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Abstract

Water restriction is commonly used to motivate rodents to perform behavioral tasks; however, its effects on
hydration and stress hormone levels are unknown. Here, we report daily body weight and bi-weekly packed
red blood cell volume and corticosterone (CORT) in adult male rats across 80 days for three commonly used
water restriction schedules. We also assessed renal adaptation to water restriction using postmortem histo-
logic evaluation of renal medulla. A control group received ad libitum water. After one week of water restric-
tion, rats on all restriction schedules resumed similar levels of growth relative to the control group. Normal
hydration was observed, and water restriction did not drive renal adaptation. An intermittent restriction sched-
ule was associated with an increase in CORT relative to the control group. However, intermittent restriction
evokes a stress response which could affect behavioral and neurobiological results. Our results also suggest
that stable motivation in behavioral tasks may only be achieved after one week of restriction.

~

Neuroscience research has seen the growing use of water restriction in studies using head-fixed rodents.
Despite this growing use, the effects of various water restriction schedules on hydration and stress hormone
levels are unknown. Here, we assess hematocrit (Hct) and blood corticosterone (CORT) over 80 days and
compare three commonly used restriction schedules. Our results show that one type of restriction schedule
evokes a stress response, which may have unanticipated neurobiological and behavioral consequences. /
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McGinley et al., 2015; Yttri and Dudman, 2016; Jurjut et al.,
2017; Mathis et al., 2017; Runyan et al., 2017; Steinmetz et
al., 2019; Stringer et al., 2019; Schrdder et al., 2020; Foo et
al., 2021; Peters et al., 2021). Head-fixation has opened up
new avenues of research in rodents, which were hereto-
fore conducted largely in non-human primates, such as
studies on visual perception (Khastkhodaei et al., 2016;
Sriram et al., 2016; Pakan et al., 2018; Jacobs et al.,
2020; Jin and Glickfeld, 2020; International Brain
Laboratory et al., 2021), forelimb reaching (Yttri and
Dudman, 2016; Mathis et al., 2017; Galifanes et al.,
2018), and arousal (using pupillometry; Reimer et al.,
2014, 2016; McGinley et al., 2015; Vinck et al., 2015).
Additionally, there has been a growing interest in using
head-fixed rodents to study the neural representation
of space using virtual reality (Harvey et al., 2009;
Radvansky and Dombeck, 2018). Head-fixation of ro-
dents has also been used to gain access to membrane
potentials during goal-directed behavior (Polack et al.,
2013; Sachidhanandam et al., 2013; McGinley et al.,
2015). Thus, the use of water restriction as a motiva-
tional tool for rodent behavioral paradigms will likely
continue to be a fundamental tool in neuroscience.
However, the results of behavioral and neurobiological
studies could be affected by the stress of water restriction,
which has not been assessed in any of the water restriction
schedules that are commonly used in neuroscience re-
search. One study using rats limited access to water at
30 min/d and reported significant elevation of blood plasma
ACTH and adrenal corticosterone (CORT) after 6 d (Arnhold
et al., 2009). Training and measuring behavior and record-
ing neuronal activity, on the other hand, can last many
weeks of months and require water restriction well beyond
a 6d (Schwarz et al., 2010; Scott et al., 2013; McGinley et
al.,, 2015; Yttri and Dudman, 2016; Mathis et al., 2017;
Runyan et al., 2017; Jin and Glickfeld, 2020; International
Brain Laboratory et al., 2021). Another study found no ele-
vation of plasma CORT after 37 d during which rats were
provided daily access to water for 15min (Heiderstadt et
al., 2000b). These data suggest that the stress response
may adapt during chronic water restriction at some point
after 6d. These studies have provided “snapshots” of the
stress response at 6 and 37d, but the change in CORT
over the time course of a typical behavioral experiment re-
mains unknown. Furthermore, these snapshots are limited
to one type of restriction schedule, which limited water
availability to unlimited volume consumption within a daily
time window. To our knowledge, prior studies have not
characterized the stress response to other types of sched-
ules used in behavioral neuroscience, such as those that
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limit the total volume of water available per day. A clear pic-
ture of the stress response to the various water restriction
schedules used in neuroscience research will enable the
field to consider whether behavioral and neurobiological
results might be affected by a stress response to water
restriction.

