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ABSTRACT 

The Developmental Origins of Health and Disease (DOHaD) hypothesis states 
that several prenatal, perinatal, childhood, and adolescence factors may 
program the future health of an individual. These preprograming factors 
include maternal stress, anxiety, depression, or sleep during pregnancy or 
adverse life experiences in childhood or stress during adolescence. The 
programming processes may be changes in deoxyribonucleic acid (DNA) 
methylation or shortening of leukocyte telomere length (LTL). DNA 
methylation refers to an epigenetic mechanism that affects gene expression 
and is modified by external conditions. Telomere shortening is an event where 
the end of a chromosome shortens slightly in each cell division, ultimately 
leading to programmed cell death. Therefore, LTL is considered a marker for 
biological age. We studied this with a large birth cohort of newborns and 
calculated based on existing literature that our sample size was sufficient to 
detect previously reported findings. Despite sufficient statistical power, we 
could not replicate previous findings. Several reasons for this are discussed. 

 
Childhood is a phase of rapid brain development, and adverse events in early 
life are linked to a wide range of adverse health outcomes in adulthood. Several 
mechanisms behind this association have been proposed, among them LTL 
shortening. In turn, this shortening is also affected by current mental health 
disorders, stress, and lifestyle factors. We studied the effect of adverse life 
events (ACE) during childhood on adult LTL in a large, population-based 
nationally representative cohort of adults. Current mental disorders, stress, 
sleep, and various lifestyle and socioeconomic variables were considered. 
While current stress or mental health did not affect LTL, early adverse 
experiences had a cumulative effect on adult LTL, even when confounding 
factors were considered. This suggests that programming of cellular age can 
occur during childhood and persist into adulthood independent of later health 
and lifestyle. 

 
Adolescence is another phase where rapid brain development occurs and thus 
the brain is vulnerable to external and internal stressors. We explored this by 
studying epigenome-wide methylation in a sample of adolescent boys with or 
without depression and sleep disturbances. Due to the small sample size, we 
could not identify any significant genome-wide results. However, when the 
500 best differentially methylated positions (DMP) were explored, a pathway 
related to synaptic pruning, the long-term depression (LTD) pathway, was 
identified as the most significant pathway. In a post-hoc analysis, a flattened 
slow-wave sleep dissipation, tiredness, and depression correlated with several 
individual sites in that pathway, suggesting that methylation changes in the 
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LTD pathway may be one potential mechanism behind widespread adverse 
effects of sleep disturbances.  

 
Biological programming may occur in rapid phases of brain development 

and these effects may last for longer periods of time. However, careful 
methodological consideration is required to detect these effects. 

 
Keywords; DOHaD-hypothesis, stress, sleep, prenatal stress, early adverse 
experiences, mental disorders, insomnia, epigenome-wide association 
(EWAS), telomere, adolescents, depression, DNA methylation, long-term 
depression, newborn leucocyte telomere length. 
 

 



 

7 

TIIVISTELMÄ 

Terveyden ja hyvinvoinnin kehitykselliset juuret- hypoteesi esittää, että useat 
syntymää edeltävät sekä syntymän jälkeiset sekä lapsuuden ja nuoruuden 
aikaiset tekijät voivat ohjelmoida yksilön tulevaa terveyttä. Näihin ennalta 
ohjelmoiviin tekijöihin voivat lukeutua esimerkiksi äidin raskaudenaikainen 
stressi, ahdistus, masennus tai univaikeudet. Myös lapsuuden epäsuotuisat 
kokemukset tai nuoruudessa koettu stressi voivat ohjelmoida terveyttä 
tulevaisuuteen. Näitä ohjelmoivia tapahtumia voivat olla muutokset DNAn 
metylaatiossa tai valkosoluista mitatun telomeerin lyheneminen. DNA 
metylaatiomuutokset viittaavat epigeneettiseen säätelymekanismiin, jossa 
ulkopuoliset tekijät muuttavat perintötekijöiden ilmenemistä. Telomeerien 
lyheneminen puolestaan viittaa tapahtumaketjuun, jossa jokaisen 
solujakautumisen yhteydessä kromosomien päässä oleva telomeeri lyhenee 
hieman, johtaen lopulta ohjattuun solukuolemaan. Tästä syystä telomeerien 
pituutta on pidetty biologista ikää kuvaavana tekijänä. Tutkimme äidin 
raskausajan voinnin vaikutusta syntyvän lapsen telomeeripituuksiin suuressa 
syntymäkohortissa, ja tekemiemme voimalaskelmien perusteella 
aineistomme koon pitäisi riittää vähintään aiemmin raportoitujen havaintojen 
toistamiseen. Huolimatta riittävän suuresta aineistosta, emme kyenneet 
toistamaan aiempia havaintoja. Tälle on useita mahdollisia selityksiä, joita 
pohdimme työssämme. 
 
Lapsuus on aivojen nopean kasvun ja kehityksen vaihe ja siksi lapsuuden 
epäsuotuisien kokemusten onkin osoitettu olevan yhteydessä erilaisiin 
terveyden tilan heikkenemisiin aikuisuudessa.  Tälle on ehdotettu useita 
mahdollisia välittäviä tekijöitä tai merkkejä, joista yhtenä on kuvattu 
valkosolujen telomeerien lyhentyminen. Myös aikuisuuden 
mielenterveysongelmien ja stressin on osoitettu olevan yhteydessä 
telomeeripituuteen. Tutkimme lapsuuden vastoinkäymisten merkitystä 
aikuisiän telomeeripituuteen suurella yleisväestöä edustavalla kohortilla. 
Ajankohtainen mielenterveys, stressi, uni, sosioekonominen tilanne tai 
elintavat eivät selittäneet yhteyttä telomeeripituuteen, sen sijaan lapsuuden 
kokemuksilla oli yhteys, vaikka kaikki em. tekijät huomioitaisiinkin. 
Lapsuuden epäsuotuisten kokemusten vaikutus näyttääkin yltävän pitkälle 
aikuisuuteen riippumatta aikuisiän tekijöistä. 
 
Nuoruus on vaihe, jossa aivot kehittyvät nopeasti ja ovat siten haavoittuvia 
sisäisille ja ulkoisille kuormitustekijöille. Tutkimme masennuksen ja 
univaikeuksien vaikutusta valkosoluista mitattuun koko perimän laajuiseen 
DNA metylaatioon vertaamalla nuorilla pojilla masennuksesta ja 
univaikeuksista kärsiviä terveisiin verrokkeihin. Liittyen aineiston pienuuteen 
emme havainneet perimänlaajuisia eroja, mutta eniten metylaation suhteen 
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eroavat alueet rikastuivat geeneihin, jotka polkuanalyysissä liittyivät 
synapsien muovautuvuuteen, niin sanottuun Long Term Depression-polkuun. 
Syväunen määrän muutokset, väsymys ja masennus olivat 
jälkikäteisanalyysissä yhteydessä moniin tuon polun geenien 
metylaatiokohtiin viitaten siihen, että metylaatiomuutokset tuon polun 
geeneissä voisivat olla yksi mahdollinen tekijä masennukseen ja unihäiriöihin 
liittyvien laaja-alaisten vaikeuksien taustalla. 
 
Herkkyytemme biologiamme muovautumiselle saattaa olla lisääntynyt niissä 
kasvun ja kehityksen vaiheissa, joissa aivojen kehitys on nopeimmillaan ja 
nämä muovautumiset saattavat vaikuttaa pitkänkin aikaa eteenpäin. Näiden 
muutosten havaitseminen vaatii kuitenkin menetelmien osalta huolellisuutta 
ja tarkkuutta. 
 
Avainsanat; DOHaD- hypoteesi, stressi, uni, raskaudenaikainen stressi, 
varhaiset epäedulliset kokemukset, mielenterveyden häiriöt, unettomuus, 
Perimänlaajuiset epigeneettiset yhteydet, telomeerit, nuoret, masennus, DNA 
metylaatio , vastasyntyneen valkosolujen telomeeripituus. 
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1 INTRODUCTION 

In the early days of medicine, there was an active discussion concerning 
whether it is biology or environment that has a pivotal role in disease 
development, revolving around what was called the “Nature versus Nurture” 
question [1]. In the last century, a more comprehensive approach was 
formulated, binding these two together into a complex, interactive canvas of 
factors that modify each other [2], known as The Developmental Origins of 
Health and Disease (DOHaD) hypothesis [3]. The origins of this hypothesis lie 
in the observations from a naturalistic cohort that was formed in the second 
world war in The Netherlands, where severe malnutrition plagued a distinct 
area during a relatively short period of time; this was also known as “The 
Dutch Hunger Winter” [4].  Later it was observed that the children whose fetal 
growth coincided with that period had significantly more morbidity (especially 
cardiovascular morbidity) and schizophrenia than children who were born just 
before or later after the hunger period [5]. This led to a hypothesis of prenatal 
programming of biology that affects the later health and disease of an 
individual exposed to a preprogramming factor. This was first presented by 
Baker and thus this hypothesis was called Baker’s hypothesis [6-9]. This was 
later expanded and reformulated into the DOHaD hypothesis.  
 
Since the original presentation of this hypothesis, the DOHaD hypothesis has 
been expanded from physical adversities (such as lack of food) to more 
complex social and psychological adversities, such as maternal stress, anxiety, 
or depression during the prenatal period [10-12]. Along with prenatal factors, 
factors during early childhood were also related to future health [13]. These 
factors, commonly called adverse childhood experiences (ACE), represent any 
factor that occurs during a critical and sensitive time related to the child’s 
development. These include potentially traumatic or disruptive elements, such 
as neglect, maltreatment, or loss of a caregiver.  
 
Another critical time for development is adolescence, when a rapid maturation 
of many brain areas occurs [14]. Different adverse factors, such as prolonged 
stress, might influence this process in a long-lasting way similar to the 
programming effects of prenatal and childhood factors [15, 16]. 
 
It is worth noting that similar different stressors in critical developmental 
periods have also been observed in social mammals other than humans. For 
example, yellow baboon females who had several early life adversities had a 
shorter life span than baboons without such experiences [17]. These findings 
have also been observed with other social animals, such as hyenas, whose life 
span was shorted by years due to cumulative adverse experiences in childhood 
[18]. These findings are important, as many childhood adversities in humans 
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are intercorrelated with each other, such as childhood socioeconomic status 
and living with only one parent [19]. However, such correlations might be 
weak or nonexistent in wild animal populations such as hyenas [17]. 

 
The biological mechanisms involved in the interactions between 
environmental factors and changing biology are numerous and include 
hormonal, immunological, and nervous-system developmental factors. More 
recently, gut microbiota-related factors have also been considered [20-28]. 
Epigenetic factors are also widely studied in this context, mostly in mothers 
or in offspring, but also increasingly in fathers [29-31]. Only a fraction of our 
genes is expressed in somatic cells and activation and silencing of genes 
occurs via different mechanisms. One of these mechanisms are epigenetic 
regulation processes, which can directly affect deoxyribonucleic acid (DNA) 
and transcription factors and associated protein complexes, many of which 
have complex interactions [32]. One of the most studied epigenetic 
regulation mechanisms is DNA methylation [33]. DNA methylation of an 
infant has indeed been associated with maternal care [34]. 

