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 2 

ABSTRACT 33 

 34 

Background: A negative correlation between ambient temperature and COVID-19 35 

mortality has been observed. However, the World Meteorological Organization (WMO) 36 

has reinforced the importance of government interventions and warned countries against 37 

relaxing control measures due to warmer temperatures. Further understanding of this 38 

relationship is needed to help plan vaccination campaigns opportunely. 39 

Methods: Using a two-stage regression model, we conducted cross-sectional and 40 

longitudinal analyses to evaluate the association between monthly ambient temperature 41 

lagged by one month with the COVID-19 number of deaths and the probability of high-42 

level of COVID-19 mortality in 150 countries during time t=60, 90 and 120 days since 43 

the onset. First, we computed a log-linear regression to predict the pre-COVID-19 44 

respiratory disease mortality to homogenise the baseline disease burden within countries. 45 

Second, we employed negative binomial and logistic regressions to analyse the linkage 46 

between the ambient temperature and our outcomes, adjusting by pre-COVID-19 47 

respiratory disease mortality rate, among other factors.  48 

Results: The increase of one Celsius degree in ambient temperature decreases the 49 

incidence of COVID-19 deaths (IRR=0.93; SE: 0.026, p-value<0.001) and the 50 

probability of high-level COVID-19 mortality (OR=0.96; SE: 0.019; p-value<0.001) 51 

over time. High-income countries from the northern hemisphere had lower temperatures 52 

and were most affected by pre-COVID respiratory disease mortality and COVID-19 53 

mortality.  54 

Conclusion: This study provides a global perspective corroborating the negative 55 

association between COVID-19 mortality and ambient temperature. Our longitudinal 56 

findings support the statement made by the WMO. Effective, opportune, and sustained 57 

reaction from countries can help capitalise on higher temperatures' protective role 58 

including the timely rollout of vaccination campaigns. 59 

 60 

Keywords: COVID-19; Temperature; Environment and public health, Mortality, Government, 61 

Global health 62 

  63 
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INTRODUCTION 64 

 65 

The COVID-19 pandemic caused by the rapid global spread of novel coronavirus (SARS-CoV-66 

2) continues to harm population health at an unprecedented rate (1). Early and effective 67 

containment measures significantly reduce the virus spread, protect the public, and prevent 68 

capacity-constrained healthcare systems from becoming overloaded (2-4). Yet, with no effective 69 

treatment or vaccine available at the onset of the pandemic, many countries resorted to different 70 

public health measures to reduce the disease’s spread, including closing schools and public 71 

places to complete lockdowns (5). Notwithstanding, several countries have experienced a higher 72 

disease burden with disproportionate numbers of cases and deaths without further consensus on 73 

the effect of temperature and seasonality on transmission and consecutive mortality (6-9).  74 

Some studies have found a negative relationship between temperature with both -COVID-19 75 

infectivity (10-16), -and the risk of death due to COVID-19 (15-19), while a cross-country 76 

analysis using early released data found a modest relationship between average temperature and 77 

COVID-19 reproduction rate (20). Due to the limited evidence currently available, the World 78 

Meteorological Organization (WMO) has reiterated the importance of government interventions 79 

and warned against relaxing control measures because of higher temperatures (21). Furthermore, 80 

without sufficient knowledge of infection, community engagement, public health system 81 

capacity and adequate border control measures in place (22), many countries relaxed their 82 

measures going into the warmer periods in 2020 despite warnings from experts (6, 22). 83 

Nowadays, with several countries with ongoing vaccination campaigns, only a few countries 84 

have entirely controlled the spread of infections and disease severity (23). Further understanding 85 

of temperature’s role in countries with a high mortality attributable to COVID-19 may help plan 86 

vaccination campaigns, especially before cold seasons begin. 87 
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Cross-country comparisons using COVID-19 mortality rates can be challenging and there is a 88 

notable lack of global studies aiming to address these factors using a broader and comparative 89 

perspective (18, 24-26). First, countries have employed different testing methods, standards to 90 

report numbers, diagnostics definitions, and criteria for COVID-19 related death declaration (18, 91 

26). Second, the cases onset dates are dissimilar between countries (7, 9, 26-28). Third, countries 92 

have different individual compositions, epidemiological profiles, and public health resources that 93 

may determine the severity of COVID-19 (24, 27). Despite these shortcomings, a study carried 94 

out by Sornette et al. (2020) analysed mortality by classifying countries according to their 95 

geography. Apart from government measures taken and demographic and cultural factors, they 96 

found that climatic features such as temperature may explain the variation in mortality rates, 97 

especially in western countries (19).  98 

So far, all the studies have focused on the association between temperature and cumulative 99 

deaths or cumulative mortality (15, 19, 29); however, little is known on the role of temperature 100 

in the probability of countries facing high levels of COVID-19 mortality. Identifying potential 101 

factors for the likelihood of COVID-19 attributable mortality may help understand the 102 

characteristics of those countries that have been more at risk and had more burden over time.  103 

