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Abstract

Dealing with uncertainty in water resource planning is problematic because insufficient or underused infrastructure
can have social and environmental costs. Multistage stochastic optimisation provides a mechanism to deal with this
challenge in water supply capacity expansion planning. However, for real systems it can be mathematically hard and
computationally expensive. The ‘Decision-rule’ formulation represents an attempt to remedy this by approximating
the multistage problem where decisions at each stage are a function of the uncertainty and the state of the system. We
introduce a family of rules to show how they approximate the multistage problem and investigate the implications of
the approximation for adaptive water resources planning.

1. Introduction and background

A core challenge of water supply infrastructure
planning is deciding the capacity of infrastructure
interventions given unknown future supply and demand.
New asset selections should be efficient with respect
to key performance metrics and flexible such that they
can adapt to a range of future conditions. Flexibility
is necessary to capitalise on upside conditions while
avoiding the risk of the downside situation. Motivated
by desire for flexible strategies in engineering design
such as to expand, delay and or replace an option until
more information is available (Trigeorgis, 1996; Dixit
and Pindyck, 1994; De Neufville and Scholtes, 2011),
the water planning literature has proposed different
methods to solve the capacity expansion decision-
making problem (Watkins Jr and McKinney, 1997;
Lempert et al., 2006; Kang and Lansey, 2012; Hall et al.,
2012; Ray et al., 2012; Matrosov et al., 2013; Haasnoot
et al., 2013; Mortazavi-Naeini et al., 2014; Beh et al.,
2014; Jeuland and Whittington, 2014; Kwakkel et al.,
2015; Ray and Brown, 2015; Huskova et al., 2016;
Erfani et al., 2018, 2020).

Among those, multistage stochastic programming
is a classical method that has been successfully
adapted to many fields of application such as transport,

?Submitted on 4 January 2021 and Accepted on 17 May 2021,
https://doi.org/10.1016/j.advwatres.2021.103961

Email address: t.erfani@ucl.ac.uk,
julien.harou@manchester.ac.uk ()

energy, and water and flood system (one can refer
to for example (Ukkusuri and Patil, 2009; Woodward
et al., 2014; Ceseña et al., 2015; Erfani et al.,
2018)). However, the multistage problem can
be mathematically hard to solve, and it has been
criticised for being computationally expensive due
to the large dimensionality of real systems and the
difficulty of implementation beyond a few stages
(Shapiro and Nemirovski, 2005; Kuhn et al., 2008).
To mitigate these problems, several strategies have
been proposed with different degrees of generality,
tractability and performance guarantee. ‘Decision rules’
investigated in-depth by Ben-Tal et al. (2004) enable
scalability and help model the sequential decisions of
multistage stochastic problems. In decision-rule-based
optimisation models, decisions are explicit functions
of uncertainty and of the current state of the system.
That is, the sequentially optimised decisions adapt to
the state of the system as uncertainty is progressively
resolved over time. This is similar to the earlier
conceptual work of Charnes et al. (1958) on relating the
decision variables to heating oil stochastic demand and
later adopted by Young (1967); Revelle et al. (1969);
Loucks et al. (1981) for reservoir rule operation using
dynamic programming. In this paper we examine
an extended family of decision-rules applied to the
sequential water resource capacity expansion problem;
we show how they approximate multistage stochastic
programming and investigate implications for water
resource infrastructure planning.
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2. Problem description and formulation

To formalise the problem statement, consider the
vector of uncertain parameters ξ ∈ Ξ. A sequential
decision xt ∈ X at stages t = 1, . . . ,T is to be
made before the value of ξt is known. That is, at
time t a decision maker only knows the realisation
of the uncertainty up until t, while future realisations
at t + 1, . . . ,T are still unknown. The goal is to
find a sequence of decisions xt for which a vector of
objective functions is optimised given a state function
of the system, i.e., gap between supply and demand,
vulnerability of system, failure frequency of an asset,
etc.

