of LCMV filters is that they may fail to separate correlated sources depend-
ing on their degree of correlation and their spatial distance. This effect can be reduced forcing
zero gain constraints to particular regions that contain this kind of interference. These regions must
be known or estimated a priori. The zero gain constraints are incorporated as in other spatial fil-
ters. Assume that the zero gain constraints are to be applied at positions k1; k2; : : : ; kl , and that
j k1; j k2; : : : ; j kl are the corresponding sensitivity vectors. The new weight vector w0k with zero
gain constraints at the specified positions is

w0
T
k D g

T
�
J Tl CY

�1J l

��1
J Tl CY

�1; (12)

where J l D Œj k; j k1; j k2; : : : ; j kl �, and g D Œ1; 0; 0; : : : ; 0�T . The cost of incorporating zero
gain constraints is that the output signal-to-noise ratio decreases and that J Tl CY

�1J l may become
singular [9].

In some applications, the conductivity change time-course may be known from previous exper-
iments. For example, a preliminary study with anesthetized rabbits showed that the conductivity
in an induced ischemic stroke decreased almost linearly [31]. Knowledge of the time-courses is of
help to distinguish a particular conductivity change of interest. Indeed, assuming that the normal-
ized known waveform of a conductivity change of interest is s.t/ and that the vector s contains the
time samples of s.t/, ı� k D ı�ks where only the factor ı�k is unknown. One possible estimator is
easily derived from (8) as

bı�k D
bı� k

T s

ksk2
D
wT
k
Y s

ksk2
: (13)

Then, the CCIk index with known conductivity change evolution becomes

CCIk D
j Tk CY

�1CsCY
�1j k

j Tk CY
�1C nCY

�1j k
; (14)

where Cs D
1

T�1
.Y � Ny/ssT .Y � Ny/T .

3. RESULTS

Experiments were performed with simulations and with a cylindrical phantom providing real EIT
signals. The simulations mimicked tank phantom experiments to assess the quality of our assump-
tions. In all experiments, we adopted C a D C , defining C as in (11), and CY D C C ˛I . C n was
chosen as the identity matrix. The injected current in the simulations and real experiments was set
to 100 �V peak.
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The CCI maps were computed to study bias and spatial resolution, and the filter output to study
the evolution of conductivity changes. We compare the localization performance of the method with
the GN-Laplace reconstruction of the form

ı�GN
t D .J

TJ C �2PTP/�1J Ty t : (15)

P is the Laplacian discrete filter, and � is the regularization parameter, which was selected ad hoc
for optimum performance. Note that using the Woodbury matrix inversion lemma, formulation (15)
is equivalent to the Wiener filter:

ı�Wiener
t D ˙mJ

T .J˙mJ
T C C n/

�1y t ; (16)

with the smoothing prior .PTP/�1 as the source covariance matrix ˙m, and C n D �
2I .

The GN-Laplace method results in an image per time frame, so we used for comparison the square
of the root mean square (RMS ) of the T individual images. Note that the CCI and the RMS2 are
both quadratic.

We calculated the PE and the RES metrics to quantify bias (or position error) and spatial reso-
lution, respectively [14]. The PE was obtained as the Euclidean distance between the true center
of gravity (CoG) and the CoG of the resulting image. For one-source experiments, we selected the
q D 1; : : : ;Q elements with a normalized CCI or normalized RMS2 value higher than 0.95, and
we determined the CoG as

CoG D

PQ
qD1 cqxqPQ
qD1 xq

; (17)

where cq and xq are the centroid and image value of element q, respectively. We defined the RES
metric with a threshold of 0.75:

RES D

r
Q

K
: (18)

Note that a high value of the RES metric indicates low resolution and vice versa. For two sources,
the images were divided in two regions by a vertical plane, as shown in Figure 1(c), and the PE and
RES of each source were computed independently for each region. Table I shows the resulting PE,
and Table II shows the resulting RES for the SF and GN-Laplace methods. The same mesh was used
for computing all CCI maps (inverse problem mesh), but it differed from those used to generate
the simulated signals to avoid any possible unwanted correlation induced by using the same mesh.
The inverse problem mesh, shown in Figure 2(a), was composed of approximately 240 000 tetrahe-
drons, with nodes at the electrode positions. All meshes were built with the aid of the ISO2MESH

package [32].