To address the knowledge gap in the current literature on the cross-country association between 104 

ambient temperature and COVID-19 attributable mortality, we developed the present study from 105 

a global ecological perspective using a two-stage modelling approach to balance countries’ 106 

differences in resources and compositions.  107 

 108 

METHODS 109 

Study design and sample 110 
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We employed cross-sectional and longitudinal analyses to explore the association between 111 

ambient temperature and COVID-19 number of deaths; and the link between ambient 112 

temperature and the likelihood of high-level of COVID-19 mortality in a sample of 150 113 

countries.  114 

We harmonised data through a deterministic data linkage process by combining records from 115 

different sources with the same three-letter ISO 3166-1 code. We extracted data from four 116 

sources. For further information, see supplementary materials (section A).  117 

We initially included 152 countries in the analysis for those with recorded available data for a 118 

minimum of 90 days since the first confirmed case (missing rate=17.6%; N=152). Countries with 119 

complete information on the independent variables were therefore kept in the analyses, resulting 120 

in an analytical sample of 150 countries (see sample definition protocol in Figure A1, 121 

supplementary material). We also employed Cook’s distance test to analyse the most influential 122 

data points within the sample (see supplementary materials, section D) (30). 123 

 124 

Dependent variable  125 

The primary outcomes were COVID-19 number of deaths and the probability of high-126 

level of COVID-19 mortality obtained from the Jhon Hopkins University (JHU) data repository 127 

(date of access: October 31st, 2020). We counted deaths attributable to COVID-19 at different 128 

points in time since the first reported case was confirmed in each country. First, we computed it 129 

at the 60th day and continued calculating period mortality using continuous 30-day intervals (i.e., 130 

t=60, 90 and 120). We calculated mortality rate by the time after the first case was confirmed to 131 

make the countries comparable while accounting for the time-lapse in COVID-19 number of 132 

deaths (31). Information on the number of daily reported cases is publicly available at Our World 133 
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Data (7). Afterwards, we defined mortality by dividing the number of deaths by the 2019 134 

population reported for each country. Also, we categorised COVID-19 mortality rate into two 135 

groups - “low to moderate level of COVID-19 mortality” (coded as 0) and “high-level of 136 

COVID-19 mortality” (coded as 1). We used different cut-off points for categorisation, starting 137 

from the median in each timepoint (t=60, 90 and 120) until the median plus two standard 138 

deviations. We analysed the distribution of the unadjusted and adjusted ambient temperature 139 

Odds Ratios (ORs) when using the different definitions of a high-level of COVID-19 mortality 140 

(HLCM). We finally selected the cut-off fulfilling the statistical convention of at least 10 events-141 

per-variable (EPV) at each time point. Additionally, we examined a longitudinal model using at 142 

least 2 EPV (32, 33) (see more details at supplementary materials, section H).  143 

Independent variables 144 

1.- The monthly temperature lag: we calculated a monthly ambient temperature lag expressed in 145 

Celsius degrees (ºC) using one month lagged temperature (tcurrent – 30 days) according to t= 60, 146 

90, and 120 days since the first confirmed case and by country (e.g., Afghanistan reached t=60 in 147 

June; therefore, we used the average temperature of May). Temperature data from November 148 

2019 to October 2020 were extracted from the available data on ERA5 and analysed in 149 

Copernicus. The data was cropped by country using GADM version 2.8 shapefiles (34) (date of 150 

access: December 1, 2020).  151 

2. Probability of mortality due to respiratory diseases: Countries were balanced using the pre-152 

COVID-19 estimated probability of respiratory disease mortality. The variable was constructed 153 

using the number of deaths attributed to respiratory diseases reported in 2017 from the Global 154 

Burden of Disease Study (GBD) and country’s local population size (35). 155 
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3. Stringency of government measures in response to the COVID-19 outbreak: The Oxford 156 

COVID-19 Government Response Tracker (OxCGRT) (36) stores data on eleven indicators 157 

indicating the stringency level in the government response against COVID-19. Data were 158 

recorded daily by each country (date of access: October 31st, 2020). The OxCGRT index ranges 159 

from 0 (no government stringency) to 100 (very strict government). We set the government 160 

stringency index at t=30, 60, 90, and 120 since the first case was reported and used the variation 161 

between periods (e.g., t=90, then government measure = Δt90, t60). For further details, see 162 

supplementary materials section A. 163 

4. Countries’ hemisphere: Countries were classified as belonging to the Northern or Southern 164 

hemisphere based in their winter and summer seasons. Countries facing winter between 165 