 
Chromosomal changes can also drive these complex interactions between 
biology and environment. Chromosomal instability can lead to accelerated 
apoptosis, if replication stress exceeds the capacity of chromosome-
stabilization mechanisms [35]. Chromosomal integrity is maintained mainly 
with telomeres, which are short tandem repeats at each end of a chromosome 
that shorten in each replication, thus eventually wearing out and leading to 
apoptosis [36]. Telomeres serve as a marker for cellular oxidative stress [37] 
and thus act as a marker for cellular aging. For example, telomere shortening 
has been linked to cardiovascular morbidity and mortality [38]. Telomere 
length is associated with prenatal programming, thus forming a link between 
stressor and outcome [39].  
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2 REVIEW OF THE LITERATURE 

2.1 SLEEP 

Normal sleep 
 
To our knowledge, all vertebrate animals sleep [40, 41]. Sleep has a crucial role 
in maintaining brain homeostasis [42]. Despite the brain’s high energy 
consumption during sleep, sleep is necessary to restore energy repositories in 
the brain [43]. Sleep is needed to prune unnecessary synapses [44] and to 
remove metabolic byproducts from brain tissue [45]. Sleep is a period where 
the body acts as in a resting state [46]. Awareness of environment is altered 
and often diminished, metabolism is altered, body temperature is lowered, 
and electric activity in the brain cortex follows typical patterns [47]. Sleep 
consists of cycles where certain phases of sleep follow each other [48].  
 
Sleep phases are defined by electrical activity patterns in the brain cortex, as  
measured by an electroencephalograph (EEG) [47]. These phases are divided 
into the categories rapid eye movement (REM) sleep or non-REM sleep 
(NREM). The first phase of sleep, the so-called phase 1 or N1 sleep, is 
characterized by rhythmic electric activity with an approximate frequency of 
4-7 hertz (Hz). This is called light sleep, as people typically are somewhat 
aware of their environment during this phase. In the N2 phase, electrical 
activity is 12-14 Hz, and sleep spindles or K-complexes (a certain type of EEG 
activity) may appear. Gradually, awareness of environment decreases in this 
phase. In so-called deep sleep or N3 sleep, there is typically 0.5-2 Hz rhythmic 
electric activity; this phase is therefore often also called slow-wave sleep 
(SWS). The REM sleep phase is characterized by irregular electrical activity 
and irregular autonomic nervous system activity, with phasic sympathetically 
driven periods and tonic parasympathetically driven periods with muscle 
relaxation and rapid eye movements, from which this phase is called. Most 
people dream during this period, but dreams appear also in other phases, 
mainly in N3 phase. One sleep cycle is defined by a series of N1-N2-N3 phases 
and a REM phase.  
 
Cycles are dissimilar through the sleep period. During the first cycles in the 
sleep period, there are relatively more N3 sleep phases compared to later sleep 
cycles in the same period, as N3 phases typically tend to get shorter towards 
the end of the sleep period [47]. This is called SWS dissipation and was 
previously linked to depression [49]. On the other hand, REM periods tend to 
become longer towards the end of the sleep period. Normally, a short moment 
of wakefulness appears during the sleep period typically between sleep cycles, 
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but usually these moments are not recalled afterwards or are recalled only 
partially. 
 
Many hormonal secretions follow sleep and circadian periods [50]; the 
autonomic nervous system, control of body metabolism [51], and the immune 
system [52] also follow such patterns. Thus, this periodic behavioral, 
metabolic, and other biological activity is carefully coordinated in the body. 
 
Sleep is regulated by two main mechanisms, a circadian mechanism, and a 
homeostatic mechanism [53]. The circadian mechanism refers to the 
oscillating rhythm that approximately follows a 24-hour period. All cells in the 
body roughly follow this rhythm [54]. Central phasing of these rhythms occurs 
in the suprachiasmatic nuclei in the occipital cortex, where certain types of 
cells monitor the amount of light entering the retina of the eye and phases the 
body via secretion of the hormone melatonin [55]. This hormone in turn 
phases all other cells and attempts to maintain a coordinated rhythm in the 
body [56]. Both regulatory systems seem to be at least partially regulated by 
genetic factors [57] and uses multiple modulating agents [58]. Types of 
circadian preference, especially eveningness, are associated with many general 
medical conditions and psychiatric conditions, such as type II diabetes and 
depression  [59-61]. 
 
Another mechanism behind the regulation of sleep-wake cycles is the  
homeostatic mechanism [62]. During waking periods, a homeostatic pressure 
for sleep gradually accumulates and peaks when sleep initiation is occurring 
[63]. Thereafter, this pressure is gradually lowered during sleep, eventually 
reaching its lowest point at the time of awaking. These two mechanisms are 
presented in Figure 1. 
 

 
FIG. 1.  Two-process model of sleep regulation. S=Process S, the sleep homeostatic factor; 
C=Process C, the circadian rhythm process; Grey areas=time of sleep. When an individual self-
selects their sleep onset (one of the two vertical lines), the level of homeostatic drive is at the 
Process S level (upper line); homeostatic drive then declines in an exponential manner until it 
reaches the Process C level. The person then awakens and the level of homeostatic drive begins 
to rise again (not shown). (Right) Sleep durations associated with different self-selected sleep 
onsets. Reproduced with permission from Elsevier publishing [53]. 
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A newborn human sleeps most of the time and is awake for only short periods 
[64]. The sleep of a newborn is not initially consolidated but consists of 
different active and quiet sleep phases [65]; consolidation begins gradually. As 
children develop, the need for sleep gradually diminishes from approximately 
12 hours (hrs) at 3 years to 9 hrs at 12 years [64]. During puberty, the need for 
sleep remains at approximately 9 hrs, but circadian rhythm starts to advance 
[66] and the amount of SWS starts to dramatically decrease [67]. Adults in 
Finland sleep approximately 7.39 hrs per night (standard deviation [S.D.] 
0.89) and the amount of sleep appears to have gradually diminished from 1975 
to 2011 [68]. The need for sleep can vary within an individual based on general 
medical condition, stress level, and other factors. Nutrition, substance use 
(and especially abuse), and exercise cause alterations to sleep quantity and 
quality. During old age, sleep typically becomes more fragile [69], although 
gender differences appear. 
 
Normal sleep is a prerequisite for maintaining synaptic plasticity in the brain 
[70, 71]. Synaptic plasticity refers to the constant alterations in the nervous 
system where frequently used connections are strengthened and less 
frequently used connections are pruned. This plasticity uses several 
mechanisms. From the perspective of sleep, the main interest has been on two 
opposing mechanisms, namely synaptic long-term potentiation (LTP) and 
synaptic long-term depression (LTD) [72]. Sleep, and especially SWS, have 
also been linked to plasticity modulation with several mechanisms other than 
LTD or LTP [73]. For example, SWS increases after cortical injection of brain-
derived neurotrophic factor, a major growth factor in the central nervous 
system (CNS) [74]. 
 
 
Normal sleep is required not only to maintain brain homeostasis and energy 
repositories, but also to maintain regulation of mood, learning, and other 
cognitive functioning and even to maintain the body’s metabolism and 
immune system. This is best understood in humans when the consequences of 
sleep disturbances are observed [75-78]. 
 

Disordered sleep 
 
Sleep can be disturbed in many ways. One of the most common disturbances 
is likely insufficient sleep, often defined as <7 hrs of sleep in adults. Excessive 
sleep is at the other extreme, where sleep is excessive to the point that it 
consumes considerable time over other activities. Although some general 
medical conditions are associated with insufficient sleep, excessive sleep is in 
many cases related to a general medical condition [79, 80].  
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Insomnia is defined as difficulty initiating sleep and is one of the most 
prevalent sleep disorders. Other types of sleep disorders, such as waking in the 
middle of the night and excessively early awakenings, are also common in the 
population. In Finland, one out of three persons suffers from at least 
temporary insomnia each year, and approximately 10% of the population 
suffer from a chronic sleep disorder, most often insomnia [81]. 
 
Fragmented sleep is a disorder where the subject wakes several times and 
typically needs time to fall asleep again. Both sleep quality and quantity are 
jeopardized in this disorder. 
 
Early morning awakenings means that sleep is disrupted too early, typically 
after one or two sleep cycles, and is followed by difficulty or inability to fall 
asleep again.  
 
Sleep can also be non-restorative, meaning that a person experiences tiredness 
despite sufficient sleep. This is often related to poor sleep quality, which can 
mean insufficient N3 sleep, too little REM sleep, excess N1-N2 sleep, or very 
fragmented sleep cycles. 
 
Disordered sleep has many consequences to individual health. It increases the 
risk of cardiovascular diseases, type II diabetes, and metabolic conditions [82-
84]. Poor physical performance is also linked to insufficient sleep [85]. 
 
Disordered sleep affects the immune system and can make an individual more 
prone to infectious diseases [86]. Chronic autoimmune disorders are linked to 
sleep disorders, emphasizing the role of sleep as an immune-system 
modulator [87].  
 
Many psychiatric disorders are associated with poor sleep, most notably 
depression [88]. Sleep disorders are hallmarks and typical clinical symptoms 
of depression, but sleep disorders more likely lead to depression than vice 
versa [89]. Disordered sleep is also associated with other psychiatric disorders, 
such as schizophrenia [90], post-traumatic stress disorder (PTSD) [91], 
substance abuse [92], and neuropsychiatric disorders [93]. Sleep deprivation 
has been used to treat depression with some success, emphasizing the crucial 
role of sleep in mood regulation [88]. 
 
Disordered sleep affects cognition in several ways; it influences vigilance and 
attention, which is typically observed in psychomotor tasks and attention tasks 
in neuropsychological studies. Disordered sleep also impairs memory and 
learning [94, 95]. Although most learning takes place while awake, when 
vigilance is high, memory consolidation occurs during sleep [96]. 
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Disordered sleep seems to affect synaptic plasticity processes that are 
important components of this learning and memory consolidation, namely 
synaptic LTP and synaptic LTD. Both are complex processes involving 
alterations in gene expression, altered protein production, and eventually 
altered potentiation in the cell. This involves hundreds of different molecules, 
several of which possess rate-limiting qualities [97]. They are linked to sleep, 
as sleep deprivation alters plasticity in the brain using these mechanisms, 
which consequently affects spine density, synaptic strength, or downscale  
synapses [76] [70]. This is hypothesized as one possible mechanism that 
connects depression and sleep together [98]. 
  

2.2 STRESS 

Stress can be either a positive force that drives goal-driven behavior (called 
eustress), or a negative force that strains resources and makes it more difficult 
to cope (called distress). Stress in the context of this thesis refers to distress. 
Stress is in its broadest definition whatever situation where external and 
internal demands exceed the individual’s resources [99]. 
 
Stress can be further be divided into systemic stress, which concerns the entire 
body, or cellular stress, which refers to metabolic events occurring inside one 
cell or in a certain tissue, which is called oxidative stress [100]. 
 
Systemic stress effects the autonomic nervous system and activates its 
functioning as a rapid response to external stimuli [101]. Via this system, 
systemic stress can influence virtually all organs and be an etiologic factor in 
health and disease. For example, stress-mediated autonomic nervous system 
hyperarousal is associated with cardiovascular diseases [102]. 
 