Figure 1. (a) Cylindrical phantom used to obtain electrical impedance tomography spatial filtering and Gaus-
sian noise solutions; the dots ‘�’ indicate the sensor positions. (b–c) Cylindrical phantom used to generate
the simulated signals, sliced at ´ D 11 cm. The two spherical regions with dynamic conductivity changes are
colored with red (border) and blue (central). The straight line in (c) indicates the vertical plane that separate

the volume in two regions to compute the metrics of each source.
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Table I. PE metric [mm].

Simulated data Real data

One source Two sources One source Two sources

Border Central Border Central Border Central Border Central

EIT-SF 3.89 2.05 4.42 2.15 8.51 7.28 N=Da 6.50
GN-Laplace 10.10 4.40 7.94 N=Da 12.10 7.71 10.80 N=Da

a The CoG lies in the middle plane between the two sources.
EIT-SF, electrical impedance tomography spatial filtering; GN, Gauss–Newton.

Table II. RES metric
�
�10�4

�
.

Simulated data Real data

One source Two sources One source Two sources

Border Central Border Central Border Central Border Central

EIT-SF 2.10 3.67 5.30 4.88 5.55 23.80 N=Da 17.20
GN-Laplace 33.60 73.70 32.70 N=Da 35.20 63.60 39.60 N=Da

a The CoG lies in the middle plane between the two sources.
EIT-SF, electrical impedance tomography spatial filtering; GN, Gauss–Newton.

Figure 2. Simulation maps sliced at ´ D 11 cm. (a–c) Normalized conductivity change index maps obtained
with (a) the border source, (b) the central source, and (c) both simultaneous sources. (d–f) Gauss–Newton
reconstruction with Laplacian prior, for (d) the border source, (e) the central source, and (f) both simulta-
neous sources. White crosses ‘C’ indicate the true central position of the conductivity changes, and dark

circles ‘ı’ indicate the computed center of gravity.

3.1. Simulated phantoms

We generated a finite element model of a cylindrical (9.2 cm radius and 22.85 cm height) 3D phan-
tom with 128 electrodes at its boundary, distributed evenly in eight rings of 16 electrodes each. We
assumed a constant 1.75 S/m baseline conductivity. Dynamic conductivity changes were assigned to
one or two spherical regions (sources) of 3.5 cm diameter each, as shown in Figure 1. We simulated
the signals at the electrode sites for 88 independent combinations of current injection pairs, result-
ing in a total of 88 combinations of 126 signals each. Figure 1 also shows the electrode positions
and the mesh used to generate the signals with FEM. We generated 15 time frames or snapshots for
all simulated signals, resulting in a 11088 � 15 data matrix Y . We added some WGN with standard

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02703
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deviation �w D 0:2 �V, acting as electronic noise due to amplifiers. This value of �w was estimated
from the real tank measurements.

3.1.1. One localized conductivity change. We simulated sinusoidal conductivity changes vary-
ing between 1.75 S/m (baseline conductivity) and 0.08 S/m (conductivity of the objects
used in the real experiments) at two different positions (expressed in cylindrical coordinates
.r[cm]; �[rad]; ´[cm]/): .5:71; 1:987�; 11/, labeled as border, and .2:71; 1:375�; 11/, labeled as
central. Figure 2 depicts the normalized CCI maps and the reconstructed image using the GN-
Laplace method. Figure 3 shows the normalized filter outputs. The regularization parameter value
was set following the asymmetric diagonal loading approach [9]. A value between the largest and
the second largest eigenvalues of CY, �1, and �2 was adopted for the regularization parameter ˛n
of the CY

�1 at the numerator of (10). A smaller value ˛d � �2 was adopted for the CY
�1 at the

denominator of (10).

3.1.2. Sensor position mismatch. We analyzed and compared the performance of the EIT-SF and
the GN-Laplace methods randomly moving the electrode positions. We generated 10 different data
sets varying the electrode positions randomly as a normal distribution with standard deviation of
1 mm in both height and azimuth. Figure 4 shows the 10 sets of electrodes and the resulting CoG
with both methods and for both sources.

Figure 3. Normalized simulation outputs or time-courses for the (a) border conductivity change and the (b)
central conductivity change. ZGC, zero gain constraints.

