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Abstract

In this paper, we describe patterns of residential heating based on data from 255 homes in and around Edinburgh,
Scotland, UK, spanning August 2016 to June 2018. We describe: (i) the room temperatures achieved, (ii) the diurnal
durations of heating use, and (iii) common diurnal patterns of heating behaviour. We investigate how these factors
vary between weekdays and weekends, over the course of the year, by external temperature, and by room type. We
compare these empirical findings with the simplifying assumptions about heating patterns found in the UK’s Standard
Assessment Procedure (SAP), a widely-used building energy performance model. There are areas of concurrence and
others of substantial difference with these model assumptions. Indoor achieved temperatures are substantially lower
than SAP assumptions. The duration and timings of heating use varies substantially between homes and along lines of
season and outdoor temperature, whereas the SAP model assumes no such variation. Little variation is found along the
lines of weekday vs. weekend, whereas the SAP model assumes differences, or between living space and other rooms,
consistent with the SAP. The results are relevant for those interested in how SAP assumptions regarding household
heating behaviours and achieved indoor temperatures concur with empirical data.

Keywords: Residential heating behaviours, Achieved temperatures, Heating durations, Diurnal heating patterns,
Cluster analysis, Heating zoning, Seasonal change

1. Introduction1

Efforts to decarbonise the residential heating system are gathering pace in the UK, as in much of the rest of the2

world, as part of achieving the goal of reaching net zero carbon emissions by 2050 for the UK as a whole, and 2045 in3

Scotland [1]. One crucial element in achieving this efficiently is accurately estimating the energy performance of the4

buildings, from the level of individual dwellings through to the entire building stock, or sections of it. This includes5

predicting the impacts of different interventions, such as installing double glazing and insulation, and switching6

heating fuel types. In the UK, the government’s recommended model to make such predictions is the Standard7

Assessment Procedure (SAP). The SAP is a simplified version of the BRE’s Domestic Energy Model (BREDEM)8

[2] developed for assessing the performance of buildings under a standardised set of conditions (a set ‘occupancy9

schedule’) describing when a dwelling is occupied and when associated energy-using practices, such as heating, are10

engaged in. Standardised conditions are adopted to permit comparison between dwellings independently of occupancy11

effects. These standardised conditions are also widely used in BREDEM-based building stock models used to estimate12

energy demand from buildings in use. In this context, the standardised conditions represent simplifying assumptions13

about the average occupancy schedule, and as such enable the energy use of the build stock to be estimated without the14

unfulfillable requirement of gathering and using full occupancy schedule data for each dwelling. However, this use of15

standardised conditions is problematic if they do not sufficiently capture aspects of occupants’ energy-using behaviours16

observed empirically in the actual building stock. Model assumptions may be overly simplified or based on incorrect17

or out-of-date specifications of occupant behaviour, so do not accurately reflect population averages or the diversity18

and drivers of different behaviours [3]. Model energy use estimates are then more likely to deviate from observation,19

particularly at finer-grained spatial and temporal resolutions or for particular types of dwelling or occupant, where20

conditions may differ substantially from the full-population average. It is thus important for the development of stock21

models to evaluate how well the standardised conditions reflect those found in buildings in use, as part of the process of22
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evaluating potential opportunities to improve model performance by aligning assumptions more closely with empirical23

reality.24

To that end, the aim of this paper is to evaluate how the simplifying assumptions about heating behaviour and25

indoor temperatures that are found in the SAP model compare to recently published empirical data from a sample of26

Scottish homes.27

The SAP model assumes the following patterns and outcomes of heating use in UK homes:28

i Achieved room temperatures: During periods of active heating (i.e. central heating use), the model assumes29

achieved temperatures are 21°C for the living areas (generally this is the living room/lounge - see [4, p. 23] for30

the detailed definition), and between 18°C and 21°C elsewhere, depending on the building’s Heat Loss Parameter31

- a function of multiple building physical characteristics [4, p. 219]. The SAP assumes these achieved indoor32

temperatures are standard across the heating season, invariant to external conditions such as outdoor temperature,33

and the same on weekdays and at weekends.34

ii Patterns and durations of active heating: For homes with boiler central heating systems, such as those in our35

reference dataset, the assumption is that the whole home is actively heated between 07:00-09:00 and 16:00-23:0036

(total 9 hours) for weekdays, and 07:00-23:00 (total 16 hours) for weekends [4, p. 219]. These heating patterns are37

assumed to be standard across the heating season, invariant to external conditions such as the outdoor temperature,38

and the same for each room of the home.39

iii Heating season: This is the period when central heating is used, and is taken to span October to May [4, p. 220].40

Outside this period, the model assumes there is no active heating, i.e no use of the central heating system.41

The empirical data used in this paper is drawn from a recently published dataset that includes data from a sample of42

255 homes from the region in and around Edinburgh, Scotland, UK, collected by our research team. The data was43

collected from the homes for a mean of 286 days over a period spanning two heating seasons, from August 2016 to44

June 2018. The homes all had radiators heated by gas-fired combi-boilers as the main heating source, and included a45

range of occupancy levels and building types, ages and sizes.46

This paper compares and contrasts the SAP assumptions described above with the empirical reality from this sample47

of Scottish homes. As such, we focus on the principle patterns in the data for:48

i the room temperatures achieved,49

ii the diurnal durations of heating use,50

iii the common patterns of diurnal heating behaviour, in terms of the periods of the day when heating is on and off.51

We furthermore describe if and how these factors vary between weekdays and weekends, over the course of the52

year, by external temperature, and by room type.53

This paper adds to the relatively small published literature on UK residential heating patterns and temperature54

outcomes. To our knowledge, it is the first paper to focus on Scottish homes and to draw on data covering radiator use55

and ambient temperature from all rooms in the dwellings. The findings complement the existing literature, in terms of56

indicating possibilities for future refinements to the SAP model.57

The rest of this article is structured as follows: Section 2 reviews the literature on previous empirical work on58

heating patterns and indoor temperatures in UK homes, focusing on aspects related to the above assumptions in the59

SAP. Section 3 describes the methodology. Section 4 describes the results. Section 5 discusses the results and how they60

relate to previous work and the SAP model. Section 6 concludes, including considering future work directions.61

2. Literature review: Domestic room temperatures and heating patterns62

Here we review previous work relating to patterns of heating in UK homes and the temperature outcomes, focusing63

on work that draws on empirical data from homes, particularly where comparisons are made to the Standard Assessment64

Procedure model assumptions that we are focusing on.65

Achieved room temperatures66
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Previous empirical work has investigated how homes’ indoor temperatures compare to SAP assumptions. Two67

papers provide insight into demand temperatures. Hughes et al 2010 [5] use data from the Energy Follow-Up Survey68

(EFUS), a subsample of 2,616 English homes from the 2010/11 English Housing Survey that participated in interviews69

and provided meter readings; a subsample also had temperature data loggers recording at 20-minute intervals in70

their living rooms, main bedrooms and hallways, covering November 2010 to January 2011. Based on living room71

temperature gradients, the authors identified the heating season average dwelling internal demand temperature across72

405 dwellings with the complete range of data to be 19.8°C (Standard Deviation, S.D., 2.14°C, median 20.02°C).73

Shipworth et al 2010 [6] meanwhile analysed survey and 45-minute temperature data from data loggers placed in74

bedrooms and living rooms between July 2007 and February 2008, from a stratified random sample of 358 English75

households with “gas or oil-fired central heating systems with radiators as their main form of heating”. Based on76

inferred periods of active heating (when temperatures increased between time points, for data from November 2007 to77