The effect of water restriction schedules on hydra-
tion is also not well studied. The standard monitoring
for dehydration in rodent behavioral neuroscience in-
volves measuring reductions in body weight (Schwarz
et al., 2010; Guo et al., 2014; Reinagel, 2018; Urai et
al., 2021). Importantly, body weight loss is not an ideal
indicator of dehydration in rodents because their
adaptive response to water scarcity is mild anorexia;
by reducing food volume in the gastrointestinal tract,
rodents reduce water lost through feces (Watts, 1999;
Desai et al., 2005; Rowland, 2007; Bekkevold et al.,
2013). Another standard assessment for dehydration
is skin turgor (Guo et al., 2014). Although turgor is easy
to deploy and offers a rapid clinical judgment of dehy-
dration, it is subjective and only visible in stages of ad-
vanced dehydration. On the other hand, packed red
blood cell volume (hematocrit; Hct) may be an objec-
tive clinical sign of dehydration (Dorrington Keith,
1981; Hansen and DeFrancesco, 2002). A prior study
has shown that Hct in rats was elevated (indicative of
dehydration) after 6 d of 30 min of daily water access
(Arnhold et al., 2009). It remains unknown whether Hct
is elevated during the chronic restriction that is used in
behavioral tasks or whether Hct differs according to
type of restriction schedule.

Here, we measured daily body weight and bi-weekly
plasma CORT and Hct over 80d in four groups of rats
subjected to different water restriction schedules that are
commonly used in behavioral studies (Barnet et al., 1997;
Denniston et al., 1998; Laraway et al., 2003; Fujisawa et
al., 2008; Schwarz et al., 2010; Jaramillo and Zador, 2011;
Pan et al.,, 2013; Scott et al., 2013; Guo et al., 2014;
McGinley et al., 2015; Panigrahi et al., 2015; Yttri and
Dudman, 2016; Mathis et al., 2017; Runyan et al., 2017;
Jin and Glickfeld, 2020; International Brain Laboratory et
al., 2021). The restriction schedules were either ad libitum
availability (control group), continuous volume-limited
water, intermittent volume-limited water (i.e., alternating
between 5 d of volume-limited daily water and 2 d of ad /i-
bitum access), or 30-min time-limited water. We found no
evidence for dehydration or excessive stress response;
however, the intermittent restriction schedule evoked a
small stress response. We observed a two-week adapta-
tion period in which body weight is diminished in all three
restriction groups and followed by normal growth. Kidney
histology was used to measure changes in the renal me-
dulla and demonstrated that these restriction schedules
were not severe enough to drive long-term adaptation of
the renal system. Overall, we found that months-long use
of common restriction schedules in rats maintains rodent
welfare in continuous and timed restriction schedules, but
that the intermittent schedule evokes a stress response
which could affect welfare and potentially affect behav-
ioral and neurobiological outcomes.
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Materials and Methods

Subjects

Experiments were conducted with 24 male Sprague
Dawley rats (specific pathogen free, Charles River
Laboratories). The initial weight of the rats was 270.3 +
2.8 g (SEM). Rats were single housed to control water ad-
ministration. Rats were housed in IVC cages (1862 cm?
floor space and height of 38 cm, GR1800, Techniplast).
An 8 A.M.-to-8 P.M. lights on cycle was used so that data
could be conducted under normal lighting for the re-
searchers. All experiments were conducted with approval
from the local authorities and in compliance with the ani-
mal care committee’s regulations.

Water restriction procedures

Rats were divided into four groups covering three dif-
ferent water restriction schedules and an ad libitum
control group. The restriction schedules were “timed,”
“continuous,” and “intermittent.” The timed group was
given 30min of ad libitum access to water each day.
The continuous group received ~12 ml/d. This small
volume of water was delivered using a custom-made
water bottle that released water only during consump-
tion. If arat in the continuous group lost >15% of their
body weight in a week, then their daily water was in-
creased by 2 ml. The intermittent group received a re-
peating schedule of 12 ml of water per day for 5d,
followed by 2 d of ad libitum water.