Figure 4. Simulations with noise in the sensor positions. (a) Electrode position samples. (b) Resulting center
of gravity obtained with spatial filtering (blue ‘C’) and with Gauss–Newton reconstruction with Laplacian
prior (red ‘�’). The circles ‘ı’ and squares ‘�’ indicate the center of gravity obtained with spatial filtering
and with Gauss–Newton reconstruction with Laplacian prior, respectively, when there is no error in the

sensor positions. The diamonds ‘˘’ indicate the true central positions of the conductivity changes.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02703
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3.1.3. Two localized conductivity changes. We simulated two simultaneous sources assigning two
sinusoids with different phase to the central (blue), and to the border (red) regions of Figure 1(b, c).
The obtained CCI map is depicted in Figure 2(c), together with the reconstructed images obtained
with the GN-Laplace method (Figure 2(f)). Figure 5(a, b) shows the CCI maps obtained with seven
zero gain constraints at each source position. The mesh is not shown for clarity. The regularization
parameter values were chosen in a similar way as when simulating only one conductivity change.
The only difference was that the numerator regularization parameter used to compute the CCI maps
was set between the second and third largest eigenvalues of CY. The outputs of the filter for the
central elements of each region are displayed in Figure 3.

Figure 5. Linearly constrained minimum variance spatial filter variants for the simulations. Conductivity
change index maps sliced at ´ D 11 cm: (a–b) with zero gain constraints and (c–d) with known conductivity
change time-courses. The white crosses ‘C’ indicate the true central position of the conductivity changes,

and the white crosses ‘�’ indicate the position of zero gain constraints.

Figure 6. Left: cylindrical phantom used in the experiments. Top right: experimental electrical impedance
tomography setup with the external current source used to collect the data. Bottom right: potatoes used in

the experiments.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02703
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3.2. Real phantoms

We tested the LCMV filter with real EIT signals measured in a cylindrical tank (9.2 cm radius
and 22.85 cm height) filled with saline (conductivity 1.75 S/m). We used potatoes (conductiv-
ity 0.08 S/m [33]) of different sizes, shown in Figure 6, as the objects perturbing the saline bulk
conductivity. The objects were held with a wooden stick at two different positions, at approxi-
mate coordinates .5:71; 1:987�; 11/ for the border and .2:71; 1:375�; 11/ for the central positions
(expressed in cylindrical coordinates .r[cm]; �[rad]; ´[cm]/). Note that the positions are the same
for both real and simulated experiments. We used seven different objects of approximate diameters
of 2, 2.5, 3, 3.5, 4, 4.5, and 5 cm. Data were collected with an experimental low-frequency EIT
setup, developed by the Electrical Geodesics Inc., Eugene, Oregon, US. The EIT system prototype
was based on a 256-channels commercial EEG system complimented by the current injection mod-
ule and lock-in detection software. The phantom design, instrumentation, and data acquisition are
described in details elsewhere [34], and the setup for this particular experiment is also shown in
Figure 6. The acrylic cylinder tank was made approximately of the size of the typical adult human
head. 128 standard EEG Ag/AgCl electrodes with rubber o-rings were hermetically placed into the
holes uniformly arranged on the lateral surface in eight rows and 16 columns. The electrodes were
wired to the EEG system through the standard EEG leads (Electrical Geodesics, Inc.). Measure-
ments were performed for 88 current injection pairs at current levels of 100 �V (peak) and frequency
27 Hz. The current injection protocol involved opposite electrodes in the same or adjacent rows,

Figure 7. Real data maps sliced at ´ D 11 cm. (a–c) Normalized conductivity change index maps obtained
with (a) the border source, (b) the central source, and (c) both sources. (d–f) Gauss–Newton reconstruction
with Laplacian prior for (d) the border source, (e) the central source, and (f) both sources simultaneously.

The dark circles ‘ı’ indicate the computed center of gravity.

Figure 8. Normalized real data experiment outputs or time-courses for the (a) border conductivity change
and the (b) central conductivity change. ZGC, zero gain constraints.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02703
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generating a total of 88 sets of 126 potential measurements per object size and position. The built-in
lock-in amplifier allowed to extract amplitude and phase of the raw EIT signals [35]. For each set of
measurements, we obtained four samples of amplitude and phase by averaging the recording epochs
of 4 s for each pair within a 1-s sliding window.