February 2008), living room average maximum temperatures, which were taken as being the mean thermostat settings78

for the dwellings, across the sample for the heating season were identified as 21.1°C (S.D. 2.5°C, median 21.3°C);79

meanwhile self-reported figures from the surveys indicated a mean of 19.0°C (S.D. 3.0°C, median 20.0°C). Huebner et80

al 2013 [7] further analysed the living room temperature data for a different subsample of 248 centrally heated homes81

from the same dataset, covering 92 days from November 2007 to January 2008, to look at achieved heating period82

temperatures. They found that the temperatures seldom reached the SAP-assumed demand temperature of 21°C during83

the SAP heating periods, with mean temperatures of 18.3 °C for the SAP weekday morning heating period, and a84

somewhat warmer 19.8 °C for the weekday evening heating period, and 19.3°C for the weekend heating period, with a85

similarly large standard deviation of around 2.5°C in each case. Averaged across all the data, for most times of the day86

few homes were above 20.5°C, although from early evening the proportion rapidly increased, to stabilise at around87

50% of homes being above that temperature from approximately 18:45 until midnight, typically the warmest period of88

the day. The study found substantively little difference in achieved temperatures between weekends and weekdays, but89

substantial variation between homes. A similar pattern of fluctuating average temperatures across the day was also90

found by Hanmer et al 2019 [8], drawing on data from digital heating control units for a sample of 337 UK homes for91

an 8-week period across an unspecified heating season. Kane et al 2015 [9] meanwhile found English living rooms92

to be generally colder during the assumed morning and evening heating periods than the SAP assumes: averaging93

17.5°C and 19.0°C respectively. This was based on hourly spot temperature data from a stratified random sample of94

249 homes from Leicester, UK, 93% of which were centrally heated, from 1 December 2009 to 28 February 2010. This95

study also included bedroom data, which found a closer agreement to the SAP-assumed 18.0°C for non-living spaces:96

averaging 17.1°C and 17.9°C for the morning and evening heating periods, respectively. These average figures lend97

support to the SAP-assumed presence, although not degree, of zoning in the temperature between rooms in English98

homes, although they also note that in 32% of the sample, ‘the bedrooms were, in fact, warmer than the living rooms’.99

A study by Hulme et al 2013 [10] of the same EFUS temperature logger data used by Hughes et al 2010 [5] also found100

evidence that, across most of the heating season, living rooms were on average warmer than bedrooms and hallways,101

and found no statistically significant difference between weekday and weekend temperatures for homes overall or102

for any particular room. The same study also found evidence that achieved indoor temperatures varied over the SAP103

heating season, being statistically significantly lower during November to March than in October, April and May. They104

also found that indoor temperatures correlated with outdoor temperatures, although all the study’s analyses were based105

on full-day mean temperatures rather than focusing just on temperatures during periods of heating, so these results106

could be due to the indoor temperatures dropping during non-heating periods.107

Finally, in the literature review of Wei et al 2014 [11] of the driving factors of occupant-controlled residential space108

heating, the authors identify consistent findings across five relevant papers that indoor temperatures vary across the109

day and are correlated with room type, with living rooms being the warmest. There was little consistent evidence that110

temperature settings varied by day of the week, with just two reviewed papers that touched on this finding conflicting111

results.112

Overall, the existing empirical work finds evidence of zoning between rooms, with living rooms on average being113

warmest, but rooms typically do not reach the setpoint temperatures assumed by the SAP, or do so only for short periods,114

particularly living rooms. The literature broadly concurs that there is little sign of variation in indoor temperature by115

day of the week, but generally highlights a large degree of variation between homes. The previously published work116

that we identified provides no clear evidence about if or how achieved temperatures during active heating periods vary117

by time of year or external temperature.118
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Duration and patterns of active heating over the day119

Various empirical studies have investigated actual heating patterns (or behaviours). The Shipworth et al 2010120

study described above [6] estimated from the room temperature data that central heating hours per day during the121

heating season were a mean of 8.2 (S.D. 1.5, median 8.2) on weekdays and a mean of 8.4 (S.D. 1.5, median 8.4) at122

weekends. The participants’ self-reported heating hours were somewhat higher, at a mean of 9.8 (S.D. 5.4, median123

8.0) on weekdays, and a mean of 9.8 (S.D. 5.2, median 8.5) on weekends. Hughes et al (2016) [5] meanwhile, using124

the EFUS temperature data and a manual data inspection method rather than an automated rule-based method for125

identifying heating periods, estimated heating-season heating periods to be a mean of 9.8 hours per day (SD 4.3, median126

8.8) on weekdays, and 10.4 hours per day (SD 4.3, median 9.7) for weekends.127

Looking at the timing of heating over the course of the day, Hanmer et al 2019 [8] argued that a variety of standard128

‘thermal routines’ would be expected, as each household’s particular routine is shaped in part by wider societal diurnal129

rhythms around work, sleep, food preparation, etc. The central heating settings data that they analysed included130

user-programmed periods of ‘in’, ‘out’ and ‘asleep’; their analysis focused on the ‘in’ periods, which indicated when131

heating systems were on. Peaks in programmed start times for heating occurred at 07:00 and 16:00, although with large132

variations, particularly in the evening (Interquartile Range of 150 minutes), and a median off-time at the end of the day133

of 22:00. At the morning peak in on-times, around 65% of homes had the heating set to on, and nearly 90% in the134

evening peak. Interestingly, slightly less than 60% of boilers were on in the morning peak, and just under 50% in the135

evening peak, with around 25-30% on at any given time in-between (as the authors note, boilers do not necessarily run136

continuously when the heating is ‘on’). Across the sample, a 2-period programme setting was most common for ‘in’137

periods, with a 1-period programme occurring about 1/3 as often, 3-period programme about 1/5th as often, and other138

patterns (3+ periods, always on, or always off) being relatively rare. Differences in the relative rates of occurrence of139

these different patterns between weekdays and weekends and over the heating season were not investigated. Using140

2013 data, do Carmo et al 2016 [12] also investigated diurnal heating patterns, applying k-means cluster analysis to the141

hourly maximum heat demand loads of 139 heat-pump heated homes in Denmark, to identify common patterns. They142

identified two patterns of heat demand, one with a fairly flat profile but a soft morning peak and some increase in the143

evening, the other with a more substantial trough between a morning peak and evening rise in demand. Both variants144

occurred over the weekday and weekend, and across homes with varying levels of overall demand.145

Further work by Huebner et al 2015 [13] using the same dataset described above in [7] identified four clusters of146

diurnal heating pattern in a stratified random sample of 275 English homes. These clusters were identified based on147

room temperature data rather than active heating durations, but as the data were taken purely from winter months (over148

the 2007-2008 winter season), there is likely to be substantial correspondence between the two. The most commonly149

identified cluster was a two-peak temperature pattern (40.0% of homes) - this is the most similar to the weekday pattern150

assumed in the SAP model (although the variation between homes in length and timings of the morning and evening151

peaks was not described in detail). The next most common pattern (30.9% of homes) was a flat line, with largely steady152

day and night temperatures. The two remaining clusters both showed nighttime declines in temperature of differing153

degrees until early morning, followed by rises of differing degrees until around 21:00. No analysis of variation by154

weekday vs. weekend was presented.155

Kane et al’s 2015 work [9] also identified variation in diurnal patterns (again based on room temperature data, over156

the 2009-2010 winter season), with a double heating pattern over the day again being most common (51% of homes157

analysed). Single peaks were also common (33%), whilst multiple peaks (5%) and others uncommon patterns were also158

identified. Also identified were 11% of homes with patterns ‘too inconsistent to categorise’. On average, the single and159

double heating period times corresponded fairly strongly with the SAP two-period weekday and single-period weekend160

heating patterns, with ‘the median heating times [being] 07:00–23:00 (15 h) for single heating periods and 06:00–09:00161

and 15:00–22:00 (10 h in total) for double heating periods’. However, there were variations in start times of several162

hours between homes (correlating with occupancy numbers and employment status), e.g. afternoon start times in163

the double heating period homes varied between 13:00 and 16:00. The authors did not find significant differences in164

heating durations between weekday and weekend however, and the full-week average daily heating duration of 12.6165

hours fell midway between the SAP’s assumed weekday and weekend durations. There was a large variation between166

homes ‘with daily heating durations in individual homes ranging from 4 h to 22 h’ (standard deviation 3.5 hours).167