2.1. Multistage stochastic formulation

To model this sequential problem, we use scenario
generation methods in which a finite number of
scenarios w ∈ Ω (with Ω the discretisation set of
Ξ) representing what may happen to ξ in the future,
are generated. The system is simulated using those
scenarios while planning decisions are being optimised
using (multi-objective) optimisation search algorithms.
Consider a water resource capacity expansion problem
with a total expected cost objective function. For
the sake of simplicity of explanation, we assume the
planning decisions are solely related to the state of the
system and the gap between the existing supply and the
demand. The decision maker at each stage t decides the
new capacity intervention (dS ) and its supply use (S )
considering the available information on ξ and the gap
between the water resource supply and demand. Given
x = {S , dS }, ξ = {S upply}, and uncertain resource
supply represented by an ensemble of scenarios, the
above problem can be presented using the following
multistage decision problem:

min
S ,dS

ob j =
∑

w∈Ω,t∈T,i∈I

pw

(1 + r)t [cCi × (dS w
t,i − dS w

t−1,i)+

fCi × dS w
t,i + vCi × S w

t,i], (1a)

s.t.∑
i∈I

S w
t,i + eS w

t ≥ Dt, ∀w ∈ Ω, t ∈ T, (1b)

S w
t+λi,i ≤ dS w

t,i × cS w
i , ∀w ∈ Ω, t ∈ T, i ∈ I, (1c)

dS w
t+1,i ≤ dS w

t,i, ∀w ∈ Ω, t ∈ T, i ∈ I, (1d)

dS w
t,i = dS v

t,i, ∀w, v ∈ Ω, i ∈ I, v , w, (1e)

where w is a scenario with probability of occurrence
of pw, t denotes planning decision time (stages), i is
an intervention decision, r is the discount rate, cCi,

fCi and vCi are respectively the undiscounted capital,
fixed, and variable operational costs of intervention i.
The optimisation model minimises the total expected
cost of interventions discounted back to the present; the
expected value can readily be replaced by other metrics
(Kasprzyk et al., 2009; Ray et al., 2014; Herman et al.,
2015; Giuliani and Castelletti, 2016; McPhail et al.,
2018). Constraint 1b, by investing in intervention i,
allows the existing supplies eS w

t to be augmented to
meet the water demand Dt in time t. Constraint 1c
allows intervention i to be used up to its maximum
capacity (cS w

i ) considering its construction period λi.
Constraint 1d forces an irreversible decision that once
activated needs to remain active until the end of the
planning horizon. Constraint 1e ensures that the
decision on stage t on each scenario is based on the
information available up until time t.

Next, we present special cases of the above problem
augmented with a family of decision-rule constraints.

3. Decision-rule based method

To allow adaptive planning, decision variables in
the multistage problem 1 above are different for each
scenario w. The idea behind the decision-rule method
is to still allow for this adaptability by approximating
future sequential decisions as a function of a vector of
uncertain parameters ξ. That is, at each planning stage,
the decision maker only needs the observation of the
vector of uncertain parameters (e.g. supply value at
t), and the water resource capacity expansion decisions
will be provided using the approximated function. To
accommodate this, in the multistage problem above, S t,i

is replaced by the following equation:

S t,i = Γ(ξt, s) t ∈ T, i ∈ I, (2)

where Γ(.) is a family of decision-rule functions related
to uncertainty (ξ) and the current state of the system (s)
that is revealed up to time t. Below we present a family
of rules for water resource planning.

3.1. Linear rule

If planning decisions and the uncertainty are linearly
dependant, Γ(.) in Equation 2 reduces to the following
linear function of uncertainty ξ (Ben-Tal et al., 2004;
Kuhn et al., 2008; Chen et al., 2008):

S t,i = αt,i
0 +
∑

l

αt,i
l × ξ

t
l t ∈ T, i ∈ I. (3)
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where l is the dimension of the vector of uncertainties
and α are the coefficients of the linear function. In this
decision rule, decision variables are linearly adaptive to
uncertainty.

3.2. Piecewise linear rule

To increase the accuracy of the linear rule, equation
3 can be replaced by a piecewise linear function of
uncertainty (with one breakpoint ξ̂) as (Georghiou et al.,
2015):

S t,i = αt,i
0 +
∑

l

[αt,i
l,1 × {min(ξt

l , ξ̂) − ξ}

+αt,i
l,2 × {ξ − max(ξt

l , ξ̂)}], t ∈ T, i ∈ I, (4)

where ξ and ξ are minimum and maximum of the
support of the uncertainty set Ξ.