The 12-ml volume of water for the continuous and inter-
mittent groups was chosen based on our experience mo-
tivating behavioral task performance by head-fixed rats,
as well as the physiological needs of adult male rats.
Typical water ingestion patterns of the adult (300-400 g)
male rat consist of consuming 20-30 ml/d when it is freely
(ad libitum) available (Toth and Gardiner, 2000; Schwarz
et al., 2010). However, rodents have highly effective renal
mechanisms for water conservation, which allow them to
remain hydrated and healthy when consuming <20-30
ml/d. For example, under conditions in which rats were al-
lowed to consume as much water as they would like in
their home cage, but requiring them to perform physical
effort for access by pressing a lever, their daily water con-
sumption was lower (15 ml) per day (Nicholaidis and
Rowland, 1974). This daily amount (15 ml consumed by
300-g rats) is approximately equivalent to the requirement
to prevent cellular dehydration derived from fluid mainte-
nance formulas, which calculate a requirement of 50 ml/
kg of body weight per day to maintain normal hydration
(Toth and Gardiner, 2000). Further reductions below ~15
ml/d for a 300-g rat will activate renal mechanisms allow-
ing rats to conserve water and remain hydrated; therefore,
50 ml/kg/d reflects an upper limit to the amount of water
that must be allocated on a water restriction schedule.
Water restriction protocols are generally designed to re-
duce water availability below this upper limit because in-
creased water restriction is associated with higher goal-
directed behavioral task performance as measured by
percent correct choices in a sensory stimulus discrimina-
tion task (Guo et al., 2014). In addition to the observation
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of this phenomenon by Guo and colleagues, we have also
observed in our own unpublished head-fixed rat behav-
ioral experiments that rats are not motivated unless they
receive 60-80% of this upper limit (i.e., 9- to 12-ml total
water per day). For example, we have observed that rats
who receive 14-17 ml will, in the next behavior session,
omit (not perform) a large proportion of trials (6-33%).
Therefore, providing too much water will reduce their mo-
tivation and they will not perform the task. Thus, we have
found that 10 ml is adequate for most animals to be moti-
vated to perform the task, but some animals must receive
only 8 ml. It is possible that rats who require only 8 ml of
water per day to perform the task may have stronger
physiological mechanisms for water conservation. In gen-
eral, rats consume 3-8 ml during the behavioral task and
the remaining amount (up to 8-12 ml) is provided in the
cage. Therefore, for the present experiments, we chose to
test 12 ml of daily water allotment.

Method of blood sampling and measurement of CORT
and Hct

A small blood sample (~0.25 ml) was taken from the talil
vein without anesthesia while the rat was held in a re-
straint tube. Samples were collected bi-weekly. During
two weeks before starting water restriction, the animals
were handled and habituated to restraint to reduce the
stress response during data collection. Blood samples for
Hct measurement were collected in a capillary tube
and immediately centrifuged. The packed cell volume
was measured against a chart calibrated for the capil-
lary. Blood was centrifuged and the blood plasma was
harvested and stored at —8°C. Blood plasma CORT
was measured by a commercial firm using ELISA kits
(Idexx Laboratories).

Kidney histology

Rat kidneys were freshly fixed in 4% PFA, washed in
RNase free water and transferred in 70% RNase free
ethanol. Kidneys were bisected longitudinal before auto-
mated embedding in paraffin using a STP120 (Thermo
Fisher Scientific). Each paraffin-embedded half was sec-
tioned (10-um sections) using a microtome HM340E
(Thermo Fisher Scientific).

Histologic staining was performed on deparaffinized
and hydrated serial sections of rat kidney. Hematoxylin
and eosin (H&E) staining visualized cell nuclei (black, dark
blue) and counterstains cytoplasm and connective tissue
fibers (different shades of pink). In detail (also shown in
Table 1), staining was started by deparaffinization with
two steps of absolute xylene followed by rehydration
steps with a descending ethanol row. Hematoxylin stain-
ing was done with Mayer’s hematoxylin solution (Carl
Roth GmbH, T865.1) for 10 min followed by 10 min blu-
ing in lukewarm running tap water. Counterstain was
done with 1% Eosin Y solution (Carl Roth GmbH,
3137.2) for 2min followed by a differentiation step in
70% ethanol for 30 s. Stained sections were mounted
with Roti-Histokitt (Carl Roth GmbH, 6638.1). Stained
sections were stored at room temperature until imag-
ing analysis was performed.

eNeuro.org



eMeuro

Table 1: Deparaffinization, rehydration, and H&E staining
procedure

Steps in H&E staining procedure

10min Xylene | Deparaffinization
10min Xylene Il
5min Ethanol absolute | Rehydration
5min Ethanol absolute Il
5min Ethanol 96% |
5min Ethanol 96% Il
5min Ethanol 70% |
5min Ethanol 70% Il
5min Ethanol 50% |
5min Ethanol 50% Il
5min Distilled water
10min Mayer’s hematoxylin Nuclear staining
30s Distilled water
10min Running lukewarm tap water Bluing
30s Distilled water
2min EosinY 1% Counterstaining
30s Distilled water
30s Ethanol 70% Dehydration
3min Ethanol 96%
3min Ethanol absolute |
3min Ethanol absolute Il
3min Roti-Histol | Clearance
before mounting
3min Roti-Histol Il
Roti-Histokitt Mounting
Statistics