Finally, they investigated the start of the heating season, finding broad consistence with the SAP assumption for an168

October start, but with a large variation between homes, between 1 September and 22 October.169

Watson et al 2019 [14] also found evidence that heat demand varies by external temperature, and by date. They170
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estimated heat demand for a mean sample size of 6,400 dwellings from across Great Britain covering 1 May 2009 to171

31 July 2010, using half-hourly smart meter data and splitting the energy use data into space heating, water heating172

and other uses based on averaged figures for their proportions. They found that heat demand varied greatly over the173

SAP heating season, but was markedly low outside it and higher within it. Demand was also lower during more mild174

conditions. Peak demand was at 18:00; and the highest ‘ramp rate’ (increase in demand between time points) was at175

07:00. The variation identified in demand over the day was not inconsistent with the two-peak SAP times, although176

there were not sharp transitions in demand between the SAP heating and non-heating times.177

Hughes et al 2016 [5] meanwhile report data on the duration and timing of the heating season, based on the EFUS178

survey data. They report the mean self-reported heating season as being 5.7 months (S.D. 2.07, median 5.0) compared179

to the 8 months assumed by the SAP. The proportion of the sample responding that they heated their home varied per180

month, with the large majority using heating in the months November to February (varying between 92% and 100% of181

respondents), and October and March being transition months in terms of the proportion of respondents using their182

heating (69% and 44%, respectively). 20% or fewer heated their homes outside those months.183

Wei et al’s 2014 literature review [11], finally, reports that three papers reviewed consistently reported correlation184

between type of room and patterns of heating, with living rooms heated the most often, while all of four studies found185

heating less likely to be on at any given time in warmer climate areas and/or on warmer days.186

Overall, the existing literature finds evidence for considerable variation between homes in diurnal durations and187

timings of heating use. Whilst a two-peak pattern similar to the SAP-assumed weekday pattern is common, single188

peak and continuous heating patterns are also identified in different works, as well as other homes showing more189

diversity and inconsistent patterns. Unlike the SAP assumption, there appears not to be a strong weekday-weekend190

differentiation in heating patterns or durations, while there is consistent evidence of variation between rooms, across191

the heating season and by external temperature (as well as by other factors) that are not modelled by the SAP. There is192

also evidence that the heating season is for many households substantially shorter than modelled by the SAP, although193

the degree to which this is shaped by weather conditions rather than by time of year is unclear.194

3. Data preparation195

This paper presents a variety of descriptive analyses of ambient room temperatures and durations and patterns of196

radiator usage for rooms from a sample of homes from the region in and around Edinburgh, UK. The derived dataset197

used in this paper contains the following for each home in the sample: for each room, the ambient temperature and198

radiator status (on or off), at a 10 minute granularity; for each day for each room, a categorical classification, based on199

a cluster analysis, representing the pattern of heating in that room over that 24 hours.200

This section presents information about the source dataset and the processing undertaken to it to prepare the201

derived dataset analysed in this paper. Meanwhile, the methods of analysis of the derived dataset to produce the results202

presented later in this paper are described inline throughout the Results section.203

3.1. Dataset204

The source dataset drawn upon in this paper is the IDEAL Household Energy Dataset. The data has recently been205

published open access [15] along with a full data descriptor [16].206

The IDEAL dataset includes sensor data collected from a sample of homes from the region in and around Edinburgh,207

Scotland, UK (specifically Edinburgh, Lothians and south Fife), between August 2016 and June 2018. Data was208

collected from participating homes for between 55 and 673 days, with a mean of 286 days, median 267 days, and209

with the total number of homes increasing over the course of the observation period due to ongoing recruitment of210

households, reaching a maximum of 255 homes.211

The data was collected as part of two projects funded by the UK Engineering and Physical Sciences Research212

Council1. The projects had various aims, principal among them to develop a “long-life, battery-powered, wireless213

sensor system providing high frequency measurements” as part of the development and evaluation of a home energy214

1Intelligent Domestic Energy Advice Loop (grant reference EP/K002732/1) and Data-Driven Methods for a New National Household Energy
Survey (grant reference EP/M008223/1).
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monitoring and digital feedback system, and to “investigate residential energy demand patterns, drivers and outcomes”215

[16], with this current study forming one of the outputs of that work.216

All homes in the projects had a range of sensor and survey data collected from them as part of their participation.217

As well as a range of other sensor data that were collected and are published in the dataset (notably for electricity and218

gas usage), of relevance for this current article are the wall-mounted sensors fitted in each room to detect ambient219

temperature and humidity. These sensors reported wirelessly at 12 second intervals to a basestation in the home, which220

then sent the data (encrypted) via the home’s internet router to a secure server for the project. A subset of 35 of the221

homes also had ‘enhanced’ sensor systems installed, which included, among others, additional sensors fitted to the222

inflow and outflow pipes of radiators in each room to monitor radiator usage, also reporting at 12 second intervals.223

Ambient room temperature and humidity data were collected using standard calibrated sensors (Sensirion SHT21)224

integrated into the PCB of the project-designed sensorboxes, whilst radiator pipe temperatures were collected using225

temperature probes (DS18B20, with TRS plug) connected to additional project sensorboxes [16]. Sensors were fitted in226

homes by trained project technicians following a set of criteria to maintain data quality. For ambient room sensors227

these included placing them at around shoulder height wherever possible, and locating them to “avoid factors that could228

reduce their accuracy”, including “avoiding placement above a radiator, close to openable windows or on external229

walls, or in direct sunlight” [16].230

A range of other data is also provided in the dataset that is drawn on in the research presented here, including231

building and occupant characteristics collected via the surveys and by the project technicians who installed the sensors232

systems in participants’ homes, and secondary data on weather conditions including outdoor temperature from local233

weather stations.234

3.2. Sample characteristics235

All homes in the study had gas central heating as their primary heating source, with radiators in all or the majority236

of rooms in the home. Homes with supplementary heating sources, e.g. electric heaters or solid-fuel or gas fires, were237

accepted into the project if they confirmed these were not used as major heating sources. Participating households had238

a variety of dwelling and occupant characteristics, including a mix of flats and houses, construction eras, numbers of239

rooms, numbers of occupants and incomes and age bands. Figure 1 provides a summary of these characteristics of240

the homes and occupants. Edinburgh is a city with a large proportion of flats and historic buildings, particularly 19th241

century properties, so is atypical of the wider UK housing stock. The sample itself also has a larger ratio of flats to242

houses than is typical for the sample area, and also of buildings from the 1850-1899 period. Also notable is that there243

are relatively fewer homes in lower income bands, despite the efforts of the project team to recruit households from the244

full range of income bands.245

Monthly mean temperatures, °C

Summary period Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

2017-2018 13.0 12.9 11.0 9.6 3.5 2.3 1.7 1.1 1.9 6.4 10.7 13.0
Mean of most
recent 10 years 13.7 13.2 11.3 8.2 4.9 3.4 2.3 2.8 4.3 6.0 9.1 12.0

2017-2018 minus
10-year mean -0.7 -0.3 -0.3 1.4 -1.4 -1.1 -0.6 -1.7 -2.4 0.4 1.6 1.0

Table 1: Monthly mean temperatures in East Scotland. Top row shows monthly mean temperatures
for the 2017-2018 period covered in the analyses here. Middle row shows the means for the most
recent 10 years of data available (for July-December, this is 2011-2020; for January-June, this is
2012-2021). Bottom row shows difference between the two. (Data from [17] and authors’ own
calculations)