3.3. Polynomial based rule

In order to model the case for which the decision
variables are nonlinearly related to the uncertainty, we
extend Equation 3 to a polynomial function. This results
to the following equation (Bertsimas et al., 2011):

S t,i = αt,i
0 +
∑
l,p

αt,i
l,p × ξ

t
l
p t ∈ T, i ∈ I. (5)

where p is the degree of the polynomial function.

3.4. Conditional if-then based rule

In this family of decision-rule, function Γ(.) is based
on the state of the system. This human-interpretable
rule employs a simple if-then condition that reads as
‘if a condition is met then an action should follow’.
The if-then based rule is similar to dynamic adaptive
policy pathways (Kwakkel et al., 2015, 2016) for
adaptive decision making. Within our context, it can
be formulated as:

S t,i > 0 if Θ(ξt
l , s). (6)

In Equation 6, Θ(.) defines a trigger for the planning
intervention i based on the uncertainty (ξ) and the state
of the system (s). In the equation, Θ(.) and S are both
decision variables.

Next, we explain how the optimality of the original
multistage problem 1 is affected by introducing
decision-rules into the formulation.

4. Optimality of decision-rule formulation

The above family of rules are the functions
of uncertainty space. That is, the decision-rule
formulations introduced above map realisation ξ to
decision variables. This reduces the multistage problem
in 1 to a simpler problem by augmenting the constraint
sets. To explain, in the original multistage problem
1, the scenarios w ∈ Ω are the discretisation of the
uncertainty set Ξ and for each scenario w a decision
variable is chosen. In the augmentation forced by the
decision-rule method, decision variables are restricted
to a function of uncertainty and hence this reduces the
feasible space (Bertsimas et al., 2010; Bampou and
Kuhn, 2011; Wiesemann et al., 2012). This reduction
in feasible space, although it simplifies the problem
formulation and reduces the computation time, comes
at the price of producing solutions which are suboptimal
(Georghiou et al., 2019).

To conceptualise this, we define the problem P as a
compact general type of uncertain optimisation problem
P =

{
minx{ f (x, ξ) | x ∈ K} : ξ ∈ Ξ

}
where f is

the objective function with the constraint set K. We
also define a decision-rule based problem by D ={

minx{ f (x, ξ) | x ∈ H} : ξ ∈ Ξ
}
, where H = K ∩ R

and R is the additional set of decision-rule constraints
added to the original set K. This leads to the following
theorem.

Theorem 4.1. If Z∗ and Ẑ are the objective value
solution to P andD, respectively, Z∗ ≤ Ẑ.

Proof. Let Z∗ = f (x∗, ξ) for some x ∈ K, and Ẑ =

f (x̂, ξ) for some x ∈ H. Given that x̂ ∈ H and that
H ⊆ K, therefore, x̂ ∈ K. However, the optimiser to the
f in problem P with constraint set K is x∗. This implies
that f (x∗) ≤ f (x̂). That is, Z∗ ≤ Ẑ.

To demonstrate the above theory, as an example,
consider the following simple sequential decision
making problem introduced in Chen and Zhang (2009);
Bertsimas et al. (2011), with uncertainty set Ξ = {w ∈
RN : ‖w‖2 ≤ 1}. x is the intervention decision that
should be taken before the value of uncertain parameter
w is revealed, and y are the next stage decisions (the
usage of the capacity installed) that depend on the value
of uncertain parameter w. The following multistage

3



optimisation problem:

min
x,y(w)

ob j = x (7a)

s.t.

x ≥
N∑

i=1

yi, (7b)

yi ≥ w2
i , ∀w ∈ Ξ, (7c)

has the optimal solution ob j = 1 while under linear
decision-rule for example, the optimal solution is ob j =

N (refer to appendix in Bertsimas et al. (2011) for
proof). This simple example along with the above
theory demonstrates that the optimal solution as a
result of employing decision-rules may approximate the
original multistage problem poorly (in this case N times
larger).

Next, we show how the decision-rule formulations
introduced earlier are employed in a water resource
planning problem and discuss their optimality
implications.