We used estimation statistics and report effect sizes
and the confidence intervals for effect sizes. These
were assessed using the DABEST toolbox in MATLAB.
Bayesian statistics were used for assessing evidence
(or lack thereof) for the null hypothesis and for the al-
ternative hypothesis. A Bayesian factor (BF) over three
was taken as moderate evidence in favor of the alter-
native hypothesis. A BF over 10 was considered strong
evidence in favor of the alternative hypothesis. A BF of
<1/3 was taken as moderate evidence in favor of the
null hypothesis, whereas a BF of <1/10 was strong evi-
dence in favor of the null hypothesis. A BF between 3
and 1/3 indicated that the data were ambiguous pro-
viding neither evidence supporting the null hypothesis,
nor evidence supporting the alternative hypothesis.
The lack of evidence could be because of high variabil-
ity across the samples. Bayesian statistics were calcu-
lated in JASP software.

Results

We compared the effects three water restriction sched-
ules on body weight, Hct, and blood plasma CORT over
80d. The restriction schedules were “timed,” “continu-
ous,” and “intermittent.” The timed group was given
30 min of ad libitum access to water each day. The contin-
uous group received ~12 ml/d as a single bolus. They
began consuming this volume within seconds and, with a
few drinking bouts interspersed with food consumption,
the entire volume was consumed. If a rat in the continuous
group lost >15% of their body weight in a week, then
their daily water was increased by 2 ml. Finally, the
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intermittent group received a repeating schedule of 12 ml
of water per day for 5d, followed by 48 h of ad libitum
water. On days with volume-limited water access, the
consummatory behavior of these rats was noted as similar
to that of the continuous group. The choice of volume and
timing was based on published literature and a detailed justifi-
cation can be found in Materials and Methods. A control
group was monitored with ad libitum access to water for
80d. Water administration occurred between 2 and 4 P.M.
Before water administration, rats were weighed each day and
blood was taken from the tail vein twice per week (usually
Wednesday and Friday). Measurements were taken before
water administration to capture the statuses of the rats in the
water restricted state. Each group consisted of six male
Sprague Dawley rats. Rats were housed individually to con-
trol water intake. All rats were housed in the same room with
cages randomly distributed across two racks of individually
ventilated cages.

Rats adapt to water restriction after two weeks and
maintain normal Hct levels

Body weight is frequently used as an indicator of overall
health as well as an indirect measure of hydration status
in rodents. We compared this measure across the three
most frequently used restriction schedules. Figure 1A
presents the average body weight in each group over
88d. We plotted =2 SDs of the ad libitum group in light
purple shading to facilitate comparison with standard
growth curves supplied by animal breeders. The darker
shading, as well as the shading around the other groups
represents the SE around the mean. Water was removed
on day 8. By day 88 (i.e., the 80th day of water restriction),
we observed significantly reduced body weights in all
water restriction groups relative to the control group (Fig.
1B). Body weight in the timed group was reduced by
16.2% relative to the ad libitum control group. The effect
size and its 95% confidence intervals (ESCI) were at least
an 8.5% decrease and at most a 22.5% decrease. Body
weight loss in the continuous group was 28.4% (ESCI:
between a21.1% and a 34.3% loss). In the intermittent
group, weight loss was 21.6% (ESCI: between a
12.7% and a 30.3% loss). A Bayesian ANOVA sug-
gests that these data provide extremely strong evi-
dence for a difference in weight between restriction
schedules (BF =3866.301). Post hoc testing showed
that rats on all water restriction schedules lost weight
relative to the control group (BFs for continuous, inter-
mittent, and timed were 681.848, 23.841, and 15.394
respective to each group). The weight of rats on the
continuous water restriction schedule was also lower
than rats on the timed schedule (BF =31.236). Water
restriction clearly effected long-term body weight.

Long-term weight loss may indicate a long-term disrup-
tion of rodent health. However, in Figure 1A, it appears
that much of the weight loss occurs during the first two
weeks and that growth normalizes thereafter. It is, there-
fore, possible that the lower weights after 80 d of restric-
tion were because of a brief period of weight loss
occurring at the start of water restriction and that,
although these early losses were never re-gained, growth

eNeuro.org



eMeuro

A

650 . ad libitum

timed
600 __ continuous
550 | — intermittant

(®)]