3.2.1. One localized conductivity change. We built two sinusoidal-like time-courses by sort-
ing the potato measurements in the following orders 0; 1; 2; 3; 4; 5; 6; 7; 7; 6; 5; 4; 3; 2; 1 and
5; 6; 7; 7; 6; 5; 4; 3; 2; 1; 0; 1; 2; 3; 4 for border and central positions, respectively. Here, ‘0’ means no
object, ‘1’ means the smallest object of 2 cm of diameter, and ‘7’ means the largest object of 5 cm
of diameter. Within each position, we used different measurement samples for same object sizes.
The CCI maps are shown in Figure 7. The output conductivity changes are shown for both positions
in Figure 8.

3.2.2. Two localized conductivity changes. Although the phenomenon is nonlinear for conductiv-
ity changes at different positions, we performed other simulations mimicking two simultaneous

Figure 9. For building the two sources data set, we assumed linearity in the problem. The blue line shows
the error made by doing this assumption in an equivalent simulated problem. The error is always lower than

two times the noise standard deviation (Std Dev) of the real measurements.

Figure 10. Linearly constrained minimum variance spatial filter variants for the real data experiments. Con-
ductivity change index maps sliced at ´ D 11 cm: (a–b) with zero gain constraints and (c–d) with known

conductivity change time-courses. The crosses ‘�’ indicate the position of zero gain constraints.
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objects at different positions and with varying sizes according to the individual real experiments
of Section 3.2.1. We obtained two data sets, one with the two simultaneous objects (nonlinear)
and another simply adding the two data sets obtained for each varying object at each position
(linear assumption). We found that the effect of assuming linearity was lower than the noise level
of the measurements. Explicitly, the maximum difference between nonlinear simulations and the
linear assumption for all 88 � 11; 000 D 968; 000 simulated measurements was 0:25 �V, less than
two times the noise standard deviation, as seen in Figure 9. This indicates that even if not negligible
from a mathematical point of view, the effect of a linear approximation is of no practical signifi-
cance in this particular setup. So, even though no two simultaneous objects were placed together
in the tank for the real experiments, based on the previous analysis, we built the combined data set
by adding together the two raw data sets corresponding to the single object measurements at two
different positions.

Figure 7(c, e) depicts the maps obtained with SF and with GN-Laplace. Figure 10 depicts the
CCI maps with seven zero gain constraints at the source positions and with the estimator of (14),
assuming known conductivity change time-courses. These time-courses were obtained from the
single source experiments. In Figure 8, we also show the outputs of the filter at the central position
of each source.

4. DISCUSSION

4.1. Source localization bias and resolution

In Figure 2(a, b) and Table II, it is observed that the EIT-SF technique can be used to successfully
localize with no bias and good resolution a localized conductivity change. Although the mathemat-
ical model is equivalent to that of an EEG source localization problem, we believe that the use of
SF to localize conductivity changes is not as intuitive. Until now, SF was mostly associated with
problems where real electromagnetic sources exist as in communications or in EEG/MEG.

For the real one-source data sets, we also show that the PE is lower with the LCMV filter than with
GN-Laplace. Note that the error is slightly larger than in the simulations, which we consider is due
to the irregular shape of the objects and to small uncertainties in the positioning of the objects. The
spatial resolution was worse than in simulations because of the larger size of the objects compared
with the simulated sources.

For two simulated regions with dynamic conductivity changes, Figure 2(c) shows that the algo-
rithm could accurately localize the central position of the two varying conductivity regions with low
bias, although the border source is barely seen. For two real conductivity changes, the peak of the
CCI map in Figure 7(c) coincides with the central source position of Figure 7(b), and the border
source is obscured.

Because in this work we are interested in localization of the conductivity changes but not in shape
reconstruction, we compared the proposed method with the GN-Laplace reconstructor using only
error metrics related to localization performance. Table I shows that the PE is always lower with the
EIF-SF method than with the GN-Laplace method in both the simulated and real data. For the real
experiments, we determined the central positions based on distance and angular measurements of
the tank, the wooden stick, and the top cover, in the physical phantom and in the pictures. The RES
of EIT-SF is always better than GN-Laplace, as can be seen on Table II.