December and March were categorized as “Northern” countries and those in summer as 166 

“Southern” countries. Rainy or dry seasons were not considered.  167 

Auxiliary variables 168 

We used seven variables for the first stage of our analysis (explained in the statistical analysis 169 

section). These variables included the percentage of women and the disability-adjusted life year 170 

(DALYs) attributed to asthma extracted from the GBD; the prevalence of obesity, and the level 171 

of air pollution (pm 2.5) obtained from the World Health Organization (WHO); and the human 172 

development index (HDI), population density, and the proportion of people aged 65 and older 173 

extracted from the World Bank (WB). See further details on the sources in the supplementary 174 

materials section A. 175 

 176 

Statistical analysis 177 
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Firstly, we used heatmaps to describe the cross-country variation in temperature and the crude 178 

COVID-19 attributed mortality (logged and population-adjusted). Secondly, to avoid potential 179 

biases in the analysis, we employed a two-step regression model to study the link between 180 

ambient temperature and COVID-19 number of deaths, and the relationship between ambient 181 

temperature and the probability of HLCM. This method is based on Heckman’s approach (37-182 

39), which has been widely used in previous studies to correct non-randomly selected 183 

observations and to avoid potential biases in the analysis (i.e., available countries in this study). 184 

In the first stage, we balanced our sample by estimating the pre-COVID-19 probability of 185 

respiratory diseases mortality to have a homogenous sample given countries' baseline 186 

epidemiological characteristics, avoiding multicollinearity while maintaining relevant factors 187 

previously seen as risk factors towards COVID-19. This step permits us to correct our second 188 

stage models to account for specification errors. In the first stage, a log-linear transformation to 189 

compute the respiratory disease mortality using robust standard errors presented the best 190 

goodness-of-fit according to the R2 and Akaike Information Criterion (AIC) (see supplementary 191 

materials, section B, C, and D). We explored different models by adding characteristics related to 192 

respiratory disease mortality from the GBD study (35). Other variables related to respiratory 193 

disease mortality were tested and discarded as predictors due to the lack of fit and 194 

multicollinearity issues. Finally, we predicted the mortality rate attributed to pre-COVID-19 195 

respiratory diseases as result of the first stage process (Equation 1). 196 

 197 

Equation 1: 198 

Log(𝑝𝑟𝑒 − 𝐶𝑂𝑉𝐼𝐷 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦)𝑐199 

= 𝛽0 + 𝛽1 ∗ % 𝑊𝑜𝑚𝑒𝑛𝑐 + 𝛽2 ∗ % > 65 years old𝑐  + 𝛽3 ∗ 𝐷𝐴𝐿𝑌𝑆 𝐴𝑠𝑡ℎ𝑚𝑎𝑐  +  𝛽4200 

∗ 𝑂𝑏𝑒𝑠𝑖𝑡𝑦 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑐 + 𝛽5 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑐 + 𝛽6 ∗ 𝐻𝐷𝐼𝑐 +  𝛽7 ∗ 𝐴𝑖𝑟 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐 +  𝜇𝑐 201 



 9 

∀ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 “𝑐”. This model uses a fixed time point. 202 

 203 

In the second stage, we corrected the estimates for selection-bias by adding the predicted 204 

probabilities from the preceding step (i.e., pre-COVID respiratory mortality) as an additional 205 

independent variable. Therefore, based on Equation 2, we ran cross-sectional and longitudinal 206 

negative binomial regression models for the period incidence risk of COVID-19 deaths and 207 

logistic regression models for the likelihood of HLCM. 208 

The timestep was fixed to the specific days (t= 60, 90, and 120) for cross-sectional models. 209 

Longitudinal models included the same covariates throughout the three different time points. No 210 

collinearity was present amongst our predictors and the dependent variables (see supplementary 211 

materials, section G). We used Bootstraps errors with 1,000 iterations to account for sampling 212 

biases. 213 

 214 

Equation 2: 215 

Log (𝑌)𝑐𝑡 = 𝛽0 +  𝛽1 ∗ 𝑙𝑎𝑔 𝑜𝑓 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑐 + 𝛽2 ∗ 𝑝𝑟𝑒 − 𝐶𝑂𝑉𝐼𝐷 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑐 + 𝛽3216 