5. Application to a water resource planning problem

We illustrate an application of a decision-rule
optimisation model formulation in a sequential
water resource capacity expansion planning as it is
conceptualised in England and Wales (Padula et al.,
2013; von Lany et al., 2013). Every 5 years, the
economic regulator requires water utilities produce a
plan demonstrating that the supply-demand balance
is met at least cost throughout their operating area
over a 25-year planning period. To accommodate this,
we consider five planning stages (t1 . . . t5) in which
each stage is a 5-year period. A plan is an optimal
combination of five (o1 . . . o5) new supply and demand
management interventions, scheduled to meet estimated
water supply zone demand at least expected discounted
total cost including the capital, operational and fixed
costs. Supply uncertainty is represented by deployable
output or the ‘safe’ yield of each source, typically
estimated as the lowest volume a supply source was
able to provide in the historical period, and remains
constant during each 5-year planning decision periods.
The upper and lower bound of supple uncertainty along
with the demand growth estimation are shown in Table
1. Existing supply uncertainty is represented using 100
uniformly distributed scenarios given the uncertainty
bounds in Table 1. We consider five different supply and
demand management interventions with specifications
listed in Table 2. The alternative interventions have

unique capital, operational and fixed usage costs and
capacities (firm yield water supply volume they add
to the system). To solve the multistage problem 1, we
make a scenario tree out of the 100 scenarios following
Erfani et al. (2018) with 1 percent information loss. For
linear, piecewise, polynomial (of order 4) we use the
formulation 8, 9 and 10, respectively,

S w
t,i = αt,i

0 + αt,i
1 × eS w

t w ∈ Ω, t ∈ T, i ∈ I, (8)

S w
t,i = αt,i

0 + αt,i
1 × {min(eS w

t , ξ̂) − ξ}

+αt,i
2 × {ξ − max(eS w

t , ξ̂)}, w ∈ Ω, t ∈ T, i ∈ I, (9)

S w
t,i = αt,i

0 +
∑

p

αt,i
p × (eS w

t )p w ∈ Ω, t ∈ T, i ∈ I. (10)

For the conditional if-then based formulation we use
the following rule: ‘if the existing supply capacity in
the last time period drops below α0 Ml/d, the capacity
should be expanded by α1 Ml/D, otherwise nothing
should be done’. This is formalised as below for each
intervention decision i:

S w
t,i =

αt,i
1 if eS w

t ≤ α
t,i
0

0 otherwise
(11)

This is easy to implement in the case of simulation-
based optimisation where simulation models emulate
the if-then rule condition. In a mathematical
programming context, one needs to incorporate this
via mixed integer ‘big-M’ formulation as described in
Williams (2013).

To compare the results, we also find the worst-case
solution for which the worst value of supply is used to
make decisions at each time stage. Next, we discuss the
results.

6. Results

The optimal activation of options and their usage
are reported in Table 3 for the second time step t2
for brevity. The multistage stochastic optimisation
problem 1 and the conditional if-then based decision-
rule model results are illustrated in Figure 1 and 2.
To explain the decision-rule results in Table 3 for t2,
assume that the existing supply eS 2 = 1900Ml/d. With
demand of 2080Ml/d from Table 1 at t2, the shortfall of
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Table 1: Existing supply uncertainty boudn and demand growth projection

t1 t2 t3 t4 t5

Demand (Ml/d) 2050 2080 2200 2300 2350
Max Supply (Ml/d) 2068 2247 2334 2354 2360
Min Supply (Ml/d) 2068 1825 1711 1684 1659

Table 2: Intervention options’ cost, capacity and construction time

Capacity Cost (GBP) Construction time
Capital Fixed Operational

Name ID Ml/d million thousand thousand/Ml/d 5-yearly

Option 1 o1 150 4 276 28 -
Option 2 o2 180 52 2,217 63 1
Option 3 o3 200 23 1,302 50 1
Option 4 o4 250 18 1,017 76 2
Option 5 o5 300 435 7,732 186 3

180Ml/d should be compensated using a combination
of intervention options.

Applying the worst-case formulation, the optimal
planning suggests an overinvestment decision: that
options o1 and o3 should be used.

The linear decision-rule suggests o1 and o3 to be
used by 114.7 and 94.8Ml/d, respectively when eS 2 =

1900Ml/d. The usage levels are derived by replacing
the eS 2 value in the corresponding functions in Table 3.
The same can be shown for polynomial and piecewise
rules.

As for the conditional if-then based rule, the results
states that o1 is used by 150Ml/d and o3 by 104Ml/d.
Compared to the worst-case solution, the if-then rule
avoids overinvestment by triggering options’ activation
and use and monitoring the state of the existing supply;
it only activates the options if the existing supply eS 2
falls below the optimal threshold value shown in Figure
2.a.