This paper focuses on the data collected in the final 12 months of the study, July 2017 to June 2018, when participant246

recruitment was more progressed and more homes’ data is as such available in the dataset. Table 1 compares the mean247

outdoor temperatures in the region for those months to the means of the monthly mean temperatures over the most248

recent 10 years of data available at the point of writing - for July to December, these are the monthly means for 2011 to249

2020; for January to June, they are for 2012 to 2021. The data were derived from the mean temperature values available250
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Figure 1: Selected building and occupant characteristics of the sample of homes included in this paper. Note
varying y-axis scales. (Adapted from [16]).
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from the Met Office, the UK’s national meteorological service, for the ‘Scotland East’ region, the smallest geographic251

region available that encompasses our dataset’s sampling area [17]. They show that the core of the heating season,252

November to March, was consistently colder than the 10-year average, October and April to June were somewhat253

warmer, while July to September were also slightly colder.254

3.3. Preparation of room temperature and radiator usage data255

We undertook various stages of post-processing of the IDEAL Household Energy Dataset to generate a dataset256

comprising the final set of features used in the analyses presented here. First, we downsampled the 12 second data to a257

10-minute granularity, by taking the mean of the reported value. If no value was reported during a 10 minute period258

then we set the value to missing. Missing data points were then filled if they were within 3 data points (30 minutes)259

forwards or backwards of a non-missing data point. Imputed values were computed by linear interpolation between260

the readings immediately before and after a gap. Thus mid-sequence gaps of up to six time points (60 minutes) were261

completely filled, while larger gaps had three imputed values at each end (30 minutes at each end) while retaining262

missing data elsewhere.263

For the 35 homes with enhanced sensor systems with sensors measuring radiator pipe temperatures, we used this264

data to label a radiator as either on or off at each 10-minute time point. Following [7], we defined a radiator to be on265

if its temperature was above room temperature, in this case by 5°C or more, using the mean value of the input and266

output pipe temperatures if both were available. To extend this data further, we inferred radiator on and off times in267

the rooms of the remaining homes in the dataset that lacked direct radiator pipe temperature measurements. To do268

this, we developed and applied a new Machine Learning methodology for inferring domestic radiator use - a deep,269

dilated convolutional neural network model. The model takes the available room temperature and humidity and external270

temperature and humidity data as inputs, and for each room and 10-minute time interval produces a label of whether its271

radiator was on or off, in the same format as the labels for radiators in homes that had radiator pipe temperature sensors.272

The Machine Learning model we used is based on approaches that have had success analysing time series data [18],273

including in the building energy domain [19], and is computationally efficient when there are likely to be variable time274

lags to be considered between the variable being predicted (in this case, the status of the radiator in a room as either275

on or off) and the variables used to make the predictions (in this case, room temperature and humidity and external276

temperature and humidity). The model was trained and validated on the homes with enhanced sensor systems, and277

the full methodology and its performance evaluation are described in our methods paper [20]. Briefly, the model was278

evaluated for its ability to predict if the heating was on or off for each 10 minute time period (bins) and to predict279

longer contiguous periods when the heating was on (events). Over the heating season, it achieved an overall precision280

and recall of 0.74 and 0.81 respectively per bin, and a higher precision and recall of 0.83 and 0.82 respectively per281

event. Overall, the model gave a good prediction of the average duration of heating events and the quartiles and overall282

distribution of heating durations, with “some underestimation of the proportion of days with short and long heating283

durations” - short heating durations were more likely to be missed; long were more likely to be slightly underestimated284

in duration. Performance was fairly consistent between rooms and, with the exception of slightly poorer performance285

for kitchens, between room types. The model was most likely to fail to predict short heating periods of less than an286

hour, presumably as they are too short to increase the ambient room temperature sufficiently. These short missed events287

reduce the model’s precision and recall, however they represent heating events with comparatively little effect on room288

conditions and so are of less empirical interest. A further factor is that the model “detects heating of any kind, whereas289

the labels used with the demonstration dataset are exclusively for radiator use”; as such, true heating events detected290

by the model that arose from “additional heat sources, such as electric radiators, open fires, heat transfer from other291

rooms through open doors and heating from direct sunlight entering the room” would be counted, erroneously, as false292

positives, lowering the reported precision of the model below what it actually should be [20].293

The resultant dataset used in this study therefore comprises a blend of homes with direct and inferred measures of294

room radiator on and off times. Adding inferred measurements increases the level of error in the dataset to a degree, but295

greatly increases the number of households for which data are available. The overall relatively strong performance of296

the inference model and its consistency across room types and at inferring all but the shortest and longest heating events,297

mean that on balance the inferred heating data for the 220 homes without direct radiator temperature measurements298

represent a valuable addition to the sensor-measured data for the other 35 homes in this study, with the nature of the299

errors introduced meaning they are likely to have minor substantive impact on the results and conclusions in this current300

study.301
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3.4. Clustering of room-day heating patterns302

The final feature produced for the dataset used in this study is a label for each day for each room (each ‘room-day’)303

describing its diurnal pattern of radiator usage, i.e. the pattern of the radiator being on and off over the course of the304

day, starting from midnight. A cluster analysis was undertaken to identify common patterns of heating of rooms over305

the course of individual days, and to label each room-day of data with the cluster into which its heating pattern fell. As306

such, a room can potentially change clusters from one day to the next, and rooms within a home on any given day may307

potentially fall into the same or different clusters.308

We undertook the clustering with HDBSCAN [21], which is a hierarchical density based algorithm. A wide range309

of clustering algorithms exist; we selected HDBSCAN because it has two characteristics that make it well-suited to the310

current study: firstly, it does not require the number of clusters to be specified a priori, and secondly, it incorporates a311

concept of noise - that is, some cases can be considered too different from any of the identified clusters to be allocated312

to any of them. These characteristics of HDBSCAN are valuable for the current study because, based on the literature313

reviewed earlier, we firstly do not have a strong theoretical or empirical basis for deciding the ‘correct’ number of314

clusters in advance, and secondly, alongside a limited set of commonly occurring heating patterns, we would also315

expect a wide range of heating behaviours that occur only occasionally, which will be represented as noise by this316

algorithm rather than being allocated to clusters that they only distantly resemble.317

Three input features were created for clustering upon, derived from the 144 10-minute resolution time-steps (bins)318

that represent radiator on- and off-times across the course of each day for each room. The features were: (1) the total319

heating duration per day (the sum of all bins for the room-day when the heating was classed as ‘on’), (2) the average320

duration of heating events (where an event is defined as a contiguous period of 10-minute bins during which a particular321

room is continuously labelled as having its radiator on ), and (3) the centre of mass of the 144 bins, defined as the322

median time across the day when the room’s radiator was on. For example, a day heated for the full 24 hours, or with323

no heating at all, would have a centre of mass at 12:00 (midday). A home with heating from midday to midnight only324

would have a centre of mass at 18:00. These three features were standardised (subtracting the mean and scaling to325

unit variance) before applying the clustering algorithm. Producing these three features from the original 144 bins326

is an important step in enabling the clustering algorithm to identify underlying similarities and differences between327

room-days, i.e. to identify clusters. Using the 144 bins directly would mask the clusters, as including large numbers of328

variables in a cluster analysis prevents clusters being identified, as with more variables, each data point increasingly329

appears equally (dis)similar to each other data point, the so-called “curse of dimensionality” [22]. The choice of the330

above three input features is intended to retain information about important aspects of the heating patterns in each331

room-day.332

We ran the algorithm with the minimum cluster size set to 1,000 (i.e. no clusters were permitted if they comprised333

fewer than 1,000 room-days) and the “minimum number of samples” to 45. The minimum number of samples is a334

parameter of HDBSCAN that effectively controls the level of noise by defining how many points have to be within a335

given distance to be counted as “core points”, as defined by the DBSCAN terminology - the higher the value, the more336

cases will be classed as noise, and clusters will be progressively restricted to more densely populated areas of feature337

space (see [21] and [23] for detailed information). The input data was all the room-days falling into the 2017-2018338

heating season2. The 2016-2017 heating season was omitted as the majority of homes do not have data for that period.339