S 450

2

3 400
350

300

250, . . . . s . .
10 20 30 40 50 60 70 80

body weight
on day 88 (g)
N
o
o

effect size
A
o
o
—
*
—_——

—— ad libitum
timed
—s— continuous
—— intermittant

growth rate

L L 1

7 8 9
week

3 4 5 6 10 11 12 13

2
T

restrict

Figure 1. Water restriction evokes an overall body weight re-
duction that is because of weight loss during the first
two weeks. A, Body weight is plotted across the entire duration
of the experiment (88 d). Water restriction began on day 8. The
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continued

mean and SE for each group of rats is shown as a line and
shading. The additional light shading around the ad libitum
group indicates =2 SDs around the mean. There were six rats
per group. B, The final body weight at the end of the experiment
was reduced in all water restriction groups relative to the ad libi-
tum control group. The upper panel shows the distribution of in-
dividual rats (dots) and the group mean and SE. The lower
panel shows the effect size relative to the ad libitum control
group and the error bars show the 95% confidence interval for
the effect size. A star symbol indicates that the BF for a post hoc
Bayesian t test was greater than 3. C, Weekly body weight
change is plotted throughout the experiment. The data markers
and lines show the mean and SE for each group of rats. Negative
growth (below the dotted line) indicates weight loss, whereas
positive points indicate growth. Post hoc Bayesian t tests on the
alternative hypothesis that control group growth was greater
than the restricted group’s growth is illustrated with a star when
BF is >8. The color of the star indicates the identity of the group
being compared against the ad libitum control group. A BF >3
indicates that these data provide evidence supporting the alter-
native hypothesis that growth in the control group was greater
than that of the restricted group. The growth differences oc-
curred primarily during the first two weeks of restriction.

proceeded normally. We formally examined this question by
measuring growth as weekly body weight change (Fig. 1C).
We found that growth largely normalized after two weeks of
water restriction. There was an interaction between restriction
schedule and week (Bayesian repeated measures ANOVA:
BF=3.198 x 10'"®), which was because of body weight
losses that occurred largely in weeks 2 and 3. Thus, our re-
sults suggest that the large decrease in body weight after
80d of chronic water restriction is not because of long-term
growth impairment. Instead, since growth normalized after
two weeks of restriction, it is likely that this brief window of
weight loss is followed by adaptation to the new environmen-
tal demands. It is possible however that, before adapting, the
weight loss during the first two weeks is because of
dehydration.

We used Hct levels to more directly assess whether the
first two weeks of water restriction were associated with a
change in hydration. Hct was measured as the percent
packed cell volume in centrifuged blood samples taken twice
per week (Fig. 2A). Hct differed over time (Bayesian ANOVA
interaction between time and schedule: BF = 1.944 x 10%).
Hct was increased during the first week of restriction, which
was also the first week in which a blood sample was ob-
tained. However, this increase occurred in the control group
which suggests that this change was not specific to water re-
striction. Figure 2B shows the Hct values recorded across
80 d of chronic water restriction. The data provide strong evi-
dence supporting the null hypothesis that mean Hct did not
differ between restriction schedules (BF =0.052). Therefore,
the drop in body weight during the first two weeks of water
restriction is not because of a change in hydration.

Water restriction evokes a stress response in rats on
an intermittent water restriction schedule

Adaptation to water restriction may increase circulating
stress hormones, given that food restriction can elevate
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Figure 2. Hct did not differ between the ad libitum control group
and groups of rats subjected to various water restriction sched-
ules. A, % Hct is plotted as the group average of all samples col-
lected each week. The error bars indicate the SE. Although there in
an increase in Hct during the first week of blood collection, this oc-
curred in all groups inclusive of the control group. A star symbol in-
dicates that the BF for a post hoc Bayesian t test was greater than
3. The color of the star indicates the identity of the group being
compared against the ad libitum control group. B, An assessment
of effect sizes comparing all Hct values collected over 88d sug-
gests that Hct does not differ between groups. The effect sizes
(95% confidence interval) relative to the ad libitum control group
were: timed group, 1.0% (—2.1 to +4.1%); continuous group,
2.2% (—5.2 to +0.9%); intermittent group, 0.1% (—3.0 to +3.3%).