The multistage model formulation results in a set of
rules that depend on the scenario tree, i.e., the capacity
options that should be activated and used at each time
step and for each level of supply-demand gap. In
our example, given that eS 2 = 1900Ml/d is less than
1963Ml/d, from Table 3 and Figure 1.b, o1 should be
used by 116Ml/d. It is also noted in Figure 1.a that in
the same time period that o1 is used, o3 and o4 are also
activated to be used in later time periods considering
their construction time.

7. Discussion

Multistage stochastic formulation 1 provides a
mechanism to allow decision variables to adjust
themselves to the actual values of the uncertain data
when they are progressively revealed in the planning
horizon. This is done by making ‘here-and-now’
decisions at the first time period (t = 1) and
employing ‘wait-and-see’ decisions for each scenario of
the uncertainty set Ξ for the other periods (t = 2, . . . ,N).
‘Wait-and-see’ decisions are used to correct/adjust the
‘here-and-now’ decisions as new information becomes
available. This allows decision-making to adjust later
on in the planning horizon to capitalise on eventual
favourable conditions while avoiding the risk of critical
situations. For example, from Table 3, in time period
2, the use of o1 is adjusted based on different levels of
supply conditions (from a critical usage of 116 Ml/d to
a more favourable zero use). At the same time (from
Figure 1), if a drier condition with a lower supply level
is realised (the bottom branch of scenarios on the tree
in Figure 1), contingency investment plan o3 is made.
This way of structuring the sequential decision problem
allows asset managers to review plans periodically
(every 5 years in our test case) and respond to water
needs by selecting additional interventions or expanding
existing ones to achieve security of supply over the
entire planning horizon (next 25-years). However,
the use of multistage stochastic formulations can be
prohibitive in practice due to scalability of the real
world system, because it cannot always be solved
to optimality (NP-hardness (Shapiro and Nemirovski,
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Table 3: Decision-rules and multistage stochastic results ranked based on their total expected cost from the cheapest (top of the table) to the most
expensive one. Only time period 2 (t2) results are shown for brevity. The percentage in the last column are the percentage distance from the solution
of multistage model known as optimality gap.

Decision-rules (values are in Ml/d unit) Cost (million unit)

Multistage If existing supply eS 2 is more than 2025, do nothing, 39.54
stochastic if this is between 2025 and 1963 use o1 by 54,

and, if it drops below 1963, use o1 by 116

Piecewise S 2,o1 = −54 + 0.36[2400− S 2,o3 = −38 + 0.25[2400− 58.11 (47%)
linear max(eS 2, 1800)], max(eS 2, 1800)]

Polynomial (4) S 2,o1 = 1261.2 − 5.9eS 2
2 + 0.7eS 4

2 , S 2,o3 = 63.7 + 0.3eS 2
2 − 0.07eS 4

2 100.75 (155%)

Conditional If existing supply eS 2 is below 2079, 111.53 (182%)
if-then use o1 by 150 and o3 by 104

Linear S 2,o1 = 742.9 − 0.33eS 2, S 2,o3 = 614.2 − 0.27eS 2 111.58 (182 %)

Worst Case Use o1 by 150 and o3 by 104 112.26 (184 %)

400

200

0

.

(a)

Figure 1: (a) Intervention decisions for the first three time period, (b) Average usage plan of capacity options