The clustering algorithm returned eight clusters plus one noise “cluster”, which are shown in figure 2.340

Room-days falling into cluster 0 used their heating throughout the day and night, while room-days in cluster 1 used341

heating from around 7am to 10pm. No heating is observed for cluster 2. Room-days in clusters 3 and 4 have their342

heating turned on either in the evening or in the morning, respectively. Clusters 5, 6, 7, and 8 are characterised by a343

two-peak pattern of heating in the morning as well as in the evening, with varying degrees of heating use during the344

day. While these eight clusters emerge from the clustering as different, we manually grouped them into four groups.345

This was based on our judgement of how similar these are with respect to our understanding of behavioural patterns346

and is further corroborated by inspecting the feature distribution of each cluster (c.f. figure 3). We describe the four347

2In our analyses, we identified a core heating season from the beginning of November to the end of March. October and April were apparent as
transition phases where heating was used to some degree, while the remaining months were periods with minimal levels of heating use. Throughout
the paper, where we summarise for the heating season, we use an empirically-driven definition, taking it to span from October to April inclusive,
rather than the SAP assumption of October to May, so that it includes the core and transition heating periods found in our dataset but excludes
periods with very little observed heating use. Section 4.2 presents the relevant results on heating usage per month.
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Figure 2: Heating pattern clusters. The cluster labels as returned by HDBSCAN are shown on the y-axis
(-1 denoting the noise cluster). The horizontal bars for each cluster are heatmaps showing the proportion of
rooms-days in the cluster that were being heated at each time point across the day, drawing on the 10-minute
radiator data for all the room-days within each cluster. The dendogram shows the hierarchical splits undertaken
by the algorithm and the corresponding λ value when each cluster split off, which provides an indication of
closeness or similarity between each cluster (splits at higher λ values indicate more closely related clusters).

groups as: (i) all day heating, (ii) no heating, (iii) am or pm heating, and (iv) am and pm heating, plus the noise cluster.348

The group assignment is summarised in table 2.

Cluster group Cluster IDs

All day heating 0, 1
No heating 2
am or pm heating 3, 4
am and pm heating 5, 6, 7, 8
Noise -1

Table 2: The nine clusters returned by HDBSCAN were each manually assigned to one of four
groups (plus a noise group). The table indicates the descriptive name allocated to each group, along
with their respective clusters.

349

3.5. Graphical presentation of results350

A range of graphical approaches are used in the figures in this paper to present the results. Where the values of a351

single variable are being discussed, either for the sample as a whole or for subsamples, figure styles are tailored to the352

key characteristics of interest. To present totals and differences, bar graphs (Figures 1 and 14), or stacked line graphs353

(Figure 12) are used. Boxplots are used when means and spread (e.g. standard deviations) are also of interest (Figures 4354

and 5). Where more detail of the distribution is required than can be revealed by a boxplot, such as when a variable’s355

values deviate strongly from a normal distribution, then line graphs are presented that present similar information to a356

histogram but smoothed based on an estimate of the underlying distribution using a kernel density estimator (KDE)357

(Figure 8). These can be further enhanced into violin plots, which allow distributions calculated in the same manner for358

multiple variables to be plotted side by side or mirrored for a single variable (Figures 3 and 7) and can additionally359

present further information on the means and ranges of the values (Figures 11 and 14). Where correlations between360

two continuous variables are presented, we utilise line graphs (Figure 10). Finally, where the correlation between three361
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Figure 3: Violin plots showing the distributions of values for each of the features used for clustering, across all
room-days in each cluster. (a) shows the distributions of the total heating durations over full room-days (left
hand side of each violin), and the distributions of the average durations of the individual heating events within
each room-day (right hand side); (b) shows the distributions of the “centres of mass” - the median times of the
10-minute bins when the heating was on each room-day, counting from midnight. The group assignments as
used in this study are indicated below HDBSCAN’s cluster labels.

variables is being discussed, we utilise variants of heat maps, which use a colour scale to show the value of a variable362

across its range of values as it varies against two other variables, which are plotted on the x and y axes (Figures 2, 6, 9363

and 13).364

4. Ambient room temperatures and heating usage365

4.1. Achieved ambient room temperatures366

Here we explore the temperatures achieved in living rooms3 across our sample. The SAP assumes 21°C is achieved367

for nine hours per day on weekdays (and 16 for weekends), and so we focus on the achieved temperatures for the368

warmest nine hours of each day, irrespective of where in the day these data points occur (i.e. they may not be contiguous,369

or overlap with the precise periods of the day the SAP assumes to be actively heated). To achieve this we rank data370

points for each room-day by temperature. The minimum temperature reached during nine hours of the day then371

corresponds to the 62.5 centile (1−9/24), while the median temperature over the warmest nine hours corresponds to the372

81.25 centile. We focus on the warmest periods of each room-day rather the specific heating times assumed in the SAP373

model, as this is a simplifying assumption in the model and real periods of heating use will vary between households374

and between days. Additionally, we analyse weekend and weekday data together here, as we find, consistent with other375

literature, little difference in heating durations between weekday and weekend (see ‘Levels of active heating per day’,376

below).377

Figure 4 shows boxplots of the minimum temperatures for the warmest nine hours of each day for living rooms378

across all homes, split by month of the year. The figure also shows boxplots of the mean temperatures achieved during379

those same nine hours of each day. Across the heating season, it can be seen that the average minimum temperature is380

around 19°C rather than 21°C. The mean temperature is also below 21°C, at around 20°C, indicating 21°C is commonly381

reached for less than half of the time assumed by the SAP. The actual amount of time room-days are at a temperature382

of 21°C or above is shown in the boxplots in figure 5, which demonstrates that on very few room-days are living383

rooms heated to 21°C or above for the full nine hours assumed in the SAP. In fact, across the heating season, the figure384

indicates that the majority of room-days achieve 21°C for no more than an hour or even less, and that rooms heated to385

21°C for nine hours or more are outliers.386

3Note, in this paper we take the living area to be the living room/lounge for all homes in the study, consistent with the SAP definition.
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Figure 4: Boxplots showing the distribution of minimum temperatures reached for at least 9 hour per day (62.5
centile), and average (mean) temperatures over those same 9 hours, in living rooms in 2017/2018. The dashed
line in the background indicates the 21°C assumed by SAP.

The two figures show that the actual achieved temperatures show a high level of consistency across the core heating387

season (November to March), i.e. little variation in the minimum and mean temperatures achieved for nine hours per388

day, or in the duration of time rooms are heated to 21°C or above. An increase in the average temperature reached, and389

the duration of time spent at 21°C or above, is only observed for the warmer months of the year (May to September)390

which are no longer considered to be part of the heating season.391

Although the SAP model assumes the achieved temperature is unaffected by heating patterns or outside temperature,392

we find some relationships between these. This is highlighted in figure 6. Figure 6a shows a hexbin plot of the 62.5393

centile room temperatures against the number of hours the radiator was used during the same day. It can be seen that394

for long heating periods, particularly above 15 hours per day, the achieved temperature starts to rise. There could be a395

range of explanations for this. Occupants could either desire, or be indifferent to these higher temperatures, or they396

may have difficulty controlling their heating system. For shorter heating durations of less than 15 hours per day, the397

minimum achieved room temperatures during the warmest nine hours of the day is usually below 21°C.398

Figure 6b meanwhile shows a hexbin plot of the 62.5 centile room temperatures against mean outside temperature399

for the same day. This reveals greater spread in the achieved temperatures at lower outdoor temperatures, and some400

signs of relative overheating on warmer days.401

4.2. Duration of active heating per day402

The SAP model assumes that rooms are heated for nine hours in total per day on weekdays, and 16 hours per day at403

weekends, with no difference in these figures between different room types or over the heating season.404