2.2.1 Stress and Hormone system 

 
Stress also activates the hypothalamic-pituitary- adrenal system, called the 
HPA axis [103]. The HPA axis is initiated by secretion of corticotrophin-
releasing hormone (CRH) from the hypothalamus in the basal brain. 
Thereafter, this hormone in turn primes a cascade leading to release of 
adrenocorticotropic hormone (ACHT) from the hypophysis. A series of 
negative feedback loops regulate these actions. 
 
Corticoid hormones in turn have a widespread effect on various tissues. They 
enter the cellular nucleus and affect gene transcription. Corticoid hormones 
have pleiotropic effects on various metabolic developmental and immune 
mechanisms. Synthetic hormones have long been used to modulate immune 
response in various diseases and conditions [104]. 
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2.2.2 Stress, sleep, and psychiatric disorders 

  
Stress as a psychological phenomenon can be described as an individual 
evaluation of how threating a stressful situation is and how well the available 
resources can be used to cope with the situation [105]. 

 
Stress and sleep are linked together. In particular, people with a highly reactive 
sleep system react to stress with sleep difficulties, most often with difficulties 
initiating sleep and awakenings during night [106]. Stress-related sleep 
difficulties are linked to several mechanisms common to both stress reactivity 
and sleep regulation, such as the autonomic nervous system and HPA axis. 
 
Stress and depression are closely linked together. Chronic stress can lead to 
development of depression. Depression is one of the most common mental 
health disorders, with a lifetime prevalence in the Organization for Economic 
Co-operation and Development (OECD) countries of approximately 20%. The 
annual incidence in Finland is 3-5%. Women are more prone to depression 
than men. One of the hallmark symptoms of depression is sleep disturbances, 
most commonly early morning awakenings.  
 
Depression and sleep are linked together, as sleep disorders are known to 
increase the risk of depression [107-110] and both share partially common 
mechanisms. These mechanisms include serotonin and dopamine 
dysregulation, altered regulation of neural circuits, altered cytokine 
regulation, and biased memory consolidation [107]. Depression and sleep also 
affect various cognitive functions, and both sleep symptoms and cognitive 
difficulties are hallmarks for depressive disorder, making these two tightly 
interwoven [111]. Besides cognition, the immune system also appears to be 
similarly affected by both conditions. Both induce a low-level systemic 
inflammation, which broadly affects leukocytes, such as through gene 
expression [112, 113]. 
 
Anxiety disorders are also associated with various forms of stress. Anxiety 
disorders are even more common than depression in adult and adolescent 
populations, and approximately one out of four persons will suffer from 
anxiety disorders at some point in life. Anxiety is also connected to immune 
system functioning [114]. 
 

2.3 DNA METHYLATION AS A REGULATORY 
MECHANISM 
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Epigenetics refers to regulatory events that alter DNA functioning without 
altering the nucleotide sequence of the genome [115]. This can include 
alterations in DNA-binding proteins, which in turn affects the availability of 
DNA for transcription factors and associated complexes [116]. Epigenetics can 
also refer to alterations in nucleotides and associated proteins such that the 
transcription complex cannot bind to DNA and transcription thus cannot be 
initiated (Fig.2 ) [117]. DNA methylation refers to a dynamic procedure where 
a methyl group is attached to a cytosine nucleotide in a cytosine-guanine 
dinucleotide, forming methylated dinucleotide (CpG) [118]. This methyl group 
is transferred by a group of enzymes called methyltransferases [119]. In 
particular, the transcription binding region is enriched with these 
dinucleotides and general methylation of these regions tend to silence the 
expression of a gene by preventing binding of the transcription complex to the 
transcription start site (TSS). Methylation has indeed been shown to affect 
gene expression, even when the changes appear to be minor [120-122]. Most 
genes are permanently methylated and thus silenced, but dynamic changes do 
appear when a gene is activated, such as in response to a change in the 
environment. Several well-known diseases are associated with abnormal DNA 
methylation, such as Rett’s syndrome [123] and Angelman’s syndrome [124].  

 
Figure 2. DNA methylation and neuronal gene transcription. (a,b) DNA methylation can inhibit 

gene transcription by preventing the loading of a TA (transcription activator e.g., CAMP Responsive 
Element Binding Protein 1(Creb1)) or by facilitating transcription repressor binding; (c,d) DNA 
methyl transferases (DNMT) can activate gene transcription by inhibiting the binding of TR 
(transcriptional repressor e.g., Neuron Restrictive Silencer Factor (Rest)) or by gene body 
methylation. Reproduced with permission from MDPI, Basel, Switzerland[117]. 
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DNA methylation is tissue-specific to some extent [125, 126], but certain 
parallels can be found between peripheral-blood DNA methylation and 
methylation in the CNS [127]. Several lifestyle factors and diseases are 
associated with DNA methylation, such as smoking and diabetes [128, 129]. 

  
DNA methylation is widely connected with different cancer-cell populations 
[130]. It has also been linked to various complex disorders, such as depression, 
anxiety, PTSD, psychoses, and suicidality [131-136].  

 
Leucocyte telomere length as a marker for cellular age 
and stress 
 
In each cellular replication, chromosomes open and a replication fork appears, 
which separates the two strands from double-helix DNA to a leading strand 
and a lagging strand. Replication proceeds on both strands simultaneously, 
resulting in two identical double helixes, one for each cell [137]. This 
replication is driven by the DNA polymerase enzyme and can only proceed 
from 5′ to 3′ direction. 
 
In the leading strand, this is not a problem since replication proceeds in this 
direction anyway. However, in the lagging strand where the template is a 
mirror image of the leading strand (from 3′ to 5′), this creates a problem. This 
is solved in a way that the replication complex moves in advance and then 
builds short blocs from 5′ to 3′, known as Okazaki fragments. These fragments 
are then united by the enzyme DNA ligase to form a continuous DNA strand. 
This solution, however, creates a new kind of problem, the so-called end-
replication problem, since last base pairs at the 5′ end of the lagging strand 
cannot be replicated (Figure 3) [36]. Thus, in each cellular replication, the 
chromosomes progressively become shorter. To protect chromosomal 
integrity, there is short tandem replication sequence TTAGGG at each end of 
a chromosome, called a telomere [138]. Telomeres also forms loops that 
prevent tangling of chromosome ends [36]. Telomere shortening is not linear; 
new telomere is created by enzymes called telomerases [139]. 
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Figure 3. Schematic representation of lagging and leading strand replication. DNA polymerase 

Polα with a single RNA primer initiates synthesis of the leading strand, which is subsequently 
replaced by Polα" for further elongation. The lagging strand is copied through discontinuous 
Okazaki fragments from multiple primers. RNA primers are degraded and the gaps are filled by 
Polα followed by ligation of discontinuous fragments. The gap at the 5′ end remains unfilled, leading 
to a non-replicated terminal region. Reprinted with permission from Cold Spring Harbor Laboratory 
Press. Adapted from [140]. 

 
Telomeres are highly conserved tandem repeat sequences at each end of a 
chromosome. The length of telomere varies from species to species; typical 
telomere length in humans ranges from 10 to 15 kilobases (Kb) [141]. Although 
the telomerase enzyme recovers loss of telomere in cell division [142], this 
recovery is not sufficient to cover losses and thus telomeres are shortened in 
each cellular division, which eventually leads to cellular senescence [143].  
 
Many external factors are associated with telomere shortening, such as 
reactive oxygen species (ROS) and other cytotoxic agents [144-146]. This led 
to the hypothesis that telomere length serves as a proxy measurement of 
overall cellular stress and a marker for cellular age [147, 148]. Several genetic 
factors are associated with regulation of LTL biology [149, 150]. 
 
Lifestyle factors are associated with shorter LTL, including smoking, lack of 
exercise, and overweight [151-153]. Socioeconomic factors, such as education, 
occupational status, marital status, living conditions, and income are 
associated with LTL, thus emphasizing its role as a marker for cumulative 
stress from various sources. Although regulation of LTL biology is highly 
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heritable (estimates are as high as 70%), only a part of telomere length is 
predicted by genetic factors, which emphasizes the role of other regulatory 
factors [149, 154, 155]. 

 

2.4 PRENATAL MATERNAL STRESS, SLEEP, 
DEPRESSION, AND ANXIETY 

 

Developmental programming can be defined as a cascade of events, primed by 
an environmental factor, which acts during a sensitive developmental period 
and affects structure, function, or both of tissues that ultimately leads to 
changes that persist throughout life [3]. 

 
Development of the CNS is a complex process that starts after the eighteenth  
day from fertilization via folding of the neural plate into the neural tube 
[156]. This includes neuronal cell generation, cell proliferation, cell 
migration, and further transformation of cells [157]. This complex process is 
astonishingly rapid. Normal pregnancy is divided into three trimesters; by 
the end of day 56 from fertilization (that is during the first trimester), all 
essential structures are formed [158]. 

 
Thereafter, generating new neurons (neurogenesis) proceeds along with   
growing of connections [157]. In the second trimester, brain structures 
enlarge exponentially in cortical areas (up to over 20-fold increase in 
volume). During the third trimester, growth continues (but at a significantly 
lower rate) and the brain-cortex volume doubles during the third trimester 
compared to second [159]. 
 
Maternal stress during pregnancy is linked to the offspring’s brain 
development in several studies [160-164]. Maternal stress during pregnancy 
is most often related to depression, anxiety, worry about the health of the 
child, and various events in life that are perceived as stressful [165]. There 
are several maternal-related factors that are associated with increased stress 
during pregnancy, such as lower level of education, more children, younger 
age, living without a spouse, and coping style [166-168]. Stress during 
pregnancy is quite common; approximately 7-20% of women suffer from 
prenatal stress in various forms [167, 169-173]. Diagnosable depression or 
anxiety disorders affect approximately 8-12% of pregnant women [174-176]. 
It is worth noting that these findings are from western countries and might 
not be applicable to other regions. There is great discrepancy among studies 
whether a certain period in pregnancy is more related to adverse effects on 
the newborn. There is currently no consensus on which period is most 
important for stress-related effects on offspring [10].  
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In addition to brain development, there are several possible mechanisms that 
may mediate the association between maternal stress and the offspring’s 
future health. 
 
Prenatal maternal stress has been shown to contribute to the offspring’s HPA-
axis functioning, but results vary according to which time point maternal 
stress is measured during pregnancy, what kind of stress the mother is 
experiencing, and at what age the offspring’s HPA axis functioning is 
measured and how [177, 178].

 
Maternal cortisol reactivity is predictive of the offspring's cortisol reactivity. 
However, results are mixed; in some studies, higher maternal cortisol 
reactivity predicted a higher cortisol reaction in the offspring [179-181], 
whereas in some studies contrasting results were observed [182, 183]. 
Similarly, findings describing the effect of maternal basal cortisol secretion 
on offspring basal cortical secretion were also mixed[183, 184]. One study 
reported that even the offspring’s gender can be a modifying factor [185]. 

 
Other confounding factors include pregnancy-induced changes in maternal 
cortisol; typically maternal cortisol levels rise during pregnancy towards the 
end of pregnancy [186]. Further, the fetal cortisol level is dependent on how 
cortisol passes the placenta, and this is regulated by the enzyme 11-beta-
hydroxystreoid-dehydrogenase-type 2 (11-β-HSD-2). There is variability in the 
activity of this enzyme [186], which creates an additional source of variation. 
 