∗ ∆(Government measures)𝑐𝑡  +  𝛽4 ∗ Region + 𝜇𝑐𝑡 217 

∀ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 “𝑐”. “t” stands for time=60, 90, and 120 days since the onset 218 

 219 

Y refers to “number of deaths” in negative binomial regression and “high-level of COVID-19 220 

mortality” in the logistic regression analyses, respectively. Cross-section and panel data models 221 

were used. ∆ stands for variation between period t and t-1. “Region” stands for countries’ 222 

hemisphere.  223 

 224 
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All analyses were performed using STATA 16.1 (40), QGIS 3.6 (QGIS Geographic Information 225 

System) (41), and R software 4.0.2 (42). An online repository for data management and 226 

consolidation is available at https://bit.ly/36IKhhJ and https://bit.ly/2UXAz8B for data 227 

visualization and examination. 228 

 229 

RESULTS 230 

Table 1 summarises the descriptive characteristics of our sample. The COVID-19 number 231 

of deaths drastically increased through the time points. COVID-19 mortality increased over time, 232 

but it decelerated between t=90 and t=120. Specifically, it increased twofold in t=90 compared to 233 

t=60 (Meant:90=2.56; 95% CI: 1.37-3.74) and decreased at t=120 compared to t=90 234 

(Meant=120=2.05; 95% CI: 0.89-2.13). Ambient temperature increased by 1.5°C per defined time 235 

(Meant:60=20.83; 95% CI: 17.13-24.54; Meant:90=22.33; 95% CI: 18.69- 25.97; Meant:120= 23.78; 236 

95% CI: 20.16- 27.39), whereas the index of government measures increased drastically between 237 

t=0 and t=60; however, it shrank after that period.  238 

Figure 1 shows the average ambient temperature by country, whereas Figure 2 depicts the 239 

death rate (adjusted to the population size per 100,000 habitants) since the onset. The Figures 240 

indicate that countries close to the Equator and the southern hemisphere had the highest 241 

temperatures but low or medium levels in deaths on average (e.g., Australia, Democratic 242 

Republic of the Congo, Ghana, Singapore). On the contrary, northerly countries faced the highest 243 

number of deaths attributed to COVID-19 but the lowest average temperatures over the timespan 244 

(e.g., France, Denmark, Italy, Spain, Sweden, Switzerland, the UK, and the US). 245 

Table 1. Descriptive statistics of the sample (N=150) 246 

Country-level characteristics MEAN SD IQR 

https://bit.ly/36IKhhJ
https://bit.ly/2UXAz8B
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First-stage variables    

Women (%)  49.98 2.91 1.12 

People aged 65 and older (%)  5.65 4.42 5.40 

Obesity (%) 18.10 9.47 17.9 

DALYs Asthma (standardized)  0.21 0.16 0.17 

Low HDIa 53.24 7.57 13 

Medium HDIa 74.18 3.99 5.9 

High HDIa 88.34 4.36 7.6 

Population density (population/km2) 136.78 216.48 109.20 

Low air pollutionb 11.72 3.36 5.34 

Medium air pollutionb 21.99 3.26 5.63 

High air pollutionb 50.16 17.83 19.75 

Respiratory disease mortality 0.03 0.02 0.023 

Second-stage variables     

COVID-19 Deaths at t=60 366.5467 1310.381 144 

COVID-19 Deaths at t=90 1279.553 4967.145 235 

COVID-19 Deaths at t=120 1214.267 5293.42 346 

COVID-19 Mortality at t=60 1.1.51 3.86 0.85 

COVID-19 Mortality at t=90 2.56 7.37 1.16 

COVID-19 Mortality at t=120 2.05 4.13 1.65 

Ambient T°C at t=30 17.58 10.65 17.15 

Ambient T°C at t=60 19.06 9.62 14.83 

Ambient T°C at t=90 20.57 8.43 12.90 

∆ Government measures t=60/t=30 7.77 2.18 12.04 

∆ Government measures t=90/t=60 -6.99 1.07 12.96 

∆ Government measures t=120/t=90 -8.76 0.99 14.35 

Notes: ∆ stands for variation between two periods. SD is standard deviation, while IQR is for the Interquartile range. a Countries level of Human 247 

Development Index [HDI] was divided using terciles. b Countries level of air pollution were classified using terciles.  248 