The value of the regularization parameter is relevant when computing the CCI maps. The diagonal
loading approach performed as expected in both simulated and real experiments. Note that in the
two sources scenario, one source is not clearly visible. However, as discussed later, the use of zero
gain constraints or the knowledge of the conductivity change time-course can be used to detect
other sources.

4.2. Conductivity change time-course

Using the one-source simulated data set, the filter reconstructed the time-course of the conductivity
change when pointing to the spatial position of maximum CCI, as seen in Figure 3. When using real
data, the calculated time-courses of Figure 8 were coherent to what would be expected for changing
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objects. Except for the central source where the conductivity change of the smaller objects does not
increase with the object sizes. However, the method still differentiates between a small object in the
central region and nothing.

For two simultaneous conductivity changes with some correlation between them, the leakage
distorts the output of the filter, as it is seen in Figure 3 and more clearly in Figure 8. The use of zero
gain constraints reduces the effect of correlated interferences, as explained succeedingly.

4.3. Zero gain constraints and knowledge of the time-course

A known drawback of LCMV spatial filters is that they cannot separate fully correlated sources (i.e.,
modulus of the correlation coefficient equal to one), resulting in an activation map where the maxi-
mum is located between the sources [10]. If the sources are not fully correlated, the algorithm is able
to separate them depending on the degree of correlation and on the spatial distance between them.
The inclusion of zero gain constraints is a well-known technique to suppress correlated interfer-
ence. Zero gain constraints are widely used in communications, where the direction of an interfering
source may be fixed and known. Even though this possibility is mentioned in [9], we could not find
in the literature the use of zero gain constraints with real signals in EEG or MEG. In the experi-
ments, we show that this approach is fully applicable in EIT-SF. In Figures 5(a, b) and 10(a, b), it is
observed that one conductivity change is more clearly visible with zero gain constraints at the posi-
tion of the other source. In Figures 2(c) and 7(c), the border source is barely seen with both methods,
but EIT-SF has the possibility of using zero gain constraints to detect it. Moreover, Figures 8 and 3
show that the use of zero gain constraints reduces the leakage, improving the quality of the recon-
structed time-courses. Note that the filter outputs with zero gain constraints are the most similar to
the filter outputs of the one-source data sets. In Figures 5(c, d) and 10(c, d), we show that the prior
knowledge of the time-course can also be used to detect particular conductivity changes.

In this work, we provide a simple method to improve the conductivity change detection when the
time-course is previously known (13). However, other approaches could be used with this additional
information. A previously known dictionary of time-courses could be used to better localize con-
ductivity changes associated to specific pathologies. Such a dictionary should be built using EIT-SF
in controlled experiments.

4.4. Sensor position mismatch

In our simulations adding noise in the sensor positions, we found that, as seen in Figure 4, in all
cases, the CoG obtained with the LCMV spatial filter was closer to the true central position of the
conductivity changes than the GN-Laplace method. However, the variance of the CoG obtained
with the GN-Laplace method was lower than the variance obtained with the LCMV spatial filter.
Sensor position mismatch may induce errors, but some methods to account for inaccurate sensor
positions have been proposed [36, 37]. Also, methods to accurately estimate sensor positions have
been developed [38].

5. CONCLUSIONS

We successfully localize conductivity changes using SF with simulated and real EIT measurements.
As far as we know, this is the first application of SF with real EIT data. We showed that the method
can estimate the central position of one or two predominant localized conductivity changes accu-
rately and with good spatial resolution. The use of zero gain constraints or a priori knowledge of the
conductivity change evolution was shown to facilitate the detection of weaker sources, increasing
resolution, and separating correlated sources. We compared the method with the classic Gauss–
Newton with Laplace prior, showing better performance in bias and resolution, but showing larger
variance for sensor position errors. Also, EIT-SF uses only one lead-field vector at a time, instead
of using the full Jacobian matrix as in conventional reconstruction methods. This becomes advan-
tageous in memory requirements when the number of elements of the mesh is high as in detailed
3D modeling of the head, which may require millions of elements [39]. Moreover, our alternative
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method to compute the Jacobian (Appendix A) may also be useful in such cases saving computa-
tional memory. We also described a straightforward procedure to select the regularization parameter
value, which we consider an advantage of EIT-SF. We showed that the method can be also used to
reconstruct the time-course of the conductivity at a particular region of interest. Because of the high
temporal resolution of EIT and its portability, EIT-SF could provide new insights about conductivity
dynamics.