Prenatal stress is linked to postnatal cognitive performance of a child [187]. 
This effect was statistically significant but modest. Concerns have been 
expressed regarding the mediating effects of maternal depression and anxiety 
and their effect on caregiving, responsiveness, sensitivity to the child’s needs, 
and bonding with the child [188, 189]. 
 
Prenatal maternal depression also has an effect on offspring via similar 
mechanisms described earlier concerning the effects of maternal prenatal 
stress [190, 191], although it appears that the evidence concerning the effect of 
maternal prenatal depression and HPA-axis functioning of the offspring is 
limited. Studies exploring the effect of maternal prenatal anxiety and offspring 
brain structure and function are very heterogenous, but alterations in both 
structure and function in frontal and temporal lobes and limbic regions have 
been reported [192]. 

 
Prenatal maternal stress, sleep, anxiety and depression, 
and leukocyte telomere length of a newborn 
 
Telomere length is linked with cortisol reactivity, suggesting that telomere 
length may be a reflector of stress [193-195]. Leukocytes treated with cortisol 
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also exhibit decreased telomerase activity [196], thus linking stress and 
telomere length together.

Fetal growth is a period when several factors affect development and 
preprogramming of the future health of the child. It can also be conceptualized 
as a special environment that shapes both growth and preprogramming [197]. 
This environment is constructed by many external factors, such as 
environmental factors (e.g., nutrition), and by many factors related to 
maternal health and wellbeing. The fetal period is a phase of rapid growth and 
most cellular divisions occur during this period. Accordingly, events that affect 
cell division, such as telomere attrition, can be seen in the LTL of a newborn. 
Indeed, several studies support this reasoning and have given this 
phenomenon the name “The Fetal Programming of Telomere Biology 
Hypothesis” [197-203]. This can be considered as a special example of the 
DOHaD hypothesis, which focuses on a certain developmental period (fetal 
period) and a certain biological process that is programmed (leukocyte 
telomere biology).  
 
Maternal stress during pregnancy is one of the most studied external factors 
in The Fetal Programming of Telomere Biology Hypothesis [204-207]. 
Interestingly, maternal pregnancy-related stress did not influence maternal 
LTL, but newborn LTL was negatively associated with maternal stress during 
pregnancy [204]. In addition to maternal stress, maternal lifetime psychiatric 
morbidity did not affect maternal LTL but was associated with newborn LTL, 
suggesting a specific vulnerability of the fetus to maternal stress [204]. 
 
Other factors associated with newborn LTL are maternal pre-pregnancy 
weight, education, depression, and maternal smoking [208, 209]. There may 
be a significant gender effect in some of the factors; for example, lower 
maternal education and higher weight were observed in male offspring only 
[208, 210]. Ethnicity may also play a role. In one study on black infants, black 
female infants in particular had longer LTL at birth compared with white 
infants, even when birth-related and demographic factors were controlled for 
[211]. Maternal diabetes [212] and folate concentration [213] are also 
associated with newborn LTL.  
 
Similar to stress, disrupted sleep is an environmental factor during pregnancy 
and is possibly very prominent, as sleep disturbances are relatively common 
during pregnancy [214, 215]. While sleep disturbances can appear in all 
trimesters, these seem to be more prominent towards the end of pregnancy. 
Indeed, there are some studies describing the effect of maternal sleep during 
pregnancy and newborn LTL [214, 216]. Sleep apnea is associated with shorter 
offspring LTL, whereas maternal daytime sleepiness is not statistically 
significantly associated with LTL, although a trend towards shorter LTL was 
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observed [214]. Sleep apnea is associated with many pregnancy-related and 
many child-related outcomes [215].  

2.5 CHILDHOOD ADVERSITIES AND HEALTH AND 
DISEASE 

The American Heart Association’s scientific statement declares that “despite a 
lack of objective agreement on what subjectively qualifies as exposure to 
childhood adversity and a dearth of prospective studies, substantial evidence 
documents an association between childhood adversity and cardiometabolic 
outcomes across the life course” [217]. Indeed, several studies support this 
statement. For cardiovascular diseases, childhood adverse experiences are 
associated with myocardial infarction, ischemic heart disease, coronary artery 
disease, hypertension, and stroke [218-221]. Of cardiovascular risk factors, 
obesity is linked to ACEs [222-225]. Type 2 diabetes is not only a medical 
condition on its own but is also a major risk factor for cardiovascular disease, 
and there is evidence that it too is linked to ACEs [219, 226]. ACEs are 
connected to all-cause mortality in the Finnish population [227]. 
 
Adverse experiences can include a wide range of different experiences and are 
typically threatening bodily, familial, or social security or safety situations 
[228, 229]. These may include economic difficulties or familial dysfunction or 
precise categories, such as bullying [222]. This phenomenon is quite common; 
up to nearly 60% of U.S. households reported experiencing at least one kind 
of adversity during childhood [230]. 
 
It appears that rather than concentrating on single adverse events, the 
cumulative effect of these events is more important. Several studies have 
demonstrated a dose-dependent effect of adverse events and health outcomes 
[229, 231-236]. However, some have suggested a threshold effect, for example 
cardiovascular disease risk was elevated in one large study only in a group with 
four or more adverse experiences [226, 233]. The possibility of a mixed and 
combined effect of the type of adversity, intensity of experience, and severity 
of event has been suggested [237]. The chronicity of the experience has also 
been suggested as crucial factor for the increase in adverse health 
consequences [238]. Finally, gender-based differences may exist, although 
there is some evidence that at least for diabetes this might not be the case 
[239]. 
 
In addition to many somatic conditions, many psychiatric conditions are also 
related to ACEs. Psychosis and psychotic experiences [240-242], depression 
[243], anxiety disorder [244], and bipolar disorder [245] are all linked to 
ACEs. Similar to somatic disorders, a dose-dependent pattern was also 
observed in the mental health consequences of ACEs [246].  
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Recall bias and omitting experiences are caveats when using self-reported 
measurements in adults, and this poses a challenge for studying the effects of 
ACEs. For example, a depressed mood can make an individual more prone to 
recall negative memories, and a person suffering excruciating anxiety might 
omit all painful memories just to avoid becoming overwhelmed [247]. 
 
There are several biological systems that may be involved in mediating the 
adverse effects between ACE and health. Cortisol levels are associated with 
ACE. For example, decreased diurnal variation in cortisol levels has been 
observed in imprisoned women with a history of sexual abuse in childhood 
[248] or elevated total cortisol in urine in women sexually abused in 
adulthood [249]. For example, early-morning cortisol levels are lower in 
maltreated children [250]. Timing of the stressor may also have an impact on 
cortisol response and cortisol reactivity [251]. In a study where both number 
of ACE exposures and timing of exposure where considered, ACE occurring 
between the age of 3 to 7 years had more profound effect on cortisol 
reactivity than ACE at other timepoints, thus highlighting the importance of 
when the exposure occurred.  This in turn can affect how certain brain 
regions and circuits are developed [252]. 

 
Neural circuits that participate in threat-related stimulus processing react 

differentially in children exposed to ACEs [253]. For example, the volume of 
the amygdala, a central brain region in processing emotions and threats, is 
smaller in children exposed to ACEs [254, 255]. However, other studies have 
not found differences in the amygdala or even reported increased amygdala 
volume, making the evidence somewhat contradictory [256]. There are several 
possible reasons for this discrepancy, including critical timing of ACE 
regarding amygdala neurodevelopment, types of ACE explored, and imagining 
methodology differences among studies. The reactivity of the amygdala also 
seems to be altered in these children [257, 258]. Even the pace at which the 
median prefrontal cortex matures during adolescence can be affected by ACEs 
[259]. 
 
Inflammation is another widely studied mechanism that links ACEs to 
negative health outcomes [260-272]. For example, elevated interleukin-6 and 
tumor necrosis factor α levels have been observed in cases of childhood 
maltreatment [261, 262, 266, 272]. Other inflammation markers, such as C-
reactive protein, are linked to ACEs [273]. This makes it plausible to explore 
ACE effects on peripheral blood.  
 
Childhood adversities and telomere length 
 
As shown in a seminal work of Epel et coworkers, self-perceived psychological 
stress is connected to shorter LTL [274]. Childhood adversities have also been 
widely linked to LTL attrition and health. For example, childhood cognitive 
development and sleep are associated with shorter LTL in adulthood [275]. 
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Several meta-analyses emphasize these findings connecting childhood 
adversities to shorter LTL in childhood and in adulthood [276-278]. However, 
some meta-analyses point out the fact that there is considerable heterogeneity 
in studies and results, and most studies were conducted on relatively small 
sample sizes. The use of clinical samples instead of population-based samples 
may introduce bias, as some phenomena may be enriched in clinical samples 
and therefore findings may not be directly generalizable to other populations 
[278, 279]. Some studies have even reported longer LTL connected with ACEs 
[280]. 
 
There are several types of stressors, such as violence, neglect, emotional and 
sexual abuse, and bullying. Different types of stressors have different effects 
on health and disease. LTL has also been shown to react differently depending 
on the type of stressor. Stress can either be a single event or repeatedly 
occurring stress that accumulates the effect of single events. In a sample of 
children repeatedly exposed to violence, cumulative stress is associated with 
not only shorter initial LTL, but also faster LTL shortening [281]. Stress can 
also effect several biological processes, such as DNA methylation, LTL 
shortening, or accelerated pubertal timing simultaneously; thus a pleiotropic 
effect might exist [282].  

2.6 DEPRESSION AND SLEEP IN ADOLESCENCE 

Adolescence is associated with major changes in sleep patterns [283]. Bedtime 
is later, sleep onset may be delayed, and a greater discrepancy between 
weekdays and weekend days appear, especially in boys [284-286]. Total sleep 
time decreases, and daytime sleepiness is reported more frequently. 
Adolescence is a period of rapid growth and also a period with elevated risk for 
both depression and sleep disorders [287]. Sleep architecture also changes 
during adolescence. The most remarkable change is the drastic decrease in 
SWS [288], indicating rapid brain maturation and synaptic decline associated 
with puberty [289, 290]. Disordered sleep affects many young people. 
Estimates for different types of sleep disorders among adolescents are as high 
as 13.6-23.8%, with girls affected more often than boys [284]. 
 
Sleep affects cognition in adolescents in many ways, impairing memory, 
concentration, learning, vigilance, mood regulation, and attention [93, 291-
294]. 
 
Depression is also a common disorder and its prevalence increases from 
prepuberty to late puberty. In 2016 in the U.S., 5% of 12-year-olds reported 
having a depressive episode in the past 12 months, and 17% of 17-year-olds 
reported having a depressive episode in the past 12 months [295]. Depression 
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in adolescents is associated with many different domains of cognitive 
functioning, such as memory [296] and  learning [297]. 
 
Sleep, depression, methylation, and cognition in 
adolescence 
 

Sleep is also associated with DNA methylation. Inadequate sleep is 
associated with methylation changes and a rest period can induce further 
changes [298, 299]. Interestingly, methylation changes in sleep may be acting 
via LTD, an important part of synaptic plasticity [300, 301]. Sleep deprivation 
both in young men and in older women altered methylation detected in 
peripheral blood leukocytes, suggesting that sleep-induced alterations in 
methylation can also be observed from peripheral blood samples [300, 302]. 
Furthermore, depression in adolescents is also associated with inflammatory 
processes [303]. Depression is associated with C-reactive protein and 
interleukin-6, which in turn predicted depression. 
 