 249 

 250 

A. Prediction of the pre-COVID-19 respiratory disease mortality 251 

Table 2 displays the results of the first stage modelling from Equation 1 (see 252 

supplementary material, section B for modelling diagnostics and predictors eligibility). The 253 

percentage of women and people aged 65 and older, the DALYs attributed to asthma, obesity 254 

prevalence, population density, HDI, and air pollution (pm 25), accounted for 59% of the 255 

variation of the pre-COVID-19 respiratory mortality. We predicted the adjusted pre-COVID-19 256 

respiratory disease mortality based on Table 2 results. 257 

 258 
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Table 2. First-stage analysis: log-linear regression results (N=150 countries) 259 

Pre-COVID-19 respiratory disease mortality per 100,000 people β SE 

Women 0.049*** 0.018 

People aged 65 and above 0.098*** 0.020 

DALYs Asthma 1.089*** 0.261 

Obesity prevalence -0.014* 0.007 

Population density (population/km2) 0.000*** 0.000 

HDIa   

      Medium -0.020 0.138 

      High -0.138 0.191 

Air Pollutiona   

      Medium -0.126 0.085 

      High -0.208* 0.122 

Constant 0.270 0.913 

R2 0.593  

AIC 172.015  

Notes. * 0.1 ** 0.05 *** 0.01. Robust standard errors were used. IL stands for inferior limit while SE standard error. a Terciles, using low groups 260 
as the reference category.   261 
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Figure 1. Average ambient temperature in ºC per country and time (t=60, 90, 120), (N=150 countries) 262 

 263 

Notes: Lowest, medium, and highest groups are calculated based on each category quintile; Highest values indicate a greater temperature over the 264 
time “t” since the onset. White areas mean missing data. 265 

  266 
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Figure 2. Average COVID-19 attributed mortality per country and time (t=60, 90, 120), (N=150 267 
countries) 268 

 269 

Notes: Lowest, medium, and highest groups are calculated based on each category quintile; Highest values indicate a greater higher number of 270 
deaths attributed to COVID-19 since the onset with respect to each country’s population. White areas mean missing data.  271 
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B. Cross-sectional and longitudinal analysis of temperature and COVID-19 number of 272 

deaths 273 

Table 3 (section A) shows the main results of the cross-sectional multivariate analysis using 274 

negative binomial regression. Countries with higher ambient temperature had a significantly 275 

lower incidence risk ratio of COVID-19 death at t=60, t=90 and t=120. An additional 1°C from 276 

the previous timestep decreased the incidence risk of COVID-19 death by 10% at t=60 277 

(IRR=0.90; SE: 0.036) and 8% at t=90 and t=120 (IRRt=90=0.92; SEt=90: 0.04; IRRt=120=0.92; 278 

SEt=120:0.04). Our longitudinal analysis (section B) showed that after adjusting the model by pre-279 

COVID-19 respiratory mortality, the variation in government’s stringency measures, countries’ 280 

hemisphere, and ambient temperature remained as a protective factor for the incidence risk of 281 

death attributable to COVID-19 over time (models 6 and 7). The approach derivation and tests 282 

for the main assumptions of the model are found in supplementary material, section E. 283 

 284 

Table 3. Second stage analysis: negative binomial regression results for the incidence of COVID-19 285 

deaths.  286 

Section A. Cross-sectional negative binomial regression models (N=150) 

 

 Model 1 (t=60)  Model 2 (t=90)  Model 3 (t=120) 
 IIR SE  IIR SE  IIR SE 

Ambient temperature 0.902** 0.036  0.919* 0.041  0.917* 0.043 

PRDM (%) 1.018 0.032  1.029 0.029  0.988 0.028 
Δ Government measuresb 1.014 0.011  1.090*** 0.033  1.016 0.023 

Regionc 2.892 2.252  1.570 1.176  2.017 2.296 

Constant 214.81*** 382.321  1194.97*** 2146.91  3308.99*** 8299.39 

Ln(alpha) 1.417 0.104  1.482 0.100  1.649  
Pseudo R2: 0.0206   0.0320   0.010  

AIC: 1633.501    1806.938   614894.2  

Section B. Longitudinal negative binomial regression models (N=450)  
 Model 4 Model 5 Model 6 Model 7 
 IIR SE IIR SE IIR SE IIR SE 

Ambient temperature  0.930*** 0.020 0.949** 0.029 0.932** 0.027 0.926*** 0.026 

PRDM (%)   1.026* 0.017 1.030* 0.018 1.032* 0.018 
Δ Government measuresc      0.976** 0.011 0.977** 0.010 

Regionc       2.207 1.094 

Constant 2753.29*** 1013.58 1006.26*** 911.25 1322.91*** 1272.83 513.005*** 556.941 

Chi2 (p-value): 10.44(<0.001) 30.24(<0.001) 37.55(<0.001) 44.48(<0.001) 