CORT in rodents (Abrahamsen et al., 1995; Heiderstadt et
al., 2000a). We measured blood plasma CORT twice per
week (Fig. 3A). CORT values are reported starting from
week 3 because inadequate blood volumes were obtained
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Figure 3. CORT is increased during intermittent water restriction.
A, The average and SE of weekly CORT values are plotted for
each group of rats. The intermittent group has occasionally ele-
vations in CORT. A star symbol indicates that the BF for a post
hoc Bayesian t test was greater than 3. The t symbol indicates a
BF value greater than 2. The color of the symbols indicate the
identity of the group being compared against the ad libitum con-
trol group. B, Collapsing all measurements over time revealed
that the intermittent group has elevated CORT relative to the ad
libitum control group. The upper panel shows individual data
points, and the lower panel shows the effect sizes of group dif-
ferences relative to the ad libitum control group.

in week 1 (before restriction) and week 2 (start of restric-
tion). There was an interaction between restriction sched-
ule and time (BF =1.353 x 10'®), which were driven by an
early increase in the intermittent group (post hoc
Bayesian t tests, BF >3, except BF=2.082 for week 5
and BF =2.423 for week 9). Given that week 3 was associ-
ated with reduced growth (see Fig. 1C) in all restriction
groups, the specificity of the stress response for the
intermittent restriction group suggests that an initial
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adaptation during the first two weeks of water restriction
is not associated with a stress response.

On the other hand, a stress response may also be
evoked by environmental instability which occurs specifi-
cally in the intermittent group. Environmental instability
occurs in the intermittent group because these rats re-
peatedly encountered water losses after the periodic 2-d
breaks from restriction. The instability in the environment
altered the body state of these rats by producing a highly
variable “saw-tooth” pattern in intermittent group body
weights (see Fig. 1A). Our data suggest that the environ-
mental instability encountered by the intermittent sched-
ule group could be a psychological stressor that evokes a
chronic stress response. We assessed this by collapsing
CORT measurements from all timepoints to assess
whether CORT was overall higher in the intermittent group
(Fig. 3B). The ESCI in the timed group spanned from a
46% reduction to a 69.4% elevation in CORT, which sug-
gests no effect of timed restriction on CORT. Similarly, the
continuous group ESCI ranged from a 51.8% reduction in
CORT up to a 53.0% increase in CORT. However, the in-
termittent group was associated with an effect size of
56.6% with the ESCI ranging from roughly no change
(—6.9%) up to a 115.0% increase. CORT in the ad libitum
control group was 40 = 9ng/ml, whereas in the intermit-
tent group it increased to 63 =9ng/ml. Given that the
ESCI is the 95% confidence interval for the effect size, the
average CORT was likely increased specifically in the in-
termittent group. We formally tested the alternative hy-
pothesis that the intermittent group had higher CORT
than the ad libitum control group using a Bayesian Mann—
Whitney U test (because of the skew of the intermittent
group distribution). A BF of 27.47 suggested that the col-
lected data may be taken as strong evidence in favor of
the alternative hypothesis. Therefore, the intermittent
water restriction schedule used here may present a psy-
chological stressor that evokes a significant increase in
CORT that is around 56.6% higher than under ad libitum
conditions.

Water restriction is not associated with adaptation of
the Loops of Henle

In response to water scarcity, organisms adapt by pro-
ducing hyperosmotic urine. This physiological adaptation
depends on the lengths of the Loops of Henle in the renal
medulla (Schmidt-Nielsen and O’Dell, 1961). There is evi-
dence that structural adaptation of the Loops of Henle
can occur over the timescale of a few weeks during water
deprivation (Trinh-Trang-Tan et al., 1987). We assessed
whether the water restriction schedules used here were
severe enough to promote structural changes to the kid-
neys using postmortem histologic measurements of rela-
tive medullary thickness (RMT). RMT is indicative of a shift
in the size of the renal medulla relative to the cortex indi-
cating lengthening of the Loops of Henle (Sperber, 1944).
An increased RMT is associated with urine osmolality and
can therefore be used as a surrogate measure of an or-
ganism’s ability to produce hyperosmotic urine in re-
sponse to water scarcity (Schmidt-Nielsen and O’Dell,
1961; Heisinger and Breitenbach, 1969; Brownfield and
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Wunder, 1976). Kidney sections were inspected, and
measurements made by an individual blind to the water
restriction group assignments of the rats. RMT was meas-
ured according to two formulae that capture changes in
the size of the renal medulla relative to the rest of the kid-
ney (Fig. 4A). We found that neither of these measures dif-
fered across groups (Fig. 4B,C). A Bayesian one-way
ANOVA suggested moderate support for the null hypothe-
sis for similar outer medulla to cortex ratio (OMR) across
groups (BF=0.23). The result of the Bayesian one-way
ANOVA for total medulla to cortex ratio (MR) data were am-
biguous, but close to the threshold for moderate evidence
supporting the null hypothesis (BF = 0.66). Taken together, it
is unlikely that water restriction schedules evoked lengthening
of the Loops of Henle. Interestingly, there was a significant
difference in postmortem kidney weight across groups
(Bayesian one-way ANOVA, BF =7.514). The data suggest
that, in the continuously restricted group, kidney weight was
reduced (Fig. 4D). The continuous group kidney weight was
16.1% lower than the kidneys in the ad libitum control group
with a 95% confidence interval of an 8.5% loss up to a
23.0% loss. Post hoc Bayesian t tests indicated that the kid-
ney weights of rats in the continuous water restriction group
were significantly lower than those of the ad libitum group
(BF=13.08), as well as the intermittent water restriction
group (BF=14.35) and the timed group (BF=5.377).
Collectively, these data suggest that water restriction is not
severe enough to evoke structural adaptations of the renal
medulla; however, continuous water restriction may lead to
a modification of gross kidney mass.