 

2.7 ADULT STRESS, SLEEP, MENTAL HEALTH, AND 
LEUKOCYTE TELOMERE LENGTH 

LTL in adulthood has been widely studied in the context of many chronic 
conditions, such as cardiovascular disease and diabetes [304-306]. LTL is 
associated with both excess morbidity and mortality [147, 199, 274, 307, 308].  
 
Complex disorders, such as depression, anxiety, psychoses, PTSD, and 
substance abuse are also associated with shorter telomeres both in population-
level samples and in clinical samples [307, 309-318]. In addition, sleep and 
stress are connected to shorter LTL [319, 320]. The results are somewhat 
mixed; in population-based cohorts, anxiety disorders, but not depression, are 
associated with LTL [315]. In another population-based study, both 
depression and internalizing problems were not associated with LTL [316, 
317]. On the other hand, PTSD was not associated with shorter LTL at the 
population level [318]. 

 
Alcohol abuse, a major mental health disorder and a significant risk factor for 
other mental health problems, is also related to LTL. The results are somewhat 
mixed, but it appears that alcohol consumption does not have an effect on LTL 
or the rate of shortening [307, 311, 321]. It is worth noting that concurrent 
mental health was not considered in these studies. 
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3 AIMS OF THE STUDY 

3.1 GENERAL AIMS  

 
According to the DOHaD hypothesis, a child’s future health can be shaped 

by several prenatal environmental factors, such as mother’s weight, perceived 
stress, and mother’s poor sleep during pregnancy. The systemic prenatal 
programming effect of these factors could potentially be detected from the 
peripheral blood sample of a newborn. In later stages of life, specifically in 
adolescence and in adulthood, stress such as adverse life events or poor sleep 
could also execute similar programming. Most likely, this programming occurs 
in a timeframe that extends from early childhood through adolescence, as 
neurodevelopment is most rapid during this phase of life. Such changes could 
be methylation of CpG sites or differences in LTL. Sleep as an environmental 
factor has been studied in several different developmental phases, such as 
maternal sleep as an environment for fetal development, in adolescence, and 
in adulthood. We examined the effect of prenatal stressors on newborn LTL in 
a large birth cohort and the effect of depression and sleep on DNA methylation 
in a small sample of unmedicated adolescent boys with or without depression 
and sleep disorders. Finally, the effect of adverse life experiences in childhood 
on LTL was examined in a large population-based nationally representative 
sample of adults.  

 

3.2 SPECIFIC AIMS OF EACH STUDY 

 
Study I: To study the effect of prenatal maternal stress, weight, anxiety, and 

sleep quality on newborn LTL. 
 
Study II: To study the effect of childhood adversities and current sleep, 

stress, psychiatric diagnoses, and lifestyle factors on LTL in adulthood in a 
population-based nationally representative cohort. 

 
Study III: To study the effect of subjective and objective sleep difficulties 

and depression on DNA methylation in medication-free adolescents with or 
without depression.  
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4 MATERIAL AND METHODS 

4.1 STUDY SAMPLES 

Child sleep cohort 
 
The Child Sleep (CS) cohort [322] was a large prospective birth cohort 
collected from the Pirkanmaa region between 2011 and 2013. All participants 
provided informed consent, and parents’ consent to collect data from 
newborns was acquired. Mothers completed a study questionnaire during the 
last trimester of pregnancy, and an umbilical cord blood sample was collected 
at birth from the newborn. The Hospital district of Pirkanmaa ethical 
committee approved the study plan a priori. Some key characteristics  
of the cohort are presented in table 1. 

 
Table 1. Characteristics of Child Sleep (CS) sample 
 

 Modified from [323]  Ämmälä AJ, Maternal stress or sleep during pregnancy are not reflected 
on telomere length of newborns. Scientific Reports. 2020 Springer Nature. 

Variable Mean S.D. n 
Maternal age 30.64 4.57 1323 

Maternal BMI 
(kg/m2) 

28.43 4.42 1351 

Child’s gestational 
age at birth, days 

280.70 8.51 1340 

Birth weight (g) 3597  449 1414 
Apgar score, 5 min 8.64 1.40 1337 
Non- continuous variables n 
Maternal smoking Yes, 79 (5.7%) No, 1308 

(94.3%) 
1387 

Child’s gender M=693 (51.7%) F=647 (48.3%) 
 

1340 

Vaginal birth 82.4%  1165 
Vacuum-assisted 

vaginal birth 
7.5%  106 

Elective cesarean 
section   

2.9%  41 

Acute cesarean section  7.2%  102 
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Health 2000 cohort 
 
The Health 2000 cohort (Terveys 2000 in Finnish) is an unbiased 

representation of the entire Finnish mainland population aged ≥30 years. It 
was collected by The National Public Health Institute (currently National 
Institute for Health and Welfare) [324] to explore the health and wellbeing of 
the Finnish population. It also collected information on the functional 
capacities of the population and associated factors. A total of 8028 individuals 
participated in study, and data were collected from questionnaires, interviews, 
and health examinations. All participants provided their written informed 
consent to participate, and the study protocol was approved by both National 
Health Institutes and the Hospital district of Helsinki and Uusimaa ethical 
committees. 

 
To obtain national representativeness, a two-step clustered stratified sampling 
was performed using five university hospital districts, which each had a 
population of 1 million as a stratum. In the initial step, a sampling from the 15 
largest cities in Finland with probability of 1 was taken, followed by a second 
sampling from 65 areas, 13 from each university hospital district using the 
probability proportioned to population size (PPS) method [324]. In the final 
step, from each of these 80 areas (15 cities and 65 other areas), a random 
selection of subjects was drawn using the National Population Register as a 
data source. Again, the total number of subjects selected from each area was 
proportional to the population size of the area where they were selected from. 

 
ADSLEEP cohort 
 
The ADSLEEP cohort consists of a case-control sample of adolescent boys 

suffering from depression and sleep disorders and healthy controls. Cases 
(N=10) were collected from an adolescent psychiatric outpatient clinic in the 
Helsinki University Hospital. Controls (N=10) were enrolled via a newspaper 
ad published in the Helsinki University Hospital staff journal. All participants 
were medication free and were aged 14.7-17.4 years (mean age 16.1 years). 
Some participants withdrew after enrolment at the DNA-sampling phase. One 
control and 2 cases left the study, resulting in 8 cases and 9 controls for a total 
of 17 subjects. Exclusion criteria included medication and age >17.5 or <14.5 
years. Subjects with any chronic medical condition or mental retardation were 
excluded. The possibility of a somatic condition was excluded with standard 
laboratory testing prior to enrolment, including glucose, liver, kidney, thyroid 
functioning, and blood cell counts. Subjects with any substance abuse were 
also excluded. Since all questionnaires and interviews were in Finnish, 
sufficient Finnish language skill was required. Any psychiatric disorder other 
than depression and sleep disorder were exclusion criteria for cases, and 
controls did not have any diagnosis. All subjects abstained from any 
psychotropic or any other medication throughout the entire study. This 
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sample was a part of larger project studying brain maturation [49, 325, 326], 
and thus any contraindication for Magnetic Resonance Imaging (MRI) was an 
exclusion criterion. None of the subjects had any structural pathologies in 
brain MRI. Cases and controls did not differ as a group by body mass index 
(BMI), caffeine use, serum testosterone levels, or age. The study protocol was 
approved by the ethical committee of Helsinki and Uusimaa hospital districts, 
and written informed consent was acquired from the legal guardians of all 
subjects. 

4.2 MOLECULAR GENETIC ANALYSES 

Telomere length 
 
LTL used in studies I and II was analyzed using quantitative real-time 

polymerase chain reaction (qPCR) [327-330]. Telomere length is a relative 
measurement where the length of a single-copy gene (S), in this case the β-
hemoglobin gene, is compared to an absolute amount of telomere DNA (T), 
resulting in a T/S ratio as a measurement of telomere length.  
 
DNA was extracted from peripheral blood and was performed at THL Biobank. 
A total of 7364 DNA samples were analyzed in triplicates in the Health 2000 
sample and 1405 samples in the CS sample. 
 
 A standard curve with known genomic concentrations was generated by 
including a seven-point standard quantity in each plate. Next, we compared 
the single-copy genomic results and telomeric results, yielding a correlation 
from 0.993-0.999 between sample measurements and standard curve, thus 
leading to sufficient PCR reaction efficiencies ranging from 77.8-100.4%. 
 
Finally, a quality-control procedure was performed and included removing 
samples where the correlation between triplicates deviated more than 0.5 S.D. 
Samples that did not fit the standard curve or samples where the PCR reaction 
was not successful for any reason were discarded from the analysis. We also 
considered the plate effect and normalized telomere and reference-gene 
signals with a signal obtained from the same control sample used in every 
plate.  

 
DNA methylation 
 
 For DNA methylation analyses (study III), DNA samples used in analyses 
were obtained from peripheral venous samples and DNA was extracted using 
standard methods. There was some delay between clinical interviews and 
cognitive tests and sampling (on average 25 days). The range was significant, 
varying from 3 days up to 218 days. However, the clinical evaluator remained 
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the same and no clinical change was observed in the subjects, thus giving 
reason to assume this delay did not influence the results. Cases remained cases 
and controls remained controls.  
 
For cases, the average length of depression before sampling was 415 days, but 
again there were significant variation from 78 to 1078 days (S.D. 377 days). 
This again raised the question of whether length of depression would be a 
confounding factor and therefore we separately analyzed methylation status of 
each significant loci used in secondary analysis against the length of 
depression. Only one locus had nominal correlation between length of 
depression and methylation status; we decided not to consider depression 
length as a covariate in further analysis, as this would have led to loss of 
controls with a resultant sample of insufficient size. 
 
After extraction, a bisulfide conversion was performed using an EZ-
methylation kit (ZYMO research, Irvine, CA, USA). In this procedure, bisulfite 
treatment turns any unmethylated cytosines (C) to uracils (U), whereas 
methylated cytosines remains cytosines. Followed by a PCR reaction, uracils 
are read as thymine (T) and the C/T ratio thus reveals the relative methylation 
status of the CpG site explored [331]. 
 
After conversion, samples were analyzed with the Illumina Infinium 
HumanMethylation450 BeadChip kit (Illumina Inc. San Diego CA, USA). The 
analysis was performed in the Estonian Genome Center in Tartu, Estonia. 
 
Quality control was done using R-software (version 3.0.1) using packages 
“minfi”, “limma”, and “IlluminaHumanMethylation450Manifest” [332]. First, 
probes with detection p-value >0.01 were excluded from analysis, followed by 
exclusion of probes known to cross-react in more than one genomic location, 
probes having single-nucleotide polymorphism (SNP) in the CpG site or 
single-nucleotide extension at the CpG site, and probes with no signal. Probes 
in X or Y chromosomes were also excluded. This resulted in exclusion of 
46 384 probes, and thus 439 128 probes were qualified for analysis. The next 
step was normalization of signals, which was performed with R-function 
“SWAN” in “minfi” package. This was necessary as the 450K chip is actually 
constructed from two different probe sets using slightly different chemistry. 
Normalization makes signals from different probe sets comparable [333, 334]. 
We also computed white blood cell counts in cases and controls and compared 
them with t-test to determine whether cell composition between groups could 
be confounding factors, as different white blood cell populations have slightly 
different methylation patterns [125, 126]. There were no significant 
differences and thus methylation patterns could be compared. In the final step, 
all raw signal values were transformed into so-called M-values by taking the 
log2 ratio from signal intensities from methylated and unmethylated probes. 
This was necessary as raw signals in the array follow a Bernoulli-type 
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distribution, meaning that it is linear only in the mid values and tends to be 
sigmoidal in extremes [335]. A positive M-value indicates that more than half 
of all probes investigated were methylated. 