Notes. * 0.1 ** 0.05 *** 0.01. IRR stands for incidence risk ratios. aPRDM stands for pre-COVID respiratory disease mortality adjusted. b Δ 287 
stands for the variation in the stringency government index between timepoints. cRegion stands for hemisphere of the country, “Southtern” was 288 
used as reference. Sections B D use GEE population-averaged model. Bootstrap standard errors calculated with 1000 iterations were used in all 289 
models.  290 
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C. Cross-sectional and longitudinal analysis of temperature and a high-level COVID-19 291 

mortality 292 

We compared different definitions for “high-level of COVID-19 mortality” (HLCM) (see 293 

supplementary materials, section G, for model comparisons). We used the median + 0.4 SDs to 294 

analyse the countries with a HLCM because it fulfils the statistical criteria of 10 EPV in the 295 

model. Countries’ hemisphere was not added as independent variable in the models because of 296 

the low number of countries classified as being in the “Southern” area at t=60. Nevertheless, we 297 

ran an exploratory analysis by adjusting our main models by countries’ hemisphere, and it 298 

showed a consistent relationship between ambient temperature and HLCM over time 299 

(supplementary materials, section H).  300 

At t=60, t=90, and t=120, there were 30 (20%), 36 (2 4%) and 64 (43%) countries classified as 301 

HLCM, respectively (see supplementary materials, section G for the list of countries). For 302 

instance, Belgium, Switzerland, Spain, Luxembourg, Netherlands, Italy, the United Kingdom, 303 

and Ireland had a high level of COVID-19 mortality at the three timesteps.  304 

Table 4 (section C) shows the main results of the cross-sectional multivariate analysis using the 305 

logistic regression approach detailed in Equation 2. Countries with higher ambient temperature 306 

had lower likelihood of HLCM regardless of the period. An additional 1°C from the previous 307 

timestep decreased the likelihood of HLCM by 7% at t=60 (OR=0.930; SE: 0.026) and at t=90 308 

(OR: 0.925; SE: 0.028), and by 8% at t=120 (OR=0.915; SE: 0.031). Pre-COVID-19 respiratory 309 

mortality was significantly related to a HLCM at t=60. The variation in the government’s 310 

stringency measures was not significantly related to HLCM.  311 

Table 4 (Section D) presents the longitudinal model for COVID-19 mortality detailed in 312 

Equation 2. The unadjusted and fully adjusted model showed a relationship between ambient 313 
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temperature and the probability of HLCM. Model 13 shows the relationship adjusted by pre-314 

COVID-19-respiratory mortality, and the time point variation in government’s stringency 315 

measures. Over time, an additional 1°C from the previous month decreased the likelihood of 316 

HLCM by 4% (ORmodel14=0.96; SE: 0.019). Furthermore, between periods variation in the 317 

government stringency measures was a country protective factor for HLCM over time 318 

(ORmodel14=0.98; SE=-0.006), while pre-COVID 19-respiratory mortality was a risk factor for 319 

HLCM over time (ORmodel13=1.040; SE=0.012). In sensitivity analyses we changed the threshold 320 

for HLCM to the median + 2.0 SDs (EPV=2); however, similar results were found (see 321 

supplementary material, section H).   322 

 323 

Table 4. Second-stage analysis: logistic longitudinal regression results for high-level of COVID-19 mortality  324 

Section C. Cross-sectional logistic regression models (N=150) 

 Model 8 (t=60) Model 8 (t=60) Model 10 (t=120) 
 OR SE OR SE OR SE 

Ambient temperature 0.930** 0.026 0.925*** 0.028 0.915*** 0.031 

PRDM (%)a 1.050* 0.031 1.037 0.026 1.006 0.022 

Δ Government measuresb 0.977* 0.012 0.995 0.018 0.098 0.016 

Constant 0.224 0.231 0.426 0.43 3.495 3.55 

Pseudo R2: 0.19  0.18  0.16  
AIC: 130.2326  143.64  192.17  

Section D. Longitudinal logistic regression models (N=450) 
 Model 11 Model 12 Model 13 
 OR SE OR SE OR SE 

Ambient temperature 0.961** 0.019 0.985 0.021 0.964* 0.019 
PRDM (%)   1.048*** 0.010 1.040*** 0.012 

Δ Government measuresc     0.977*** 0.006 

Constant 0.827 0.299 0.158*** 0.087 0.257** 0.142 

Chi2 (p-value): 3.95 (0.06) 43.63 (<0.01) 49.15 (<0.01) 