Figure 7 shows violin plots of the distributions of heating durations between weekday and weekend and by room405

type. The left-hand two plots show heating durations over the heating season split by weekdays (left) and weekends406

(right). There is no substantive difference between the two distributions, and the mean value is 6.1 and 6.0 hours of407

heating per day for weekday and weekend respectively. The right-hand plots present heating periods over the heating408

season by rooms: firstly between the living area (mean 6.6 hours) and non-living area (mean 6.0 hours) and secondly409

between room types. Overall, the distributions indicate that non-living areas are more likely to be left unheated,410
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Figure 5: Boxplots showing the distribution of hours per day reaching 21°C or above, in living rooms in
2017/2018. The dashed line in the background indicates the 9 hours assumed by SAP.
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Figure 6: The relationships between (a) minimum indoor temperature reached during nine hours per day and
hours of radiator use, (b) minimum indoor temperature reached during nine hours per day and average outdoor
temperature. Only days during the heating season and days for which active heating was observed are included.
The hexagonal bin colours indicate the number of room-days across the sample falling at that point. Bins with
the maximum number of observations along the y-axis are indicated with a white border. The red lines show
cubic interpolations for these bins.
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Figure 7: Distribution of heating durations per day for the heating season. The two-toned plots on the left show
the distribution split by weekday and weekend, and by living area and all other room types, respectively. The
plots on the right show a breakdown by room type. The dashed lines represent the quartiles of the respective
distribution.

particularly bedrooms, but the differences in distributions between rooms are small, indicating little in the way of411

zoning of the duration of heating.412

Breaking heating durations down into separate months of the year highlights substantial differences in the dis-413

tribution of heating hours over the heating season, as can be seen in figure 8 (which pools data from weekdays and414

weekends and from all rooms). The figure also shows that heating is significantly used from around November, with415

October being a transition period where some heating is already observed. From around April, households transition to416

no longer requiring heating, leading to very little observed heating from May, about a month earlier than assumed in417

the SAP.418

Figure 9 indicates that this seasonal trend is at least in part related to the corresponding changes in outdoor419

temperatures. The figure shows the correlation between mean outdoor temperature and hours of radiator use per day for420

all room-days across the heating season. As might be expected, generally lower levels of radiator use are found on days421

with higher outdoor temperatures. Meanwhile, when outside temperatures are lower, there is a large spread in hours of422

radiator usage. This increasing spread with decreasing external temperatures is unexplained. It may be explained by423

diversity in occupants’ physiology through variation in the width of their thermal neutral zones, or in variations in their424

behaviour and thermal comfort practices. Occupants who wear more clothes in winter may be equally comfortable at425

lower internal temperatures. It might indicate the effects of occupants zoning - heating different rooms to different426

levels, such as for energy efficiency motivations. It may also be due to lower income or fuel poor households using less427

heating than higher income households because of cost factors. It also demonstrates that it is highly likely that heating428

periods will vary substantially from year to year based on annual variations in weather conditions.429

4.3. Diurnal patterns of active heating430

The SAP model assumes heating to be on from 07:00-09:00 and 16:00-23:00 for weekdays, and 07:00-23:00 for431

weekends over the heating season, with no variation between rooms or across the heating season.432

Figure 10 (top) plots the proportion of rooms in the study which were actively heated at different times of the day,433

across the whole heating season, showing weekday and weekend data separately. Whilst weekday peaks in heating434

coincide approximately with the SAP assumption, it can be seen that there remains substantial variation, with only435

around half of rooms across the homes in the sample heated at the peaks. Also, around a quarter of rooms remain436

heated during the middle of the day, outside of the two periods of heating assumed by the SAP. The weekend shows a437

similar pattern, but with lower peaks, more heating between the peaks, and a morning peak around half an hour later438

than the weekday one.439
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towards 24 hours of heating in colder months are the result of room-days with actual 24 hours radiator on-times.
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Figure 9: The relationship between average outdoor temperature and hours of radiator use. Only days during the
heating season and days for which active heating was observed are included. The hexagonal bin colours indicate
the number of room-days across the sample falling at that point. Bins with the maximum number of observations
along the y-axis are indicated with a white border. The green line shows a cubic interpolation for these bins.
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Figure 10: Proportion of rooms with heating on (top) and average indoor temperature (bottom) by hour of the
day. The dashed and dotted lines indicate the heating periods per day as assumed by SAP.

The bottom of the figure shows the average indoor temperatures achieved across the day for the same set of440

room-days. These indicate that weekend achieved temperatures average a little higher than on weekdays during the441

heating season, except that there is a later start to the rise in temperature, which is likely explained by the observed442

differences in weekend heating patterns.443

These aggregated figures reveal overall patterns but also obscure between-room-day variation. Our cluster analysis444

(described in section 3) identified four common patterns of daily heating. All day heating corresponds approximately445

to the SAP pattern of heating that it assumes is observed at weekends, although our cluster has a broader definition,446

encompassing days that are heated throughout the SAP heating period of 07:00-23:00 and which may or may not have447

further heating outside of those times; the am and pm cluster corresponds approximately to the SAP pattern assumed to448

occur on weekdays; while No heating is only assumed in the SAP model to occur outside the heating season; and the449

am or pm cluster has no direct equivalent in the SAP model. A further noise cluster captures a range of other patterns450

that each occur only infrequently and do not align sufficiently closely to any of the other clusters to be labelled as one451

of those.452

Assumed by SAP Empirical results

Heating cluster % of room-days % of room-days % of homes

No heating 0% 15 98
am or pm 0% 11 100
am and pm 71% (weekdays) 50 100
All day heating 29% (weekends) 4 73
Noise 0% 21 99

Table 3: The percentage of room-days falling into each pattern of heating, and the percentage of
homes having at least one room fall within that cluster on at least one day.
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Figure 11: The distribution of the 62.5 centiles of the daily temperatures is shown. This corresponds to looking
at the minimum temperature which is reached during nine hours per day. The dashed line in the background
indicates 21°C. Mean and quartile ranges of the data are shown by the dashed lines in the violinplots.

Table 3 presents data on how commonly each of the heating pattern clusters occur in the homes, as a percentage of453

total room-days and as a percentage of homes in which that cluster is present at least once. The SAP model effectively454

assumes 5/7th of room-days (71%, all weekdays) fall into the am and pm pattern and 2/7th (29%, all weekends) fall455

into the longer all day pattern. We find that a substantially lower proportion of room-days, in this case 50%, falls in the456

two-peak, am and pm, pattern. Only 4% of room-days fall into the all day cluster. 11% of room-days have heating just457

in the am or pm, 15% have no heating, and a further 21% are in the noise cluster. Similarly to previously published458

empirical work, we did not find that the cluster into which a particular room-day fell correlated substantially with459

whether that room-day was on a weekday or a weekend. With the exception of the all day heating cluster, virtually460

every home had at least one room-day in each of the other clusters.461

While the results of this study confirm that the most prevalent heating periods are observed in the morning after462

people tend to get up and in the late afternoon and evening, it further highlights that there remains a substantial degree463

of heating occurring between these periods even on weekdays, and that there is substantial variation between room-days,464

with almost half having heating patterns that are neither the all day nor the am and pm patterns assumed in the SAP.465

4.3.1. Heating patterns and room temperature466

We investigated whether there was a correlation between heating clusters and achieved room temperatures. Figure467

11 shows the distribution of minimum room temperatures reached during the warmest nine hours of each day for468

room-days within each heating cluster.469

The distributions in temperatures reached are similar for most clusters, including the no heating one. The exception470

is room-days in the all day cluster, which achieve a higher temperature on average. This indicates that, while there471

could be rooms which need continuous heating due to insufficient insulation, rooms with continuous heating are instead472

more likely to be heated to a higher temperature. This in turn implies that people whose homes are heated more are (on473

average) achieving higher indoor temperatures and not always simply compensating for higher heat loss due to lower474

outdoor temperatures or poor insulation. The reason for such all day heating patterns is unknown. It could arise from475

occupant choice, occupant indifference, or an inability to control heating times.476
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Figure 12: Relative frequency of room-days per week is shown for the heating season 2017/2018. The dashed
line shows the average outside temperature as measured in the City of Edinburgh for that time.