Discussion

Water restriction is a widely used tool in neuroscience
research in rodents; however, effects of these water re-
striction schedules on objective measures of hydration
and on stress hormone level are unknown. It is also possi-
ble that rodents readily adapt to water restriction by struc-
tural modification of the kidneys. Here, we measured daily
body weight and bi-weekly plasma CORT and packed red
blood cell volume (Hct) over 80d in four groups of male
rats subjected to different water restriction schedules that
are commonly used in behavioral studies. We observed a
one- to two-week period in which body weight is dimin-
ished in all three restriction groups and followed by
normal growth. The reason for the weight loss during
the initial two weeks of water restriction may be a mild
anorexic response that reduces water loss through
feces (Watts, 1999; Desai et al., 2005; Rowland, 2007;
Bekkevold et al., 2013). Indeed, rats reduce their ad li-
bitum food intake during water deprivation (Bealer et
al., 1983). We found no evidence for changes in Hct,
suggesting that hydration remained normal and that
rats readily adapt to the water restriction schedules
used in the present study. As part of this adaptive re-
sponse, the renal mechanisms for water conservation
may be engaged so that rats can resume normal
growth (despite limited water availability) beginning in
the third week of restriction. Kidney histology was
used to measure changes in the renal medulla and
demonstrated that these commonly used restriction
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Figure 4. Water restriction is not associated with alterations in the Loops of Henle. A, This example tissue section of the kidney
shows the gross anatomic makers used to delineate the cortex (C), the outer medulla (OM), the total medulla (TM) demarcated as
the distance between the capsule and the “assisting line” (A). The assisting line connects the two points where the ureter connects
to the kidney and was used to have a standardized starting point for measurements. The TM may or may not include the entire
inner medulla, which sometimes crossed the assisting line. We assessed RMT using two formulae. The first was the OM to C ratio
(OMR) and the other was the TM to C ratio (MR). B, C, Neither the MR (B) nor the OMR (C) differed across groups of rats. The plots
show the individual data points where complete sections could be obtained to make a clear assessment of these measures. The
lower panel shows the effect sizes relative to the ad libitum control group and the 95% confidence intervals of those effect sizes. D,
Postmortem kidney weight was measured and indicated a reduction in kidney weight in the group of rats subjected to continuous
water restriction. The upper panel shows individual data points and the lower panel shows effect sizes and confidence intervals rela-

tive to the ad libitum control group.

schedules are not severe enough to drive long-term adap-
tation of the renal system. However, we cannot exclude the
possibility that renal aquaporin expression may have
adapted in response to water restriction, given that plastic-
ity of aquaporin expression has been demonstrated in the
response of rodents to changes in seasonal water scarcity
in the wild (Gallardo et al., 2005). Although stress hor-
mones were also not generally altered by water restriction,
the intermittent group had a minor elevation in CORT that
may be a behaviorally and neurobiologically-relevant stress
response. Overall, we found that months-long use of timed
and continuous restriction schedules in rats maintains their
welfare, but that intermittent restriction evokes a minor
stress response.

Our results were obtained in male rats; however, it is im-
portant to recognize that these results may not generalize
to other rodents, such as mice, and may also differ be-
tween males and females. Although little work has been
done in female rodents, prior work has compared the

November/December 2021, 8(6) ENEURO.0424-21.2021

physiological responses of rats and mice to brief peri-
ods (e.g., 24 h) of complete water deprivation. A review
of these studies on total deprivation (Rowland, 2007)
has shown that dehydration-related anorexia and blood
plasma osmolality changes are two times stronger in
male mice compared with male rats. It is not possible to
extrapolate from brief and complete deprivation to the
effects of chronic water restriction; however, the possi-
bility that rats and mice respond differently should be
considered by researchers using mice in behavioral
neuroscience research.