4.3 STUDY TRAITS 

Maternal stress, BMI, sleep, depression, and anxiety 
during pregnancy 
 
Maternal stress was evaluated during pregnancy by using a short version of 
the Perceived Stress Scale(PSS) [336]. This is a five-point scale that measures 
perceived stress, ranging from 0 to 17 points in total. In our sample, 
Cronbach’s α for total score was 0.67.  
 
Maternal self-reported weight before pregnancy was divided with self-
reported height2 resulting in BMI before pregnancy, which was then used as a 
measurement of weight affecting the fetus.  
 
The Basic Nordic Sleep Questionnaire (BNSQ) [337] was used to assess sleep 
quality. The BNSQ contains 21 questions covering essential parts of sleep 
quality, such as self-reported length of sleep, sleep latency, awakenings, 
snoring, and daytime tiredness. First, we formed an index for insomnia by 
calculating the sum of questions 1, 3, 4, 5, and 6, which all measure different 
facets of insomnia. The sum score had a range from 5-25; Cronbach’s α was 
0.70 in our sample. To evaluate sleep-related breathing disorder, we 
dichotomized BNSQ question 16 “Do you snore?” such that snoring at least 
once a week qualified as a case. 
 
Maternal depression during pregnancy was measured with the Center for 
Epidemiological Studies Depression Scale (CES-D) [338]. The CES-D contains 
10 items with a total score ranging from 2-23. In our sample, Cronbach’s α was 
0.78. 
 
Maternal anxiety was measured during pregnancy by using the State and Trait 
Anxiety Scale (STAI), Short version [339]. STAI has six questions and total 
score ranges from 6-21; Cronbach’s α was 0.78 in our sample. 

 
Childhood adverse experiences, socioeconomical status, 
and specific stressors 
 
Childhood adversities were evaluated with a questionnaire containing 11 
different adversities that might have occurred before age 16 [340, 341]. This 
was performed during home interview and all questions started with the 
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sentence “When you think about your growth years, i.e., before you were age 
16…”. Questions were the following: 
 

1. Did your family have long-term financial difficulties? 
2. Was your father or mother often unemployed although they wanted to work?  
3. Did your father or mother suffer from some serious disease or disability? 
4. Did your father have alcohol problems? 
5. Did your mother have alcohol problems? 
6. Did your father have any mental health problem, e.g., schizophrenia, other 

psychosis, or depression? 
7. Did your mother have any mental health problem, e.g., schizophrenia, other 

psychosis, or depression? 
8. Were there any serious conflicts within your family? 
9. Did your parents divorce? 
10. Were you yourself seriously or chronically ill? 
11. Were you bullied at school? 
 

The answer choices were “Yes”, “No”, and “Cannot say”; only “Yes” was coded 
as positive. We categorized the answers to form the four following groups: no 
childhood adversities (N=4316), one adversity (N=1374), two adversities 
(N=1120), and three or more adversities (N=2057). 
 
Childhood socioeconomic status was evaluated by self-reported parental 
education level; if the parents had different levels, the higher was chosen. 
 
Specific stressors during childhood included self-reported parental death 
before age of 16 years. 
 

 
Sleep, depression, and cognition in adolescents 
 
Sleep in adolescents was evaluated as a part of the Schedule for Affective 
Disorders and Schizophrenia for School-Age Children-Present and Lifetime 
Version (K-SADS-PL) interview attachment of affective disorders. This 
attachment that evaluates affective disorders also has six questions that 
evaluate sleep. They cover issues of initial insomnia, insomnia in mid-sleep, 
terminal insomnia, disturbed sleep-wake rhythm, hypersomnia, and non-
restorative sleep. The clinical interviewer evaluated each of these facets using 
standard criteria [342]. None of the controls had any sleep disorders according 
to this evaluation. 
 
In addition to clinical evaluation of sleep disorders, self-reported 
measurements were also used. Insomnia was evaluated using the Athens 
Insomnia Scale (AIS) [343]. AIS has eight items and total score ranges from 
0-24. It covers essential symptoms of insomnia, such as total sleep duration, 
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difficulty falling asleep, early awakenings, daytime sleepiness, waking during 
night, daytime functioning, daytime well-being, and sleep quality. 
 
Daytime sleepiness was evaluated separately using the Pediatric Daytime 
Sleepiness Scale (PDSS) [344]. The PDSS is especially appropriate for 
evaluating adolescent sleep and consists of eight items covering questions 
related to daytime sleepiness and alertness. The total sum of scores ranges 
from 0-32.  
 
Objective measurements were also used for sleep architecture. This was 
performed with polysomnography, which combines recordings from EEG, 
electrooculogram (EOG), and electromyogram (EMG). Measurements were 
performed in the adolescent’s home over two consecutive nights; the first night 
was for gaining familiarity with measurements and the second was used for 
analysis. We used a portable device (Embla, Flaga, Hf. Medical Devices, 
Reykjavik, Iceland). Electrodes were positioned according to the international 
10-20 system. Our main interest was SWS, which was calculated from EEG 
with power spectral analysis [49]. A particular emphasis was paid to frontal 
electrodes, as SWA dissipation was altered in the frontal cortex in previous 
studies in the same cohort [49].  
 
Depression was assessed with a semi-structured diagnostic interview covering 
the Diagnostic and statistical manual for mental disorders fourth edition 
(DSM-IV) axis I disorders K-SADS-PL [345]. An experienced clinician 
performed all interviews and confirmed the diagnoses after discussion with a 
professor of adolescent psychiatry. Six cases had first-time depression, one 
had a second lifetime episode, and one case had a circadian rhythm disorder 
with mild depressive symptoms. None of the controls were diagnosed with any 
axis I disorder. None of the subjects suffered from psychotic disorder or 
bipolar disorder. Two cases had comorbid diagnoses, one with anxiety 
disorder and one with behavioral disorder. Symptom severity of depression 
was evaluated using the Beck Depression Inventory (BDI) [346-348], a 
validated instrument for assessing depression symptom severity also in 
adolescents. The BDI has 21 items with a sum score ranging from 0-63. To 
evaluate the effect of depression in secondary analysis, we used a shorter 
version where two questions related to sleep and tiredness were removed. 
 
From cognitive functions, we concentrated on psychomotor vigilance, which 
was evaluated using the Psychomotor Vigilance Task (PVT), as the effect of 
sleep disorders in this domain has been very consistently shown [95, 349]. The 
PVT is a neurobehavioral test widely used to test sustained attention. This was 
a part of a larger test battery, from which a PVT-192 unit was used 
(Ambulatory Monitoring Inc. Ardsley, NY, USA).  
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Adult mental health, current stress, sleep, socioeconomic 
status, and health behavior 
 
In adults, current mental health was evaluated using a structured psychiatric 
interview that uses DSM-IV criteria [111] and the Munich Composite 
International Diagnostic Interview (M-CIDI) [350]. This interview covers 
psychotic disorders, major depression and dysthymia, substance abuse or 
dependence, and anxiety disorders.  
 
Current stress was evaluated using the General Health Questionnaire (GHQ) 
[351], which is a 12-item self-reported measurement of recent psychosocial 
distress.  
 
Sleep was evaluated with a self-reported questionnaire containing questions 
about difficulties initiating sleep, maintaining sleep, fatigue, and tiredness 
[352]. A self-evaluation of total sleep time was also performed and was 
dichotomized to short sleep (<6 hrs) and to normal sleep (6-9 hrs). Subjects 
sleeping >10 hrs were excluded from analysis, since it is possible that such 
individuals have a health condition that could affect secondary analysis. There 
were 189 subjects excluded due to long sleep. 
 
The following sociodemographic factors were collected from questionnaires: 
age, gender, marital status, education (highest achieved), and current 
employment status. University hospital district was also considered.  
 
For health-related behavior and factors related to health, we included BMI, 
smoking, and physical activity. 

4.4 STATISTICAL ANALYSES 

For study I, we used a linear regression model where LTL served as a 
dependent variable and maternal stress, sleep, anxiety, depression, and BMI 
were an explanatory variable. qPCR plate, maternal smoking during 
pregnancy, child’s gender, and gestational age at birth were also entered as 
explanatory variables. Perceived stress (PSS), anxiety (STAI), and depression 
(CES-D) were analyzed in a separate analysis since they had high 
intercorrelations to minimize the risk for collinearity bias. STAI and CES-D 
were transformed into natural logarithms to reduce skewness and to fit them 
better into the linear regression model. These analyses were performed with 
SPSS v. 24 (IBM, Armonk, NY, USA).  
 
Power analysis utilized effect-size estimates as reported previously [204, 208, 
209, 216]. The α error level was set to <0.05 and the same parameters were 
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also used when calculating the minimum detectable effect size with 80% 
likelihood. Analysis was performed with R-software (Version 3.5.1) with 
package “pwr” [353]. To evaluate the false discovery rate (FDR), we used R-
package “p.adjust” [354]. 
 
In study II, we again used SPSS multiple linear regression modeling where in 
each model LTL acted as the dependent variable and psychiatric diagnoses, 
stress, adversities, socioeconomic factors, lifestyle factors, and sleep served as 
explanatory factors. All analyses were adjusted for the effects of age, gender, 
and qPCR plate. In addition, a population weight factor was added to adjust 
the sampling effect detected after collection of the cohort was finished.  
 
Study III used several approaches. In epigenome-wide analysis (EWAS), an 
empirical Bayes moderated t-test was applied to achieve probe-wise 
comparisons of methylation status in cases and controls. This approach was 
especially designed for the 450K chip and considers the fact that it contains 
both one- and two-channel microarrays [355] and relatively small sample size. 
Multiple testing is a true challenge in any genome-wide array, and thus the 
Benjamini-Hochberg (BH) procedure was applied using p<5.0 x 10-8 as a 
significance threshold [332, 354] using the R-package “limma”. 
 
In the next phase of analysis, a pathway analysis was performed using 
Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Redwood city, 
CA, USA). We used the 500 most significantly differentially methylated sites 
in the original case-control analysis. After QC, a total of 332 sites was mapped 
to a known genomic location and were entered into pathway analysis. This 
software compares this set of genes to known biological pathways and uses 
Fisher’s exact test (right-tailed) to determine whether a given set of genes is 
enriched into some biological pathway more than could be expected by chance. 
It does not correct for multiple testing, but correction can only correct the 
magnitude of likelihood, but the pathways would still be the same and appear 
in the same order as in uncorrected analysis. The results yielded the top 
canonical pathways, which refer to pathways that are generalized and 
represent the most common form of a pathway across different animal species 
and different tissues [356]. 
 