In summary, we believe SF has advantages in localization problems, but other methods such
as GN-Laplace or total variation [16] might be convenient in shape reconstruction problems. The
results of this work illustrate the expected performance of EIT-SF in a general sense, not restricted
to applications of EIT in the human brain. However, in a separate work, we study the performance
of EIT-SF in particular applications of EIT to the brain using realistic head models [22]. We expect
to test this method with real EIT measurements in animals or humans. So far, our results suggest that
the use of EIT-SF is promising for early stroke characterization and for the localization of neuronal
activity, where localized conductivity changes are expected.

APPENDIX A: ALTERNATIVE SENSITIVITY MATRIX

We describe a novel method, used in this work, to compute the sensitivity matrix J of (2). It is
based on the mathematical equivalence between a localized conductivity change in EIT and a dipolar
electromagnetic source in EEG [16].

Let �.Ex/ be the conductivity at each point of the space Ex of a volume˝. When an electric current
is applied, it produces an electric potential distribution ˚.Ex/. A conductivity change ı�.Ex/ results
in a change of the electric potential distribution ı˚.Ex/. For frequencies low enough such that the
quasistatic approximation of Maxwell equations holds, up to several kilohertz for the head tissues,
the equation that governs the physics of the problem is

r �
�
�.Ex/r˚.Ex/

�
D 0; (A.1)

in all Ex except from the current injection points. Eq. A.1 must also hold when the conductivity
change is present:

r �
��
�.Ex/C ı�.Ex/

�
r
�
˚.Ex/C ı˚.Ex/

��
D 0: (A.2)

Applying properties of the gradient operator, (A.2) becomes

r � .�r˚/Cr � .�rı˚/Cr � .ı�r˚/Cr � .ı�rı˚/ D 0; (A.3)

where the dependence with Ex has been omitted for clarity. The first term of (A.3) is zero because of
(A.1), and the last term in (A.3) can be neglected for relatively small conductivity changes as it is
O.ı�2/ [16]. Then, Eq. A.2 can be approximated by

r � .�rı˚/ � �r � .ı�r˚/ : (A.4)

This relationship is equivalent to the equation

r � .�r˚EEG/ D r � EJp; (A.5)

which governs the EEG FP, where EJp is the primary current density of a dipolar source, and ˚EEG is
the resulting electric potential. The EEG FP is to estimate the potential at the L electrodes when a
dipole source is located at position k. Looking at (A.4) and (A.5), the difference EIT FP is equivalent
to the EEG FP. The difference of the potential in EIT ı˚ corresponds to ˚EEG and the source in EIT
is minus the conductivity change multiplied by the gradient of the potential (ı�r˚).

In EEG, the signal model for a dipolar source q at position k involves a lead field matrix LF k ,
which is the expected electric potential at the electrodes generated by that source. This matrix has
as many columns as dimensions used to formulate the problem: one column or lead field vector per
canonical orientation of the dipolar source. The signal model is

yEEG D LF kq C n.t/; (A.6)
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where yEEG is an L measurement vector (L is the total number of electrodes) if assuming average
reference for the measurements. There are some differences between the signal model of EEG (A.6)
and the signal model of difference EIT (4). The EIT measurement vector y has .L� 2/M elements
(M is the number of different current injection pairs used to measure), whereas yEEG has L. If
we have LF k , we can form a new matrix LF

m

k for each current injection pair m in the following
way: the rows of LF k corresponding to the current injection electrodes are removed, and then the
average of each column is also removed to maintain the average reference. Then, the expected ı˚ at
the electrodes in EIT is LF

m

k r˚
m
k

when a conductivity change ı� is present at position k, and the
current injection pair ism. r˚m

k
is the gradient of the electric potential at k for the current injection

pairm. Arranging theLF
m

k r˚
m
k

vectors for theM current injection pairs, we can form each vector
j k , that is, each column of J .

For this work, we computed each LF k solving numerically the EEG FP using the FEM, and the
gradient of the potential was estimated for the homogeneous tank model with a baseline conductivity
value of 1.75 S/m. We compared the vectors jk obtained with this method with the solutions of the
EIT FP for a conductivity change at element k, and we found no appreciable differences.
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