Implications for rodent welfare

The welfare of rodents is a key objective in all experi-
ments primarily for ethical reasons, but also because
unhealthy animals cannot yield normal data. Water re-
striction could affect welfare by evoking dehydration;
however, our results suggest that the restriction sched-
ules used here do not cause dehydration. We assessed

eNeuro.org



eMeuro

hydration by measuring Hct. Typical Hct values in adult,
male rats have been reported to range between 33 and 57
(Houtmeyers et al., 2016) and around 42 in rats that are
not water restricted (Fitzsimons, 1963). Although Hct de-
pends on age and body weight, it largely stabilizes
between 40 and 45 in rats of the age and body weight
used in the present study (Belcher and Harriss, 1957).
Therefore, we observed normal Hct values that are typical
for non-water restricted rats of this gender and age. Our
findings suggest that hydration is not affected by any of
the water restriction scheduled used in the present study.
Normal hydration is presumably maintained by the rats
via renal adaptation and the production of hyperosmotic
urine. Importantly, welfare may be negatively impacted by
a stress response, which was observed only in the rats
subjected to an intermittent restriction schedule.

Implications for maintaining stable motivation of
rodents during goal-directed behavioral tasks

The schedules tested here are commonly used in rodent
behavioral neuroscience experiments. For example, some
laboratories have chosen to use continuous volume-limited
restriction because motivation is reduced after each break in
an intermittent schedule (Busse et al., 2011; Carandini and
Churchland, 2013; Guo et al., 2014). However, intermittent
schedules are also common (Schwarz et al., 2010; Histed et
al., 2012; Guo et al., 2014). Motivation can also be maintained
at a stable level with a timed access schedule. Various labo-
ratories have motivated behavior by time-limited water ac-
cess from 10min/d to 1 h/d (Barnet et al., 1997; Denniston et
al., 1998; Laraway et al., 2003; Scott et al., 2013; Foo et al.,
2021). Our finding that body growth is temporarily reduced
for the initial approximately two weeks of water restriction for
all schedule types suggests that this is a period of adaptation.
During this period when rodents adapt to the new environ-
mental constraints, they may have increased motivation to
collect reward. Our results suggest that collection of behav-
ioral and neurobiological data during this period may include
instabilities in how rodents respond to water rewards.
Therefore, allowing this adaptation period to pass before col-
lecting data may be a useful practice in behavioral neuro-
science research.

Other recent methods of water restriction that provide less
palatable 2% citric acid water ad libitum in the home cage
have not been assessed for stress hormone release or kidney
adaptation (Reinagel, 2018; Urai et al., 2021). However, it is
likely that our findings would be similar under those condi-
tions because rodents given citric acid in water effectively
self-restrict their water intake (because of the aversive taste
of the water) to approximately the same volume of daily water
provided in our study to the continuous restriction and inter-
mittent restriction groups (Reinagel, 2018). Although provid-
ing ad libitum citric acid water is less labor intensive and is an
efficient way to motivate rodents without needing to adminis-
ter precise daily allotments of water tailored to individual rats,
the use of citric acid results in fewer daily trials performed
compared with water restriction (Reinagel, 2018). Therefore,
the water restriction schedules used here may be most rele-
vant to studies that aim to maximize the number of trials
performed.
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Implications of the stress response in rats on an
intermittent water restriction schedule

Intermittent water restriction could be a physiological
stressor because of the saw-tooth pattern of repeated
weight loss and weight rebound. It could also be a psy-
chological stressor because of unstable environmental
water availability. We observed a mean increase of plas-
ma CORT to 63 ng/ml in rats on the intermittent restriction
schedule. The blood plasma collection procedure (brief
single tail vein puncture requiring <15 s) did not affect the
measurements because CORT requires ~20min to ele-
vate after a tail puncture (Haemisch et al., 1999). Our data
support the notion that intermittent water restriction is a
stressor, but it is a relatively minor stressor compared
with air puff startle (450 ng/ml; Engelmann et al., 1996), re-
straint stress (250-800 ng/ml; Plotsky and Meaney, 1993;
Akana and Dallman, 1997) and forced swimming (400-
500 ng/ml; Armario et al., 1986). However, CORT level
during an intermittent water restriction schedule is similar
to the CORT increase after handling in rats subjected to
early life maternal separation stress (100 ng/ml; Kalinichev
et al.,, 2002) and the stress response to environmental
noise (100-200 ng/ml; Armario et al., 1986). In sum, our
results demonostrate that the water restriction schedules
used in this study provided appropriate levels of hydra-
tion, but that rats on an intermittent water restriction
schedule have a stress response which may have behav-
ioral, neurochemical, and neurophysiological effects.
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