Finally, a linear regression was used in secondary analyses for methylation 
values for identified loci in the pathway and for mood, sleep, SWS, and 
vigilance. One could expect that original case-control status could influence 
these analyses, and we also performed a separate analysis using case-control 
status as a covariate. The BH procedure was applied to consider multiple 
testing. These analyses were performed with SPSS v. 24 (IBM, Armonk, NY, 
USA).  
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4.5 ETHICAL CONSIDERATIONS 

 
Our study involved pregnant mothers and fetuses. They should be considered 
as especially vulnerable groups and thus particular care should be applied in 
designing a study for these groups. Adolescents can also be considered as a 
vulnerable group. The aim of our study was to increase understanding of 
stressors and their effects on biology and thus provide insight into what groups 
are at special risk and on when the risk is and what kind of risk is present. This 
knowledge may be used to design screening programs for populations at risk, 
support programs, or planning policies in society in general that favors risk 
reduction, improves access to support, or minimizes risk factors. This leads to 
the notion that considering consequentialism ethics it is justified to conduct 
research that generates knowledge to guide service design and politics. This 
implies that participants in this study do not benefit directly from participating 
in the study and may only get disadvantages, such as time lost to completing 
questionnaires or possible adverse events from blood sampling. On the other 
hand, they might later benefit from results during a new pregnancy or when 
the children participating in this study themselves become parents. 
Considering virtue ethics, it is justified to study pregnant women and unborn 
and newborn children for future benefit of children and their mothers. 
 
There was careful ethical consideration in the design phase of each study and 
preauthorization from the Committee on ethics was obtained for each study 
before the protocol was executed (THL  407/E3/2000, Helsingin ja 
Uudenmaan hospital district ethical committee 137/13/03/03/2011 and 
Pirkanmaan hospital district ethical committee 3/2011 (22.2.2011), Tiede 67§ 
R1 1032). All participants provided informed consent. For unborn children, 
consent was obtained from parents. The adolescents’ legal guardians provided 
informed consent to participate. 
 



 

43 

5 RESULTS AND DISCUSSION 

5.1 THE EFFECT OF MATERNAL SLEEP OR STRESS 
DURING PREGNANCY AND LTL OF A NEWBORN 
(STUDY I) 

In study I, we explored the association between maternal stress, sleep, anxiety, 
and depression on newborn LTL following the Fetal Programming of Telomere 
Biology hypothesis.  

 
Before analyzing the data, we performed a power analysis for each variable of 
interest to verify that our sample size is sufficient to replicate previous findings 
based on sample size for each variable of interest and previously reported 
effect size. In conclusion, the likelihood to detect at least a previously reported 
effect was >99% and the minimum detectable effect size with 80% likelihood 
was very low (0.07). 

 
After analyzing stress, sleep, depression, and weight, only anxiety (STAI) and 
pre-pregnancy BMI had nominal significance with newborn LTL. For STAI, β 
was -0.09 (p=0.04) and for BMI β was -0.01 (p=0.04). We then applied FDR 
correction, after which neither remained significant (STAIFDR p=0.12, BMIFDR 

p= 0.12). It is worth noting that detected estimates of effect (β) were very low 
and were below the minimum detectable value estimated in power analysis for 
BMI (>0.07).  
 
Although our sample size was twice as large as the largest sample size reported 
thus far, we could not replicate previous findings [204-206]. There may be 
several different reasons for this. 
 
The methodology for evaluating both the dependent variable (LTL) and 
explanatory variables (such as stress, sleep, anxiety) may be different in 
different settings, which would lead to different results. The most common 
method used is qPCR, but other methods, such as restriction enzyme based 
methods, may yield slightly different results [357]. Even tissue of origin can 
lead to differences in results. For example, if there is a different mixture of 
white blood cell types, differences in LTL may reflect this instead of a true 
difference caused by the explanatory variable [358]. Contrasting findings also 
exist, where there are no marked differences between LTL in different tissues 
[209]. Unfortunately, despite accumulating knowledge about the effect of 
prenatal factors on LTL, only a few previous studies have utilized umbilical 
cord blood samples [277]. The statistical models and covariates used also 
varied, and this may create difficulty when comparing different studies. For 
example, some studies used BMI as a covariate while others did not. Use of 
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several explanatory factors can induce a collinearity problem [359]. 
Measurement of stressors can also induce undesired variance. The timing of 
stress, type of stressors, or single event or chronic type can all have a modifying 
effect. For example, concentrating on trajectories instead of single-point 
measurements may yield different results [360]. 
 
This study had several strengths, such as large sample size and population-
based sampling from certain geographical regions, which allows for 
generalizing the findings to the general population. There were also 
limitations. In a population-based sample, a minority of participants suffered 
from severe stress, anxiety, or depression; severe sleep disorders were also 
scarce. It is possible that there was a minor selection bias, as mothers were 
recruited via the prenatal maternal care system, which is a publicly provided, 
free-of-charge service available in every community in Finland. Despite this 
accessibility, it is possible that mothers with the most stressful life situations 
and poorest supporting network did not use this service and thus were 
excluded from the study. This is general challenge in every population cohort 
when recruiting those who are most ill to participate. Therefore, stressors may 
be more readily detected in a clinical sample or in a case-control setting. 

5.2 THE EFFECT OF CHILDHOOD ADVERSITIES ON LTL 
IN ADULTHOOD (STUDY II) 

The aim of the second study was to explore whether ACE’s influence LTL in 
adulthood. This was explored in a large, nationally representative population 
cohort. In the initial analysis, both age (β=-0.322, p=4.23x10⁻⁶), gender 
(β=0.104, p=1.0x10⁻⁶), and qPCR plate (β=0.105, p=2.6x10-25) had a 
significant association with LTL, and thus were always entered into models as 
covariates. 
 
Interestingly, none of the adversities alone were significantly associated with 
LTL in adulthood when analyzed separately. However, when adversities were 
grouped into four categories (none, single, two, and three or more adversities) 
an association was detected. More adversities were associated with shorter 
LTL in adulthood (β=-0.006, p=0.005).  
 
Losing a parent before the age of 16 years (β=0.009, p=0.430) and childhood 
socioeconomic status (β=-0.016, p=0.216) were not associated with LTL. 
 
We explored whether the effect of cumulative ACE on LTL  could be explained 
by current psychiatric diagnosis, but this did not appear to be true (β=-0.030, 
p=0.02). Lifestyle factors affecting LTL (β=-0.030, p=0.013) and known 
socioeconomic factors during adulthood (β=-0.033, p=0.006) also did not 
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explain this effect. Thus, the association remained significant even when 
considering known factors that affect LTL in both childhood and in adulthood. 
 
Our finding is consistent with previous findings that a cumulative effect of 
stressors, rather than any single episode, is associated with LTL in adulthood 
[361, 362]. Puterman et al found in nationally representative population 
cohort in United States that no single childhood adversity was related to 
adulthood LTL, but cumulative ACE explained the difference in LTL in 
adulthood. They also found that it was childhood adversities, not adulthood 
adversities, that contributed to shortening of LTL. In their systematic review 
and meta-analysis, Hughes et al found that having four or more risk factors 
were associated with shorter LTL, although their risk factors were factors 
occurring in adulthood and were not ACEs. 
 
Our main limitation was that the ACE questionnaire used has not been 
validated externally, and some severe forms of adversities (such as sexual 
abuse) were absent. Despite these limitations, this questionnaire is a useful 
instrument based on previous reports utilizing this and very similar 
questionnaires [276, 361, 363-367]. We could not replicate at the population 
level the previous findings related the effect of mental disorders on LTL. 
However, there were relatively few mental health cases in a population-based 
sample. Similar to the findings from maternal factors, different results may 
appear from cohorts with enrichment of cases or at-risk subjects. A strength 
of this study was that we used a large nationally representative population 
cohort, which emphasizes that these effects do not appear only in risk 
populations or clinical samples. 

5.3 THE EFFECT OF DEPRESSION AND SLEEP INTO 
DNA METHYLATION IN ADOLESCENTS (STUDY III) 

In this study, we used a case-control setting where we first explored whether 
there are epigenome-wide (EWAS) differences in methylation status between 
cases and controls. We set the significance threshold to 5.0 x 10-8 and found 
no epigenome-wide differences between these two groups. 
 
Next, we performed a pathway analysis to explore whether there is enrichment 
of genes that differentiate the most into known canonical pathways. We chose 
for this analysis the top 500 sites that differentiated the most to obtain a 
manageable number of genes. Of these, 332 unique sites mapped to known 
genes were identified and were subsequently entered into IPA pathway 
analysis software. Our top canonical pathway was the LTD pathway 
(p=0.00045), followed by the nitric oxide signaling pathway (NOS) and netrin 
signaling pathway. Both had a p-value of 0.0042, which is 10-fold larger than 
the LTD pathway. We thus decided to continue with the LTD pathway in 
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secondary analysis. There are 165 different genes involved in the LTD 
pathway; of these, our top-list genes included 10. Out of these 10 sites, seven 
were relatively hypermethylated in cases vs controls and three were relatively 
hypomethylated. Table 2 presents the genes, their original p-value in the case- 
control setting, relative methylation status, and difference in M-values. 

 
Table 2. Relative methylation status of LTD pathway methylation sites that 

appeared in the 500 sites that differed the most. 
 

[368] Reproduced with permission from Elsevier publishing. 

In secondary analysis, we explored the association between methylation of 
each locus and the variables sleep, depression, and vigilance. Only one out of 

Locus Gene p-value in 450K 
array 

Methylation level in 
cases 

 vs. controls 

Average M-valuefor cases / 
controls 

cg1684176 CACNG1 0.000381  Lower 3.18 / 3.49 

cg22025854 CACNG6 0.000527 Higher -1.17 / -1.57 

cg08364956 GRM6 0.000838 Lower 3.29 / 3.56 

cg05110803 IGF1R 0.000306 Lower 1.47 / 1.95 

cg19161850 ERK12 0.000663 Higher -3.88 / -4.13 

cg12066398 PLA2G16 0.000540 Higher -3.70 / -4.07 

cg04367351 PLA2R1 0.000659 
 

Higher -4.14 / -4.46 

cg02263165 PPP2R5C 0.000207 
 

Higher -3.14 / -3.35 

cg18823846 PRKG1 0.000903 
 

Higher -3.95 / -4.20 

cg25405123 RYR3 0.000427 Higher -3.61 / -3.89 
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10 sites had an association between methylation and length of depression (β 
0.860, p=0.013, uncorrected with multiple testing). We thus decided not to 
perform covariate analysis with depression length, as this would have led to 
abolishing controls and would make the sample very small. 
 
We found several associations between sleep, mood, and SWA dissipation 
(Table 3). 
 

Table 3. Linear regression results between LTD pathway methylation sites and 

mood, vigilance, and tiredness and sleep.  

 

 
 

† denotes significant association after Bonferroni correction. * denotes significant association at < 

0.05 level when case-control status is controlled for (nominal). BDI-19 = Beck Depression Inventory 

with questions concerning sleep and tiredness removed, PDSS = Pediatric Sleepiness Scale, Median 

RT = Median reaction time in psychomotor vigilance task (PVT, AIS = Athens Insomnia Scale, 

SWAdiss = Slow wave dissipation during first episode of the night measured from frontal electrodes). 

[368], reproduced with permission from Elsevier publishing. 