4.3.2. Heating routines and change over time477

The data also demonstrates that heating patterns change over time. Figure 12 shows the changes in relative sizes of478

the heating clusters over the 2017/2018 heating season, as a proportion of room-days in each period. A clear adaptation479

of heating patterns to outside temperature is apparent. Room-days which are heated either in the morning or the evening480

are mainly found in the transition periods (October and April), characterised by higher average outdoor temperatures481

relative to the rest of the heating season, while room-days which are heated more (either continuously or in both the482

morning and afternoon) are predominantly found in the core heating period of November to March inclusive. It can483

furthermore be seen that during a particularly cold period in March, the number of room-days using heating throughout484

the day increased slightly. The no heating pattern is also strongly associated with temperatures, and as such is most485

common during the transition periods.486

As well as these seasonal changes in heating patterns, we investigated patterns of change in heating patterns from487

one day to the next. Such changes could arise due to different householder schedules on different days, adaptions to488

rapidly changing weather conditions, and so on. We computed the transition probabilities of rooms switching between489

clusters from one day to the next. The full transition probability matrix is depicted in figure 13. Across nearly all the490

clusters, the most likely outcome for a room is for it to continue in the same cluster on one day as it was in the previous491

day. However, the likelihood varies by cluster.492

Rooms falling into the noise cluster remain in the same cluster or switch to the am and pm cluster with roughly493

equal probability. This indicates that the noise cluster shares similarity with the am and pm cluster, leading to a fuzzy494

border separating these two clusters in the feature space. This is further corroborated by the relatively high switching495

probability from the am and pm cluster back to the noise cluster.496

It can further be seen that no heating is the most stable pattern with a probability of 69% for a room to remain497

unheated on the next day.498

Other transitions in the matrix correspond to an increase or decrease in the level of heating. Firstly, a switch away499

from no heating is observed with 17% probability to am or pm, with 9% probability to noise, and 7% probability to the500

am and pm cluster. Once in the am or pm cluster, there is equal probability of subsequently remaining in am or pm501

or switching to am and pm (30-31% each), and a lower probability of switching to all day or noise clusters (2% and502

17% respectively). This indicates that am or pm is a relatively unstable heating pattern, which is consistent with the503

relatively low rate of occurrence of this cluster seen earlier.504

A gradual decrease in heating use seems further to be reflected by the high transition probability of the all day505
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Figure 13: Transition matrix, indicating the probability of a room transitioning from a given heating cluster to
any of the others between days (see main text for full details).

heating cluster to the am and pm heating pattern.506

4.3.3. Heating routines and “zoning”507

Where homes have different heating needs in different room types, householders might decide to “zone” their508

homes. Here, we investigate if room types show different prevalence to the various clusters as well as to what extent509

the heating patterns between bedrooms and living rooms differ.510

If no interaction between cluster assignment and room type is present, we would expect the relative frequency of511

clusters (or probability that a random room-day falls into a specific cluster) to be equal between the complete dataset512

and each room type respectively. If, on the other hand, certain room types were more likely to be found in a specific513

cluster, this cluster would show a higher relative frequency for that room type compared to the complete dataset (and514

vice versa). Figure 14a shows the difference between the probability of a room-day falling into a cluster given the room515

type and the probability of a room-day falling into that cluster irrespective of the room type. A value larger than zero516

indicates a higher prevalence for the room type to be in the respective cluster compared to the complete dataset. The517

significance of this difference in probabilities is computed using a two-sided binomial test, assuming the true probability518

is as observed in the complete dataset and the outcome of the test is as observed for the respective room type. It can be519

seen in figure 14a that bedrooms have a higher probability of not being heated at all and a lower probability of being520

heated am and pm. This trend is reversed for kitchens and living rooms, which tend to be more likely to be heated am521

and pm and less likely to not be heated at all compared to other room types. While minor differences between room522

types are observed, there does not seem to be a striking difference in how rooms of different types are heated.523

We further looked at differences in the heating patterns found in bedrooms and living rooms as an indicator of524

zoning. If the heating cluster which the living room was in for a particular home differed from the cluster at least one of525

its bedrooms was in on the same day, we assumed the householder to have performed some form of zoning. While this526

will not give a true indication of zoning as the temporal aspect of when heating is used is too coarse, it gives an estimate527

of differing heating patterns between these two room types that captures larger differences. We computed if a home528

was zoning as defined above, for each day of the heating and transition periods. Days for which the living room as well529

as all bedrooms were found in the noise cluster were excluded from the analysis. Figure 14b shows the distribution of530

the percentages of homes that performed zoning per day (left) as well as the distribution of the percentages of days a531
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Figure 14: (a) Difference in observed probabilities of falling into a cluster given the room type. The difference
in the probability of observing a cluster given the room type and the probability of observing that cluster given
a random room type is shown (p(Cluster|RoomType) − p(Cluster)). (b) Violin plots showing the distribution
of zoning for two cases: days shows the percentage of homes that do zoning on any given day; homes shows
the percentage of days a single home does zoning over the full heating season. The first gives an understanding
of variability in the proportion of homes zoning on a given day; the second highlights the variability between
homes’ propensity to zone over the heating season. As data points of the violinplot represent a ratio, points with
less than 25 underlying events are excluded from the analysis.

single home performed zoning over the full heating period (right). We found that on any given day only around 10%532

of homes performed zoning, as defined here. Similarly, any given home was found on average to perform zoning for533

around 10% of days over the heating season, although the spread between homes is larger compared to the variability534

over time. We also observed a small variability in zoning probabilities with respect to the time of year, with the average535

level of zoning observed being slightly higher during the transition periods (data not shown).536

5. Discussion537

This paper has presented new empirical data and analyses of room-level heating patterns and achieved temperatures538

for a sample of homes in the Edinburgh region of Scotland, UK. The results highlight some areas of concurrence and539

others of substantial difference with the simplifying assumptions in the SAP model, which are discussed here in more540

detail.541

In terms of achieved ambient temperatures, the SAP assumes a consistent 21°C is achieved in living spaces over542

the active heating periods. Even focusing on just the warmest nine hours of each day over the whole week, i.e. not543

necessarily those heating times assumed in the model, our results indicate that very few room-days in the sample544

of homes maintained this temperature over the full period. Instead, the minimum temperature achieved during the545

warmest nine hours of each day in each room averaged around 19°C, with the mean temperature over those times546

slightly higher, broadly consistent with the findings in the existing literature for English and UK homes. Indeed, the547

majority of room-days over the heating season achieved 21°C for no or nearly no time at all. Whilst this result may548

appear slightly lower than found in previous literature, this may be because the results are not directly comparable.549

Averaged across all rooms in the sample, temperatures do rise with the onset of the SAP-assumed morning heating550

period (from around 07:00) and rise again over the evening period (16:00-23:00), peaking then at a higher temperature.551

Weekend temperatures also remain higher during the middle of the day than on weekdays. However, there is variation552

of around 1°C over that time between the morning and afternoon heating periods, rather than a consistent temperature553

being maintained across the period. Despite this, the average minimum temperature achieved for 9 hours per day is554
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relatively consistent across the SAP-assumed heating season (October-May), consistent with the model assumption.555