Notes. * 0.1 ** 0.05 *** 0.01. OR stands for odds ratios. aPRDM stands for pre-COVID respiratory disease mortality adjusted. b Δ stands for the 325 
variation in the stringency government index between timepoints. Sections B D use GEE population-averaged model. Bootstrap standard errors 326 
calculated with 1000 iterations were used in all models. 327 

 328 



DISCUSSION 329 

We analysed the association between monthly ambient temperature and COVID-19 330 

mortality across countries at the beginning of the pandemic accounting for epidemiological 331 

factors. We used the adjusted COVID-19 number of deaths and the high-level of COVID-19 332 

mortality group of countries to understand how temperature has been related to them. We found 333 

that ambient temperature was associated with the adjusted COVID-19 number of deaths and a 334 

high-level of COVID-19 mortality (HLCM) using different model specifications. 335 

The results of the relationship between ambient temperature and COVID-19 number of 336 

deaths are in line with the observational studies that have reported a negative relationship 337 

between them (15-17, 20, 43). Our results showed that this negative relationship was present 338 

after 60 days since the first case confirmed. At the same time, ambient temperature was a 339 

protective factor for COVID-19 deaths over time. Our results were not altered using the variation 340 

in the stringency of government measures taken and countries’ hemisphere. Our results 341 

corroborate the WMO call that considered the previous literature as inconclusive and called for 342 

further analysis on the matter (21).  343 

The ambient temperature might be a protective factor against the HLCM over time. 344 

Based on the dynamics of existing and previous infectious diseases, SARS-CoV-2 mortality may 345 

differ according to environmental changes because seasons have factors that determine the 346 

pathogen's abundance, reproduction, and survival time within the environment; therefore, the 347 

community (44). Three underlying hypotheses may drive the negative association between 348 

COVID-19 mortality and ambient temperature. Firstly, colder ambient temperatures could be 349 

linked to changes in population behaviour; people spend more time indoors during colder 350 

weather. Consequently, crowded and poorly ventilated spaces, such as urban transit systems, 351 
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could increase the viral load by the increased exposure to airborne and droplet transmitted 352 

pathogens from one person to another (45, 46). Secondly, the seasonal variability of the immune 353 

system’s functions affecting the host’s susceptibility to infection, such as seasonal variation of 354 

vitamin D and melatonin levels, are integral to upholding a strong immune system (47-51). Low 355 

levels of these factors have been linked to significantly increased risks of viral upper respiratory 356 

tract infections, pneumonia, severe inflammations, and thrombosis, all of which have been 357 

frequently observed in patients with severe COVID-19 (52). Thirdly, co-occurrence of infections 358 

may increase the severity of COVID-19 cases (53). Colder seasons increase the morbidity and 359 

mortality of low respiratory tract infections and chronic respiratory diseases (46, 54).  360 

In the longitudinal analysis, we found that the variation of the government measures was 361 

significantly related to the incidence risk of COVID-19 deaths and the likelihood of HLCM. 362 

Government measures, including strict lockdown, may not be sufficient to stop the spread and 363 

reduce mortality especially considering that after t=60 they were decreased by the countries 364 

observed. However, countries’ effective, opportune, and sustained reaction can help capitalise on 365 

higher temperatures' protective role (2, 3, 6, 19, 20, 22, 24, 26, 27, 35, 55-57). Other important 366 

factors must be considered to reduce the odds of high-level of COVID-19 mortality. These 367 

factors include countries’ economic resources, quality of care, healthcare coverage, demographic 368 

distribution, air quality, population-specific underlying conditions, and the prevalence of other 369 

respiratory diseases (4, 16, 19, 26). The relationship between obesity prevalence and respiratory 370 

disease mortality was negative in our results, and it might be possible driven by the negative 371 

relationship within countries with moderate HDI (r= -0.367). Previous literature has related 372 

obesity with increased risk of mortality (58); however, a study analysing mortality risk of 373 

COVID-19 patients in ICUs found a potential obesity paradox (59). Moreover, our longitudinal 374 
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findings suggest that countries should improve their efforts by implementing effective preventive 375 

measures to reduce respiratory disease mortality, which accounts for a vast disease burden in 376 

high-income countries (HICs) (35). 377 

We also found that mainly northern HICs exhibited higher mortality rates attributed to COVID-378 

19 during the observed period (e.g., France, Italy, Spain, the UK). Some shared features are 379 

highlighted across these countries. They have had an earlier onset of infections, a greater 380 

proportion of older people, a higher burden of disease from chronic conditions, including 381 

cardiovascular diseases and pre-COVID-respiratory disease mortality, and the lowest ambient 382 

temperatures observed since their onset. Most of these characteristics represent high-risk factors 383 

for severe COVID-19 and attributed fatality rate (9, 19, 28, 60-62). Additionally, countries that 384 

reported HLCM and the greatest temperatures were mostly low-and middle-income countries 385 