Locus (Gene) 
 

Mood 
BDI-19 
Β                 

p-value 

Vigilance 
and Tiredness 

Median RT 
Β                  

p-value 

 
PDSS 
Β                 

p-value 

Sleep 
AIS 
Β                

p-value 

 
SWA Dissipation 
Β                        p-value 

cg1684176 
(CACNG1) 
 

-0.69           
0.002 

-0.44             
0.08 

-0.58            
0.02 

-0.68          
0.003 

0.38                    0.14 

cg22025854 
(CACNG6) 
 

0.44             
0.08 

0.40              
0.11 

0.19             
0.49 

0.55           
0.02 

-0.25                   .36 

cg08364956 
(GRM6)         

 

-0.47           
0.06 

-0.26             
0.31 

-0.60            
0.01 

-0.75          
0.001 

0.38                    0.15 

cg05110803 
(IGF1R)           

 

-0.50           
0.04 

-0.28             
0.29 

-0.79            
0.00029*† 

-0.68          
0.003 

0.24                    0.38 

cg19161850 
(ERK 12)  
 

0.55             
0.023 

0.21              
0.43 

0.72             
0.002* 

0.65           
0.005 

-0.47                   0.67 

cg12066398 
(PLA2G16) 

 

0.77             
0.00031*† 

0.66              
0.004 

0.33             
0.21 

0.70           
0.002 

-0.32                   0.23 

cg04367351 
(PLA2R1) 
 

0.48             
0.053 

0.17              
0.51 

0.77             
0.00047*† 

0.68           
0.003 

-0.30                   0.26 

cg02263165 
(PPP2R5C)    

 

0.64             
0.006 

0.51              
0.035 

0.32             
0.23 

0.65           
0.005 

-0.67                   0.004* 

cg18823846 
(PRKG1) 

0.57             
0.018 

0.49              
0.045 

0.50             
0.051 

0.60           
0.010 

-0.16                   0.56 

cg25405123 
  (RYR)           

0.64             
0.006 

0.42              
0.095 

0.44             
0.091 

0.76           
0.00041† 

-0.54                   0.031 
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Of these associations, PLA2G16 and BDI score (β=0.77, p=0.00031), IGF1R 
(β=-0.79, p=0.00029), PLA2R1 (β=0.77, p=0.00047), and tiredness and 
RYR3 (β=0.76, p=0.00041), and insomnia also passed correction with 
multiple testing. 
 
The small sample size limited the statistical significance of the results. 
Nevertheless, the results also passed correction with multiple testing. The 
results are also biologically plausible. For example, in a case-control setting, a 
lower methylation was observed in cases for the IGF1R site, and tiredness was 
negatively associated with methylation values in this site. Similar findings 
were observed with PPP2R5C and SWA dissipation. 
 
Vigilance among cases was moderately lower, consistent with previous 
findings connecting depression and sleep difficulties to vigilance [369, 370]. 
This might reflect the developmental period ongoing in the CNS [371] and thus 
the ability to compensate for comprehensive cognitive difficulties. 
 
 
This study was designed to be a hypothesis-generating study rather than a 
hypothesis-verifying study. The small sample size did not support finding any 
EWAS-level observations but served as a tool to identify important DMPs for 
further analysis. Enrichment of genes into the LTD pathway is consistent with 
evidence connecting sleep to memory processes in the developing brain [372]. 
LTD and LTP act as balancing components of synaptic plasticity related to 
memory consolidation and are connected to sleep [373-375]. LTD is 
particularly connected to SWS sleep [376], whereas LTP has previously been 
connected to REM sleep [377, 378]. In our sample, there were no marked 
differences in REM sleep [49], which might explain the emphasis on LTD-
related genes rather than LTP-related genes.  
 
Some genes in the LTD pathway exhibited fairly good correlation between 
peripheral blood leukocyte methylation level and methylation in the CNS, such 
as PPP2r5C [379]. However, for most genes explored, such knowledge was not 
available. We did observe an association between ERK12 and tiredness, and 
this enzyme was indeed previously reported to associate with LTP, a balancing 
counterpart of LTD [380]. It is postulated that during daytime, LTP is favored 
over LTD, which is prominent during SWS. ERK12 is mediated by 
phosphatases (such as PPP2R5C) and phospholipases (such as PLA2G16), 
creating a balancing synaptic homeostasis between strengthening and pruning 
of synaptic connections [381-383]. IGF1R also plays a role in regulation of 
LTD, as blocking IGF1R in the mouse cerebellum appears to cause cessation 
of LTD [369]. 
 



 

49 

A limitation of our study was that we lacked expression data to correlate 
methylation changes to changes in expression. Methylation can be either an 
active modifier of gene expression or a byproduct of another mechanism 
regulating the expression, but nevertheless methylation serves as a proxy 
measurement of altered expression [120, 121]. Even small changes in 
methylation have been linked to altered phenotype [384]. Another 
shortcoming was the lack of genotype data; it is possible that there could be 
methylation quantitative loci (mQTL) that could influence the methylation 
status of the sites detected. The strengths of our study included a well selected 
and homogenous sample (all male, non-medicated, narrow age range, and no 
somatic or psychiatric comorbidities). The use of polysomnography brought 
objective measurements of sleep quality in addition to subjective evaluations. 
 
Based on preliminary findings in a small sample, our conclusion is that there 
may be a connection between sleep and depression and synaptic plasticity that 
is at least partially mediated via methylation alterations detectable in 
peripheral blood leukocytes. The brain’s lymphatic drainage systems connects 
sleep, CNS, and peripheral leukocytes together, thus making these 
observations plausible [385]. 
 

5.4 THE EFFECT OF CURRENT PSYCHIATRIC 
DIAGNOSES, CURRENT STRESS, AND SLEEP ON 
LTL IN ADULTHOOD (STUDY III) 

Present psychiatric diagnoses, including major depression, any anxiety 
disorder, any psychotic disorder, and substance abuse were not associated 
with LTL. The explored current sleep difficulties and current psychosocial 
stress measured with the 12-item GHQ questionnaire were also not associated 
with LTL (table 4). 
 

Table 4. Association between mental health disorders and adult LTL. 
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Variable Unstand
ardized 

Coefficients 

Standardized 
Coefficients 

p-
value 

95.0% Confidence 
Interval for β 

 
β β 

 
Lower 

Bound 
Upper 

Bound 
Sex  0.045 0.104 1.0 10⁻⁶ 0.034 0.056 

age -0.005 -0.322 4.2 10⁻⁶ -0.005 -0.004 
PCR plate  0.001 0.105     

2.6 10-25 
0.001 0.001 

Any anxiety 
disorder 

-0.006 
 

-0.006 0.61
8 

-0.029 0.017 

Depression or 
dysthymia 

-0.011 
 

-0.012 0.35
6 

-0.036 0.013 

Any psychotic 
disorder 

 -0.001 0.000 0.99
7 

-0.031 0.031 

Any substance 
abuse  

-0.005 -0.020 0.12
5 

-0.012 0.001 

GHQ total 
score 

 -0.001 -0.013 0.32
6 

-0.021 0.034 

Difficulties 
falling asleep 

-0.006 -0.021 0.11
0 

-0.012 0.001 

Early morning 
awakenings 

-0.002 -0.009 0.48
2 

-0.009 0.004 

Tiredness  0.005 0.017 0.17
6 

-0.002 0.013 

Sleep length  0.000 -0.001 0.94
5 

-0.014 0.013 

BMI -0.001 -0.017 0.16
3 

-0.002 0.000 

Physical 
activity 

 0.001 0.003 0.80
5 

-0.005 0.007 

Smoking  0.003 0.017 0.16
8 

-0.001 0.008 

Marital status  0.000 0.003 0.83
6 

-0.003 0.004 

Education  0.001 0.003 0.53
5 

-0.001 0.002 

Hospital 
district 

 0.001 0.015 0.20
2 

-0.005 0.001 

Occupational 
status 

-0.006 -0.029 0.04
5 

-0.013 -0.001 

 Results from 16 different independent linear regression models are shown, each including PCR 
plate, age, and sex as covariates. GHQ=General health questionnaire, BMI=body mass index, 
LTL=Leukocyte telomere length [386] with permission from Elsevier publishing. 
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All explored lifestyle and socioeconomic factors, except occupational status, 
did not have an independent association on LTL (Table 4). Being in full-time 
employment was associated with longer LTL, although the association was 
modest (β=-0.03, p=0.01). 
 
Previous findings concerning the association [279] between ACEs and LTL in 
adulthood were confirmed in a large, population-based nationally 
representative Finnish cohort. Interestingly, we did not find support for 
previous findings concerning the effect of mental disorders and LTL. The 
association between current occupational status and LTL is interesting, as 
previous studies have revealed somewhat conflicting results. In one study it 
was reported that women currently employed had shorter LTL compared to 
those not working [387], whereas in men the opposite was observed [388]. 
Studies that reported no association between these two have also been 
published [389]. One possible explanation might be the fact that mental health 
and occupational status are often linked, and thus a collinearity problem might 
exist [359]. A study utilizing the same cohort as ours revealed an association 
between work-related exhaustion and LTL [390], and this may be such a 
collinearity-based example. The strengths of our study included a large sample 
size and strong representation of the general population. There may also be 
limitations; it is possible that in clinical samples or high-risk subjects an 
association between mental disorders and LTL would have been detected. 
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6 GENERAL DISCUSSION AND 
CONCLUSIONS 

Our study on ACEs confirmed that the effect of early adversities can be 
observed in LTL in adulthood, thus expanding the Prenatal Programming of 
Telomere Biology hypothesis from prenatal stress to postnatal stressors. It is 
worth noting that this programming effect can be observed at the population 
level, confirming this phenomenon from special at-risk populations to cover 
all subjects at the national level.  

 
On the other hand, we could not replicate at the population level the effect of 
prenatal stress on newborn LTL. While this suggests that there may be special 
populations at risk where a notable effect may play a role, these findings 
cannot easily be transferred to the general population. These factors combined 
lead to the conclusion that stress recognition and management is needed both 
at the population level and in at risk- groups. When the effect of stressors (such 
as a mental health condition, in this case depression and sleep disturbances) 
was explored in a high-risk group (depressed adolescents with sleep 
disorders), an association was observed despite the relatively small sample 
size, thus demonstrating the ability to explore vague signals in high-risk 
groups that are carefully described and thoroughly examined and diagnosed. 
These well-characterized cohorts also enable generation of new hypotheses 
concerning possible biological mechanisms behind these hypotheses.  
 
Several caveats may explain the inconsistent findings regarding different 
studies. As mentioned, different populations might yield different results. The 
methodology is also very different for both LTL measurements and 
methylation-level measurements, and even this might create some 
discrepancy among findings. Even the tissue used for sampling may lead to 
marked differences and should be considered when possible. Statistical 
models (especially which covariates are used) play an important role, as does 
measurement of phenotype. Timing of measurements (such as those related to 
pregnancy) can vary and stressors can be diverse, as some are short-term 
drastic events, and some are more subtle and chronic. 
 
Unfortunately, we could not consider resilience factors in our studies. This 
would be important to implement in future studies, as it is possible that 
personal resilience factors can play a major modifying role in stress biology. 
More research is also needed for specific timing of different stressors and their 
impact on DOHaD. Studies with interventions directed towards occurrence of 
ACE should be designed to explore whether interventions may lead to changes 
at the DOHaD-biology level. 
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In conclusion, we expanded the previous preprogramming hypothesis into a 
wider perspective that also covered other important growth phases. Our 
results also emphasize the importance of vigorous methodological 
consideration, as methodological aspects can have a profound effect on results 
in this field. 
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