What varies month by month over the heating season is the level of variance in this value across the sample, with more556

variation during the empirically observed core heating season of November to March and less during the transition557

months of October and April. This may indicate some underheating of rooms on cold days and some overheating,558

particularly on warmer days, in a subset of rooms and homes.559

Turning to heating durations per day, the SAP assumes a standard 9 hours of heating on weekdays and 16 hours560

on weekend days, with no difference between different rooms in the home. Consistent with reviewed empirical work561

for English homes, we find little indication of difference between weekdays and weekends, nor substantive difference562

between room types. The SAP also assumes durations to be standard across the heating season and invariant to external563

temperature. We however found large differences in heating durations across the heating season, with far more hours564

per day, and a wider spread of hours per day, across a core heating season, and some but much lower levels of heating565

in the transition periods. Correspondingly, the analyses demonstrate that as external temperature falls, the average566

duration of radiator use increases, and the variation in duration across the sample also grows.567

In terms of diurnal patterns of active heating, i.e. periods when radiators are on or off over the day, the SAP568

effectively assumes that there are two distinct heating patterns during the heating season: 07:00-23:00, and 07:00-09:00569

and 16:00-23:00. These closely corresponding to the all day and am and pm clusters that we found in our data. However,570

our analysis indicates two other common patterns: am or pm and no heating (plus a noise cluster).571

The SAP assumes that these heating patterns vary only by day of the week across the whole heating season, so572

that all day heating in effect occurs on 2/7th of days (29%, weekends), and am and pm occurs on 5/7th of days (71%,573

weekdays). By contrast, we did not observe a substantial weekday-weekend variation like this; rather, cluster frequency574

varied greatly over the heating season, strongly correlating with external temperature. Furthermore, the all day heating575

cluster occurred on only 4% of room-days in our sample, and the am and pm cluster on only 50%. This suggests that576

where SAP occupancy schedules are applied to building stock models, the estimates of energy demand for heating might577

be substantially improved by including the additional heating clusters and modelling how these vary by month and578

external temperature rather than by weekday/weekend. Our results also indicated relatively high levels of transition out579

of certain clusters to others from one day to the next, notably out of the all day cluster into the am and pm cluster, and580

out of the am or pm cluster into the am and pm or no heating clusters. These may be explained by occupant behavioural581

responses to changing external temperatures, or to changes in occupancy between workdays and non-working days,582

with the home left unoccupied during the day. It would be of interest to explore these patterns in future work to identify583

explanatory factors, particularly ones which might be further introduced as refinements to the SAP model assumptions.584

Finally, we found zoning of heating patterns between rooms to be relatively uncommon: homes on average zoned585

about 10% of days over the heating season, but only 2.5% of homes zoned their heating on a frequent basis, and on any586

given day only 10% of homes on average were zoning.587

The current study has some limitations that could be addressed in future work. The source dataset has a similar588

number of homes to those used in many of the previous related works reviewed in the literature, and contains data on589

homes with a wide range of building properties and occupant characteristics. The room-level temperature data and the590

addition of inferred radiator usage measures to the subset where this was measured directly with sensors, although591

adding some noise to the data, makes the dataset unusually rich for exploring SAP model assumptions. It is, like the592

datasets used in most previous work in the literature, nevertheless not a representative sample of British households593

(nor of the region of Scotland from which it is sampled), so comparisons of frequencies and percentages between the594

data and SAP assumptions should be treated with some caution. The Edinburgh region has a lower average outdoor595

temperature than England, and Edinburgh in particular has a higher than UK-average proportion of 19th century596

tenement flats, factors which are further emphasised in the sample of homes in the dataset used in this study (older flats597

are over-represented, and much of the core heating season was slightly colder than the 10 year average for the study598

area). The high level of concurrence between our results and previous work nevertheless adds confidence regarding599

the generalisability of the key findings related to the diversity of heating patterns, generally lower temperature levels600

attained, levels of zoning and relationships to external temperature and time of year.601

6. Conclusion602

This paper has provided detailed descriptive statistics of room-level heating patterns and resultant indoor ambient603

temperatures, and described relationships between radiator usage, internal temperatures, room type, external tempera-604
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tures and time of week and year, for a sample of homes from Edinburgh and surrounding regions of Scotland, UK,605

using a mix of sensor-based and inferred measures of radiator use, as well as sensor-based ambient room temperature606

data and weather data, for the period from August 2016 to June 2018.607

The work highlights areas of concurrence and also substantial differences with assumed patterns and outcomes of608

heating in the UK’s Standard Assessment Procedure model of building energy performance, and is broadly consistent609

with previous empirical findings discussed in the literature review.610

We have demonstrated considerable differences in achieved temperatures between homes and rooms but, on average,611

temperatures during periods of active heating are lower than the SAP model assumes. Furthermore, the achieved612

temperature is influenced both by external temperature and by patterns of heating the home, while the SAP assumes613

no such differences. Those patterns of heating themselves have been demonstrated to fall into four common clusters614

of daily demand profile during the heating season (plus a noise cluster), rather than the two assumed by the SAP.615

Also contrary to the SAP model assumptions, the cluster that a particular room-day falls into is shaped by external616

temperature and, correspondingly, by day of year, but varies little by weekday vs. weekend. Zoning, defined here as the617

living room and at least one bedroom being in different clusters on a given day, is apparent in a minority of homes on618

any given day of the heating season, and few homes zone frequently over the heating season, with the average home619

zoning on just 10% of days.620

The results are broadly consistent with other published research and suggest areas where specific changes to the use621

of SAP occupancy schedules and achieved room temperatures in housing stock models could be made to increase the622

models’ concurrence with empirical findings. In particular, assumptions could be amended relating to average achieved623

temperatures, the range of diurnal heating patterns included, and the factors which predict them: rather than being624

weekday/weekend, heating patterns are more related to external temperature and/or day of the year. The consistency of625

the results in this study with previous work focusing on other regions of the UK provide evidence that SAP model626

assumptions do not need to be differentiated by geographic region.627

The type of model and purpose to which it is put affect the likely value of making such changes in the underlying628

assumptions. BREDEM-based building stock models that utilise the standard SAP assumptions to make predictions of629

the heating energy use of occupied housing stock would likely produce more accurate estimates if the assumptions630

were updated to better match empirical observations. The value of outputs of the SAP itself in its primary use as an631

energy rating tool would, by contrast, be largely unaffected by such changes, as the focus is on the difference in energy632

rating between dwellings, or before and after interventions, independent of occupancy effects. Even for the case of633

building stock models, any proposed alterations to the standardised occupancy schedule that they utilise would need to634

investigate what the benefits and costs of various approaches to updating the models would be from technical, policy635

and other perspectives.636

The research described here points to areas for further work. In particular, substantial variation between homes,637

rooms and room-days was identified in room temperatures and diurnal heating durations and patterns, beyond that638

explainable by external temperature and season alone. This included some substantial deviations above and below639

normative temperatures of 21°C in living areas, potentially indicating energy intensive heating behaviours, poor control640

over heating in some contexts, and risk of health impacts or fuel poverty, respectively. It also included high levels641

of transitions between certain heating patterns from one room-day to the next. Further statistical modelling could be642

undertaken to investigate predictors of the observed heating patterns and temperature outcomes, including the range643

of variables identified as predictors in previous literature. Finally, the impacts of the changes in occupancy patterns644

brought about by covid-19 and policy responses to it are likely to have substantially changed the relative frequency645

with which different diurnal heating patterns occur, as well as potentially leading to new heating patterns, and changes646

in temperature outcomes and levels of zoning. Despite the considerable expense, future work might therefore consider647

gathering new data of similar room-level detail, ideally from a UK-wide representative sample of homes to increase648

confidence in the generalisability of findings. This would enable an evaluation of the scale and nature of the changes in649

heating patterns and temperature outcomes, including their implications for the SAP model assumptions. Such findings650

could be of substantial importance for effective ongoing planning of the energy system transition.651
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