(LMICs) with lower HDIs (e.g., Guatemala, Honduras, Panama) or with poor government 386 

performance in managing the pandemic (e.g., Brazil, Mexico). On the other hand, most African 387 

countries reported high or medium levels in ambient temperatures and the lowest number of 388 

deaths adjusted to their population size due to having younger populations, rapid action through 389 

the implementation of large-scale containment measures, low prevalence of chronic 390 

cardiovascular conditions, favourable climate and good community health systems, and lack of 391 

resources for epidemiological vigilance (63).  392 

This article has limitations. First, we did not include other potential external variables 393 

which may impact transmission, and therefore, the number of deaths. For instance, population 394 

mobility might be related to local weather conditions, and to the stringency level derived from 395 

the government measures implemented. However, data on mobility was not widely available. 396 

Second, the existing missing data for LMICs may bias interpretations towards socioeconomic 397 
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disparities. Third, we did not use excess deaths attributed to COVID-19 nor age-standardised 398 

mortality due to lack of data availability, especially for LMICs (64, 65). Further analyses should 399 

look at both measures combined to disentangle the links between them while trying to correct, 400 

contrast, and interpolate mortality estimates, specifically in countries with insufficient or null 401 

data published. Fourth, discretising a continuous variable may complicate the results, so they 402 

must be interpreted cautiously (66, 67). Fifth, ambient temperature was an average measure for 403 

the entire country. Therefore, indoor temperatures may represent an unmeasured confounder, 404 

while countries with high variability of ambient temperature and wide geographical areas might 405 

be underrepresented. Sixth, given the complexity of the relationship examined, there were 406 

potential unassessed cofounders involved in the association between ambient temperature and 407 

COVID-19 mortality (E-value coefficient.= 1.36; Inferior CI= 1.23; see supplementary materials, 408 

section H) (68). 409 

Considering these limitations, the strengths of the present study outweigh the 410 

shortcomings. We attempted to eliminate endogeneity biases accounting for pre-COVID 411 

characteristics. We have contrasted cross-sectional and longitudinal methods to test the linkage 412 

between our variables over specific time points and over time and using two different outcomes: 413 

the risk of COVID-19 deaths and the high-level of COVID-19 mortality. Using ecological data, 414 

we included a vast number of countries conducting a global analysis of the relationship between 415 

ambient temperature and COVID-19 mortality. Previous articles have only focused on incidence 416 

of deaths or continuous mortality; however, we have included high probability risk, which has 417 

been often overlooked. Besides, we used COVID-19 attributed mortality ratio due to the limited 418 

testing capacity in some countries, especially in LMICs. Mortality measures may serve as an 419 

accurate indicator for COVID-19 spread in highly impoverished countries, but also in HICs. For 420 
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instance, France, Italy, Spain, and the US have evidenced great numbers of underreported and 421 

undetected COVID-19 cases due to the great number of tests taken during patient’s 422 

hospitalization or before death occurrence (69). Massive-scale testing to the wide population 423 

should be implemented instead. 424 

Finally, we decided not to include any further time to analyse mortality at the early pandemic 425 

and avoid the potential indirect effects carried by the vaccination process started at the end of 426 

2020. Since the vaccination process began, the Oxford Coronavirus Government Response 427 

Tracker has been updated. The evidence of this report should be useful to take faster and 428 

effective decisions under similar scenarios related to MERS-CoV and SARS-CoV infections 429 

(70). 430 

The present study attempts to understand the cross-country relationship between COVID-19 431 

mortality and temperature, accounting for government containment measures to reduce its 432 

spread. The protective role of ambient temperature on the incidence of COVID-19 deaths and the 433 

probability of a high-level of COVID-19 mortality over time remained when considering the 434 

stringency level of the governments' measures to tackle the disease spread. We provided 435 

preliminary evidence for the relationship between the lag of monthly ambient temperature and 436 

the probability of high-level of COVID-19 mortality through a global study. Our findings 437 

support the call from the WMO to not taking government COVID-19 infectious containment 438 

decisions only derived from meteorological factors (21). Conversely, the relaxation of COVID-439 

19 related government measures should be based on the country’s public health capacity, 440 

community engagement, health system, and border control measures (6, 19, 22, 24). Moreover, a 441 

reinforcement on vaccine campaigns should be in place during warmer seasons, especially in 442 

those countries where vaccination strategies are still slow and incomplete. 443 
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