Construction

Construction

Construction

Figure 2: (a) Intervention decisions and usage of different options if existing supply drops below the trigger values on the threshold line, (b) usage
plan of capacity options
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2005)) or because its implementation beyond a few
stages might be unsolvable. Examples in Georghiou
et al. (2019) show how multistage formulations for
some practical problems become intractable beyond
the first few planning stages. This encourages the
use of decision-rules. Indeed, the rationale for using
decision-rules is their tractability, simplicity of use and
their implementability for all decision stages. That
is, they can be employed to derive planning decisions
as a function of the water resource system’s uncertain
conditions. As shown in Table 3, all derived rules
provide adaptability as they are all series of functions
of the state of the system and the uncertainty. That is,
the intervention decision and the use of each option are
adaptive to the conditions of the system and they change
as new information about uncertain parameters becomes
available. Unlike a multistage stochastic approach
that explicitly models the ‘wait-and-see’ decisions as a
tool for adaptability, decision-rule formulations adapt
by relating the decision variables with the uncertain
parameters in the form of a functional relationship.
In the linear case, for example, in time period 2,
the decision on o1 use is in the form of a linear
function S 2,o1 = 742.9 − 0.33eS 2 (Table 3). In
this equation, as the existing supply, eS 2, changes,
different optimal uses of option o1 are suggested.
This is replaced by the optimal threshold value in
the case of the if-then formulation (Figure 2) for
which the threshold works as a trigger in optimally
activating and using different interventions. We note
however that, depending on the interaction between
decision variables and uncertain parameters, the choice
of different functional components within each rule may
result in different solutions. This implies the optimal
solutions provided by the decision rules are dependent
on the structure of the rule. This is not the case in the
multistage stochastic formulation where the solutions
are not bounded by a pre-set functional relationship
between decision variables and uncertain parameters.

As demonstrated by Theorem 4.1, decision-rules
reduce the efficiency of multistage stochastic problem
1. This is empirically shown in Table 3 using the
proposed test problem. As can be seen, multistage
stochastic formulation 1 outperforms the decision-
rule formulations. The efficiency of the linear rule,
initially performing poorly when applied to this test
case, is improved by the polynomial of degree 4
and piecewise formulations by almost 20 and 100
percent, respectively. The accuracy of approximation
may be improved further by higher order polynomials
or adding more break points to the piecewise linear
approximation. However, this is not always the case.

As can be seen in Table 3, a piecewise linear function
with one break point outperforms the high order
polynomial approximation in this case. The accuracy
of approximation depends on several underlying factors
including the interval of approximation and underlying
structure of data and their interaction with decision
variables. For example, for a data set that is linearly
dependant, polynomial approximation performs worse
than the linear one. In addition, there is a chance
that the polynomial approximation bends away from the
optimal point whereas the linear one coincides with it
or gets closer to it. This was empirically observed by
Young (1967) in relevant water resources work where
it was stated that the linear approximation provides as
good or better a fit to the data than more complicated
ones, e.g., quadratic or cubic. Nevertheless, given
the difficulties discussed above about the multistage
stochastic formulation and that the decision-rules may
be the only feasible approach, the approximation
accuracy and the potential for suboptimality should be
considered and investigated when using decision-rule
formulations in capacity expansion problems.

Moreover, although for simplicity of explaining
the results we employed a single objective function
to discuss the decision rule application, the results
in this paper also apply to the case of multiobjective
optimisation as demonstrated in Theorem 4.1. This
is because for each solution of the multiobjective
optimisation, there exists a scalar single objective
optimisation problem (Jahn, 2009; Erfani and
Utyuzhnikov, 2011), and hence the vectorised objective
function does not reduce the generality of the results.
In addition, we hypothesise that Theorem 4.1 also
applies to the case of simulation-based optimisation for
which the decision rules can be implemented as a set
of constraints embedded in a simulation engine. The
demonstration of this is left for future work.

8. Conclusion

This paper proposes and examines the use of
decision-rules for multistage adaptive water resources
infrastructure planning optimisation models. When
using decision-rules, given a realisation of uncertainty,
the current state of the water infrastructure system
and the unknown future, the activation and use of
future options are functions of the uncertainties. We
introduce a family of decision-rules, namely, linear,
polynomial, piecewise and conditional if-then based
rules, and show how these formulations approximate
the multistage stochastic programming formulation.
We investigate their performance on a synthetic water
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supply capacity expansion example problem with a
small number of intervention options and compare their
results with those of the multistage stochastic problem.
Results demonstrate that even though the decision-
rule formulations simplified the multistage stochastic
program, in the example provided, they have more than
50 percent optimality gap with the solution of original
multistage problem in most cases. The piecewise
and polynomial work better than linear rules. This
potential for suboptimal problem approximation when
using decision-rules in adaptive optimisation planning
models should be considered by analysts. Nevertheless,
given that multistage program is hard to solve for
large scale systems, and that the decision-rules such as
conditional if-then based rules are simple to interpret
and implement, they may still be appropriate for
adaptive water resource planning. Future research could
focus on verifying and improving their efficiency.
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